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Abstract 

The web of today has evolved into a huge repository of rich Multimedia content 

for human consumption. The exponential growth of the web made it possible for 

information size to reach astronomical proportions; far more than a mere human can 

manage, causing the problem of information overload. Because of this, the creators of 

the web(lO) spoke of using computer agents in order to process the large amounts of 

data. To do this, they planned to extend the current web to make it understandable 

by computer programs. This new web is being referred to as the Semantic Web. 

Given the huge size of the web, a collective effort is necessary to extend the web. For 

this to happen, tools easy enough for non-experts to use must be available. 

This thesis first proposes a methodology which semi-automatically labels semantic 

entities in web pages. The methodology first requires a user to provide some initial 

examples. The tool then learns how to reproduce the user's examples and generalises 

over them by making use of Adaptive Information Extraction (AlE) techniques. When 

its level of performance is good enough when compared to the user, it then takes over 

the process and processes the remaining documents autonomously. 

The second methodology goes a step further and attempts to gather semantically 

typed information from web pages automatically. It starts from the assumption that 

semantics are already available all over the web, and by making use of a number of 

freely available resources (like databases) combined with AlE techniques, it is possible 

to extract most information automatically. 

These techniques will certainly not provide all the solutions for the problems 

Vlll 
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brought about with the advent of the Semantic Web. They are intended to provide 

a step forward towards making the Semantic Web a reality. 
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Chapter 1 

Introduction 

1.1 Motivation 

Research on an experimental computer network driven by the fear of a nuclear war has 

become, many decades later, one of the most popular and important communication 

media in the world. It originally had the form of a wide area network referred to at 

the time as ARPANet (Advanced Research Projects Agency Network). Its purpose 

was to exchange military information efficiently in the eventuality that a nuclear 

attack would have made specific parts of the network unusable. Later on, universities 

recognised the power of such a network and started hooking themselves to it and 

also providing access to their students. Today this huge network has grown by many 

orders of magnitude, spans every corner of the earth and is more commonly referred 

to as the Internet. 

In the past years, the web started growing at a very fast rate. The main catalyst 

for this increase in information 1 is the move (which happened some years ago) towards 

an information society succeeded by the present drive towards a knowledge2 society. 

Globalisation is another factor that is bringing about huge information strains and 

demands on several organisations since organisations do not have to compete just 

1 Information is data which is interpreted. 
2Knowledge is information transformed for effective use. 
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with other organisations in their own neighbourhood but they must compete with 

organisations all over the globe. For these to survive, in this fast changing world, it 

is imperative that they restructure themselves and move towards modern techniques 

of Knowledge Management (KM) in order to be able to handle all the knowledge 

available. 

KM is an emerging, interdisciplinary business model dealing with all aspects of 

knowledge within the context of the firm. It seeks to improve the performance of 

organisations by helping users to capture, share and apply their collective knowledge 

with the aim of leading the organisation towards making optimal decisions in real 

time. These techniques make effective use and reuse of the knowledge within the 

organisation with the effect of increasing efficiency, productivity and service quality. 

KM is not a separate process performed continuously by a particular department 

but it should happen in the background by everyone as part of the day-to-day run­

ning of the business. In this era where companies are moving towards installing in 

their company a Digital Nervous System(55), it is imperative that the information 

is available where, when and to whoever needs it, rather than hidden in the senior 

management offices. An effective digital nervous system allows a company's internal 

processes to operate smoothly and quickly, enables an organisation to respond to cus­

tomer feedback quickly, gives it the ability to react to its competitive environment in 

a timely manner, and empowers employees with critical knowledge. The key is how 

effectively an organisation manages the flow of its digital information. All kinds of 

information-numbers, text, audio and video can now be put into digital form. Widely 

available hardware and software has also made it possible and necessary for organi­

sations of all sizes to reshape the way they conduct their business. A combination of 

modern technology together with effective use of humans can make an explosive mix. 

Modern technologies can supply any kind of information at the touch of a button 

while humans are natural consumers of any type of information and have the unique 
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ability of efficiently and effectively processing the information. 

The basic organisational unit of KM is the Community of Practice (COP)(16). 

A COP is a group of people, informally bound to one another through exposure to 

a common class of problems, common pursuit of solutions, and thereby themselves 

embodying a store of knowledge. Individuals are a very important asset in any or­

ganisation because they bring into the company an intellectual capital brought from 

their previous experiences. Also humans are capable of processing a wide variety of 

information represented in any kind of media. A COP is something around which all 

the information processes circulate. It becomes much more complex once the COP is 

spread amongst several distributed locations around the globe but this is inevitable 

since more users seem to be moving towards virtual collaboration. 

For KM to be more effective, it can make use of Artificial Intelligence3 (AI) tech­

niques such as Knowledge bases to be able to filter and process the huge amount of 

data which users are faced with. Knowledge bases store the data in data structures 

which make it easy and fast for users to retrieve it back. These knowledge bases 

facilitate users who would like to perform from simple searches to complex queries. 

AI must face a number of challenges in order to make KM successful. It must work 

for a wide range of people, not just for the expert user. If complex tasks need to be 

performed by humans, AI techniques must disguise the burdens introduced by the 

complexity of the task. One of the main bottlenecks in any KM system (where AI 

can make a huge difference) is the extraction of information from various sources (See 

Chapter 3 for more details). Another bottleneck in terms of costs is the harvesting, 

organising and storing of information. Since KM cannot afford to use poor quality in­

formation which is inaccurate or out of date, KM techniques reuse information from 

multiple tasks and multiple audiences to reduce the costs and risks involved (See 

3 AI is the field concerned with making computer programs achieve goals in the real world using 
different techniques capable of learning and improving themselves. 
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Chapter 3.2.3). The possibilities are endless but unfortunately the main problem 

which is hindering further progress is the Internet itself. 

Although the long tentacles of the web are reaching almost every aspect of our 

lives, it is still not mature enough and it is quite far from reaching its full potential. 

The committee of the W3C4 have stated that: 

for the Web to reach its full potential, it must evolve into a Semantic Web, 

providing a universally accessible platform that allows data to be shared and 

processed by automated tools as well as by people. 

The important question at this stage is what is the Semantic Web (SW)(lO) and 

why is there a need for it? The SW is basically similar to the existing web but 

with an added dimension, the semantic dimension. This dimension does not visually 

alter the web pages in any way, and users will still see pages the same as they see 

them today. But this dimension adds meaning to web pages. Lets take a small 

example to understand better what we mean. Imagine we have a very simple Online 

Book Shop containing many pages with details regarding books. Let us also assume 

that every single page (which describes a book) must have at least the name of the 

book and the author of the book. When a person views such a page, he immediately 

identifies and distinguishes between the name of the book and the name of the authors. 

Humans manage to do so using a number of tricks. First of all they are equipped 

with a powerful data processing system commonly known as the brain. The brain 

is specialised at creating associations between this data and is capable of processing 

huge amounts of data. It is also very good at inferring new facts using existing facts 

combined with logical rules. Keeping this in mind, lets see how humans manage to 

identify the names of the authors. Since they are social animals, throughout their 

life, they come in contact with other humans like them, all with different names. 

4http://www.w3c.org/ 
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Therefore, it is easy for humans to distinguish between words and names because 

they have stored in their brain a partial database containing some of the names of 

the people they met through out their life. If an author's name is similar to the name 

of a person they met, the brain manages to generalise and infer that the particular 

word being analysed is probably the name of a person. Using this information and 

the conscious knowledge that the web site is an online book store, the person infers 

from his past experiences that a person mentioned in a web page of an online book 

store most probably is the author of a book. Since the authors were identified, (by 

exclusion) the other words present in the page must be the title of the book. 

This was a very simple example. What happens if the author has a previously 

unseen name? Once again, the brain comes to the rescue. Using its powerful gener­

alisation functions over the partial list of names which it has, it manages to extract a 

set of linguistic cues that offer hints towards identifying names. One such cue could 

be that names normally start with a capital letter. Another cue could point to the 

fact that the name of a book is normally called a title and therefore, the identifi­

cation of the word title in the text could signify that the name of the book is to 

be found somewhere in its proximity. The number of cues and their complexity is 

enormous and humans use them continuously in order to understand the meaning of 

the world around them. But what would happen if a person had no experiences, no 

cues, nothing? It would be impossible to understand the world around him. 

This is the current situation with any program that analyses data. When a com­

puter program is created, it has no experiences, no partial lists, no memory, nothing, 

just instructions. So far these programs were created for closed domains where their 

mode of operation is well defined by their creator and any cues and lists of data they 

need to operate is also supplied by him. So if a program is needed to perform the 

same task as described above, a very simple approach would be to write a program 

that goes through the page, gets every word in the page and compares it with a list 
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of names. Obviously, the list of names must be supplied by the programmer. This is 

not very effective though since any list of names is finite and cannot contain all the 

names in the world. The programmer could also hard wire cues inside the program. 

A cue could be that a word starting with a capital letter is potentially the name of 

a person. But what happens if the word is the name of a company or it is the first 

word in a sentence? Those too start with a capital letter! These cases can be catered 

for by writing other rules, but obviously their complexity is always increasing! 

A smarter approach would be to use AI techniques. AI is divided into several 

subfields and the subfield concerned with trying to understand human language is 

Natural Language Processing (NLP). The task of understanding human language is 

very complex. It involves identifying entities (such as names in a sentence), finding 

out the relationship between them, the context in which they were mentioned and 

a million other issues. For the simple task we mentioned before, we only need to 

use the techniques to identify names in a sentence. There are various, the technique 

most relevant is Named Entity Recognition and Classification (NERC) whose task is 

to identify names of people, organisations, currencies, dates and basically all other 

named entities. To achieve this task, it makes use of a set of rules and lists in a 

similar way to what we mentioned before. For a more specialised approach, we could 

make use of Information Extraction (IE). It refers to the activity of automatically 

extracting pre-specified information from a document. So in our previous example, 

an IE engine could be used to extract the names of the authors and the title of the 

book. The difference between a NERC and an IE engine is that normally a NERC 

is generic to any domain therefore it does not require any prior training before it 

is used in a new application. An IE engine is specific to a particular domain and 

requires training so that it is customised to the domain being analysed. The training 

phase normally involves either giving the IE engine some extraction rules or some 

example documents so that it can learn which facts it needs to extract. Obviously, 
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the training phase that makes use of an IE tool is more complex than a NERC since 

a NERC does not require training, but the NERC has some serious limitations. Let 

us go back to the scenario we were analysing before and complicate life a little bit 

more, by introducing the name of the editor in the page. So now we have 3 pieces of 

information on every page, the title of the book, the names of the authors and the 

name of the editor. A NERC would spot the names of the authors and that of the 

editor without any problems but it cannot distinguish who is who. I.e. it cannot tell 

that the first name found is the name of the author and the second name found is 

the name of the editor, or vice-versa. To perform this, we need to use an IE engine. 

The IE engine learns to spot linguistic cues from the document which help identify 

where the name of the author is normally found and where the name of the editor 

is normally found in the document. Both names are treated as two distinct entities 

because they come from different sets (the first from the set of people who are authors 

and the second from the set of people who are editors). 

IE is a very powerful methodology, however most of the current IE technologies 

require skilled human effort to port the IE to new domains (e.g. NLP experts). To 

simplify their usage, the IE community uses techniques borrowed from another sub­

field of AI called Machine Learning (ML). ML refers to a broad class of probabilistic 

and statistical methods for estimating dependencies between data and using these de­

pendencies to make predictions. ML based IE is called Adaptive IE (AIE)(18; 7; 27). 

It can be exploited to allow naIve users (i.e. users knowledgeable about their domain 

but having limited knowledge when it comes to computing) to port IE systems so as 

to avoid referring to NLP experts. In AlE, only three items are required to extract 

information from any domain. First and foremost, the set of documents from where 

data needs to be extracted. Secondly, a set of training documents which are used to 

train the IE engine and thirdly an ontology5 defining the concepts which need to be 

5An ontology is a formal specification of a shared conceptualisation (61)(12). 
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extracted. Lets look at each one in more detail. 

The set of documents used for extraction is normally referred to as the test 

corpus6
. These documents can be free texts, structured texts (texts containing 

tables, lists etc) or a combination of both. Most important of all, a subset of 

these documents generally contain the information that needs to be extracted. 

In the scenario we are analysing, this corpus would consist of all the pages 

containing the names of the authors, editors and books. 

The set of documents used for training is called the training corpus. It is made 

up of documents similar in structure and content to the test corpus but con­

taining internal or external markers showing which information needs to be 

extracted. These markers are called annotations and a document having anno­

tations is called an annotated document. In the case of outside annotations, 

the annotations are referred to as template annotations whereby a template is 

associated with one or several documents and its instances point to the elements 

found in the documents. The process of creating these annotations is referred to 

as the annotation process. There are several kind of markers which one can use, 

the most commonly used are called tags. A tag is a label assigned to a section 

of the document in order to identify some data. To understand better what 

we mean, imagine in the Online Book scenario we have the details regarding a 

random book as follows: 

I Oliver Twist - Charles Dickens I 

The text means nothing on its own for a machine. It is just a sequence of 

letters and symbols. Therefore, if we want the IE system to learn examples 

from this documents we must insert training tags inside the document to mark 

the examples as follows: 

6 A corpus is a large collection of writings of a specific kind or subject, used for linguistic analysis. 
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(BookTitle)OliverTwist(! BookTitle) - (Author)CharlesDickens(!Author) 

The (BookTitle) tag marks the start of a book title while (! BookTitle) marks 

the end of the book title. The text in between those tags is the title of the book 

(it is referring to the book Oliver Twist). The same holds for the (Author) 

tag which marks the start and end of the author name (in this case Charles 

Dickens). 

An ontology defines a subset of the real world made up of concepts and relationships 

between them. There exist several formats and standards for ontologies. A 

simple representation for the Book Shop scenario would be as follows: 

(Book) 

-+ has a (BookTitle) 

-+ is written by one or many (Author) 

-+ edited by an (Editor) 

This representation does not follow any particular standard, its purpose is to il­

lustrate the concepts behind an ontology. The words within () are concepts 

while the words in bold represent the relationship between these concepts. 

Therefore, the above ontology states that a book has a title, it is written by 

one or more authors and is edited by an editor. An ontology is used to specify 

all the elements required in any domain and their relationship. It is useless 

annotating the document with tags that are not linked to an ontology because 

tags on their own are meaningless unless they are put in a context of some sort. 

1£ we look at the tag Editor on its own, we know that an editor can be: 

1. A person who edits. 

2. A person who writes editorials. 
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3. A device to edit film. 

4. A program used to edit text. 

If the context is not supplied, it is quite difficult to disambiguate what the 

particular word means. 

So far we have seen that IE can be used to automate the process of adding an­

notations to any kind of page. These annotations are linked to an ontology and 

therefore have a well defined meaning. In other words, IE can be used to add mean­

ing/semantics to pages. Unfortunately, this comes at a cost since it requires a certain 

amount of training. This training is normally supplied by a human whose job is to 

manually annotate the training corpus. This has been very successful so far since the 

tasks being tackled were restricted to closed domains. But when it comes to larger 

scenarios, the IE methodology starts facing problems. The largest scenario possible 

is without doubt the SW scenario. 

In this scenario all the pages on the Internet need to be annotated with meanings 

so that they can be processed by programmes. The need for having these programs 

analysing the web arises from the fact that the web is full of both relevant and 

irrelevant information on any topic imaginable. The amount of information available 

is such that a human being cannot cope with it. This problem is also referred to 

as information overload. Therefore to make this process tractable, a human requires 

the aid of some automated agent(70) capable of analysing the data in order to search 

and filter out, redundant and irrelevant information whilst directing the user's search 

through this information space. The only problem with this approach is that the 

agents do not understand anything which is on the web because for them, all the 

information present is just a bunch of binary symbols. What the agents need is a 

way to help them understand the data so that they can process it in a more meaning 

full way. This is exactly the goal of the SW. Basically the SW is a silent revolution 
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whose aim is to add semantics to the web which can be understood and used by both 

humans and automated agents. 

If we try to insert this meaning manually into web pages, we immediately realise 

that this task is not feasible. The documents which are already semantically anno­

tated in the current web are few. The number of un-annotated web sites is enormous 

and, every day, more and more new web sites are being created. If we assume for a 

second that the process of manually annotating these web sites is tractable, and if we 

ignore that it is both time consuming and error prone when performed by humans, 

the task is still difficult to perform by non-experts. To help the users perform these 

tasks, there is lack of adequate tools capable of providing some kind of support to 

semi-automatically assist the annotation process. 

IE can surely help in this respect but we are now faced with a scalability problem, 

i.e. how can we provide enough training documents to annotate the web? A possibility 

would be to make use of the data already available on the web to annotate the training 

documents. If we take a look back at the Online Book Shop scenario, all we require 

is a partial list of authors and book titles. Once we have this partial list, it can be 

used to automatically annotate some of the documents in the test corpus so that we 

create a training corpus. Then the training corpus is used to train the IE engine. 

The trained IE engine is applied over the remaining test corpus and new authors and 

titles are extracted. The annotation part is automatic because it is simply a matter of 

going through the authors and book titles in the lists, searching for them through the 

documents, and then adding the appropriate annotation around their instance. The 

lists can be found quite easily using any search engine and involve little effort on the 

human's side. The only problem remaining is the fact that these lists are normally 

distributed around the web probably stored in several databases. To overcome this 

we can make use of Information Integration (II) techniques. II refers to a collection 

of techniques which let applications access data as though it were a single database, 
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whether it is or not. It enables the integration of data and content sources to provide 

real-time read and write access. Therefore, if in the Online Book Shop scenario, we 

need to annotate some of the authors and we find two partial lists of authors, II 

methods can help us access this list as if it was a huge single list. 

The combination of the different technologies mentioned above proposes a real­

istic path towards the creation of the SW. This marriage of AI with Information 

Technology on the web gave birth to a new field referred to as Web Intelligence 

(WI) (80) (106). WI is a very recent field that combines different research interests of 

individuals whose goals are related to producing next generation applications on the 

web. It seeks to exploit a combination of Artificial Intelligence (AI) and advanced 

Information Technology (IT) techniques on the Internet with the aim of creating In­

telligent Web Information Systems (IWIS). WI seeks to build the next generation of 

Web-empowered systems, environments and activities in order to address a number 

of emerging challenges on the web. 

Even though most of the techniques and methods used in WI have been in use for 

years (if not decades), the growth of the Internet created new needs in the research 

community. All the techniques used so far work fine in their particular restricted 

domain but most of them are not usable over the Internet due to the new properties 

and structure which this new medium has. The Internet brought with it several open 

issues which were not considered before. First of all, the structure itself is quite dif­

ferent than any other structure seen before. Not only, the documents themselves can 

be either free text, semi-structured texts or structured texts, but they also contain 

a number of multimedia objects within them. So existing theories and technologies 

need to be modified or enhanced in every field to handle these intra-document ele­

ments. But this is only a small portion of the problem, on the Internet one can also 

find inter-document elements by using hyperlinks. A side effect of using hyperlinks 

is that they extend the boundaries of a document beyond the "physical" boundaries 
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of that file. This obviously means that the complexity dealt with when analysing 

and processing these pages is much higher than with traditional documents. Apart 

from this, if we take a look at the growth rate of the internet (30) , we immediately 

realise that the size of the net is almost doubling every year, therefore making it 

unmanageable for traditional systems. Basically, the web increases the availability 

and accessibility of information to a much larger community than other computer 

applications. 

This new platform does not only bring about new problems, it provides some new 

and exciting possibilities. 

Web Mining The process of finding correlations or patterns among dozens of fields 

in large relational databases (Traditionally known as Data Mining) is being 

extended to the web. The fresh stream of reliable information which Web 

Mining produces is vital for E-businesses, marketing departments and other 

decision making sections of an organisation since information can help them 

gain competitive advantage over their competitors. The use of explicit physical 

links between web documents (11) provides new logical connections between 

whole documents or segments of them. These techniques make it possible for 

the system to create personalised views of the web. 

Web Information Retrieval Making use of information retrieval engines is the 

most popular way of finding information on the web. These search engines are 

and will be very important in the coming future but unfortunately they are 

currently very limited. A search through the statistics gathered by one of the 

most popular search engines available shows that the queries in English count 

to only about half of the searches 7 and other languages are slowly gaining 

popularity. This shows that there is a growing need for more multi-lingual 

7http://www.google.com/press/zeitgeist.html 
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retrieval. There is also a need of more personalis at ion and therefore the creation 

of personal search agents. Finally, the SW is bringing about a new way of 

searching. There will be no more the need to invent a bag of words in order to 

try to find the information required. A search through the semantic space rather 

than through the syntactic space would make queries much more accurate. 

Intelligent Web Agents The current generation of web agents are quite dumb. 

One of the main reasons is that they do not posses the necessary technology to 

process and understand what is written in web pages. That is one of the reasons 

why the SW is being setup. Once this is done, we will be able to see agents 

that can perform any kind of intelligent tasks from more powerful searches to 

execution of complex processes. This could also lead to the creation of virtual 

representations of individuals in the web. The tasks of these would be to execute 

tasks which they get from their counterpart in the real world. 

In synthesis, WI seeks to address a number of future challenges. First of all a major 

goal is the SW per se. Once the SW is set up, it must be populated with agents. 

Agents can handle simple tasks easily but when it comes to complex tasks problems 

start arising since a degree of planning is essential. A plan is a sequence of actions 

used to achieve the goals, given an initial state. In this context planning information 

is interpreted from semantic Web documents while meaning and relationships of the 

words in the documents are specified in ontologies. If this scenario is reached, the next 

step would be to have agents distributed over the whole web and collaborating with 

each other. Finally, these agents will start representing humans in the real world, 

and they will start forming a social self-organising network. According to (80), if 

WI manages to tackle these challenges, we would have created what they call the 

Wisdom Web. This web would enable humans to gain practical wisdom of everything 

existing both in the virtual and real world, while providing a medium for sharing 
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knowledge and experience. It would also facilitate the creation of knowledge and 

social development by making use of its self-organising resources. WI is still in its 

infancy but it is a field that is trying to reach very ambitious targets. 

So far, we only considered the technological revolution which the SW is expected to 

bring. But if the SW is to become a reality there is a need of a cultural change amongst 

the users. Individuals should be inclined towards a Knowledge-sharing culture where 

people are not afraid to share their knowledge and learn from others. Since in such 

a society, the most important resource is knowledge itself, incentives and recognition 

must be provided to encourage people to share their own knowledge. But people 

will not just share knowledge for the sake of it, first of all some users tend to be 

conservative, therefore, these knowledge technologies must infiltrate into day-to-day 

use by making gradual changes in the traditional systems. Secondly, if new fascinating 

technologies start emerging, one must make sure that they provide an added value 

to the user in real time even before the users start accessing it. The reason is that 

it is difficult to convince users to contribute to something which is empty, therefore, 

new technologies must not wait for users to bootstrap the process but they must 

seed the process before their technology is used. Users utilise a technology only if 

it solves their problems today and not someday! The basic organisational structure 

of the data is normally stored in knowledge structures or ontologies which allow the 

users to search in the "semantic neighbourhood" (29) of a concept, therefore making 

the search much more powerful and natural for the user. Since such an ontology is 

normally defined as a formal specification of a shared conceptualisation(60) and since 

every user might need to see a different conceptualisation, different ontologies can 

be used to present different views of the same data. This is very important since it 

allows future technologies to be transparent for the busy knowledge workers and only 

present to them what they need to see them. 

The SW is such a huge initiative that it will take a lot of time and effort before it 
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becomes accessible and usable by everyone. In the coming chapters, we will present 

two methodologies that will contribute a small step forward towards reaching these 

targets and eventually making the SW a reality. 

1.2 Goal 

The future of the Internet may well be based around the SW concept. For this web 

to become a reality, most of the documents available online must be semantically 

annotated in order to be usable by automated agents. It is unrealistic to believe 

that people will just sit down and semantically annotate their pages for the sake of 

creating the SW. Many people still have no idea what the SW is and why it is being 

created. If we want the SW to be a success, this annotation process must itself be 

automated. The goal of this research will focus on how to use different approaches 

in order to automate as much as possible the process of semantically annotating the 

web. This task can be further subdivided into two distinct subgoals. 

The first subgoal must cater for documents which are not represented adequately 

on the web and therefore, the need of user intervention is inevitable. Our research 

focuses on using a semi-automatic methodology combined with AlE techniques in 

order to help the users annotate documents. In this case AlE can be used in the 

traditional way i.e. by having a user annotate a set of examples and training a 

learning algorithm. To do this, we researched and examined how an annotation tool 

for AlE should work. We then propose a methodology that reduces the user's input 

as much as possible by exploiting the annotations which were already encountered 

in the document. So if the user annotates the name of a person which is repeated a 

further four times in the document being annotated, the system will cater for those 

annotations itself by annotating them automatically. Also, with the help of an AlE 

engine, it will be learning from the user what kind of annotations are required in 

the document. The system will continuously evaluate itself and when it learns to 
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reproduce these annotations, it will take over the annotation process and annotate 

the remaining documents for the user. The task of the user will change from the hard 

task of annotator, to the much lighter task of supervisor of the annotations inserted 

by the system. This methodology is expected to give two main benefits, first of all 

the effort expected from the user is diminished and focused only on the most difficult 

annotations. Secondly, the time taken to annotate will be reduced drastically. 

On the other hand, the second subgoal is aimed to handle the huge amount of 

information available on the internet. Since the information found online is not cen­

tralised (But it is normally distributed amongst different sources such as lists, search 

engines, digital libraries etc.), it is common to have a lot of redundancy. This is given 

by the presence of multiple citations of the same fact in different documents. When 

known information is presented in different ways, it is possible to use multiple occur­

rences to bootstrap several recognisers which are then generalised further and utilised 

to recognise new information. Therefore the main focus of this research will be on 

how to exploit the redundancies of the web and combine them with AlE techniques 

in order to discover more information. The approaches we will explore are varied 

and range from using Human Language technologies such as Information Extraction 

to other information and resources available on the web. The result of this research 

will be a methodology capable of semantically annotating web pages using just some 

initial configuration from the user's side. 

The path towards achieving these goals raised various interests amongst the sci­

entific community. In fact throughout these past years, we managed to present our 

work to several different subgroups in the computing community World wide and also 

publish a long list of papers. The following, is the complete list of publications which 

were produced as a direct result of the research we conducted: 
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Book Chapters 

• Ciravegna, Dingli, Wilks and Petrelli : "Using Adaptive Information Ex­

traction for Effective Human-centred Document Annotation" in Text 

Mining (Springer Verlag 2003) 

Papers 

• Dingli : "Next Generation Annotation Interfaces for Adaptive Infor­

mation Extraction " in 6 th Annual Computer Linguists UK Colloquium 

(CLUK03) , January 6-7, 2003 , Edinburgh, UK 

• Dingli, Ciravegna and Wilks: "Automatic Semantic Annotation using 

Unsupervised Information Extraction and Integration" in International 

Conference on Knowledge Capture (K-CAP03) held in collaboration with the 

International Semantic Web Conference 2003 (ISWC03) Workshop on Knowl­

edge Markup and Semantic Annotation (K-CAP03), Florida, United States, 

October, 20-23 

• Ciravegna, Dingli, Iria and Wilks: "Multi-Strategy Definition of Anno­

tation Services in Melita" in International Semantic Web Conference 2003 

Workshop on Human Language Technology for the Semantic Web (ISWC03), 

Florida, United States, October, 20-23 

• Ciravegna, Dingli, Guthrie and Wilks: "Integrating Information to Boot­

strap Information Extraction from Web Sites" in IJCAI 2003 Work­

shop on Information Integration on the Web, workshop in conjunction with 

the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), 

Acapulco, Mexico, August, 9-15 

• Ciravegna, Dingli, Guthrie and Wilks: "Mining Web Sites Using Adap­

tive Information Extraction" in Research notes and demos section of the 
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10th Conference of the European Chapter of the Association of Computational 

Linguistics (EACL 2003), Budapest, Hungary, April, 12-17 

• Ciravegna, Dingli, Petrelli and Wilks: " User-System Cooperation in Doc­

ument Annotation based on Information Extraction" in 13th Inter­

national Conference on Knowledge Engineering and Knowledge Management 

(EKAW02), 1-4 October 2002 - Sigenza (Spain) 

• Ciravegna, Dingli , Petrelli and Wilks : "Timely and N on-Intrusive Active 

Document Annotation via Adaptive Information Extraction" in Se­

mantic Authoring, Annotation and Knowledge Markup (SAAKM 2002) , ECAI 

2002 Workshop July 22-26, 2002 , Lyon, France 

• Ciravegna, Chapman, Dingli and Wilks: "Learning to Harvest Information 

for the Semantic Web" in Proceedings of the 1st European Semantic Web 

Symposium, Heraklion, Greece, May 10-12, 2004 

• Glaser, Alani, Carr, Chapman, Ciravegna, Dingli, Gibbins, Harris, Schraefel 

and Shadbolt: "CS AKTiveSpace: Building a Semantic Web Applica­

tion" in Proceedings of the 1st European Semantic Web Symposium, Heraklion, 

Greece, May 10-12, 2004 

Posters 

• Dingli : "Active Document Annotation via Adaptive Information Ex­

traction" in University of Sheffield, Department of Computer Science, Re­

search Retreat 6 th November 2002, Sheffield (Runner up for first prize) 

• Ciravegna, Dingli and Petrelli : "Active Document Enrichment using 

Adaptive Information Extraction from Text" in 1st International Seman­

tic Web Conference (ISWC2002) , June 9-12th, 2002 Sardinia, Italia (Runner 

up for first prize) 
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• Ciravegna, Dingli and Petrelli : "Document Annotation via Adaptive In­

formation Extraction" in The 25th Annual International ACM SIGIR Con­

ference on Research and Development in Information Retrieval August 11-15, 

2002, in Tamp ere , Finland 

• Ciravegna, Chapman and Dingli: "Armadillo: Harvesting information for 

the Semantic Web" in The 27th Annual International ACM SIGIR Confer­

ence on Research and Development in Information Retrieval July 25-29, 2004, 

in Sheffield, United Kingdom 

1.3 Thesis Structure 

The first part of the thesis takes a look at the different technologies involved. Chapter 

2 describes the problem of annotation for the SW together with a literature review. 

Chapter 3 describes the problem of automatically extracting and integrating semantic 

information. Both the IE and II sections are followed by a literature review. 

In the second part, starting from Chapter 4 we will explain the semiautomatic 

methodology we propose. Chapter 4.4 will report the evaluation of the system and 

some concluding remarks. Then we take the problem a step further and explore the 

possibility of using fully automated techniques. In Chapter 5 we will explain the 

automated methodology we propose. Chapter 5.4 will report the evaluation of the 

system and some concluding remarks. Finally, Chapter 6 will present our vision of 

the future of annotation for the SW together with a general conclusion. 



Chapter 2 

Annotation 

This chapter will deal with some of the most relevant research and work done in 

the use of Adaptive Information Extraction as support for annotation. The first 

section will highlight the main motivations behind our work. It will show some of the 

current problems in the field and the arising needs of the computing community. The 

following section will provide a comprehensive survey of the different approaches used 

so far to tackle this problem. It will also give an overview of similar systems used for 

other problems but which can provide ideas useful for our domain of research. 

2.1 Motivation 

The web of the future, most commonly referred to as the Semantic Web l is currently 

being constructed. It is invisible to the naked eye and most people who use the 

internet are unaware that the web is slowly changing not in style but in content. This 

change in content involves enriching the data contained in the web with semantic 

content in order to facilitate the work of automated agents trying to interpret the 

contents of a web page. A fundamental task in order to achieve this goal is to 

1 http://www.w3.org/2000/01/sw / 
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associate metadata with content. Metadata enriches the information on the web with 

properties about some given content even if the medium in which the information is 

stored does not directly support it. This kind of data is not only useful to describe 

content but it can also be used for organisational and classification purposes since it 

supplies additional properties which can be used for groupings. 

The impact of this kind of data is unimaginable. If we just consider a common 

search problem as an example we can appreciate the potential of metadata. Until now 

whenever a user searches for information, this is done by selecting keywords which 

may be related to, or which are normally found in proximity of a particular concept. 

This has the obvious limitation that the search criteria is purely based on guessing 

related keywords based on world knowledge of the user. Because of this the search 

tends to be inexact and ambiguous. All this could be replaced by Intelligent agents 

capable of performing searches based on semantic information rather than on related 

keywords. These kind of searches would be more exact because the similarity of a 

page to the search query would not be based on bags of words and their occurrences 

in related contexts but rather on exact semantic information. This example can be 

extended to unlimited domains such as online shopping, any type of queries etc. 

What is frustrating about the current web is that the technology to make this 

possible exists. Browsers became much more sophisticated than the original Mosaic2 

allowing customisable styles, applets, any kind of multimedia etc. Standards too have 

evolved from the powerful yet difficult-to-use SGML to much more usable XML and 

all its vocabularies like RDF, XHTML etc. Finally and most importantly all the 

information we need is available in the web pages, yet there is no automated way (so 

2http://archive.ncsa.uiuc.edu/SDG/Software/Mosaic/NCSAMosaicHome.html 
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far) of extracting the semantic information from them. This is the reason why it is 

imperative to semantically annotate the web pages before they are of some use for the 

semantic web. Semantic annotation is the process of associating metadata to whole 

or parts of a documents. 

But annotation is not the only limitation, having all the technologies and stan­

dards without having tools that make effective use of them is useless. A number of 

prototypical systems have been designed yet they still lack a number of fundamen­

tal features. The basic and most important feature lacking in most systems is the 

learning element. Manual annotation is without doubt a burden for human users 

because it is a repetitive time consuming task. It is a known fact that humans are 

not good at repetitive tasks and tend to be error prone. The systems that support 

some sort of learning do so in a batch mode whereby the learning is not managed by 

the application but rather by the user of the system. It can be seen clearly in tools 

such as MnM (38), S-Cream (63) etc whereby a user is first asked to annotate and 

then an IE engine is trained. There is a clear distinction between the tagging phase 

and training phase. This has the adverse effect of interrupting the user's work since 

the user has to manually invoke and wait for the learner in order to learn the new 

annotations. Apart from this, since the learning will be performed in an incremental 

way, the user will not be certain whether the learner is trained on enough examples 

considering the sparseness of the data normally dealt with. It may also be difficult 

for the user to decide at which stage the system should take over the annotation pro­

cess, therefore making the handing over a trial and error process. Research towards 

making annotation semi-automatic or rather fully automatic in order to semantically 

annotate documents is still far from achieving this goal. Because of this there is still 
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lots of work necessary in this field of research. 

2.2 Previous Work 

This section highlights a number of existing systems that contributed in some way 

or another towards adding annotations to web text. Some of the systems propose to 

solve a different problem from the one we are trying to tackle. In our case the use of 

annotation is mainly restricted towards a particular group of people: those annotating 

documents in order to train an IE system. Most of the applications presented here 

tackle the task of generic annotation. I.e. they want to empower users by giving 

them the facility to add comments to a web site. The task of annotating for IE 

builds upon generic annotation but is a step further. It is not just a matter of adding 

comments in order to identify or highlight sections of the document but rather a 

learning process whereby the annotator is teaching the IE system what concepts are 

required to be learned. In our approach, the IE is constantly learning and when 

the IE system has seen enough examples, the annotations stop, since the IE system 

is capable of annotating the remaining documents. Therefore annotation is done in 

order to support an IE system and not just to annotate the documents. 

Even though the programs in this section have a different scope from our task, 

they provide good indications as to how user annotation can be eased. This section 

will first take a quick look at the initial systems and then focus on the most relevant 

systems, those that can give a greater contribution to the solution of our problem. 

1969 Standard Generalised Markup Language (SGML)l was developed by IBM in 

a research project whose task was to integrate law office information systems. 

1ISO 8879:1986 
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It was meant to allow text editing, formatting, and information retrieval sub­

systems to share documents by having different meta information relevant to 

specific tasks, coexisting in the same document. SGML can be considered as 

the ancestor of modern markup languages. 

1970-80'8 TEX2 was one of the initial typesetting systems, developed by Professor 

Donald Knuth at Stanford University. The system is still used today with lots 

of enhancements like the addition of l5\TEX3 which allows the user to define 

higher level commands for common tasks. TEX reenforced the idea that layout 

information and content can be mixed in the same document which lie at the 

base of modern web languages like HTML. 

1988 Xanadu4 is the original hypertext project led by Ted Nelson. It is still alive 

and proposing ideas as to how hypertext should exists together with different 

styles of annotation. From it a number of prototypical applications were born 

like CosmicBook etc which seek to promote the ideas of markup. 

1994 CoNote (56) is a computer supported cooperative work system designed to 

facilitate communication within a group via the use of shared annotations on 

a set of documents. The annotation system is used to study how people can 

collaborate when working with a set of shared documents. It allows a group 

of people to share a set of documents and to make comments about them, all 

of which are shared with the other members of the group. An annotation to 

a document is a comment on or question about the document. Annotations 

2http://www-cs-faculty.stanford.edu/ knuth/ 
3http://www.latex-project.org/ 
4http://www.xanadu.com/ 
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can also refer to other annotations. For example, they can answer questions or 

refute arguments. 

1994 ComMentor (95) at the Stanford Digital Library was a research prototype for 

annotating web pages with a special customized browser. It required the instal­

lation of trusted, platform-specific client-side software. The browser provided 

a simple mechanism to identify a place on a currently visible page in which a 

comment could be written. In making an annotation, the user simply selects 

a region in the document being annotated, and the browser stores redundant 

information about it. When a page changes, an attempt is made to relocate 

the attachment point for the comment based on mechanisms such as embedded 

tags and/or string match. Users can browse for annotation sets, and put to­

gether their personal selection. The selected sets are stored as part of the user's 

profile for their browser, which is built from the information about the user on 

the annotation server. Among these sets, users can designate specific ones as 

" active". If a set is active, then the comments in this set for a document being 

retrieved are retrieved from the comment server for this set. Annotations can 

be indicated in an interface in a number of ways, including marginal markings 

(as in Jb.'IEX), format-marking of annotated text (as in WWW browsers with 

underlined anchors), in-line presentation of the annotation text, and in-place 

annotation indicators. The tool is a generic meta viewer which can be used in a 

variety of contexts to get "preview" information faster than it is possible with 

a full document-view window. Since annotations are documents too, they can 

be recursively annotated. 
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1998 JotBot5 is a Java applet that retrieves annotations from specialized servers 

and presents an interface for reading and composing annotations. It is a thin 

application when compared to all the others and only requires the installation 

of client-side software in a trusted Java virtual machine. The existing editor 

controls annotation size and does simple content validation. The existing version 

only supports small annotations due to the fact that it maintains lightweight IP 

connections. Although limited, this tool was the first to demonstrate lightweight 

annotations over the web. 

1999 Third Voice was a commercial company that created a browser plug-in for 

annotation. The company is no more in existence mainly because of massive 

preassure against its products6 . The system was a kind of news group enabling 

people to talk and put comments in the contents of a site. The site was not 

altered in anyway but users could see the comments attached to it if they 

obtained the plugin. ThirdVoice was unpopular with many Web site owners, 

who were disturbed by the idea of people posting critical, OffTopic, or obscene 

material that would be presented on top of their site. Legal action was also 

discussed. Another issue was privacy since the annotations were centrally stored 

and controlled by Third Voice only. 

1999 Annotate.nee is a commercial company which makes it possible for companies 

who are members of a privileged group to annotate specific pages in order to 

divert customer traffic to their own sites. 

5http://www.icc3.com/ec/architecture/webannotations.html 
6http://www.worldzone.net/internet/pixelsnttv / 
7http://www.annotate.net 
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2000 The Annotation Engine8 found at the Berkman Center for Internet and Society, 

Harvard Law School is an open-source server based proxy written in perl. The 

system makes use of a database in order to store user comments, pointers etc. 

These entities are then added to a document before it is previewed by a user. 

The original page is not physically added but what happens is that the page is 

loaded through a proxy which adds the annotations to it. This proxy approach 

allows the notes to be browser and operating system independent. 

2002 VisualText ™ is a development environment created by a commercial company 

called Text Analysis9 . It integrates multiple strategies, including statistical, 

keyword, grammar-based, and pattern-based, as well as diverse information 

sources, including linguistic, conceptual, and domain knowledge, to quickly and 

efficiently develop text analysis applications. Apart from these it also imple­

ments methods for automatically generating rules from annotated text samples 

in order to aid the user during annotation. 

2.2.1 The Alembic Workbench 

The Alembic Workbench(34) is made up of a set of integrated tools that make use 

of several strategies in order to bootstrap the annotation process. The idea behind 

Alembic is that whenever a user starts annotating, the annotations being inserted 

are normally not bound to that specific document but can apply to other similar 

documents. In order to reduce the annotation burden as much as possible, the system 

should make use of such information. Therefore in Alembic, every piece of information 

which can be used to help the user is utilised. Eventually the task of the user changes 

8http://cyber.law.harvard.edu/projects/annotate.html 
9http://www.textanalysis.com/ 
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from one of manual annotation to one of manual reviewing. 

A user inserts annotations in Alembic by marking elements in the document using 

a mouse. Together with this method, some other strategies are used in order to 

facilitate annotation such as; 

• Simple string matching was used to locate additional instances of marked enti­

ties. 

• Has in built a rule language used to specify domain specific rules for tagging. 

• Provides a tool that lists potential phrases in documents in order to help users 

identify common patterns 

• Provide statistical information about words such as frequency count, potential 

importance etc. 

The most innovative feature of this application is the use of pre-tagging. The main 

idea is that information which can be identified before the user starts tagging should 

be tagged in order to support the user by preventing him from wasting his time on 

elements which can be tagged automatically by the system. 

Alembic also implements a bootstrapping strategy. In this approach, a user IS 

asked to mark some initial examples as a seed for the whole process. These examples 

are sent to a learning algorithm that generates new examples and the cycle continues 

like this. Eventually a number of markings are obtained and are presented to the 

user for review. If the user notices that some of the rules are generating incorrect 

results, it is possible for the user to manually change the rules or their order so 

that the precision of the algorithm is increased. Although the machine learning rules 

generate quite good results, they lack two important factors which humans have i.e. 
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linguistic intuition and world knowledge. The Alembic methodology does not cater 

for redundant information, therefore allowing documents which are already covered by 

the IE system to be presented to the user for annotation. This makes the annotation 

process more tedious and time consuming for the user. 

Experiments performed using the Alembic workbench has showed significant im­

provements in the annotation of documents. In several tests it was shown that users 

double their productivity rate. Also, with the data provided both by the users and 

automatically from the system, it was possible to train quite complex IE tools. 

2.2.2 Annotation System 

The Annotation System10 developed at NeST Bangalore is one of the emerging anno­

tation systems specifically targeted for the Semantic Web. This system works using 

a three tier approach made up of a thin client (which is normally a plug-in), an 

application server and a database used to store the annotations. 

The system proposes an extension to a normal web browsers by attaching to it the 

functionality of annotating web pages directly from the browser. The user can select a 

particular text in the current web page and either annotates it or creates an annotation 

for the whole document. The system offers a restricted set of possible annotations 

which could be changes required, comments, corrections, examples, explanations and 

questions. This division into categories is important because it allows the user to 

query for annotations in a particular category. Apart from this, the annotations are 

grouped into subject hierarchies which a user can add/edit. He can browse through 

the hierarchy and select the appropriate subject under which his annotation can 

then be categorized. Annotations can also be stored in the corresponding subject 

lOhttp://www.ncb.ernet.in/groups/dake/annotate/ 
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categories under different users and others can easily lookup the annotations made 

for particular subjects, once they come to know that a person X is doing research on 

topic Y. Once the annotation phase is completed the annotations are stored separate 

from the document either locally or on a remote server. A strength of this system 

is that virtually any resource on the web ranging from images, embedded objects, 

to anything with a URI (Uniform Resource Identifierll) can be annotated by this 

system. These annotations are limited to whole documents and not to parts of it. 

Another feature of the system is that users can not only view the annotations but 

also reply to any annotations they see. This facilitates the creation of discussions 

based on subparts of the whole document. 

An important contribution of this approach is the fact that annotations are not 

stored within the document. This makes it possible for documents to have multi-

pIe annotations for different purposes. The filtering and searches performed on the 

annotation database makes it possible for the users to navigate through the huge 

annotation space without getting lost in the sea of annotations which one document 

could have. A user is capable of viewing/hiding annotations according to several 

criteria chosen by him. 

2.2.3 Annotea 

Annotea (74) is another system similar to the ones already described whose task is 

to associate metadata with content. The main difference between this and other 

systems is that Annotea is a W3C12 initiative and although its main aim is to create 

a web-based shared annotation framework it does so using W3C standards as much 

11 http://www.w3.org/ Addressing/ 
12http://www.w3.org/ 
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as possible. The annotations are stored in an external document and the information 

is stored as an RDF (Resource Description Framework)13 file. Together with RDF 

additional information is stored by useing XPointer14 , XLink15 and HTTp 16 . The 

current implementation makes use of the Amaya17 editor/browser and a generic RDF 

database. This kind of database was used because it allows other applications that 

use RDF to access it without having to change anything. 

Annotea is capable of handling many types of annotations. It its simplest form, 

an annotation can be seen as a remark about a document referenced by a URI, made 

either by the document's author or by a third party. The annotations are stored in 

specialised servers and can be accessible and modifiable by anyone. 

When Annotea was being designed, a number of issues were considered. It was 

built around open technologies and standards in order to simply its interoperability 

with other systems and to maximise its extensibility. To simplify the design of the 

system, annotations were limited to XML based documents and the annotated doc­

uments must follow the basic XML rule of well-formedness. The annotations used 

are typed using some sort of metadata for types. The types allow users to classify 

annotations. Annotations can be either private or public. Private annotations are 

stored locally while public ones are published on distributed annotations servers. 

The system described is mainly a generic backend, but for the sake of our ends 

we will change focus towards the client side called Amaya. Amaya is a full-featured 

web browser and editor developed by W3C as a testbed. The system supports all the 

13http://www.w3.org/RDF/ 
14http://www.w3.org/TR/xptr/ 
15http://www.w3.org/TR/xlink/ 
16http://www.w3.org/Protocols/ 
17http://www.w3.org/ Amaya/ 
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Annotea protocols and its main features include the creation, browsing and filtering 

of annotations. First of all a user can annotate three things: a whole document, a 

particular location in the document (based on where the cursor's position is) or the 

current selected text. As soon as an annotation is created, the user is asked to enter 

metadata describing the annotation. The browsing of the annotations occurs in two 

stages, first the annotations are downloaded either from the local repository or from 

remote servers and then they are merged together with the document. A user goes 

through the annotations by selecting them and their content plus all the associated 

metadata is immediately displayed in another window. Finally, since a document 

may be heavily commented, the system allows annotations to be filtered by author, 

by annotation type or by annotation server. Amaya also has a query language called 

Algae which allows the user to query the document for particular annotations only. 

Annotea is a tool that allows users to associate metadata with web resources. 

The system is built on open standards therefore it can be usable by different applica­

tions. Also the system is virtually clientless since it can exist on top of any browser 

that handles the W3C standards. The model specified by this tool is used in vari­

ous other annotation projects like Annozilla18 which is basically an implementation 

for the Mozilla web browser. A further enhancement over Annozilla is the CORSE 

Annotator19 which adds to the basic system the possibility of using a DAML+OIL 

ontology instead of just a list of concepts. 

18http://annozilla.mozdev.org/screenshots/phoenix/annozilla_0.4 
19http://cohse.semanticweb.org/ 
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2.2.4 CritLink 

The idea behind the CritLink tooPO is based upon the original hypertext idea where 

users can insert comments in any web page in order to create an online discussion 

about the particular page. It also allows new types of links like bidirectional linking, 

extrinsic linking, fine-grained anchors, and link typing. 

Bidirectional links are quite important especially for consistency's sake. Currently 

the web makes use of unidirectional links, this has the obvious limitation that when­

ever a link is followed, there is no simple way to trace the referent link. This omission 

makes the logical flow of any web page unclear and difficult to follow. 

Intrinsic links refer to links found in a document. They are inserted by the author 

and no one else can modify or add new links. Extrinsic links are external links 

which are stored somewhere outside the particular document but which origin from 

a location within the particular document. This kind of link allows third parties to 

add relations to other documents. 

The link typing allows a link to have attributes that describe the relationship 

between the two objects being linked. The reason for this is that whenever a link 

exists, there is no way of understanding what is the purpose of the link unless the 

link is followed or unless there is a description next to the link. This limitation makes 

it more difficult to determine whether a link is relevant or not. 

Anchor Granularity define anchors that explicitly define the part of the document 

being anchored. Although this is part of the current HTML standard, most browsers 

simply ignore it. Whenever an anchor is clicked in a document, the user is taken 

to approximately the location referred by the anchor but there is no definite way of 

20http://crit.org/ ping/ht98.html 
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knowing the exact area. 

These limitations degrade the current user experience on the web. If a user notices 

an error on a web page, the page cannot be corrected or if a user wishes to add some 

references to an existing web page, it cannot be done. This leads to lots of incomplete 

information and waste of time. The web is not exploiting the benefits of having a 

community of users who can contribute to enrich the information found in web pages. 

The CritLink software offers all these features with the added benefit that no 

change is required on the client's side. What happens is that before web pages are 

presented to the user, they are passed to an intermediate proxy called a mediator in 

order to modify the content with annotations. The mediator processes the document, 

examines the links in the database and inserts new links in the document in order to 

create reversible links. The system displays different icons depending on the type of 

the link. Therefore, the original page is not being altered in anyway and the users 

experience is being enhanced. 

2.2.5 iMarkup 

iMarkup2I is a commercial tool whose purpose is to promote collaborative document 

creation. It is similar in spirit to the other tools already mentioned. The system makes 

use of a Context Review Server (CRS) in order to facilitate web-based collaboration 

between pre-defined groups of users. 

The iMarkup tools allow users to annotate, organIze and collaborate on Web 

pages and documents. The system allows the creation of various type of markup. 

This include: 

sticky notes This note is like a Post-It Note for web pages. It is a symbol that 

21 http://www.imarkup.com/ 
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can be "stuck" to any web page. The note is transparent therefore allowing 

text underneath it to remain visible. The sticky notes can also be minimized or 

displayed as a small icon on the Web page until the mouse is moved over it. At 

the end of the session, the note is saved. 

free form drawings The program comes with a Paint Brush tool that enables freeform 

drawing or to draw straight lines on any Web page. To create freeform marks 

on a Web page, the mouse is used to draw lines on the screen. The Paint Brush 

can be a variety of colors and sizes, even transparent. 

text markup The system allows various text markup functions. Italics, underline, 

bold, strike-through and highlight are all supported. It also allows the use of 

a system similar to a highlighting pen whereby the background is changed to 

a bright color (highlight) and the text remains intact. Additional notes and 

comments can also be saved with the text markups. 

voice annotations The latese version of the program also supports voice annota­

tions and markups. The system works by simply adding your annotations by 

speaking" into the markups". Whenever a new voice annotation is inserted a 

small speaker is shown in the text exactly in the position where the annotation 

was inserted. To listen to a voice annotation, the user just needs to click on the 

speaker icon that is associated with the markup. When sharing markups the 

recipient can hear, instead of just read, ideas associated with the content on a 

Web page. 

hotlinks and file attachments The markups also support file attachments and 
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hotlinks. This is useful when the user wants to attach additional support infor­

mation to a document. Whenever a file is attached, a paperclip symbol appears 

exactly in the place where the attachment was inserted. 

The key benefits of using this system are that the collaborative environment allows 

all team members to perform simultaneous reviews as part of the workflow process. 

The different kind of annotations allows a clearer delivery of ideas therefore making 

sure the message is sent across to the other members of the team. 

2.2.6 MnM 

MnM (38) is an annotation tool that aids the user whose task is to annotate documents 

by providing semi-automatic or fully automatic support for annotation. The tool has 

integrated in it both an ontology editor and a web browser. MnM support five main 

activities browse, markup, learn, test and extract. 

Browsing is the activity of presenting to the user ontologies stored in different 

location through a unified frontend. The purpose of this activity is to allow the 

user to select concepts from the ontologies or whole ontologies which can be used to 

markup the documents in future stages. To do so, the application provides several 

views, various previews of the ontologies and the data stored in them. This part is 

also referred to as ontology browsing. 

Markup is the activity of semantically annotating documents. This is done in 

the traditional way, i.e. by selecting concepts from the chosen ontology and marking 

up the related text in the current document. When a specific section is marked, an 

XML tag corresponding to a concept in the ontology is inserted in the body of the 

document. 
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For the learning phase, MnM has a simple interface through which several learning 

algorithms can be used. The IE engines tested were various ranging from BADGER22 

to recently Amilcare23
. The role of IE in MnM is to learn mappings between annota­

tions in the documents and concepts in the various ontologies. 

In MnM there are basically two ways of performing tests, explicitly or implicitly. 

In the explicit approach, the user is asked to select a test corpus which is either stored 

locally or somewhere online and the system performs tests on that document. In the 

implicit approach, the user is still asked to select a corpus like the implicit approach. 

The difference is that the strategy for testing is handled by MnM and not all the 

documents are necessary used for testing. The corpus is divided between tests and 

training corpora automatically by the system. 

The final phase is the extraction phase. After the IE algorithm is trained, it is used 

on a set of un-tagged documents in order to extract information. The information 

extracted is first verified by the user and then sent to the ontology server to populate 

the different ontologies. 

MnM is part of a new breed of tools that integrate ontology editors with annotation 

interface. These together with the support of IE engines surely make the annotation 

task easier. Tools of the like of MnM are very important and will surely give a push 

towards the realisation of the semantic web. 

2.2.7 S-CREAM 

S-CREAM (63) (Semi-automatic CREAtion of Metadata) is an annotation framework 

that facilitates the creation of metadata and which can be trained for specific domains. 

22http://www-nlp.cs.umass.edu/software/badger.html 
23http://nlp.shef.ac. ukl amilcarel 
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On top of this framework, there is Ont-O-Mat, an annotation tool. This tool makes 

use of Amilcare, an adaptive information extraction engine. Amilcare is trained on 

test documents in order to learn information extraction rules. The IE engine is then 

used to support the users of Ont-O-Mat, therefore making the annotation process 

semi-automatic. 

The origins of S-CREAM lie in another system called CREAM which is an an­

notation and authoring framework. The system makes use of an Ontology together 

with annotations. In this application, annotations are elements inserted in a docu­

ment which can be of three types; tags part of the DAML+OIL24 domain, attribute 

tags that specify the type of a particular element in a document also referred to as 

Metadata or a relationship tag also called Relational Metadata. A user can interact 

with CREAM in three ways; by changing the ontology and the fact templates manu­

ally, by marking concepts in the document and then associating them with elements 

of the ontology or by grabbing concepts from the ontology and marking them in the 

document available. 

S-CREAM goes a step forward and exploits the power of adaptive IE offered by 

Amilcare in order to improve the CREAM model. Whereas before in CREAM, all 

the interaction occurred almost exclusively manually, the process in S-CREAM is 

as follows. The first kind of process is similar to the one in CREAM i.e. a user 

manually annotates and performs the mappings between the web documents and the 

ontology. The second kind is the same like the first but instead of a user, an IE engine 

(in this case Amilcare) is used to automatically perform the mappings. Obviously, 

this can only occur after the IE engine is trained on substantial number of examples 

24http://www.w3.org/TR/2001/NOTE-daml+oil-reference-20011218 
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provided by the user. The last kind of process uses a discourse representation to 

map from the tagged document to the ontology. This discourse representation is a 

very light implementation of the original theory. The reason being that discourse 

representation was never intended for semi-structured text but rather for free text. 

Therefore to overcome this limitation, the one used in S-CREAM is a light version 

made up of manually written logical rules in order to map the concepts from the 

document to the ontology. 

S-CREAM is a comprehensive framework for creating metadata together with re­

lations in order to semantically markup documents. The addition of an IE engine 

makes this process even easier and helps pave the way forward towards building auto­

mated systems in order to automatically semantically enrich the millions of documents 

which are still not ready for the next evolution of the web, the Semantic Web. 

2.2.8 SHOE Knowledge Annotator 

The Knowledge Annotator (82) (68) is a tool that makes it easy to add SHOE25 

specific knowledge to web pages by making selections and filling in forms. The tool 

has an interface that displays instances, ontologies and assertations. A variety of 

methods can be used to view the knowledge in the document. These include a view 

of the source HTML, a logical notation view, and a view that organises assertions by 

subject and describes them using simple English. The Annotator can open documents 

from both the local disk or the Web. These are parsed using the SHOE library, and 

any SHOE instances contained in the document are displayed in the Instances panel. 

The Knowledge Annotator can be used by inexperienced users to create simple SHOE 

markup for their pages. By guiding them through the process and prompting them 

25SHOE is an HTML-based knowledge representation language. 
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with forms, it can create valid SHOE without the user having to know the underlying 

syntax. For these reasons, only a rudimentary understanding of SHOE is necessary 

to markup web pages. However, for large markup efforts, the Annotator can be quite 

slow. 

2.2.9 SMORE 

SMORE (3) is an integrated environment for creating online content. The system is 

made up of a Semantic Markup tool, an Ontology viewer/editor and an RDF Editor. 

The scope behind SMORE is to create a tool that facilitates the seamless insertion 

of semantic markup into any online content. 

The idea being promoted in this tool is that anyone should be able to say any­

thing about anything. To achieve this, there should not be constraining things like a 

predefined ontology. Because of this, SMORE tries to move away from the traditional 

knowledge engineering tools towards web authoring tools. Basically the insertion of 

semantics should be a side effect of the creation of a web site rather than the main 

concern of the user. This philosophy can be seen in several parts of the tool. First 

of all, it has a WYSIWIG26 editor which allows users to insert annotations as RDF 

triples while they are creating the actual page. A user can also write emails from 

within the tool for which the standard fields (such as subject, to, from, body etc.) 

are attached to an email ontology and the user can annotate sub parts of an email. 

One typical use is whenever an email is sent requesting a meeting. Date, time, loca­

tion, etc are annotated with concepts from an ontology which is sent as an attachment 

with the email which could be used by agents on the receiving side (if they are capable 

of processing the ontology). Some additional features of the tool include annotation 

26What You See Is What You Get 
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of one whole or parts of an image, an advanced ontology management facility, web 

scraping and a semantic virtual portal (that provides other semantic links). 

The tool basically promotes the idea of semantic annotation not as a process 

separate from other web processes but as something which can be integrated with 

any web application. It also removes the boundaries from traditional annotation and 

proposes annotation of various different types of media. A key feature is the flexibility 

offered by this tool whereby one or more ontologies can be used to model the domain 

and if one is not available, then the user is free to create his own ontology ad hoc. 

2.2.10 The Gate Annotation Tool 

GATE 27 (General Architecture for Text Engineering) from the Natural Language 

Processing Group at the University of Sheffield, is an infrastructure which facilitates 

the development and deploying of software components used mainly for natural lan­

guage processing. The GATE package comes complete with a number of software 

components such as IE engines, Part of Speech taggers etc. One of the main features 

of the Graphical User Interface (GUI) provided with GATE is the annotation tool. 

The annotation tool is first of all an advanced text viewer compliant with many 

standard formats. A document in GATE is made up of content, annotations and 

features (attributes related to the document). The annotations in GATE (as any 

other piece of information) is described in terms of an atribute/value map. The 

attribute is a textual description of the object while the value can represent any java 

object (ranging from a simple annotation to a whole java object). These annotations 

are typed and are considered by the system as directed acyclic graphs having a start 

and end position. 

27http://gate.ac.uk/ 
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The annotation interface works like similar tools whereby a user selects a con­

cept from an ontology and highlights the instances of the concept in the document. 

The system also supplies some generic tools which are capable of extracting generic 

concepts from documents. These tools can be extended by use of a simple grammar 

to cover more domain specific concepts. Being an architecture, GATE allows other 

external components to be loaded which can aid to locate concepts. The results of 

these tools are then presented in the annotation interface in the form of a tree of 

concepts. The user simply needs to highlight a concept or a group of them and the 

annotations are immediately displayed in the document viewer as coloured highlights. 

The GATE annotation tool is a powerful tool since it allows several independent 

and different components to work together. It also presents the user with a unified 

view of results obtained from these components. 

2.2.11 Trellis Web 

Trellis Web(57)(58) is an annotation tool with a different purpose. Instead of allowing 

users to add any kind of comment to a particular web site, it restricts these comments 

to a well defined set of annotations having specific meaning. These annotations are 

used to express either discourse relations, logical connectives or temporal relations. 

Since these relations can be too strict at times, some partial ones are also allowed. The 

reason why Trellis Web takes this approach is because its application is not oriented 

per se towards normal web annotation but rather towards information analysis and 

decision making. To make this analysis possible in an automated way, it is imperative 

that the grammar used is well defined and restricted. This makes it possible for the 

tool to perform some automatic inferences on the connected data available. 

A plus of this tool is that since the comments inserted are based upon well defined 
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relations, the user does not need to justify or explain why a certain comment was 

written since it was inserted in a structured and logical way which can be interpreted 

unambiguously by anyone. If one of the decisions needs to be updated, this too does 

not pose a problem because all the explanation of why the decision was reviewed 

is available. Although this tool is very useful, it has an obvious drawback. Users 

must be accustomed to the vocabulary used to define the relationships. This can be 

limiting in some cases since the relations offered do not cover all the domains. 

2.2.12 Yawas 

An annotation tool that is oriented towards allowing users to insert comments directly 

in the web is Yawas. This tool as described in (36) tries to address a number of 

problems. Users do not remember why some pages were kept for future reference, 

they do not understand how they found a page (e.g. the navigational path is lost). 

The scope of Yawas is to have an annotation tool working with a Web browser in 

order to help to overcome problems such as handling the explosion of bookmarks 

in web browsers, remembering why bookmarks were created and storing information 

about context of page, e.g. the path that led to it. 

Yawas helps the user solve these problems in a number of ways. First of all, by 

highlighting specific texts, the user can remember what was of interest in a particular 

page. Secondly, by keeping the parent URL of each highlighted document, the user 

is provided with a context of the book-marked pages. Thirdly, the annotations can 

improve personalised document clustering. Most of these features are not new and 

they all have a number of weaknesses. The main one being that each one of them has 

the potential of altering the contents of a page and it is very difficult to control who 

has the right to do so without being intrusive. The original solutions were oriented 
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towards a client server approach whereby the client is presented with a platform 

independent interface and the changes are stored somewhere remotely on a server. 

This approach was later discarded due to the fact that the delay imposed on the user 

in order to connect to the server would be annoying and intrusive in the annotation 

cycle. Apart from this, the server approaches raises some privacy issues about who 

has the right to store the data. 

In synthesis, the Yawas system is a light annotation tool for the web. Annota­

tions are stored locally due to the previously mentioned reasons and makes used of 

Dynamic HTML in order to dynamically modify the HTML document without the 

need of reloading. Yawas works by allowing the user to insert highlights in the HTML 

document simply by highlighting interesting areas. Comments can also be attached 

to any document. The comments inserted in the text can be considered as being a 

rough form of inserting semantics. In experiments performed with annotated docu­

ments using a classifier, the classifier produced more accurate and uniform semantic 

descriptions of page clusters when the pages were already annotated by different users 

than when un-annotated documents were used. These experiment suggests that an­

notations can improve the automatic clustering of Web pages. 

The main problem with this application is that Yawas is platform dependent. 

Apart from this, it is a research project and there are already other commercial 

annotation tools that have appeared working on the same lines as Yawas and trying 

to steal its scene. 
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2.3 Conclusion 

In this chapter, we saw a number of systems all with different features and charac­

teristics. We started from the first systems that made a significant contribution to 

the Annotation task and gradually moved towards the different annotation systems 

we have today. To get a concise picture of all these systems, we have grouped these 

system using the following attributes: 

Usability shows whether the program is difficult or easy to use. This feature was 

quite crucial in some of the systems mentioned above since a difficult to use 

interface sometimes resulted in the silent death of the system. 

Features refers to those characteristics that distinguish a system from the rest. E.g. 

some of these programs mentioned before have special features that avoid du­

plicated annotations. Such features are too varied to be listed all, but with 

this attribute, we are distinguishing between those systems that give an added 

benefit to the user and those that just present a plain annotation tool. 

Type refers to the different kind of applications and how they work. These can be 

subdivided into four groups: 

Stand Alone applications work on a single machine and they are not con­

nected to a server somewhere else. The benefit of this approach is that 

the system generally works faster since no remote invocations occur. The 

downside of the system is that since the program is self contained, it does 

not share information with others and thus there's no collaboration in-

volved. 
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Client-Server applications typically have a thin client on the user's machine 

which accesses a remote server. The benefit of such a system is that since 

these programs require a lot of processing power to function correctly, all 

the processing is done remotely on the server and only the results are sent 

to the thin client. Thus, the user does not need a powerful machine to use 

the system. 

Proxy based applications are similar to Client-Server systems but instead of 

using a thin client, they typically use a normal web browser to access the 

annotated page. In fact, the page is not annotated on the client machine 

but rather when it is being passed through the proxy. This has the same 

advantages of a Client-Server approach with the added benefit that the 

user does not have to install any client application. 

Distributed applications can be similar to either Client-Server or Proxy based 

approaches but since the system is distributed, the same data can be ac­

cessed and modified by different users. Therefore, such systems would have 

additional features that handle different user rights thus allowing secure 

collaboration between different users. 

IE distinguishes between systems that make use of IE and those that don't. It also 

differentiate between those systems that make use of a Batch approach or an 

Incremental approach (See section 3.2.1). 

Embedded/Linked refers to the method used to store annotated documents. The 

former method modifies the body of the document and stores the annotations 

inside it. The latter does not alter the document containing the data in any 
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way but stores the annotations in a separate document which contains links to 

the information inside data document. 

Annotations distinguishes between the different kind of annotations which can be 

stored inside a document: 

Layout annotations are used to define how a document should be displayed 

visually, such as Bold, Italics, etc. 

Information annotations are used to insert any kind of information, such as 

comments, inside the document. They are generally free text which are 

not associated with a particular topic, therefore their purpose is generic 

and not well defined. 

Semantic annotations are used to assign meaning to a portion of text. These 

annotations are normally associated with an Ontology and have a well 

defined meaning. 

Public attribute distinguishes between systems developed by public entities and 

those developed by commercial organisations. 

Secure systems offer a certain degree of protection when a user annotates a docu­

ment. The security features are various and include protecting the document 

from unauthorised modifications or viewing of annotations, protecting docu-

ment editing in distributed environments, etc. 



Systems Usability Features Type IE Embedded/Linked Annotations 
SGML Difficult N/A N/A N/A Embedded All 
TEX Simple N/A N/A N/A Embedded Layout 

Xanadu Simple N/A N/A N/A Linked Information 
I 

CoNote Simple Yes Distributed N/A Linked Information 
ComMentor Simple Yes Client-Server N/A Linked Layout /Information 

JotBot Simple Yes Client-Server N/A Linked Layou t /Information 
Third Voice Simple Yes Client-Server N/A Linked Layout /Information 

Annotate.net Simple Yes Client-Server N/A Linked Layout /Information 
Annotation Engine Simple Yes Proxy N/A Linked Layout /Information 

VisualText Simple Yes Stand Alone Batch Embedded Information 
Alembic Workbench Simple Yes Stand Alone Batch Embedded Information 
Annotation System Simple Yes Client-Server N/A Linked Semantic 

Annotea Simple Yes Client-Server N/A Linked Semantic 
CritLink Simple Yes Proxy N/A Linked Information 
iMarkup Simple Yes Distributed N/A Linked Information 

MnM Simple Yes Stand Alone Batch Embedded Semantic 
S-Cream Simple Yes Stand Alone Batch Embedded Semantic 

Shoe Annotator Simple No Stand Alone N/A Embedded Semantic 
SMORE Simple Yes Stand Alone N/A Embedded Semantic 

Gate Annotator Simple Yes Stand Alone Batch Linked Semantic 
Trellis Web Difficult Yes Client-Server N/A Linked Information 

Yawas Simple_ No Stand Alone N/A Linked Information 

Table 2.1: Comparison of the different Annotation systems 

Public 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
No 
No 
No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Secure 
No 
No 
No 
No 
No 
No 
No 
Yes 
No 
Yes 
Yes 
No 
No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

~ 
CD 



50 

Table 2.1 lists all the different systems mentioned earlier and their attributes. 

From it, we can identify a number of desirable features which an annotation system 

should have. First and foremost, such a system should be simple to use. Simplicity 

does not imply that our system will lack special features. It just means that the 

system should still have powerful features which enhances the user's experience, but 

they should be easy to use. The type of the application should be considered carefully 

because a stand alone system would discriminate users having a slow machine whilst 

the other approaches would discriminate users who do not have access to a network. 

Because of this, an ideal system would cater for all the different situations. When it 

comes to the issue of using IE, the most desirable feature is having a system capable of 

interactive IE rather than batch IE. In fact no system mentioned above is capable of 

having an interactive IE session with the user. The issue of having embedded or linked 

annotations is very debatable, there are many pros and cons to both approaches and 

it is very much dependent on the IE engine used. Regarding these issues, in Chapter 

3 we will take a look at the various IE systems available. 

The annotations which such a system should cater for are Semantic annotations. 

There are two reasons for this, first of all the scope of the Thesis is the SW and sec­

ondly, Semantic annotations can be considered as being a superset of Information and 

Layout annotations since both of them can be expressed as Semantic annotations. Fi­

nally, the program must be secure enough especially if it handles distributed domains. 

These features and many others will be demonstrated in Melita, the annotation tool 

mentioned in Chapter 4. The following chapters will then keep on building on the 

ideas implemented in that tool. 



Chapter 3 

Information Extraction and 
Integration 

The two main technologies which are most relevant to our work are without doubt In­

formation Extraction (IE) and Information Integration (II). IE provides the adequate 

capabilities necessary to learn new concepts, while II allows our systems to handle 

huge amounts of information harvested from several different sources. In Section 3.1, 

we will first take a look at why we need IE in the first place. To do so, we will 

focus on a specific subgroup of IE techniques most commonly referred to as Adaptive 

Information Extraction (AlE) techniques. This section will highlight the main mo­

tivations behind our work. It will show some of the current deficiencies in the field 

and the arising needs of the computing community. Section 3.2 will start with a brief 

introduction in order to explain some technical concepts used in the IE field and will 

continue towards giving a comprehensive survey of the different approaches used so 

far. 

Section 3.3 will take a look at II and will try to give an overview of the most 

relevant research done so far. It will highlight the main motivations behind our work 

and will illustrate some of the main problems in the field. Section 3.4 will then give 
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an overview of the different approaches developed so far. Unfortunately, due to the 

fragmented nature of the field we will only scrape the tip of the iceberg in our reviews 

since a more comprehensive review of all the topics found in the II field would be 

beyond the scope of this thesis. Instead, we will give an overview of the major topics 

found in the field. 

3.1 Motivation for using AlE 

AlE is quite a recent field, it has its roots in traditional Information Extraction 

(IE) but differs in a subtle aspect. Whereas traditional IE is more concerned with 

producing systems which are capable of extracting information, AlE still has that as 

its main goal but considers equally important the usability and accessibility of the 

system. Although traditional IE managed to find the required information with a 

high degree of success, it did not succeed much whenever the need arose to port the 

existing system to new domains easily. There are a number of reasons for this. Such 

systems are normally complex with large amounts of domain dependent data, because 

of this, to port such systems, an IE expert is required. Also, due to the complexity 

of such systems the process to port them to a new domain is very time consuming. 

In synthesis one of the main barriers to the use of IE is the difficulty in adapting IE 

systems to a new scenario (105). AlE seeks to overcome this problem by creating 

systems which are adaptable to new domains without the need of much human input. 

This is achieved by exploiting the power of Machine Learning (ML) in order to learn 

how to automatically tune the application to new domains. This field is still in its 

infancy and the future will surely hold much more powerful tools than we have today. 
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In Adaptive IE a typical life-cycle is composed of scenario design, system adap­

tation, results validation and application delivery (23). The adaptation part which 

is maybe the most problematic of all the elements in the life cycle can be further 

subdivided into four main tasks. These are 

• Adapting to the new domain information. 

• Adapting to different sub-languages features. 

• Adapting to different text genres. 

• Adapting to different types. 

The adaptation problem has been around for quite some time but was boosted in the 

last couple of decades due to the fact that the IE movement has grown by exploiting 

and joining the recent trend towards a more empirical and text based computational 

linguistics (105). The proliferation of the Information super highway is also blowing 

this problem to new heights since document content is evolving from old text based 

documents to a richer document model full of multimedia elements where the sequen­

tial structure is being disrupted due to the use of hyperlinks. Therefore, the text 

based methods alone, which were normally used, are not much capable of adapting 

to this new model. 

The first approaches in the territory of AlE all made use of shallow approaches. 

The main reason being that it was not known how to train complex approaches 

using only knowledge of domain and annotation. Since shallow approaches are less 

complex, they are are also much simpler to port to new domains than deeper ones. 

Also, deeper approaches rely heavily on domain dependent data therefore making the 

task of adapting them to new domains much more difficult. Although the shallow 
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approaches can extract a wide range of information, they are still not capable of 

handling more complex tasks whereby different relations are involved. For these 

tasks, deeper approaches which make use of semantics are a necessity. Due to the 

fact that AlE can be easily ported to new domains, it can also be used to set up 

dynamic scenarios automatically. This will be very useful when harvesting knowledge 

from the web since domain information my not be known beforehand or might be 

incomplete and therefore an AlE system must be set up on the fly. Research in this 

area is still in its infancy and that is why we think there is the need for more work. 

3.2 Previous Work in AlE 

This section will give a brief overview of the different types of IE systems available. It 

will give a flavour of what we believe are the most relevant systems to our work. Before 

doing so, we will introduce some terminology highlighting the important differences 

between the existing systems. 

3.2.1 Information Extraction Terminology 

Shallow vs Deep approaches 

IE systems fall into one of two major categories, those that make use of shallow NLP 

and those that use deep NLP techniques. Shallow approaches (See (77; 46; 32; 24; 

102; 94; 19), etc.) are mainly concerned with the syntax of a document and make 

use of very little semantic information. They typically include tokenisation, part­

of-speech tagging, parsing and produce a regularised form which may be anything 

from a partially filled template to a full logical form. The deeper approaches (See 

(53; 72; 54; 50), etc.) also makes use of the information obtained from the syntactic 

analysis but they combine it with additional external knowledge of the domain such 
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as heuristics. They attempt to integrate the information from the individual sentence 

representations with common world knowledge into a larger structure. Ultimately this 

structure is either the final template or serves to provide, the information for that 

template after it is analysed using deeper techniques. These techniques generally make 

use of logic to validate the semantics of the sentence and to deduce new information. 

The deeper approaches can be considered as being a continuum of the shallower 

approaches. 

Single vs Multi Slot 

The different systems can learn either a single concept or multiple concepts. These 

are normally refereed to as single and multi slot. The reason why this terminology is 

used, is because traditionally, the task of IE was to fill slots in templates. A single slot 

handles simple atomic concepts without any relations between the concepts. Normally 

the relations are handled at a higher level mainly by using an ontology. Also the 

concepts in this kind of domain are unique and can be identified fairly easily. This 

task is normally tackled quite easily by the shallow NLP approaches. In multi slots, 

concepts are complex entities. They are normally made up of several sub-concepts 

and a document may contain several similar concepts which are irrelevant for the IE 

task at hand. 

Batch vs Incremental Learners 

Learning systems either learn in batch or in incremental mode. Most systems operated 

in batch mode. This means that the examples are collected and the system is trained 

on all the training set. There are a number of reasons why this approach is preferred. 

First of all, it is much simpler to invoke a training session on all the set rather than 
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on individual examples. Secondly, the amount of processing power required for every 

training phase is very expensive therefore, invoking such a phase often would result 

in degrading the performance of the system. Third, in order to speed up the process 

the examples are normally ordered in an efficient way so that whenever paths in the 

search space are discarded, this would discard all the paths emerging from them. If 

the other approach was used, this would be impossible to perform. The incremental 

approach works by adding rules to the test set one by one and evaluating each time 

the effect of that rule. This has some obvious benefits, basically rules are evaluated 

according to individual merit and not as part of some collection. Therefore using 

this approach, the learner can be able to evaluate the coverage of individual rules 

learnt and using such evaluation it can decide when to stop the training session. This 

obviously makes the task more complex and might take longer to converge since in 

this approach, rules that produce local maxima are removed in order to find global 

maXIma. 

Interactive vs N on-Interactive Learners 

Interactive learners make use of an Oracle in order to verify and validate their results. 

These Oracles are small programs created beforehand which say whether a concept is 

part of the domain we are searching in or not. Interactive learners will be explained 

further in Chapter 5. Non-interactive learners do not use such programs and nor­

mally, their only source of feedback is from the training provided by the user. Both 

approaches have their strengths and weaknesses, but the non-interactive approach 

is more oriented towards AlE since it requires no additional settings apart from the 

information already supplied by the user. 
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Top-Down vs Bottom-Up learning 

An issue to consider is whether the system starts learning from scratch or from a 

hypotheses. The former is referred to as a top-down approach. What happens is 

that the learner starts from a very generic rule and gradually adds cases to constrain 

the rule. It then evaluates the validity of the new rule. The cycle continues until a 

good rule is obtained. The latter (also referred to as theory revisers and bottom-up 

approaches) begin from an initial hypotheses which is revised as the learning proceeds. 

This hypotheses normally starts with all the features available and systematically 

start dropping some of them (it relaxes the constraints of the rule). At every stage, 

the new hypotheses is tested and the one that gives the best results is retained. 

Text types 

A positive outcome of the second World War was without doubt the rapid develop­

ment of computers. These huge machines were capable of processing large amounts 

of text much quicker than any human could possibly do. During those days, text 

types were not an issue because the only kind of text available was free text. Free 

text contains no formatting or any other information. It is normally made up of 

grammatical sentences and examples of free texts range from news articles, quotes, 

stories etc. The text contains two types of features, syntactic and semantic features. 

Syntactic features can be extracted from the document using tools like part-of-speech 

taggers, chunkers, parsers etc. Semantic information can be extracted by using se­

mantic classes, named entity recognisers etc. 

In the 60's when computers were being used in businesses, and information was 

being stored in data bases, structured data became very common. This is similar 
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to free text but the logical and formatting layout of the information is predefined 

according to some template. This kind of text is quite limiting in itself. The layout 

used is only understandable by the machine for which it was created (or other com­

patible ones). Other machines are not capable of making sense of it unless there is 

some sort of translator program. Syntactic tools are not very good at handling such 

texts. The reason being that most tools are trained on free texts. Apart from this, 

the basic structures of free text (such as sentences, phrases etc.) do not necessary 

exist in structured text. Structured text mainly has an entity of information as its 

atomic element. The entity has some sort of semantics according to its position in the 

structure. Humans on the other hand show an unprecedented skill of inducing the 

meaning most of the time. Yet, they still preferred to write using free text. Therefore, 

these two types co-exist in parallel. 

With the creation of the internet another text type gained popularity, semI­

structured text. Unfortunately it did so for the wrong reasons. Before the semi­

structured text era, information and layout were generally two distinct objects. In 

order to enable easy creation of rich document content on the internet, a new content 

description language was created. The layout features which until recently were hid­

den by the applications became accessible to the users. The new document contained 

both layout and content in the same layer. This made accessible to the user new 

structure elements such as tables, lists etc. Now users could create documents having 

all the flexibility of free text with the possibility of using structures to make clear 

difficult concepts. Obviously this complexity made it more difficult for automated 

systems to process such documents. NLP tools worked well on the free text part 



59 

but produced unreliable results whenever they reached the structured part. Stan­

dard templates did not exist for the structured part because the number of possible 

combinations of the different structures is practically infinite. 

Generalisation 

Some other issues worth explaining at this stage have to do with the actual imple­

ment strategies of adaptive algorithms. First of all it is worth clarifying that these 

algorithms although they are concerned with a traditional NLP task are a hybrid 

between NLP and ML approaches. Therefore the problems which must be faced 

when designing such algorithms are inherited from both fields. A critical issue in 

developing a learning algorithm is generalization. Basically, it is the issue of how to 

produce generic rules out of domain specific data. There are a number of ways to 

do so, such as using regular expressions etc. In the systems below we will describe 

several approaches which accomplishes this task. 

Overfitting vs U nderfitting 

The issue of generalisation is quite important because if it is tackled badly, the system 

may suffer from what is normally referred to as underfitting or overfitting. A learner 

that is not sufficiently complex can fail to detect fully the model in a complicated 

data set, leading to underfitting. On the other hand, a learner that is too complex 

may fit the noise, not just the model, leading to overfitting. Overfitting is especially 

dangerous because it can easily lead to predictions that are far beyond the range of the 

training data and can also produce wild predictions even with noise-free data. Under­

fitting produces excessive bias in the outputs, whereas overfitting produces excessive 

variance. But this phenomena does not only occur due to the generalization strategies 
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of the learner, it is also caused by Data sparseness. This problem is concerned mainly 

with how representative the training data is of the concept we are trying to learn. 

Most of the data normally available is incomplete or inconsistent, the effect of this 

is that the model learnt by the learner is partial and does not represent adequately 

the target concept. Therefore our algorithms must be capable of creating a model as 

representative as possible of the target concept using the noisy information available. 

A number of approaches tackle this issue such as the use of linguistic information in 

order to perform generalization, the use of as much data as possible (which although 

desirable not always possible) or the use of cross-validation in order to cross check 

the expressibility of the rules, between subsets of the training data set. 

3.2.2 Shallow Approaches 

Wrapper Induction 

With the rapid expansion of the Internet and before the advent of the Semantic Web, 

data was being encapsulated in documents containing lots of fancy layouts in order 

to make the data more appealing to the user. Although this made things easier from 

the user's point of view, it made it extremely difficult for the automated agents to 

extract information from such documents since they did not know how to handle 

the composition of layout and content. Since the layout information is normally 

embedded in the document, the traditional Natural Language Processing tools like 

Part of Speech taggers, parsers etc produce lots of erroneous results because the 

documents are not just pure text but also contain the layout elements. Because of 

this, IE was performed by manually constructing wrappers in order to define where the 

data is located. The wrappers model the data and layout surrounding the information 

which needs to be extracted, therefore providing enough cues for the software agent to 
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identify the information. Being a manual process meant that the system was tedious 

to perform and error prone. Also, the human trainers managed to produce lots of 

wrappers having high precision but low recall, therefore making the process in general 

very time consuming. 

To overcome this problem, (78) developed Wrapper Induction (WI). In WI a wrap­

per is defined as being a function from an information source to a tuple and induction 

is the task of generalizing from labelled examples to a hypotheses. What happens 

is that "Oracles" are constructed whose task is to recognise instances of particular 

attributes on a page. There are two types of Oracles, page and label Oracles. The 

difference is that the former generate example pages specific to particular information 

resources while the latter is composed from reusable domain independent heuristics. 

These Oracles are rated according to whether they are perfect (accept all positive 

instances and reject all negative instances), incomplete (reject all negative instances 

but reject some positive instances), unsound (accept some positive instances but ac­

cept some negative instances) or unreliable (reject some positive instances and accept 

some negative instances). According to their ratings they are then composed together. 

The result is a set of labelled pages which is then given as input to the algorithm 

that builds the wrappers. In this particular implementation, the items of information 

which need to be extracted are bound using a wrapper made up of a head and tail el­

ement which delimits the start and end of the information. Inside these two elements, 

there are several left and right elements that are used to locate the several instances of 

the pattern inside the bounds. This wrapper is called a Head Left Right Tail (HLRT) 

wrapper. The model is a very simple one and basically computes common prefixes 

and suffixes of sets of strings, which are highly constrained after very few examples. 
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This can be seen further in (77). In this model, Probably Approximate Correct (PAC) 

analysis is used in order to identify the number of examples required for a learner 

to be confident that its hypotheses is good enough. Therefore, whenever this level 

is reached, the algorithm stops learning. PAC analysis as described in (86; 75; 67) 

basically states that the error of a hypotheses measures the closeness to the concept 

being searched for. So, if we have a class of concepts C defined over a set of instances 

X, our task is to find a learner L using hypotheses space H such that it manages to 

cover the concepts given a minimum error (c) and high confidence level (5). These 

constraints must be met in polynomial time. 

The WI algorithm, although quite robust managed to produce wrappers that 

cover only 48% of the given data. Although this result is much better than producing 

all the wrappers by hand, it is still low. Another disadvantage is that to train the 

algorithm, Oracles must be created, which is not a very intuitive approach especially 

with naIve users. Also, wrappers are limited to structured data, but most of the web 

is made up of semi-structured or free text therefore constraining wrappers to limited 

domains. Finally in (78) it is stated that because the PAC model is too weak, the 

number of examples needed for efficient learning is high. The consequence of this is 

that wrapper construction is bound to be an off-line process. 

Boosted Wrapper Induction 

An enhancement to the WI algorithm is Boosted Wrapper Induction (BWI) as de­

scribed in (46). Since WI is restricted to highly structured domains, it is unsuitable 

for most convention IE tasks. BWI uses a technique called boosting whose task is 

to boost the performance of weak classifiers (in this case the wrappers). First weak 

rules are learnt based on simple contextual patterns. Since the patterns are applied 
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on any kind of text, the amount of regularity is typically very low, making the rules 

high in precision but very low in recall. Therefore to make effective IE several weak 

rules combined together are used in order to identify a single element. In contrast 

to WI, instead of having an HLRT wrapper we have a FAH (Fore After Histogram) 

wrapper. The fore detector identifies the starting boundaries, the after identifies the 

end boundaries and the histogram is a probability of the field's length. At every stage, 

the results obtained by these three classifiers are combined and if the combined result 

surpasses a threshold, it is accepted as being positive. The three classifiers have equal 

probability of occurring therefore making the result of their combination proportional 

to a naIve Bayesian estimate with uniform priori (as specified in (86)). From the ex­

periments, handling exact tokens was not generalising enough; therefore the classifiers 

were further enhanced to handle wildcards. Since both the Fore and After are quite 

weak detectors, their effectiveness is increased by using Boosting as described in (49). 

This version of the algorithm is called AdaBoost which is short for Adaptive Boost­

ing. The boosting algorithm invokes the learner using a uniform distribution for all 

training examples, generates weak hypotheses and then progressively adds the weight 

of the misclassified examples and decreases the weight of correctly classified examples. 

Thus the learning tends to focus on the harder examples. The final hypotheses is a 

weighted majority vote of the weak hypotheses. The algorithm is fast and simple 

without any need of tuning parameters and it can also be applied to any learning 

algorithm. Its strength lies in the fact that it manages to identify examples which 

are hard to categorize while its weakness is revealed when complex weak hypotheses 

or very weak hypotheses are used. In BWI, Boosting improves enormously the result 

obtained although the amount of cycles required to reach high performance was very 



64 

sensitive to the difficulty of the task at hand. BWI was tested on several domains 

and in most tasks produced very good results. This algorithm is a living proof of how 

weak classifiers such as wrappers can be boosted to obtain competitive results. 

Another technique worth mentioning is Bagging (Bootstrap Aggregation) as de­

scribed in (69; 13). This technique has some similarities to Boosting in that they both 

generate a number of classifiers and uses a voting system, but the similarities stop 

here. Bagging does not modify the distribution of the training examples but rather 

keeps on generating new hypotheses based on randomly chosen training examples. 

In (8) it is estimated that whenever the number of training examples is large, there 

is a 63% chance that the training set contains unique instances. This means that 

there is a high probability of having duplicates in the training set and therefore the 

different classifiers will be trained on a smaller sets resulting in destabilising stable 

algorithms. The final results from the classifiers are obtained by aggregating in some 

way the results of the different sub-classifiers normally by taking the average. 

Both Bagging and Boosting offer substantial improvements to the learning al­

gorithms, although Boosting generally tends to produce better results. Boosting 

however tends to be quite sensitive to noise. Both these techniques seem to have a 

common shortfall, i.e. they both create complex classifiers which may become incom­

prehensible to users and which do not seem to cover the domain. 

SLIPPER 

SLIPPER is another algorithm that uses boosting to improve its performance. Its 

origins can be traced back to the Reduced Error Pruning (REP) method, then In­

cremental REP (IREP) and eventually RIPPER (Repeated Incremental Pruning to 

Produce Error Reduction) in (32). The original REP works similar to decision trees 
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learning systems by first overfitting the training data and then pruning the complex 

tree. The pruning method chosen at each stage depends on which one reduces the 

error on the training set. This was later on improved by IREP. The main difference 

being that the pruning is not performed after all rules are generated but every rule 

is immediately pruned when it is created. This avoids exploring parts of the search 

space that are unreachable, therefore making the algorithm more efficient and obvi­

ously faster in general. Even though these improvements were noticed, the algorithm 

still did not manage to get results better than the C4.5 algorithm (86). Because 

of this, the algorithm was enhanced further and RIPPER was created. It imple­

ments three main improvements over its predecessor. First of all, the metric used 

to guide pruning was altered because it was noticed that the original metric occa­

sionally stopped the algorithm from converging. Second, when IREP was generating 

rules, it had a threshold heuristic which halted the rule production process if the 

error exceeded 50%. This made the algorithm sensitive to small problems, because 

of this, it used to stop generating rules much more earlier than it should have done. 

To solve this problem, instead of binding the stopping condition with the error rate, 

it was bound to a minimum description length (mdl) of rules. The threshold value 

was chosen empirically from experiments. The final improvement was to introduce a 

re-optimisation at the end of the process (in a similar way to REP) over the whole 

rule set. 

RIPPER finally managed to outperform C4.5 in the majority of tests performed. 

Not only were the results obtained better, but due to its efficient algorithm, the 

system in general converged faster than C4.5. A further improvement on RIPPER, 

which makes use of the same boosting technique that BWI uses, is SLIPPER (Simple 
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Learner with Iterative Pruning to Produce Error Reduction). The algorithm works 

by repeatedly boosting a simple, greedy, rule learning algorithm. At every stage, 

examples are not removed from the training set but their weighing is reduced. A 

voting mechanism is then used amongst the rules, in order to rate the coverage of 

the elements in the training set. An interesting fact is that rules have the ability to 

abstain from casting a vote if the example is not covered by the rule. The learner 

generates the rules by splitting the training set into two, extracting a single rule using 

one subset and then prunes the rule using the other subset. 

SLIPPER manages to achieve good results. Most of them must be attributed to 

the benefits obtained from boosting. Also SLIPPER manages to scale well to large 

noisy data sets even though it is less efficient than RIPPER. 

Another algorithm which works on similar lines as WI is (LP)2(Learning Patterns by 

Language Processing) which is described in (24; 23). This algorithm is an Adaptive IE 

algorithm; by adaptive it is meant that the algorithm is capable of being ported to new 

scenarios without the need of an IE expert to configure it. In fact, for the algorithm to 

work, all that is required is a simple scenario which describes the particular domain. 

It performs information extraction using linguistic analysis. This information is then 

used to generalise over the fiat sequence of words, but the algorithm goes further and 

tries to utilise the structure of the document (E.g HTML, XML, etc) depending on 

the task at hand. 

The (LP)2 algorithm induces symbolic rules learned from a tagged corpus and 

depending on the implementation version it could use either top-down or bottom-up 

generalisation. It mainly induces two types of rules: tagging and correction rules. 
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Tagging rules are made up of a sequence of words followed by an action to insert a 

tag. The word sequence is a window of w words to the left and right of the tag. For 

each positive example, the algorithm builds an initial rule. This rule is generalised 

by dropping some of the constraints (in bottom-up generalisation), introducing some 

wildcards and introducing some of the results obtained from shallow NLP tools (such 

as a morphological analyser, Part Of Speech [POS] tagger or user defined dictionaries). 

The different possible combinations of rules are generated, pruning is used to remove 

unreliable rules or rules that cover instances covered by existing rules and a search is 

performed in order to determine which rule is the best. The best rule is determined by 

checking the error rate against a maximum threshold. Finally, the algorithm keeps the 

k best generalisations of the initial rule. The instances covered by the k best rules will 

not be available any more for rule induction and the cycle continues until there are no 

more instances to cover. The rules obtained at this stage are high in precision but low 

in recall. (LP)2 tries to increase recall without effecting precision by recovering less 

good rules and it tries to make them reliable by constraining them. These rules may 

not be good enough to identify a specific instance of a concept but may be enough to 

define the boundary of a particular instance. They are called contextual rules. Once 

rules are learnt, additional rules are induced in order to correct mistakes. These rules 

do not insert new tags but rather correct any misplacement of tags. Finally, the tags 

produced are validated; this means that a check is performed to make sure that basic 

conventions are adhered to (such as every opening tag should have a corresponding 

closing tag). This algorithm has the benefit of reducing training time, reducing corpus 

size and limiting, both the data sparseness and overfitting in the training phase. These 

properties are achieved due to the use of linguistic information. In fact morphology 
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allows overcoming of data sparseness due to number/gender word realisation while 

POS tagging allows generalisation over lexical categories. Since more powerful and 

generic rules are created easily, the algorithm converges much more rapidly. (LP)2 

implements a number of innovative and successful ideas which make it compare well 

with the best IE algorithms available today. 

CRYSTAL 

CRYSTAL as mentioned in (102) took a different approach than the algorithms al­

ready seen. Instead of working towards extracting information, its main task was 

to produce a conceptual dictionary. A conceptual dictionary is made up of a list of 

contextual nodes and each node is basically a description of the local syntactic and 

semantic information in which relevant information is likely to be found. It tries to 

achieve inductive concept learning which is similar to Inductive Logic Programming 

(40) by using a specific-to-general data driven approach in order to find the most 

specific generalisations that cover all positive examples and no negative instances. 

The system starts by using a set of tagged documents having the concepts related 

to a particular semantic class annotated. For all the available instances CRYSTAL 

starts by inducing a contextual node from the information available in the background. 

It then goes through all the definitions and compares highly similar examples. Since 

there may be many rules especially in large corpora, the system makes use of indexes 

in order to locate quickly similar contextual nodes. The similarity metric used, counts 

the number of relaxations necessary in order to unify the two structures. The rule 

which produces the best unification is kept and tested in order to check that it does 

not cover wrong instances. If the new generalisation is valid, all the rules that are 

covered by these new rules are deleted from the database and only the new rule is 
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kept. 

CRYSTAL is one of the first systems that tries to achieve the sub-task of infor­

mation extraction automatically. The system also supplies some tradeoff parameters 

which can be adjusted in order to tune the precision and recall required. A limitation 

of this approach is that the examples generated are not generic enough and most 

probably, will only match the sentence they were learnt on or very similar ones. The 

major contribution of this system was that it was one of the first systems whereby 

the user was not required to know anything new apart from information about the 

domain in which he was an expert. 

AUTOSLOG-TS 

AutoSlog-TS (94) was a major research contribution toward making information ex­

traction systems more easily portable to new domains. It is the first system that 

can generate extraction patterns automatically using only raw text as input; other 

systems require annotated training texts or other forms of specialised training data. 

Tests showed that its extraction patterns achieved performance comparable to the 

hand crafted patterns of its predecessor AutoSlog (93). 

AutoSlog was a dictionary construction system that created extraction patterns 

using heuristics. In the system the phrases to be extracted had to be tagged in some 

way. The rules which were generated were divided into three categories, based on the 

syntactic class of the noun phrase being examined. Also, after a rule was created, it 

had to be reviewed by human experts in order to remove any errors introduced by 

the part of speech tagger. 

AutoSlog-TS is basically an extension to AutoSlog. It operates by creating an ex-

traction pattern for every noun phrase in the training set. The patterns are extracted 
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by using some domain independent heuristics. The extracted pattern is then evalu­

ated by going through the training set a second time and collecting statistics about 

that pattern. The statistics are used to calculate a probability based on whether 

the text is relevant and on which rules are fired. This measure is referred to as a 

pattern relevance rate. The patterns are then automatically ranked using a formula 

that promotes high relevance or high frequency. 

In this system, the extraction patterns managed to produce significantly fewer spu­

rious extractions and better text categorisation results than those generated from the 

hand-crafted patterns on one of the categories. Using AutoSlog-TS, the extraction­

based text categorisation algorithms can be trained for new categories much more 

easily than before. This is the first algorithm aimed at building semantic lexicons 

from raw text without using any additional domain knowledge. A user only needs 

to supply a representative text corpus and a small set of seed words for each target 

category. The experiments showed that a core semantic lexicon can be built for each 

category with only 10 to 15 minutes of human interaction. The experiments showed 

that extraction-based categorisation can perform well on fine-grained categories and 

can be used effectively to classify texts with respect to subclasses within the context 

of a single domain. 

Inductive Logic Programming 

A different approach adopted in Information Extraction makes use of a technique 

known as Inductive Logic Programming (ILP). This technique as defined in (86; 35) 

and has its foundations as a cross between logic programming and machine learning. 

It concerns with the development of methods and tools for the automation of reasoning 

and makes use of a set of algorithms in domains which have a rich relational structure. 
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In these domains instance attributes are not isolated, but are related to each other 

logically. Relational learners are basically rule learners which derive features on-the­

fly and which can in theory logically derive new features from existing ones. 

One of the first such systems and whose basis lies at the heart of many modern ILP 

systems is FOIL as described in (92). FOIL learns how to construct a logic program 

that defines relations in terms of it and other background relations. Since it works 

with first order logic, it uses tuples that belong (or not) to the target relation. It 

starts with a general clause and progressively adds literals until all negative examples 

are excluded. The algorithm makes use of a divide and conquer approach, whereby 

the covered examples in the target space are separated and the algorithm directs 

its attention to the remaining concepts. At every stage, one or several clauses are 

created made up of literals. The literals can be either gainful or determinate. The 

former literals are evaluated using an information gain heuristic that helps to reduce 

the search space by eliminating unreliable information. The latter on the other hand 

does not help to reduce the search but rather, adds new variables required for the final 

clause. During the search, a greedy approach is taken; but this has the potential to 

explode the size of the search space. In order to avoid this, checkpoints are established 

along the paths being searched, and if the current path does not lead to an improved 

condition, the search is halted and does not continue from the last node in the search 

tree but rather from the last checkpoint, therefore reducing the amount of searches 

required in less valuable paths. 

There are a number of systems related to FOIL. One such system worth mentioning 

is mFoil (40). This particular implementation improves over FOIL by implementing 

several techniques to handle noisy data. It also replaces the existing greedy search 
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found in FOIL with a more efficient beam search, therefore increasing the chances of 

finding a good clause. This system and may others similar ones form the backbone 

of modern ILP approaches. 

RAPIER 

The Robust Automated Production of Information Extraction Rules (RAPIER) is 

one of the modern ILP systems used for IE. It was built around 1997 (19) and it 

incorporate techniques from several ILP methods. RAPIER was designed mainly to 

cater for semi-structured text and it expects as input a pair of documents at a time. 

One document contains the data while the other contains filled templates. The filled 

templates hold a list of information to be extracted from the document. The learner's 

task was then to find in the data the elements specified by the filled templates and 

learn them using its algorithm. The user was not involved in the process apart from 

supplying the pair of documents for training. 

The algorithm uses a bottom-up approach starting from a specific rule that matches 

a target concept in the training set. The rule is made up of an unbound pattern made 

up of constraints on words and part-of-speech tags surrounding the filler. Once the 

rules are collected, a cycle begins where pairs of rules are randomly chosen and a 

beam search is performed to identify the best least general generalisation that covers 

both of them. At this stage, constraints are systematically added and the rule is 

evaluated. This iteration continues until no progress is recorded. 

The rules of RAPIER are based on both content and delimiting information. The 

patterns exploit syntactic and semantic information in order to have better gener­

alisations. For syntactic information, a tagger is used to obtain the Part of Speech 

found in the document while for semantic information, a lexicon of semantic classes 



73 

is used. The pattern is nothing more than a sequence of items which match either 

one word or a list of words. Every rule is indexed by a template and slot name, and 

consists of a pre-filler, filler and post-filler. The current approach handles only single 

slots although Soderland in (101) proposes possible alternative strategies in order to 

extend the current paradigm to perform multi-slot extractions. The idea is to divide 

the text into more than just three fields. 

SRV 

Sequence Rules with Validation (SRV) as described in (45) is a general-purpose top­

down relational learner for IE. The system works by taking as input a document 

containing markup information around the data to extract. It makes no assumption 

about the information available for use and the document is treated as a token­

oriented feature set. The features range from token length, type, orthography, POS, 

lexical meanings and other relational structures. These can be divided into two 

classes, simple and relational. A simple feature is a function that matches one token 

to some discrete value. A relational feature provides a mapping between a token and 

another token such as adjacency. The information is extracted from the token level 

because multi-term text fragments are difficult to describe in terms of simple features. 

The output of this process is a set of rules which are used to extract other similar 

concepts. 

This algorithm looks at IE from a classification point of view and considers the 

document as being made up of several mini-documents where every candidate instance 

is presented to a classifier and rated according to its relevance which is a confidence 

level that shows how probable the phrase is part of the target concept. The search 

is performed in a similar way to how FOIL does it in [QUI95]. It basically goes 
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through a test space made up of all the textual fragments from the test document. 

The extraction is performed by examining the fragments of appropriate size in order 

to match them with the available rules. The learning process is once again similar to 

FOIL, i.e. the data space is divided into two pools containing negative and positive 

examples. The positive examples are those elements tagged beforehand while the 

negative examples are the remaining elements. Induction is performed and only stops 

whenever a rule does not manage to cover more elements than the previous rule. At 

this stage, the rule is considered to be good and all the examples covered by the 

rule are removed from the training set and the process goes on until all examples are 

covered. 

This algorithm has quite a number of potentials. First of all no prior syntactic 

analysis is required for it to work. It also makes use of a very expressive representation 

using orthographic features and linguistic information when available. A limitation 

of this algorithm is that it was designed to extract single-slots. 

WHISK 

The WHISK system presented in (101) is a covering algorithm which performs top­

down induction of rules. It is based upon ILP principles but with a difference from 

other systems mentioned so far, in that it is capable of handling any kind of text. It 

can extract information from structured pages, from semi-structured texts like web 

pages and free text. When it comes to free text, WHISK can also make use of a 

syntactic analyser and semantic tagger to increase its performance. 

The WHISK learner works in a supervised mode with phases that alternate be­

tween tagging and training. The learner starts from a set of untagged instances and an 

empty training set. In each iteration, the system selects and presents to the user a set 
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of instances for annotation. The definition of an instance is variable in this context. 

It depends mainly on the kind of text being analysed. If the text is semi/structured 

having some sort of tags, heuristics (mainly based on HTML tags) are used in order 

to divide the text according to the position of specific tags, while if the program is 

handling free text a sentence splitter is used to divide the document into sentences. 

The user's task is then simply to mark the region of text where the information 

for extraction is situated. When the user is ready, the batch is sent to the learner in 

order to induce a set of rules from the new expanded training set. Since WHISK is a 

top-down learning algorithm, it starts the induction by finding the most generic rule 

that covers a seed concept. Terms are then gradually added until the error is reduced 

to zero or until a pre-pruning criteria is satisfied. The iteration finishes when the 

generated rules manage to cover all the positive examples in the training set. Some 

post-pruning is also performed in order to remove some of the rules that overfit the 

data. 

The main limitation of WHISK is that its feature set is not very expressive and 

therefore its generalisations are less effective than other learners. The main advan­

tage which it clearly has over the others is that it can manage to extract multi-slot 

information, but this comes with the added costs of requiring more examples than 

other learners. 

SNoW-IE 

SNoW-IE is the last ILP based system this subsection will look at. It is describe in 

(97) and is based on a new paradigm for relational learning which promises to be more 

flexible and allows the use of any propositional algorithms including the probabilistic 

ones. 
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The problems with such systems has always been to learn definitions of relations or 

concepts of interests in terms of given relations. Although there were systems capable 

of doing this, they were not scalable enough to large domains and consequently might 

not generalise well. Research in ILP suggests that, unless the rule representation is 

severely restricted, the learning problem is intractable. The main problem with such 

systems is that most of them have problem specific functions therefore restricting 

such systems to specific domains. The SNoW-IE system makes use of efficient general 

purpose propositional algorithms. At the heart of the system, there is a knowledge 

representation language that allows an efficient representation and evaluation or rich 

relational structures. The language is a subset of First Order Logic and works as a 

collection of graphs defined over elements in the domain. Restrictions are imposed 

by limiting the expressibility of the language to a collection of formulae that can 

be evaluated efficiently. Objects are also given types in order to classify objects in 

the language according to their properties. The language to do this creates Relation 

Generation Functions (RGF) as described in (33). These functions generate more 

expressive formulae that model the structures in a domain. In this proposed calculus 

a formula is only formed when all its parameters are available and therefore needs 

not be tested in order to see if it can fire. 

The main difference with respect to previous ILP approaches is that the search 

space is structured in a different way, instead of generating the features as part of a 

search procedure, they are obtained in a data driven way using the RGFs. Knowledge 

is incorporated in the system by using sensors. These programs have the ability to 

treat information from input, external sources or previous information in a uniform 

way. The data at the back of the system is expressible enough to be used by any 
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system therefore making the paradigm not bound to any specific learning algorithm. 

To test the paradigm SNoW (Sparse Network of Winnows) (96) was used. The 

learning architecture is a multi-class classifier that is specifically tailored for large 

scale learning tasks and for domains in which the potential number of features taking 

part in decisions is very large, but may be unknown a priori. It learns a sparse network 

of linear functions in which the targets concepts (class labels) are represented as linear 

functions over a common feature space. The system offers a feature efficient learning 

algorithm, in that it scales linearly with the number of relevant features, and linearly 

with the number of features active in the domain. 

The improved system called SNoW-IE first starts by filtering the negative exam­

ples. This part can be seen as a classifier designed to obtain high recall. The examples 

are removed if they do not contain a feature which should be active in a positive ex­

ample or if a confidence level is below some threshold. The second part is aimed 

towards increasing precision and is called the classification stage. For this stage, the 

candidate fragments are enhanced using a new collection of RGFs, then a classifier 

for each concept is trained. Training results show that the system outperformed most 

rule based systems. The system works in a similar way to existing ILP techniques 

but instead of representing the rules as a conjunction, they are represented as a linear 

function. 

Maximum Entropy Classifier 

An application of Maximum Entropy Classifier to IE is described in (22). This ap­

proach is similar to SRV in that it too looks at the problem as being a classification 

problem. The Maximum Entropy (ME) principle is very old and simple. Basically 

it models all that is known and assumes nothing about that what is unknown. In 
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other words, given a collection of facts, choose a model which is consistent with all 

the facts, but otherwise as uniform as possible (9). Also, the ME principle takes into 

account features that are not independent therefore making it suitable for multi-slot 

extraction. 

Every candidate for a slot filler can be one of five types i.e. a begin slot, a continue 

slot, an end slot, a unique slot, and a not-a-slot. To perform extraction, several group 

of features were defined. These groups include unigrams, bigrams, zones (delimited by 

tags found in the document), capital letter words, headings, time, names (according 

to a gazetteer) and new words (not found in a dictionary). The features are associated 

to the words in the document and a probability is associated to every feature using the 

ME classifier. The Viterbi algorithm is then used to select the sequence of word classes 

with the highest probability. This approach is typically used to perform single-slot 

extraction. 

For multi-slot extraction, some enhancements were added. First of all, the texts 

were passed to a text-filtering module whose task was to remove irrelevant documents. 

The documents were then semantically tagged so that information such as people's 

name, organisations etc are found and tagged in the document. This phase was called 

candidate selection. The third step is to produce relation classification. Basically, it is 

the task of finding relations between entities. Finally, a template building procedure 

is used. It takes a graph of relations between entities as input and fills a template 

using the relations in the graph. 

This approach is capable of handling both single and multi slots for both semi­

structured and free text. The results obtained were superior in most cases to any 

algorithm available. The limitations with this approach has mainly to do with how 
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the features were selected. Some features defined were dependent of the domain 

being analysed, yet this does not diminish in any way the potential of this algorithm 

because domain independent features can still be produced even though the success 

of the algorithm will probably be less. 

HMM 

A Hidden Markov Model (HMM) is not the name of an IE algorithm. It is a mathe­

matical model used in various areas of computer science. In (48) a HMM was used to 

locate textual sub-segments in a document that answer a particular information need. 

To build these models, a statistical technique called shrinkage was used to improve 

the estimation of the parameters of the model. 

In this implementation HMMs are used as a probabilistic generative model of the 

entire document. The documents were not fragmented due to the fact that it could 

cause a huge space of fragments. To find the most probable sequence of elements, the 

Viterbi algorithm was used to learn the model transitions and emission probabilities 

from the training data. Separate HMMs were built to extract different fields with 

each HMM having two states: 

• Target state containing the tokens to extract 

• Background state containing the remaining elements 

The HMM is not fully connected (In a fully-connected graph, each cell is just one 

step away from every other cell), the reason being to capture textual context therefore 

improving efficiency. The state transition topologies are set manually and not learnt. 

Two topological parameters which were tested are the window size (Number of prefix 

and suffix states) and the target path count (Number of parallel, different length 
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and target paths). In the model only target states can emit target tokens and vice­

versa for non-target states and only a single unambiguous path is possible through 

any topology. In order to improve the parameter estimation Laplace smoothing and 

Absolute discounting were tested. Both techniques make use of only the training data 

available. 

Shrinkage is a statistical techniques used in speech recognition systems. It makes 

use of weighted averages and learns using the Expectation Maximisation algorithm. 

Basically, it shrinks parameter estimates from data sparse states of complex models 

towards estimates in related data-rich states of simpler models. In some conditions, 

this algorithm was shown to produce optimal results. 

To perform IE, the system was defined in terms of a hierarchy, i.e. subsets of 

states were identified with similar distribution (Eg: all prefixes are expected to have 

the same distribution). This was done to represent a similarity between parameter 

estimates. At the top of every hierarchy is the uniform distribution (which gives 

all words equal probability). States were further divided into four classes, these are 

Non-target, Target, Prefix and Suffix. There were also four shrinkage configurations: 

• None (use only absolute discounting) 

• Uniform distribution 

• Global (shrinkage is performed towards a common parent and eventually the 

uniform distri bu tion) 

• Hierarchical (the target class are shrunk in a similar way to the Global configu­

ration, while the other classes are shrunk towards a separate parent. Prefix and 
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Suffix are shrunk towards a "context" grandparent. In turn every state is even­

tually shrunk towards a common ancestor and eventually uniform distribution) 

EM Technique is finally used to re-estimate the parameters and the cycle continues. 

Experiments using this system showed that as the size of the window increases 

precision decreases. The more complex model fractures the training data making 

it difficult to obtain parameter estimates. Shrinkage improved the model over large 

window size. It managed to reduce the error of parameter estimation by 40% and 

allowed the learner to learn more robust HMM emission probabilities using limited 

training data. It was also shown that the most consistent patterns were the closest to 

the target concept because the local weight of states declined with increasing distance 

and when related to field difficulty. 

ESSENCE 

ESSENCE (20; 21) is one of a different breed of IE systems that promise to build IE 

patterns automatically based on an un-tagged corpus of relevant documents. This 

task is achieved by using a generalisation algorithm which delays as much as possible 

the involvement of the user in the system. This delay occurs because the system will 

gather as many patterns as possible and the user is then asked to go through the 

potential patterns and not through the whole corpus. 

The ESSENCE methodology makes use of a general purpose lexicon. In the cur­

rent implementation WordNet (84) is used to provide lexical, syntactical and semanti­

cal information. Since WordNet is not an exhaustive list of world concepts, additional 

gazetteers and domain specific word lists are used to complement WordNet. The first 

step in the methodology is the Task Definition module. The user is asked to enter 

a number of keywords that commonly appear next to the target concept. For each 
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keyword, the user is also asked to select the synset number as defined in WordNet. 

With this information, the system calls the Selection of Relevant Texts module 

whose task is to select from the corpus a set of text based on the user's previous input. 

Noun phrases, verb phrases and prepositional phrases are then identified because they 

will form the basis of the generated patterns. 

The sentences obtained will then be filtered according to a relevance judgement 

based on the number of keywords found in them. Out of the relevant sentences a 

window is selected which will be used for analysis. The nouns and verbs are then 

semantically tagged using WordNet. At this stage, the patterns are learnt by the 

ESSENCE Learning Algorithm (ELA) and the resulting patterns are filtered in or­

der to remove very specific patterns. The ELA works similarly to other covering 

algorithms. The main difference is that the granularity of elements is much bigger, 

working at the noun, verb and preposition group level. Also the generalisation is 

performed by relaxing the semantic tags associated to groups of patterns. 

Although the results obtained by this system were quite respectable, the true 

achievements are twofold. First of all the system manages to obtain such results 

using a higher granularity than the one used by other similar systems. Secondly, it 

does so without requiring lots of human intervention. Basically annotation is not 

required, only a number of seed words are needed to start the IE process. 

LIEP 

The LIEP (Learning Information Extraction Patterns) system (71) is an IE system 

which aims primarily towards the effective acquisition of patterns. It learns the 

extraction patterns using an On Demand Information Extractor (ODIE). 

The ODIE first tokenises the text given as input. It then goes through all the 
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sentences, a sentence at a time and checks whether some of the keywords (which 

indicate the possibility of an event of interest) appear in the current sentence. Those 

sentences which have no keywords are discarded while the others are kept for further 

analysis. The retained sentences are tagged with a part of speech tagger and a pattern 

matcher is run over the sentences in order to identify entities and other information 

(like prepositions, noun groups and verb groups). The system then tries to identify 

events by using IE patterns that match syntactic constituents and other properties. 

At no stage does the system attempts to perform a full parse but simple syntactic 

relations are checked by using simple rules to verify the validity of sub-constructs 

found in a sentence. This technique is called on-demand parsing. The advantage of 

such an approach is that the burdens associated with a full parse are not required 

but this obviously means that the text is not adequately constrained as in a full parse 

and this may lead to over-generalising some of the rules. 

The actual patterns are learnt by going through the different elements found in 

the system and trying to identify relations between them. In the case that several 

paths exist between the elements, all the paths are generated. The patterns are then 

tested and the one with the highest F-measure is selected. The selected patterns 

although high in precession would have a low recall since they are too specific to the 

text in the given document. Because of these, the patterns are generalised further. 

LIEP in general compared fairly well with IE tools developed during the same 

time. Its generalisation was not optimised and its main source of input was only from 

positive examples. Negative examples were only used for testing purposes and no 

additional use was made out of them. 
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CICERO 

The CICERO system (66) is an IE engine based upon the effective utilisation of 

WordNet (84). The idea is to mine WordNet in order to discover concepts and 

lexico-semantic relations relevant to the current domain. To check the validity of 

these relations, tests are performed using the domain dependent documents that are 

available. 

The methodology implemented in CICERO first involves creating a semantic space 

that model the specific domain via WordNet. The semantic space is in the form of 

a triplet made up of concepts, connections and contexts. A concept list is made up 

of words or group of words all referring to the same concept. Connections can be 

of three types, i.e. thematic, subsumption and contextual. Thematic connections 

refer to elements related by lexico-semantic or morphological relations. Subsumption 

connections refer mainly to Is-A relations found in WordNet. Contextual connections 

define possible relations between elements in the same context. The final element in 

the triplet is a context element. The context element models the different ways and 

restrictions in which different words and objects can be arranged, in order to express 

a concept. This is done due to the nature of natural language whereby a concept can 

be expressed in a multitude of different ways. 

This space restricts enormously the searches required in WordNet when modelling 

the domain. The documents being analysed are then scanned to identify and link the 

domain concepts which are defined in the semantic space. The patterns obtained are 

finally classified against the WordNet hierarchy and only the most general linguistic 

domain patterns are retained. 

For CICERO to work, several algorithms and a number of heuristics were devised 
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II Speaker I Location I Start Time I End Time II All Slots I 

(LP)2 77.6 75.0 99.0 95.5 86.0 
BWI 67.7 76.7 99.6 93.9 83.9 
HMM 76.6 78.6 98.5 62.1 82.0 
SRV 56.3 72.3 98.5 77.9 77.1 
Rapier 53.0 72.7 93.4 96.2 77.3 
Whisk 18.3 66.4 92.6 86.0 64.9 
SNoW 73.8 75.2 99.6 96.3 85.3 
Max 
Entropy 72.6 82.6 99.6 94.2 86.9 

Table 3.1: F-measure on eMU seminar announcements. 

in order to make effective use of WordNet. WordNet can be seen as the strength and 

weakness of this system. Whilst it provides that syntactic and semantic knowledge 

which is so difficult to obtain, its topology makes it difficult for users to retrieve such 

information. 

Discussion 

It is difficult to compare the different algorithms together without examining how 

they perform when confronted with a common task. Luckily, experiments on the 

eMU seminar announcements collection 1 were performed by most of the algorithms 

mentioned in Subsection 3.2.2 and they were reported in (24) and (22). The eMU 

collection consists of 485 seminar announcements and the task involves identifying 

the speaker, location of the seminar, the start time and end time. The documents 

have 485 instances of start time, 464 locations, 409 speakers and 228 end time. The 

results of the different algorithms can be seen in Table 3.1. 

The outcome from these experiments is very interesting. We will mainly compare 

the algorithms which produced the most promising results. First of all it can be 

1 Downloadable from http://www-2.cs.cmu.edu/ dayne/SeminarAnnouncements/ 
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noted that (LP)2 and BWI produce comparable results even though in the final score 

(LP)2 outperforms BWI. The reason for this is that both algorithms are based upon 

the same concept of creating wrappers. (LP)2 results are better in two particular 

instances, speaker and end time. The reason being that a speaker can have a very 

variable context. Therefore, the linguistic features used by (LP)2 are capable of 

modelling this variable context in a better way than BWI. When it comes to the 

end time concept, from the distribution of the concepts in the documents, it can be 

noticed that it is the concept with the least instances. In (LP)2 it was noted that a 

positive side effect which linguistic features add to the learning of the algorithm is that 

they tend to reduce spurious data and this is the reason why the algorithm manages 

to get a higher score for end time. BWI would require more examples in order to 

improve its score. The results of BWI are better when it comes to start time since 

the collection contains many examples of that concept and therefore the algorithm is 

capable of boosting the wrappers in order to model the data more effectively. 

The two other algorithms that performed well in the tests were SNoW and Maxi­

mum Entropy (ME). Both of them are based on different genre of algorithms. SNoW 

is based on a new form of ILP which is much more generic than common approaches. 

This form of relational learning produced good results when it comes to start time and 

end time. These two concepts are very regular but an interesting fact is that SNoW 

manages to get the best result in end time. This means that this form of relational 

learning is capable of learning regular patterns using very few examples and therefore 

overcoming the problem of spurious data. The ME method too performs well on the 

start time but the most surprising result is that it manages to get the best result for 

the location concept. It manages to outperform the next best algorithm by about 
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4%. This can be attributed to how ME works. Basically it models the domain using 

the positive examples only and makes no assumptions on the remaining parts of the 

document. This domain model is more representative than any model produced by 

the other algorithms and in fact, the best result for this concept after ME is produced 

by the HMM algorithm which is based on a similar idea of domain modelling. 

3.2.3 Deeper Approaches 

LaSIE 

The LaSIE (Large Scale Information Extraction) system is one of the few systems 

that make use of deeper approaches to perform IE. The initial version of the system 

called LaSIE-I (53) is an integrated system that performs lexical, syntactical and 

semantical analysis to build a single, rich representation of the text which is then 

used to perform several IE tasks. 

The lexical analysis is very similar to the analysis performed in shallower ap­

proaches. The text file given as input, is passed through a tokenizer, sentence-splitter, 

part-of-speech tagging, morphological analyser and a pattern matcher. The pattern 

matching works by checking the input against a number of lexicons that contain lists 

of organisations, company designators, people titles, human names, currency units, 

locations and time expressions. If an element in the document matches one of the 

elements in lists, a category is assigned to that element equivalent to the name of 

the list in which it was found. Apart from these lists there is also a hand crafted list 

of trigger words used to give an indication of the possible class of the surrounding 

tokens. 

The syntactical analysis takes as input the data obtained from the previous stage 

and parses it using a simple Prolog parser. The parsing occurs in two passes. In the 
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first pass a Named Entity Grammar is used in order to locate domain specific named 

entities. In the second parse Sentence Grammar Rules (extracted from the Penn 

TreeBank-II (83)) are used to extract a semantic representation from the sentences. 

The semantic analysis first starts by passing the output from previous stages to 

a discourse interpretation module that builds an ontology using the XI knowledge 

representation language (51). The ontology also has associated with its nodes at­

tributes therefore making the final result a world model. Apart from attributes, the 

ontology may also have inference rules associated with its nodes. When the ontology 

is being constructed, a co-reference resolution module tries to resolves any references 

in the text. This module has a number of heuristics which try to resolve the several 

instances found in the text. 

The results are gathered from the system by simply going through the world 

model and gathering the required information. Since the MUC-6 results of LaSIE-I 

were quite promising, the team behind it created an improved version called LaSIE-II 

(72) and submitted it for MUC-7. The main difference between the earlier version 

is that all the modules are organised and executed as a pipeline inside the GATE 

architecture2 . Other minor differences include 

• enlarging the lexicons available with new data. 

• sentences are represented in Quasi-Logical Form (QLF) (52; 5). This meaning 

that they are expressed as conjunctions of first order logical terms. 

• adding presuppositions to the data such as additional inferences, additional 

hypotheses, word sense disambiguation, person role classification and partial 

parse extension. 

2http://gate.ac.uk/ 
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• adding object co-reference with extra features like long distance co-reference, 

copular constructions, cataphora, coordinated NPs, header co-reference and 

generic nouns. 

• adding consequence rules used mainly to fill slots in the results. 

• performing event co-reference in order to merge events with additional informa­

tion found elsewhere in the text. 

LaSIE-II does not really differ much from its predecessor in terms of the approach 

adopted. Even so, the small refinements in the system managed to produce improved 

results on a much harder test. 

LOLITA 

The LOLITA (Large-scale, Object-based, Linguistic Interactor, Translator and Anal­

yser) system (88; 54) is in reality a general purpose NLP system although for the 

MUC competitions it was used as an IE system. It is mainly composed of two parts, 

the first part converts the text to a logical representation of its meaning while the 

second part generates the results. 

At the heart of the whole system lies a semantic network. All the analysis tasks 

are organised in a pipeline and the several output results obtained from the different 

stages are used to update the information in the semantic network. The network 

is used to hold different kind of information such as conceptual hierarchies, lexical 

information, prototypical events (that define restrictions on 0 b j ects) and other general 

events. The rest of the information found in the network is obtained directly from 

WordNet (84). 
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The main process first passes an SGML module to a Text Pre-processing module. 

The module locates structural information in the document such as reported speech, 

paragraphs, sentences and words. The output is then passed over to a Morphology 

module whose first task is to normalise the input such as expanding abbreviations, 

removing hyphens, expanding monetary and numeric contractions. Only the root of 

a word is retained and to avoid that information such as number, case, person, etc 

would be lost, this information is stored in a feature structure. After this module, 

the information is passed to a parser made up of the following five submodules: 

Pre-parser used to identify and provide structure for monetary expressions. 

Parser used to parse whole sentences. The result of this is a parse forest (made up 

of all possible parses). 

Decoding of the parse forest utilising the previously generated forest and making 

use of a number of heuristics to select the best trees. 

Best parse tree selection takes as input the decoded forest selects the lowest cost­

ing tree. 

Normalisation of the syntax tree done to reduce the number of different cases possi­

ble. This normalisation does not alter in any way the semantics of the sentence. 

Once the syntactic analysis is completed the system performs semantic and prag­

matic analysis. The semantic analysis is performed by going through the trees and 

building up meaning based upon the tree's subtrees. It makes use of the composition 

principle that the meaning of a sentence is made up from the meanings of the words 

contained inside it. The pragmatic stage is used to disambiguate and type check the 
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data. Once an event is disambiguated, the system attempts to create connections 

between it and the previous events. While the document is being processed, in the 

case that the system identifies an anaphoric expression, it looks for possible referents. 

If it manages to find such references it unifies with them the information it possess. 

In the case that no references were found, a new instance is created in a reference 

database called a Context buffer. 

The results obtained by the LOLITA system were not great and this was due 

to a number of limitations of the system. The system requires a successful parse in 

order to analyse the text. Such a parse was not always possible even though error 

recovery routines were implemented. Another limitation is that the data required by 

the system is much larger than the amount provided for testing purposes. Because 

of this, the results obtained were much lower than the ones expected by the LOLITA 

team. 

Machine Learning Based Text Understanding System 

The Machine Learning Based Text Understanding System (103) is a system designed 

for very deep textual understanding. The domain for which it was developed is the 

medical domain in which it is vital to have full understanding since a patient's life 

may be at stake. 

The system accepts as input a textual description. This is passed to a structural 

analyser whose task is to make use of a maximum entropy classifier to determine the 

sentence boundaries. The sentences are then passed to a lexical analyser. It makes use 

of a handcrafted domain specific lexicon to assign syntactic and semantic features to 

specific words. A syntactic parser is then used to create a dependency graph linking 

each word to the word it modifies. The probability of every arc is obtained from a 
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statistical parser trained upon hand-tagged training sentences. After this stage, a 

semantic interpreter (trained upon handcrafted rules) is used to go through the data 

and search for semantic relations. These relations are then grouped into a frame. In 

this context, a frame is basically a factual entity with a list of properties associated to 

it. The final step is a co-reference resolution module that tracks references amongst 

frames in sentences. Co-reference is performed using hand-coded probabilistic rules 

and lexical cues. 

Although such systems in reality are far from full text understanding, the method­

ology developed here is a step forward. The system has a serious limitation when it 

comes to porting to new domains. Some domain specific lexicons must be created 

and a system developer must create a precise definition of the target concepts for the 

domain. 

PENSEE 

Wi th difference to the systems seen so far, PENSE E (50) is a commercial system 

developed by Oki3 . The original modules used in this system were constructed for 

Machine Translation (MT) purposes. In fact, one of the reasons Oki designed this 

IE system was to find out how effective the core modules are when used in other 

applications. The system is made up mainly of two modules. A surface pattern 

recognition module and a structural pattern recognition module. 

The surface recognition module detects named entities and co-references without 

any lexical or syntactical analysis. This module searches for capitalised areas and 

merges groups of words whenever there is a high probability of having a compound 

word (based on some handcrafted heuristics). Types of named entities are recognised 

3http://www.oki.co.jp/ 
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using other rules by making use of cue words found before or after words of specific 

types. The remaining capitalised words which are still ambiguous are checked against 

a handcrafted dictionary. 

The structural pattern recognition module traces parse trees and uses them to 

find named entities, co-references, etc. All these are expressed using the Grammar 

Description Language (GDL). The GDL system allows the user to describe extraction 

rules used during the IE process. These rules are then translated and interpreted. 

The rules are basically divided into two parts, a matching part and an action part. 

The matching part describes a condition to match a part of a tree representing the 

document and the action part describes what changes need to be done to the tree. 

Also, to help the user create such rules a powerful debugging system is supplied with 

the tool. 

The system in general did not obtain good results in the evaluation even though 

to be fair, the developers emphasised that this system was developed in a very short 

time. Most of the rules used to identify the several concepts were handcrafted and 

the amount of automation found in the system is very scarce. Even though it has 

all these faults, in itself it is a simple and interesting system that shows how pattern 

matching can be effectively used in order to extract more information without the 

need to make use of deeper approaches in some cases. 
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3.3 Motivation for using II 

The vast amount of data available on the Internet unleashes an unimaginable number 

of ways in which the information can be combined and utilised in new applications 

and tools. Even though this may sound simple, when an automated agent tries to 

exploit the available data, it is faced with many obstacles. Imagine you are driving 

in a city without well defined roads, where the roads and buildings are changing 

as you move around. The road signs, even though they mean the same things are 

represented differently in different districts of the city. It sounds like an extract from 

the 1998 science fiction film Dark City but this is the current situations automated 

agents must face when they surf on the internet. One of the main reasons is the lack 

of structured representation available in the information found in web pages. This 

irregularity makes the data too complicated to navigate. The problem gets more 

complex when we consider that part of the data which is online, is not static, many 

web pages are dynamically generated on the fly from scripts or databases which change 

frequently. What is referred to as static data changes as well every so often. Links 

which existed a second ago go suddenly dead and others which were not there appear 

as if from nowhere. Another complication is that there is no uniform vocabulary to 

describe the same concepts amongst different domains or even the same domain. 

Apart from this, the II technologies available are not mature enough since they 

normally require the construction of specialised applications in order to extract in­

formation from the different sources. This obviously makes the whole process 

time-consuming since it is a very repetitive task performed by a human. Also, the 

side effect of having a human do the job is that a human is also error prone and 

costly. 
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difficult to maintain since the structure of a page can change from time to time. 

Every time this happens, these programs are broken since they were trained 

upon a particular structure which does not exist any more. 

Therefore, the following sections will focus on the basic foundations and techniques 

in Information Integration as it applies to the Web. 

3.4 Previous Work in II 

This section will give a brief overview of the different types of Information Integration 

systems available. It will give a flavour of what we believe are the most relevant 

systems to our work. 

3.4.1 Ariadne 

Ariadne(6)(76) is an Information Integration system that makes it fast and cheap to 

build automated agents used to access, query and integrate existing web sources. It 

uses several approaches borrowed from knowledge representation, machine learning 

and automated planning. The system also prm;ides tools for maintaining these agents 

by making it easy to customise them as new resources are available. Ariadne is made 

up of the following components: 

Application Domain Model is an Ontology of the application domain. It is used 

as a basis to integrate all the information gathered in one single view, by pro­

viding a unique and standardised terminology for the concepts of the domain. 

Wrappers are important because Ariadne needs to know what information can be 

extracted from the web page. This information is normally stored in semi­

structured web pages. In order to do this the system uses both a syntactic 
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and a semantic model of the information found on the page. This information 

is extracted by making use of a simple annotation interface, whereby the user 

is asked to mark examples of the concepts to extract in the source document. 

Once the annotations are inserted, a learning algorithm is used to induce the 

grammar rules for that particular page. 

Information Sources descriptions are used to model how the system should nav­

igate through the internet in order to extract the information found distributed 

across different web pages. The system makes use of the same wrapping tech­

niques described before but the information is not just labelled as atomic data 

and left there. Associations found in the ontology are used to build a plan of 

how one item of information can lead to another item in a different page. 

Query planner handles the different queries possible together with their decompo­

sition into sub queries. It is all based upon the Application Domain Model since 

it contains a reference to all the data available. The first step before the ac­

tual plan is constructed, is to build the actual integration axioms. This is done 

off-line so that the costs of creating them during query execution is eliminated. 

Ariadne manages to extract the different rules by analysing the domain model 

together with the source descriptions and by calculating the different ways in 

which these two are related. Once this process is finished, it is time to get a 

query from the user and process it. The query is first of all parsed, simplified 

and rewritten so that it matches with the different concepts found in the do­

main model. It is then passed to an optimising module in order to remove any 

inefficient queries and finally it is executed over the domain model. 
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Ariadne works fine for most domains but it has a number of major limitations. 

Currently the system cannot create wrappers for unrestricted natural language texts. 

It is bound to structured or semi-structured texts therefore restricting the information 

which it can obtain. Apart from that, the wrapper construction techniques they use 

requires a lot of examples, making the whole process quite tedious for the user setting 

up the system. 

3.4.2 KIND 

KIND(Sl)(62) stands for Knowledge-based Integration of Neuroscience Data and it 

focuses mainly on integrating information from large databases. It is described by the 

authors as being a Mediator system whereby it acts as a common interface between 

the several data sources available. This has the benefit of providing a unified view 

for the several databases, therefore allowing an easier and more effective interface for 

the users. At the heart of the system, there lies a semantic model of the information 

sources used to tie together the data obtained from the different sources. The mapping 

between the different data (called semantic integration) cannot be done automatically 

and a mediation engineer must construct the integration views for the system to work. 

The problems faced in this system are different from the traditional ones. Normally 

systems work in domains with similar concepts and attributes, but in the Neuroscience 

domain (which is the main domain on which the system is based), this is not necessary 

the case and different sections of the field have very few concepts and attributes in 

common. The integration is performed using a logic language therefore increasing 

the complexity of the system since only a person with experience in logic languages 

can create these integration rules. Once again the complexity of this system increases 

since the end users queries are expressed using an XML based query language. The 
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system manages to perform its task but the setting up of the different sources and its 

use is not straight forward and requires a certain degree of expertise. 

3.4.3 PROM 

PROM(37) stands for Profiler Based Object Matching and is a system that actually 

takes care of matching concepts and attributes in order to find out how the data should 

be integrated together. The problem is called object matching and seeks to find out 

if two given objects refer to the same entity in the real world. There are two main 

novelties in the system. First of all, it makes use of profilers. These profiles contain 

within them a sort of ontology which is very specific to a particular domain with rules 

and relationships. The data which is extracted is validated before it is integrated, 

thus making it possible for the system to reduce the errors. This is important in 

cases where the data does not make sense in the real world, e.g. imagine finding 

some information about Mr X which says that his age is 10 and he holds a driving 

license. For an automated system, there is nothing wrong with that, but for humans 

who know how things work out in the real word, the above statement does not make 

sense since it is obvious that no 10 year old can hold a driving license. In these cases 

pro filers come to the rescue by providing real world rules in order to validate the date 

being integrated. The profiles can be added, removed and reused therefore making 

the whole architecture very flexible and easily extensible. Secondly, it does not only 

seek full attribute matching. In some cases, the attributes in a site do not exist in a 

similar site. Therefore a strength of the system is that it handles partial matches of 

attributes. This is achieved by using once again the profilers. The system has two 

sets of profilers, the profilers in the first set are called hard profilers and the others are 

called soft profilers. The difference is the following, hard profilers contain heuristics 
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that must evaluate to true whenever they are confronted with matching of attributes 

or concepts, otherwise the match is rejected. Soft profiles on the other hand express 

a confidence score and the system works by using a sort of voting mechanism. \\'hen 

all the soft pro filers express their view about the matching process, if the confidence 

level is greater than a predefined threshold, then the match is accepted, otherwise 

it is rejected. The approach described works fine when the profilers are defined by 

domain experts, but normally it is infeasible to make use of domain experts to build 

these profilers. This technology is promising since the results they obtained were 

quite good, but research into automated methods to create these profilers must still 

be conducted before these profilers become usable. 

3.4.4 Name-Matching 

An important task in II is the filtering out of duplicate values from the main database 

where all the information is stored. Due to the redundancy of the web the same data 

can be found in different sites around the internet, therefore it is justifiable for the 

different II and IE strategies to return the same data. In (31) several approaches are 

explored in order to find out which technique manages to filter out the data while 

keeping the error rate to the minimum. Finally they propose a technique which is 

ideal for domains where the data is not structured and little information regarding 

the particular domain is known a priori. 

These functions normally calculate a distance between two strings based upon 

the number of insertions, deletions and substitutions required to be performed on 

the first string in order to become like the second string. There have been several 

distance functions, one of the most popular being the Levenstein distance. These 

functions normally use characters but there are others such as the Jaccard similarity 
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that makes use of tokens. A string is considered as being a bag of words in this case 

called tokens. These techniques work fine for the majority of cases but obviously 

they are not perfect since there are no semantics or real world heuristics to verify the 

match. 

3.4.5 StatMiner 

StatMiner(91)(90) is a system based around a set of connected techniques that es-

timate the coverage and overlap of statistics while keeping the amount of statistics 

needed under control. To do so, the system computes statistics for classes of queries 

rather than for individual ones based upon the attributes being selected to execute 

the query. In order to do so, the system makes use of hierarchies which classify the 

attributes and queries. These hierarchies are either designed by a knowledge engi-

neers or induced by machine learning algorithms. Since the classes of queries and 

attributes can be incredibly huge, the system prunes away the queries which are 

rarely used therefore reducing the general complexity of the system. 

The system was tested on a Computer Science scenario related application called 

BibFinder. It integrates several sources that provide information regarding the Com­

puter Science domain such as CSB1 , DBLp2, Network Bibliography3, ACM Digital 

Library4, ScienceDirect5 and CiteSeer6. BibFinder acts as a mediator between all 

these sources in order to provide a unified view. Each source does not provide the 

same information, the information extracted from different sources can be missing, 

1 http://liinwww .ira. uka.de/bibliography / 
2http://dblp.uni-trier.de/ 
3http://www.cs.columbia.edu/ hgs/netbib/ 
4 http://portal.acm .org/ 
5http://www.sciencedirect.com/ 
6http://citeseer.nj.nec.com/cs 
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new or overlapping. Basically, different information sources provides a different view 

for the the same data. 

The system presented in this paper provides a neat unified view of the data. It 

tackles the problem of unification of same data from multiple sources. Unfortunately 

this poses the problem of having to rely on these sources for valid data. If they contain 

some wrong entries with missing information the system cannot do anything about 

it since it does not seek to gather information directly from the horse's mouth! 

3.5 Conclusion 

This chapter showed that both AlE and II are two vital technologies for the success of 

our research. AlE techniques provide the adequate capabilities necessary for learning 

new concepts while II allows our system to glue the learnt and harvested information 

together. 

The different AlE technologies mentioned are a good representative of the most 

successful IE techniques available. They cover a wide range of methodologies and in 

Chapter 4 we will select one of these tools and utilise it in our methodology. With 

our approach we will show how such tools can be used in a more effective way. 

With respect to II we decided to list only those systems which we believe are most 

relevant to our research. By doing so, we only gave an overview of II mainly because 

II is a very vast field, fragmented into several subfields and a complete review of the 

whole field would be beyond the scope of this thesis. For a more complete review of 

II technologies please refer to (2)(73). 

In the coming chapters, we will see how both IE and II were used in our work. 

The usage of these technologies will not only produce better systems which are more 
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effective and efficient, but they will also add more value to the general user experience. 



Chapter 4 

Melita: A Sellli-autolllatic 
Annotation Methodology 

4.1 Introduction 

The main goal behind the Semantic Web (SW) is to add meaning to the current 

web, therefore making it understandable by both humans and machines. Humans are 

already equipped for such a task, the knowledge they gathered throughout their lives, 

makes it possible for them to understand the content of different web pages without 

requiring any external help. When it comes to machines, it is a totally different story. 

They do not possess any background knowledge, therefore they cannot understand 

the information found on the web, since they cannot place it in any appropriate 

context. This poses a big constraint on the SW, this new web must somehow supply 

enough meanings (or semantics) to the data so that the machines can understand it 

while making sure it remains understandable by humans. If we manage to achieve 

this goal, we will have made it possible for knowledge to be managed automatically 

by the machines themselves, therefore reducing the need of human intervention. 

There are several stages required before this goal is achieved. The first stages 

involve defining the infrastructure for the semantic web. New standards were defined 

103 
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for representing knowledge starting from the very atomic levels where data is defined 

using the XML language and moving towards more elaborate and powerful represen­

tations, such as RDF. At this stage, the need was felt to abstract even further from 

the atomic elements and represent higher level concepts and relationships. To define 

these higher level structures for knowledge organisation (like ontologies, etc.), further 

standards were created such as OIL, DAML, DAML+OIL and finally OWL. 

This is only half of the story. Having the adequate structures without the data 

is useless. Therefore, the next step in the SW is the population of these knowledge 

structures. There are several ways of populating these ontologies. The most basic 

way is to manually fill these knowledge structures with instances. But this is not 

very useful since we live in a dynamic world where things constantly change around 

us and probably those instances would have to change with time. Another way is to 

insert in the ontologies a reference to an instances rather than the actual instances. 

The process of associating parts of a document to parts of an ontology is normally 

referred to as annotation. In this way, if the instance changes slightly, there is no need 

of modifying all the ontologies where this instance appears. This also makes sense 

because in our world and even on the Internet, there exists no Oracle of Delphi that 

has the answers to all the possible questions thus we can never be sure of the validity 

of our data. Knowledge is by nature distributed and dynamic, and the most plausible 

scenario in the future (60) seems to be made up of several distributed ontologies which 

share concepts between them. The annotation task may seem trivial but in actual 

fact it is repetitive, time consuming and tedious to perform by humans. If we think 

about the current size and growth of the web (30), it is already an unmanageable 

process. If we re-dimension our expectations and try to annotate just the newly 
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created documents, it is still a slow time-consuming process that involves high costs. 

Due to these problems, it is vital for the SW to produce methodologies that ei­

ther help users during the annotation of these documents in a semi-automatic way or 

actually produce the annotations automatically. One of the most promising technolo­

gies in the Human Language Technologies (HLT) area, is without doubt Information 

Extraction (IE). IE is a technology used to identify important facts in a document 

automatically. The extracted facts can then be used to insert annotations in the 

document or to populate a knowledge base. The job performed by IE techniques fits 

perfect into the whole SW picture. IE can be used to support in a semi/automatic 

way knowledge identification and extraction from web documents (E.g. by high­

lighting the information in the documents). Also, when IE is combined with other 

techniques such as Machine Learning (ML), it can be used to port systems to new 

applications/domains without requiring any complex settings. This combination of 

IE and ML is normally called Adaptive IE (18)(7)(27). 

There are already a number of tools that exploit AlE in order to support users 

while annotating documents. These include the MnM annotation tool (38) developed 

at the Open University (which uses both the UMass IE tools (1) and Sheffield's 

Amilcare (24)), as well as the Ontomat annotiser (64) developed at the University of 

Karlsruhe which is an implementation of the CREAM environment mentioned before. 

The approach which both MnM and Ontomat use to train the AlE algorithms is called 

active learning and works as follows: 

1. the user annotates the document and the IE system learns how to reproduce 

those annotations. 

2. when similar examples are encountered, the IE system automatically inserts 
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annotations based upon the previous cases. 

3. the user finally checks the annotations. 

4. the cycle starts all over again so that the algorithm is retrained with new cor­

rected data. 

It has been proven in (104) that this approach reduces the burden of manual 

annotation up to 80% in some cases. The advantages are quite obvious but unfortu­

nately the interaction model between the users and the system which is implemented 

in both MnM and Ontomat is rather simplistic. Generally, the annotation process 

happens in a batch, i.e. the user annotates a batch of documents, when the batch is 

manually annotated, the IE algorithm is launched over that batch for training. Once 

trained, the IE system can be used over a new unseen batch of documents and the 

IE engine manages to recognise examples which are similar to the ones already seen 

in the training set. 

Although we do not deny that these systems minimise the burdens of annotating 

documents, they are not effective enough and they do not exploit the full benefits of 

adaptive IE. In this chapter we propose a methodology 1 developed during the same 

period that MnM and Ontomat were being created, which implements an improved 

interaction model between the users and the system. It was originally designed to 

maximise effectiveness and reduce the burdens introduced by the annotation process. 

In so doing we would be moving from a system which interacts with the user to a 

system that collaborates with the user. 

IThis methodology was developed and refined by myself together with Professor Yorick Wilks, 
Professor Fabio Ciravegna and Dr Daniela Petrelli. The design and implementation of the system 

are exclusively mine. 
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The methodology to realise this interaction model is based around the Melita sys­

tem. Melita is an ontology-based demonstrator for text annotation. As the basis for 

this system, we propose two user-centered criteria as measures of the appropriate­

ness of this collaboration: timeliness and intrusiveness of the IE process. The first 

refers to the time lag between the moment in which annotations are inserted by the 

user and the moment in which they are learnt by the IE system. Basically Melita 

automatically calculates how timely is the system to learn from user annotations. In 

systems like MnM and Ontomat this happens sequentially in a batch. The Melita sys-

tern implements an intelligent scheduling in order to keep timeliness to the minimum 

without increasing intrusiveness. The latter represents the level to which the system 

bothers the user, because for example it requires CPU (and therefore stops the user 

annotation activity) or because it suggests wrong annotations. It also refers to the 

several ways in which the IE system gives suggestions to the user to help reduce the 

burden of annotating tags. 

4.2 Melita: 
A Semi-Automatic 
Annotation Methodology 

In Melita, the annotation process is split into two main phases from the IES
2 

point 

of view: (1) training and (2) active annotation with revision. In user terms the first 

corresponds to unassisted annotation, while the latter mainly requires correction of 

annotations proposed by the IES. 

While the system is in training mode, the system behaves in a similar way to 

other annotation tools. In fact, at this stage, the IES is not contributing in any way 

2The lES used in Melita is Amilcare (http://nlp.shef.ac.uk/amilcarej). 
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4.2.1 Dealing with timeliness 

In the Melita methodology mentioned above, timeliness3 is only partially guaranteed, 

because the IES annotation capability always refers to rules learned by using the 

entire annotated corpus, less the last two documents. This means that the IES is not 

able to help when three similar documents are annotated in sequence. This is the price 

paid for learning in the background. From the user point of view the methodology is 

equivalent to training on batches of three texts, with all the disadvantages of batch 

training mentioned above (even if a batch of size three is quite small). Timeliness is a 

matter of perception from the user's side, not an absolute feature, therefore the only 

important matter - we believe - is that the users do not perceive it, rather than trying 

to avoid it at all costs. In this respect we start from the consideration that in many 

applications the order in which documents are annotated is random. Generally users 

adopt criteria such as date of creation or file name order in directories. In such cases 

it is possible to organise the annotation order so to avoid the possibility of presenting 

similar documents in sequence and therefore to hide the lack of timeliness. In order to 

implement such a feature we need a measure of similarity of texts from the annotation 

point of view. (41) tries to address this problem by proposing a committee-based 

sample selection approach. This involves examining the available corpus and selecting 

the most informative using some probabilistic classifiers. It avoids redundancy since 

the user is only annotating examples which convey new information to the IE engine. 

In our approach, we use the IES to calculate such a measure. The user is initially 

asked to select the corpus of documents to annotate. These documents are then 

presented to the user for tagging one by one. As far as the user is concerned, they are 

3Timeliness is the time lag between the moment in which annotations are inserted by the user 
and the moment in which they are learnt by the IE system. 
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presented in no particular order but in reality they have a smart ordering. Iterating 

through the selected corpus is not simply a matter of parsing the documents one by 

one. The point is that in reality, there is no need of examining all the training corpus. 

An IE engine can stop parsing the documents once all the concepts required are learnt. 

If we consider the training documents to be part of a document space in which all the 

training documents are represented, then the documents can be virtually clustered 

according to the number of patterns found by Amilcare during a test run. Melita 

then begins suggesting documents for tagging starting from those, which contain the 

least patterns. The reason being that these documents are more likely to have new 

patterns relevant to Amilcare, which were not yet learnt. 

This process of smart ordering of documents cannot be initialised immediately 

and in fact it is started after two documents are tagged. To start immediately several 

other issues must be addressed such as how to select documents with the most relevant 

examples, and most important how can one denote relevance in new unseen domains? 

Since at the start of the training, no pattern is known by the training algorithm, 

therefore all the documents are arranged in no particular order. When a pattern is 

learnt by the IE algorithm, it is normally the case that other documents have similar 

patterns. Therefore if the other documents are tested with the IE engine, we can rate 

them according to the number of tags identified by the IE algorithm. These relevance 

ratings can be calculated only after the first document is tested and this is the reason 

why the process cannot be started immediately. 

Since a rating of documents now exists, the next step is to choose the best docu­

ment. The documents can be divided into 3 subcategories, in terms of whether they 

match any of the patterns so far proposed by the rule induction algorithm: 
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Documents without annotations Since we could be working in an open domain 

we cannot be sure why these documents were not annotated. It might be the 

case that these documents are irrelevant and therefore there are no patterns 

to learn from them or the document is relevant but the learning algorithm did 

not encounter any similar patterns in the already covered documents. Because 

of the fact that we cannot know for sure which documents are relevant or not, 

these documents are stored and will be used at a later stage. 

Documents with partial annotations These documents are those, which have 

new patterns not yet covered by the algorithm. To find out these documents, 

the application must keep statistics of the average number of instances per 

annotation suggested by the IE algorithm for an average document. These 

statistics will help the application choose a document that has a high probabil­

ity of having examples containing new instances. A typical example is when the 

learning algorithm returns from a document partial information covering only 

few of the concepts. Since the document in question already contains some of 

the patterns, there is a higher probability that it will contain other unknown 

but relevant patterns. Therefore these documents must be sent for training in 

order to allow the algorithm to learn all the missing concepts. 

Documents having complete annotations These are documents which were an­

notated by the IE algorithm but were never verified by the user. The reason to 

train the algorithm on these documents is to reinforce the IE algorithm. These 

documents can be selected when the program enters Active Supervision (AS). 

In AS the user is required to supervise or correct the output of the learning 

algorithm rather than introduce new tags from scratch. 
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Once the documents are categorised, the best one can be chosen depending on 

the status of the application. In our model we always select in turn for annotation 

a completely uncovered document (i.e. a document from category 1) followed by 

a fairly covered document (document from category 2). In this way, the difference 

between successive documents is very likely and therefore the probability that similar 

documents are presented in turn within the batch of three (i.e. the blindness window 

of the system) is very low. Incidentally this strategy also tackles another major 

problem in annotation, i.e. user boredom. This is the major reason why the level 

of user productivity and effectiveness falls proportional to time. Presenting users 

with radically different documents should avoid the boredom that comes from coping 

with very similar documents in sequence. When the documents from the first two 

categories are annotated, those in category 3 are proposed for annotation (provided 

the learning algorithm did not already learn all the different patterns!). This makes 

sure that the documents which require most effort for the user are presented at the 

beginning of the session and those with least effort are presented towards the end of 

the session. 

4.3 The methodology at work 

Melita is an ontology-based demonstrator for text annotation. The goal of Melita is to 

demonstrator how it is possible to actively interact with the Information Extraction 

System (IES) in order to meet the requirements of timeliness and tunable pro-activity 

mentioned above. Melita's main control panel is shown in Figure 4.3. It is composed 

of two main areas: 

1. The ontology (left) representing the annotations that can be inserted; 
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Figure 4.3: The Melita annotation interface 

• Annotations are associated to concepts and relations. 
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• A specific color is associated to each node in the ontology (e.g. "speaker" 

is depicted in grey). 

2. The document to be annotated (DOC panel) (center-right) . 

• Selecting the portion of text with the mouse and then clicking on the node 

in the ontology insert annotations. 

• Inserted annotations are shown by turning the background of the anno-

tated text portion to the color associated to the node in the hierarchy 

(e.g. the background of the portion of text representing a speaker becomes 

grey). 

Melita does not differ in appearance from other annotation interfaces such as MnM 

or Ontomat. It differs in that it is possible to tune the IES so to provide the desired 
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level of pro-activity and in the possibility of selecting texts so as to provide timeliness 

in annotation learning. 

The typical annotation cycle in Melita follows the two-phase cycle based on train­

ing and active supervision. Users may not be aware of the difference between the 

two phases. They will just notice that at some point the annotation system will 

start suggesting annotations directly in the DOC panel. In the initial phase, simple 

techniques that help the user identify instances in the document are used. Eg. If 

the user tagged a name in the top part of the document, a search is performed to 

identify other words, which match exactly that name in the rest of the document. 

These matches are than presented to the user so that he can decide weather they are 

correct or not. 

Since Melita is ontology based, the different tags are defined in an ontology (See 

Figure 4.3). The component shows a hierarchical display of tags together with a small 

box on the left of every concept indicating the current level of accuracy reached by 

the learning algorithm for every tag. When the box is clicked, a level metre pops up 

showing the confidence of the IE algorithm to discover individual concepts. Internally, 

the system makes use of precision and recall4 to calculate this level but in Melita, we 

just show one combined measure because a naIve user may not be acquainted with 

the meaning of precision and recall. Therefore considering the fact that it is normal 

to have high precision and low recall or vice-versa at the start of the training, this 

may disorient the user. 

The user is also given the power to set at which level of accuracy the IES should 

start showing suggestions to the user. Different concepts can also have different levels 

4The calculation which makes use of precision and recall is most commonly referred to as the 
F-measure. 
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of accuracy because particular tags may be more important than others therefore, 

a higher accuracy would be required. When the confidence level surpasses the level 

indicated by the user, the program utilises the feedback obtained from the IE engine 

on the given corpus to suggest occurrences of tags in the document. At this stage the 

role of the user changes from one of training the learning algorithm to one of actually 

supervising the algorithm. In fact the user will reach a point where he does not need 

to assist the IES any longer with new annotations but just correct the tags suggested 

by the learning algorithm. This is the concept of Active Supervision. The user is 

actively involved in supervising the work of the IE engine. 

In Ontomat and MnM, the Learning stage is normally done in batches. In Melita, 

the system needs to constantly monitor the accuracy level of the algorithm so that it 

suggests annotations immediately when the accuracy goes beyond a user defined level. 

Because of this, the system does not train in batches but documents are processed 

almost immediately. The smart approach which Melita takes allow results to be 

obtained just in time when we need them and since all these evaluations are done in 

the background, the user does not even notice that the algorithm was being trained. 

4.3.1 Intrusiveness 

The fact that Melita manages to anticipate the user by highlighting suggestions im­

mediately when the document is loaded is a very powerful feature. But this feature 

can also be very risky. By doing so, we would be taking away control from the user 

and placing it in the hands of the system. This is also referred to as intrusiveness, 

or rather the act of interfering without permission to do so. These interferences can 

be various, when the accuracy is high enough, any suggestion would be welcomed 

by users since it would save them a lot of work. But what about when the system 
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Figure 4.4: Intervention Level Setup 

suggests annotations (during the active annotation with revision phase) when its sug­

gestions are still unreliable? The system would be a nuisance for the users and would 

hinder them rather than help them. 

To cater for this problem, Melita adopts a number of strategies. In a typical 

Melita session, once the first few iterations are complete, the program starts obtaining 

suggestions from the learning algorithm. These suggestions are stored and only shown 

to the user when and if the user decides to see them. This is done so that the 

program never interferes into the user's work without the user's explicit consent. 

Therefore with this system, we are empowering the user to calibrate the intrusiveness 

of the system in a very simple way. First of all the system has a suggestion button. 

Whenever a user disables it, no matter how many suggestions the system obtains, 

they are never shown to the user. If the user decides to view the suggestions all that 
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is needed is to enable this button and the suggestions are displayed immediately. In 

order to make things simpler for the user, the system calculates the level of expected 

accuracy5 of the extraction process and uses that measure to either suggest to the 

user (if the accuracy level is low) or insert a tag in the document (if the accuracy is 

very high). This measure is possible because the rules in the IE system return an 

error score based on the training corpus. 

The interface which allows the user to decide which rules should be used or not 

can be seen in Figure 4.4. It is made up of two knobs which the user can drag up or 

down along a percentage bar that lies in between the bars. The two knobs represent 

the suggestion level and the certainty level respectively. The value in the percentage 

bar is calculated using the accuracy measure returned by the algorithm. Basically, 

a low percentage in the bar indicate less accurate rules and a high percentage high 

accuracy rules. The two knobs, give an indication of which rules will be enabled. 

• Annotations produced from rules below the suggestion level are never shown. 

• Annotations produced from rules between the suggestion and certainty are en­

abled but are shown in the document as a colour bordered box. The fact that 

the box is just made up of a border and does not have a filling colour means that 

the program is not certain about its validity. If the suggestions are not validated 

by the user (by clicking on them), they are discarded before the document is 

saved! 

• Annotations produced from rules above the suggestion level are enabled and 

showed using a coloured box. The fact that the box is fully coloured means 

that the program is fairly sure about the validity of the annotation. These 

5Expected accuracy is calculated by finding the f-measure of the learning algorithm. 
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annotations don't require much validation from the user and they are inserted 

immediately in the document. 

The purpose of this component is to allow the user to tune the level of precision 

and recall without actually knowing anything about them. The user is unaware that 

by moving the two knobs, he is calibrating the application. What he sees is tags 

appearing, disappearing or changing certainty level whenever a knob is moved. The 

reason for the creation of this component is to simplify the tuning of the precision 

and recall values individually for specific concepts. 

This fine grained control per concept was created because the learner might need 

few examples in order to cover simple concepts and more examples for complex con­

cepts. This allows the system to suggest annotations for simple concepts and let the 

user annotate the more complex ones. The advantage of this is that the user's atten­

tion is focused on the difficult tasks and the easy annotations are left to the system. 

The annotation interface must bridge the qualitative vision of users (e.g. a request 

to be more/less active or accurate) with the specific lES settings (e. g. change error 

thresholds) (28). 

Another important aspect for intrusivity is processor time. Any lES is quite heavy 

on CPU usage when it comes to training. The IES can be so demanding at times 

that it could stop the user's activity. To solve this problem systems (MnM, Ontomat, 

etc.) often work in batch mode for training. Therefore the user annotates and then 

waits while the system is being trained. Normally this training time is delayed and 

scheduled for periods when the CPU is not used by the user such as during breaks, 

at night, etc. This approach unfortunately poses a problem of timeliness. The IES 

working in batch does not propose suggestions when required but instead does so 
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only after the system goes through a training session. This means that the user has 

to annotate a number of similar texts before the IES starts learning and a number 

of suggestions are proposed. Melita proposes a methodology to partially solve this 

problem by scheduling the learning phase in such a way that allows timeliness in the 

learning and limits to an absolute minimum the total amount of idle time imposed 

on the user. 

The annotation process is normally made up of three phases, i.e. loading the 

document, annotating the document and saving the document with the annotations. 

If we examine these phases from the user's point of view we find that time wise, 

loading and saving are the less time consuming since they only take a negligible 

amount of time. Most of the user's time is spent annotating the documents. If we 

change our perspective and examine CPU time and effort, we find out that some of 

the computer's resources are used during the loading and saving phase while during 

the annotation phase, the load on the cpu is negligible. For this reason we believe 

that this is the right moment to train the IES in the background without the user 

noticing it. 6 

Therefore, we propose an interaction model made up of two parallel and asyn­

chronous processes. The first process handles all the interaction between the user 

and the machine. It provides an annotation interface for the user and gives the user 

6In theory, the system could start learning from the annotations as soon as they are inserted 
in the document even before they are saved to disk. This would make the process quicker but lets 
not forget that humans are prone to commit errors, so if an annotation is marked wrongly and the 
system starts learning immediately, it would be learning wrong annotations before the user has the 
time to correct it. If it is corrected by the user, the IES would have to modify the new rules back 
to how they were before the wrong example was learnt. Obviously this makes the whole interaction 
model between the user and machine much more complex. 
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the impression that he is using all the machine's processing power. The second pro­

cess, works in the background and is used to train the learner as soon as new examples 

are supplied. This process uses a limited amount of processing power so that the user 

is not influenced due to lack of computing resources. What happens is the following, 

when the user loads a new document (lets call it document N), the IES applies the 

rules induced in the previous learning sessions 7 in order to extract information (ei­

ther for suggesting annotations during active annotation or in order to silently test 

its accuracy during unassisted learning). Performing IE on one document is very fast 

and the user does not notice any delays. While the user is annotating document N 

the IES is learning from document N-l. This methodology reduces timeliness to an 

absolute minimum since the user is never idle. The time taken to train an IE system 

with new examples is normally faster than the time required to manually annotate a 

document. Therefore as soon as a document is annotated, the IES is ready, waiting 

to suggest new annotations for the next document. 

4.3.2 Timeliness 

The interface which gives information to the user regarding timeliness (See Figure 4.5) 

consists of the list of the documents in the corpus, rated according to the percentage of 

possible new patterns in every document. The document with the highest rating is the 

one that has some of the patterns but which also contains other patterns not covered 

by the learning algorithm and therefore it is the document suggested for training. 

The list of documents can also be sorted either by ratings or by name. To switch 

between orderings the user must select the title of either the column containing the file 

names or the other column. A user can also ignore the suggestions of the algorithm 

7i.e. from document 1 to document N-2 since document N-l is still waiting to be processed 
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Figure 4.5: Documents rankings in Melita 

and simply jump to a specific document by selecting the document from the list and 

pressing the" Ok" button. 
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4.4 Melita Evaluation 

We performed a number of experiments both to demonstrate how effective the IE 

system is in learning concepts and to quantify its contribution to the annotation 

task. In the following sections we will highlight two specific tasks, the first is the 

CMU Seminar Announcements Task and the second is the PASTA Task. After these 

two experiments we will discuss alternative user oriented evaluations of the system. 

Finally we will peek into what we believe are the features which future annotation 

systems will have, followed by a general conclusion. 

4.4.1 eMU Seminar Announcements Task 

The first set of tests were performed on the CMU seminar announcements corpus l . 

This corpus is widely used in the IE field ((43), (17), (17), (47), (23) and (98)) to 

evaluate adaptive algorithms. In these experiments, we show how fast the IE system 

is able to converge to a status where it can really and effectively suggest. We also 

try to figure out its ability to suggest correctly and quantify its contribution to the 

annotation task. 

The CMU seminar announcements corpus, consists of 485 documents2 which were 

posted to an electronic bulletin board. Each document announces an upcoming semi­

nar organised in the Department of Computer Science at Carnegie Mellon University. 

The documents contain semi-structured texts consisting of meta information (like 

sender, time, etc) which is quite structured and the announcement which is generally 

written using free text. The idea behind this domain is to train an intelligent agent 

capable of reading the announcements, extract the information from them and if it 

10riginally prepared in (44) 
2This corpus can be downloaded from http://www.isi.edu/ muslea/RISE/ 
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Tags In Corpus 

Figure 4.6: Distribution of the different tags found in the documents. 

thinks they are interesting (based on some criteria predefined by the user) insert them 

directly in the user's electronic diary. In these documents, the following fields were 

manually annotated: 

Speaker The full name (including any title) of the person giving the seminar. 

Location The name of the room where the seminar is going to be held. 

Start Time The starting time of the seminar. 

End Time The finishing time of the seminar. 

To better understand the task at hand, Figure 4.6 takes a look at the number of 

tags found in this corpus. It seems like the corpus is very rich in Start Time tags 

and less rich in End Time tags. It is generally the case that the more examples 
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we have the better (since we have more possibility to learn), but its not always the 

case. It is important to analyse another statistic related to the corpus. The graph 

in Figure 4.7 shows the number of distinct phrases containing a tag such as "Start 

time: 12:00pm"," Seminar starting at 12:00", etc; From this we can predict 

that: 

Speaker will be quite difficult to learn. Intuitively, we know that a Speaker can be 

any sequence of words. A named entity recogniser can help spot names using 

linguistic cues (such as the titles Mr, Mrs, Dr, etc before a word) but this is not 

enough. Lets not forget that this task is not just a matter of spotting names 

but the system must identify the person who is going to give the seminar. From 

the graph we can see that there are around 491 distinct phrases containing 

names meaning that there is more than 1 new phrase (containing a name) per 

document. Even though there are 757 examples (around 27% of all tags) in the 

documents containing the Speaker tag, the fact that many of these examples 

are new and not repeated elsewhere, makes the whole task much harder. 

Location too will be difficult to learn but definitely easier than the Speaker tag. 

This is very visible from the two graphs. First of all, the total number of 

examples in the corpus amounts to 643 or 23% of all the tags which is quite a 

reasonable representation. Secondly, the total number of distinct phrases is 243 

which means that slightly more than ~rd of the tags are new. 

Start Time is a completely different story. The documents contain a total of 982 

tags (or 35% of the total number of tags) and there are only around 151 distinct 

phrases. This means that training on 15% of all the documents (almost 75 
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Figure 4.7: Number of distinct phrases (containing a tag) found in the corpus. 

documents) is enough to learn this concept. 

End Time is slightly more complex. The number of distinct phrases is very little, 

around 93 instances, but so is the representation of this concept in the corpus. 

In fact, this concept appears only around 433 times (i.e. 15% of all the tags). 

This means that there is a substantial number of documents where the End 

Time concept is not represented3
. 

In the following experiments, the annotations in the corpus were used to simulate 

human annotation. The experiments were conducted as follows: 

1. The corpus was randomly divided into two, a test corpus and a training corpus. 

3Considering that the total number of tags amounts to less than the number of documents and 
there there are cases where more than one tag appears in a document 
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2. A cycle begins where we evaluate the contribution of the IE system at regular 

intervals during the tagging of the corpus. At every cycle, 5 new annotated 

documents from the training corpus (together with previously selected docu­

ments) are used to train the IE system. Therefore, we train the system by 

gradually adding 5 documents to the training corpus (i.e. 5, 10, 15, 20, 25, .. , 

150 documents). 

3. As soon as the training finishes, we test on the test corpus. The ability to 

suggest on the test corpus was measured in terms of precision and recall. Recall 

represents here an approximation of the probability that the user receives a 

suggestion in tagging a new document. Precision represents the probability 

that such suggestion is correct. 

4. The cycle continues like that until all the training documents are learnt. 

The results are shown in Figure 4.8. The X-axis represents the number of docu­

ments provided for training while the Y-axis shows a percentage used to plot precision, 

recall and f-measure are presented. Although these results are similar to the experi­

ments we published in (42), they have a number of important differences. The curves 

are more gradual yet they are smoother and manage to achieve higher precision and 

recall. This is due to a slight modification in the final version of the system than the 

one presented in that paper. Since the system always selected the best document for 

learning it was noticed that some concepts were being learned quicker than others. 

The reasons is that the "best" document for learning is the one with the most uncov­

ered cases. If we take a look once again at Figure 4.6 and examine the distribution 

of the tags, we realise that since some concepts are represented more than others, 



128 

we would be discriminating against concepts which are not represented as much. Be­

cause of this, we modified slightly the selection algorithm so that we learn from the 

"best" document but we also keep into consideration the distribution of the tags. 

In our approach, every time we select a document, we do so by selecting the "best" 

document which represents a particular tag. Eg: The first document is the best docu­

ment which represents the concept Speaker, the second one is the best document that 

represents the concept Location, etc. In this way all the tags are learnt at a steady 

pace. The annotations suggested by the system are more helpful for the user since 

they do not discriminate between concepts which are represented in the corpus more 

than others. The downside of this approach is that learning individual concepts is 

slightly slower because the system is trying to learn collectively all the concepts in the 

domain. Also, since the algorithm is learning from the" best" documents per concept, 

it is covering more unseen examples in the training phase therefore resulting in much 

higher levels of precision and recall. In fact, when the system is trained on just 50 

documents the average F-measure for all concepts is beyond 75% (See Figure 4.9). 

The rise is constant and when 80 documents are trained, the system reaches almost 

84% (See Figure 4.9) F-measure for all concepts. After that, the system reaches a 

sort of plateau where the improvement is very gradual. 

As was predicted earlier, the maximum gain comes in annotating Start Time and 

End Time since they present quite regular fillers. Table 4.1 shows that after training 

on only 10 texts, the system is potentially able to propose 433 start times (out of 485), 

373 are correct, 60 are wrong or partially wrong, leading to Precision=86 Recall=77. 

With 25 texts the recognition reaches P=94, R=68, with 50 P=97, R=80. The 

situation is quite similar for end time (although it takes more examples than start 
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Tag Amount of Texts Precision Recall F-measure 
needed for train-
mg 

speaker 70 98 50 62 
location 30 96 50 61 

start time 10 86 77 80 
end time 25 95 54 66 

Table 4.1: Experimental results showing the number of training texts needed for 
reaching at least 75% precisions and 50% recall 

time to converge), while it is more complex for speaker and location, where 70% and 

80% f-measure respectively is reached only after about 80 texts. This is due to the 

fact that locations and speakers are much more difficult to learn than time expressions 

because they are much less regular. 

The experiments show that the contribution of the IE system can be quite high. 

If we take a look at Table 4.1 we realise that with just limited training, reliable 

annotations can be achieved. This shows that the IE system contributes quite heavily 

to reduce the burden of manual annotation and that such reduction is particularly 

relevant. In the case of very regular concepts the benefits are immediate since the 

system starts suggesting from a very early phase. This allows the user to focus on 

annotation tasks which are more complex (e.g. speaker and location) while trivial and 

repetitive instances are handled by the algorithm. For complex tasks the system also 

contributes towards annotating the complex cases but some additional help is required 

from the user's side (Eg: in the case of speaker, twice the amount of documents 

required by the other concepts are needed by the system to reach 75% precision and 

50% recall). 

From these experiments, a number of issues arise. It is clear that the order in which 

documents are presented to the learner is important. Figure 4.9 shows the effect of 
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Figure 4.8: Experimental results for the eMU Seminar Announcements Task 
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Figure 4.9: Experimental results showing a faster convergence when presenting or­
dered documents to the learning algorithm (The lines show the average F-measure 
for all the concepts) 

selecting different document sets for training. When the IE system is presented with 

a random order of documents, its ability to converge to optimal results is limited for 

a number of reasons. First of all, the corpus contains similar texts therefore, even 

though the system is examining new documents, it is not examining new examples 

but examples which were already seen elsewhere. Secondly, the smart ordering of 

the documents presented to the learning algorithm allows the system to learn only 

from documents which contain new examples and therefore the coverage of the IE 

system increases drastically. This occurs because the value of the information found 

in the training corpus is much bigger and it allows a better convergence of the learner 

towards an optimal status. For example when 70 documents are annotated, the 

random order reaches a plateau (with very slow increases) having an F-measure of 

71 %, while the similarity-based selection provides the same F-measure with around 
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40 texts only. This means that users receive a much bigger help using a non-random 

order of document for training. This is consistent with the Active Learning theory, 

(104), and will require more investigation in the future for a better selection of the 

training corpus. 

Another issues to consider is the way the user reacts to such help from the IE 

system. Since the system is capable of suggesting quite quickly, especially with con­

cepts which are regular and therefore easy to learn, users could be tempted to rely on 

the IE system's suggestions only, avoiding any further action apart from correction. 

This could be dangerous for two reasons, both the quality of the annotations and the 

effectiveness of the system would decrease. Immediately from the start of the process, 

every newly annotated document is utilised for further training. The annotations are 

used to induce new rules and these rules are tested on the whole corpus in order to 

identify any false positives. If the user just corrects the learner without providing any 

new examples, the IE system will never learn any uncovered cases. 

4.4.2 The PASTA task 

The aim of the PASTA (Protein Active Site Template Acquisition)4 project was to 

develop Natural Language Processing (NLP) techniques for the area of molecular biol-

ogy. The main task was to extracting information on 3-dimensional protein structures 

from on-line scientific articles. As a result of this project, several PASTA corpora5 

were produced. To perform the PASTA experiments mentioned in this section, we 

downloaded two sets of abstracts made up of around 50 documents each. These doc­

uments are annotated with biological terminology information and were used in the 

4http://www.dcs.shef.ac.uk/research/groups/nlp/pasta/ 
5The PASTA corpora can be downloaded from 

http://www.dcs.shef.ac.uk/research/groups/nlp/pasta/results.html 
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PASTA project specifically for evaluation purposes. 

The task we selected was to recognise in a set of 113 molecular biology related 

documents the following concepts: 

• Species 

• Residue 

• Protein 

• Site 

• Region 

• SecStruct 

• SuperSecStruct 

• Base 

• Atom 

• Non Protein 

• Interaction 

• QuaternStruct 

We believe that this task can be considered a representative task for the Semantic 

Web especially since the molecular biology domain has attracted lots of attention in 

recent years. In our experiment the annotation in the corpus was used to simulate 

human annotation exactly as we did in the previous task. The documents in the two 
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corpora were grouped together and then randomly divided into two, a training corpora 

and a test corpora. A cycle begins where we evaluate the contribution of the IE system 

at regular intervals during the tagging of the corpus. At every cycle, 5 new annotated 

documents from the training corpus (together with previously selected documents) 

are used to train the IE system. Therefore, we train the system by gradually adding 

5 documents to the training corpus (i.e. 5, 10, 15, 20, 25, .. ,55 documents). As soon 

as the training finishes, we test on the test corpus. The ability to suggest on the 

test corpus was measured in terms of precision and recall. The cycle continues like 

that until all the training documents are learnt. Results are shown in Figures 4.10, 

4.11,4.12 and 4.13. On the X-axis the number of documents provided for training is 

shown. On the Y-axis precision, recall and f-measure are presented. 

The IE task in the molecular biology domain is much more complex than in normal 

domains. If we take a look at the information to extract, we find elements like Che Y 

and Thr87. These are typical names given to the structures we are trying to extract 

from the documents. It is immediately apparent that these names are very irregular 

therefore, the few cues we might use to identify these names must come from the 

context surrounding them. Even though the task is quite complex, the system is 

capable of proposing a significant amount of instances. After training on only 15 

texts, the system is potentially able to propose more than half the instances for 3 

out of the 12 concepts having an average precision of over 80% for the three of them. 

This is possible because of Amilcare's ability to generalize over both the text context 

and the filler where possible. Since most of these concepts are names of biological 

structures, some of them follow the typical format of names i.e. they start with a 

capital letter followed by lowercase letters. In this case we might be able to exploit 



135 

Tag Amount of Texts Precision Recall F-measure 
needed for train-
Ing 

Species 25 100 50 62 
Residue 20 95 55 66 
Protein 25 95 50 62 

Site 40 100 50 62 
Region 35 100 58 70 

SecStruct 25 100 50 62 
SuperSecStruct 20 100 60 71 

Base 15 100 61 73 
Atom 15 90 50 61 

Non Protein 35 98 53 65 
Interaction 15 83 55 64 

QuaternStruct 25 100 50 62 

Table 4.2: Experimental results showing the amount of training texts needed for 
reaching at least 75% precisions and 50% recall 

a Named Entity Recogniser such as Annie (www.gate.ac.uk). Even if the algorithm 

does that, please note that the recognition of proteins, residues, secstruct, etc is not 

a simple Named Entity Recognition task. The system must not only recognise the 

names, but it must also assign it to the correct type. There are many names in the 

documents, therefore this implies the ability to recognise the context in which the 

names appear. The situation is more complex for other fields such as site, where 80% 

F-measure is reached after 50 texts. These annotations are much more difficult to 

learn than expressions whose filler are either very regular (e.g. interaction) or can be 

listed in a gazetteer (e.g. base), because their regularity is much less direct. 

In the case of the PASTA task, our experiments show that it is possible to move 

from bootstrapping to active annotation after annotating a very limited amount of 

texts. In Table 4.2 we show the amount of training needed for moving to active 

annotation for each type of information, given a minimum user requirement of 75% 
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Figure 4.10: Experimental results for the Pasta Task (1/4) 
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precision. This shows that the IES contribution heavily reduces the burden of manual 

annotation and that such reduction is particularly relevant and immediate in case of 

quite regular information (e.g., base). In user terms this means that it is possible 

to focus the activity on annotating more complex pieces of information (e.g. site), 

avoiding being bothered with easy and repetitive ones. With some more training 

cases the IES is also able to contribute in annotating the complex cases. 

4.4.3 User Oriented Evaluation 

During these past years, Melita was distributed to several research groups, to some 

commercial companies and it was also used by students in several summer schools. 

The main reason for doing this was because we wanted the users to evaluate our 

system not only on test domains, but also on real life applications. The result from 

the Melita distribution was that we managed to obtain a lot of feedback which we 

then used to adjust and enhance our system. 

To make life simple for the users, the first thing we did was to create a user manual. 

Secondly, whenever we were requested to send a copy of the system, if possible we 

used to go and give a demonstration of how the system works, if not, we used to 

send an animated video clip instructing the users how to utilise Melita. There were 

never any problems with regards to usability of the system since it was designed to 

be simple to use. 

The general comment we got back from the users was that the system indeed 

manages to offer them a better annotation experience. The learning curve was very 

shallow and a typical user manages to master the system very quickly. The interface is 

quite straightforward, no complex numbers which bother the user with IE statistics 

are shown (in fact these measures are masked using graphical components which 
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everyone can understand), there are very few buttons and they all have a well defined 

purpose. Thus, the user immediately feels comfortable with the system. When the 

annotations become complex, and the different annotations are cluttered on top of 

each other, the system is capable of hiding the annotations which are not being used 

so that the user's attention is focused only on the task at hand. This feature was 

appreciated a lot by the users since it makes complex tasks manageable. Melita's 

compliance with well established standards also helped new users to configure the 

system to use new domains without much difficulty. In fact, since Melita already 

accepts ontologies in DAML format, the only configuration necessary to set up a 

domain was to load the ontology. 

With regards to functionality, Melita also offered a number of simple yet powerful 

features. The annotation process only involves, selecting a concept and highlighting 

the instances of that concept in the document. Whenever an instance already high­

lighted by the user is encountered somewhere else in the document, it is automatically 

highlighted for the user. The users reported three main benefits of this feature: 

Missing/Wrong annotations. It was noticed that throughout the annotation ses­

sion, the performance of the user starts declining and the time taken to annotate 

a document becomes inversely proportional to the amount of annotation errors. 

In simple terms, the more time the user spends annotating a group of docu­

ments, the more he is error prone. Thus, using this feature, the system takes 

care of annotating instances already encountered and the user's attention is only 

focused on discovering new ones. 

A void duplication. Since duplicate instances which were already encountered by 

the system will be highlighted automatically, the user is relieved from the tedious 
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task of re-annotating the same instances. 

Consistency. This feature avoids the problem of inconsistent annotations whereby 

same elements are annotated differently in different documents. E.g. should we 

annotate Mr Thomas Smith or just Thomas Smith? 

The highlights introduced automatically by using the learning algorithm, were 

warmly welcomed by most users. Unfortunately, this feature raised a hot intrusiveness 

issue. Even though the system allows the user to tune the intrusiveness, some user 

felt that the system was suggesting annotations too soon and thus disrupt their work 

since their focus is shifted towards verifying the system's suggestions. Because of 

this, the system was enhanced to meet the user's requirements and a new button was 

added which gives the users the power to hide or show the suggested annotations 

when they want. Thus, the system does not present to the user the new suggestions 

immediately but only when the user requests them. 

The smart ordering in Melita was also very useful during the annotation phase 

since the users were not bothered with highlighting similar documents. This meant 

that each document, presented to the users for annotation, was different from the pre­

vious one. The result was that the annotation task was more intellectually challenging 

for the user and therefore reduced the boredom associated with the annotation task. 

Finally, since Melita was used in many group activities (such as summer schools, 

etc.), its collaborative annotation features became very useful. In such cases, the 

Melita server was installed somewhere centrally and users collaborated in annotating 

the same domain. Whenever a user annotated a document, the annotations found in 

that document were learnt by the IE engine and utilised to annotate the documents 

of the other users as well. This obviously led to a much faster successful completion 



143 

of the annotation task at hand. 

Our focus was on the users from the times when we were still designing Melita. 

Overall, the feedback we got back from them was very positive and could be used in 

the future to do some more formal and quantitative analysis. Through this feedback, 

we identified two kind of analysis which can be performed: 

Features comparison refers to the different features offered by the tool such as 

smart ordering, simple suggestions, IE suggestions, etc. In such an experiment, 

a group of users (who must all be confident with the annotation process but 

preferably not confident with Melita) are seated in a lab. Each one will be asked 

to annotate several test sets and to do so, they have a specified time limit. The 

configuration of the tool on each machine will be different i.e. having some of 

the features switched off. Melita writes all the events happening to a log file 

together with a time stamp, thus, at the end of the session, this log file can 

be fed to an automated process which would analyse the different users and 

configurations, and produce an analysis of how much the different features (or a 

mixture of them) contributed to the annotation process in terms of speed, error 

avoidance, etc. 

Tool comparison refers to the different annotation tools freely available on the 

market such as MnM, S-CREAM, etc. This comparison would be a little bit 

more tricky than the one before, since all these tools do not provide a log file 

which can be analysed by an automated process, thus, all the evaluation must 

be conducted manually. In this case, we could organise a lab having several 

users all using different annotation tools. They would be given a common task, 

basically to annotate a collection of documents, together with a time limit. At 
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the end of the session, we can analyse how many documents were annotated 

using each tool and also we could compare the annotated documents in order 

to identify which tool produced more qualitative annotations (i.e. those which 

are less error prone and consistent). 

In both experiments, more than one user will be given the same configuration for 

the experiment and then, an average of their performance will be taken. This would 

avoid the possibility of having misleading evaluation results. 

Although we don't deny that such an evaluation would be very useful, we had 

many one-to-one contacts with different users and the feedback we got encouraged 

us to move our research forward by developing new tools which reduce further the 

burden on the user when it comes to annotate new documents. This was our main 

motivation when we decided to develop Armadillo, the system which will be described 

in the next chapter. 

4.5 Future Development: Adapting to different user 
groups 

The methodology as a whole is quite generic and with it, we have targeted the most 

common users, but the reality is that there are several categories of users all with 

different backgrounds and needs. Because of this, we divided the users into three 

distinct categories and a potential future tool could be designed to cater for their 

individual needs. We also acknowledge the fact that users may not fall in exactly 

these categories but somewhere in between. Therefore the system should make sure 

that a user from one category can use tools designed for other categories. The main 

categories are NaIve Users, Application Experts and IE Experts. 
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These users are familiar with their domain but have limited knowledge when it comes 

to computing. In order to set up the system they only need to specify an ontology 

and a corpus of documents. Apart from this, all that is required from the user to use 

the system is the ability to highlight concepts in the document according to concepts 

in the ontology. The system will also offer advanced features disguised as simple 

widgets like the component that tunes precision and recall (See Figure 4.4) . By using 

this component the user will see tags being updated in real time according to the 

movement of the knob and the calibration of the component stops when the results 

are satisfactory. 

A potential contribution of this kind of user is domain knowledge. In order to 

exploit this, the system will highlight words found around the concept that are part 

of the rules induced by the IE engine. These words will be highlighted using a slightly 
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lighter colour than the highlight of the main concept (See Figure 4.14), to show they 

are used to help identify the concept. The user will be able to remove or add such 

highlights. By doing so the user will be unconsciously guiding the algorithm to use 

certain cue words which are good at identifying the current concept. Therefore the 

algorithm will induce rules faster because it can use heuristics indirectly provided 

by the user. It will also converge faster because it is being guided by the domain 

knowledge of the user. 

4.5.2 Application Experts 

The people in this category are at a level between naIve and expert users. They 

are capable of tuning the application but do not have the expertise of an IE expert. 

Our tool will allow them to have access to advanced features such as adjusting IE 

parameters, setting the precision and recall levels explicitly, using the IE system 

interface and accessing other internal settings. 

Due to the fact that this kind of user will have limited knowledge about the nature 

of information but also considering that their role is to maximise the potential of the 

IE engine, it is imperative that they are allowed to tweak rules in the simplest way 

possible. The system provides an abstraction for rules in the document being edited. 

It highlights the words which form part of a rule using a slightly lighter colour than 

the highlight of the concept they are associated with. When a word is selected by the 

user, a percentage is shown indicating the level of generalisation of that word used 

by the rule. 0% indicate that a very specific level is used (i.e. the word is explicitly 

part of the rule) and 100% indicate the most generic level. By sliding the percentage 

bar the user will be able to see the effect of those changes in real time through 

components which graphically show precision, recall, f-measure and error levels of 
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Figure 4.15: A rule editor for regular expressions based rules 

the new rule. The highlights are not fixed and the user can add or remove any of 

them. This tweaking of rules will allow the user to change rules without the need 

of understanding linguistic properties. Current rule editors for IE like the Amilcare 

Rule Editor, allow users to change rules but an implicit linguistic knowledge is an 

absolute requirement, therefore restricting the use of the tool to IE experts. 

4.5.3 IE Experts 

Our final user is the IE expert who knows how to control an IE engine and wishes 

to extract the maximum power from the AlE system. All the benefits offered to the 

other type of users will be available but this user will require more sophisticated tools. 

Therefore, the system has a fully fledged rule editing environment. 

Using this environment a user can view a list of rules together with statistics 

about every rule. In this view rules can be compared simultaneously. This is done in 

order to help the user restructure groups of rules. For example, it may be the case 

that a group of similar rules can be compressed together in one rule. This view will 
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also enable easy browsing and selection of individual rules. Once a rule is identified 

as requiring change or even if the user would like to create a new rule, the rule is 

opened in the rule editor (See Figure 4.15). This program presents to the user several 

facilities in order to allow him to develop the best rule possible. He has the faculty to 

change individual properties of a rule and also insert new ones. The changes on the 

rule can be tested immediately in real time and all the examples in the text where the 

rule applies are presented to the user. Based on previously annotated documents the 

system displays positive and negative examples covered by the rules. The system will 

also display examples of where the rule fires in the test corpus (which is untagged). 

At this stage the user can separate the positive from the negative results and using 

this new knowledge the system induces a new rule which is presented to the user for 

verification. The cycle continues until the user is satisfied with the new rule. 

What is actually happening in the rule editing environment is that we are again 

using our methodology but this time at a deeper level in order to help the user 

create handmade rules quickly. The system will be guiding the user towards creating 

effective rules both by suggesting new rules and by providing important statistical 

results. 

4.6 Conclusion 

lES can strongly support users in the annotation task, alleviating users from a big 

deal of the annotation burden. Our experiments show that such help is particular 

strong and immediate for repetitive or regular cases, allowing the focusing of the 

expensive and time-consuming user activity on more complex cases. Despite these 

positive results, we claim that the simple quantitative support is not enough. An 
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interaction methodology between annotation interface, user and IES is necessary in 

order to reduce intrusivity and maintain timeliness of support. The methodology 

implemented in the Melita tool addresses the following concerns: 

1. It operates in the usual user environment without imposing particular require­

ments on the annotation interface used to train the IES (reduced intrusiveness). 

2. It maximises the cooperation between user and IES: users insert annotations in 

texts as part of their normal work and at the same time they train the IES. The 

IES in turn simplifies the user work by inserting annotations similar to those 

inserted by the user in other documents; this collaboration is made timely and 

effective by the fact that the IES is retrained after each document annotation. 

3. The modality in which the IES system suggests new annotations is fully tuneable 

and therefore easily adaptable to the specific user needs/preferences (intrusive­

ness is taken under control). 

4. It allows timely training of the IES without disrupting the user pace with learn­

ing sessions consuming a large amount of CPU time (and therefore either stop­

ping or slowing down the annotation process). 

Unfortunately, there are still a number of open issues in our methodology such 

as the effect on the user, of excellent IES performances after a small amount of 

annotation. For example when P=86, R=77 is reached after only 10 texts (as for 

Start Time in the CMU seminar announcements task), users could be tempted to 

rely on the IES suggestions only, avoiding any further action apart from correction. 

This would be bad not only for the quality of document annotation, but also for 

the IES effectiveness. As a matter of fact, each new annotated document is used for 
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further training. Rules are developed using existing annotations. They are tested 

on the whole corpus to check against false positives (e.g. the rest of the corpus is 

considered a set of negative examples). A corpus with a relevant number of missing 

annotations provides a relevant number of (false) negative examples that disorients the 

learner, degrading its effectiveness and therefore producing worse future annotation. 

The entire dimension of the problem is still to be analysed. 

Even though there are these issues, Melita is still a huge improvement over the 

existing systems. In the coming chapter, we will show how we can build further on 

top of the methodology presented in Melita by making a small modification to the 

system. The resultant effect will be, a generic and fully automated approach which 

can be used over the Web to insert sematic annotations in web documents. 



Chapter 5 

Armadillo: An Automated 
Annotation Methodology 

5.1 Introduction 

The Semantic Web (SW) needs semantically-based document annotation l to both 

enable better document retrieval and empower semantically-aware agents. Unfortu-

nately, although the Melita methodology presented in Chapter 4 can be applied to a 

wide number of domains, it is not suitable for the generic Semantic Web task. 

Even though Melita changes the annotation task from a completely manual (such 

as (65)) to a semi-automatic task (26), it is still based on human centered annotation. 

Whenever a user is involved in the annotation process, although the methodology 

relieves some of the annotation burdens from the user, the process is still difficult, 

time consuming and expensive. Apart from this, considering that the SW is such a 

huge domain, convincing millions of users to annotate documents is almost impossible 

since it would require an ongoing world-wide effort of gigantic proportions. If for a 

second we assume that this task can be achieved, we are still faced with a number of 

lSemantic annotation is the process of inserting tags in the document, whose purpose is to assign 
semantics to the text between the opening and closing tags. 
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open issues. 

In this methodology, annotation is meant mainly to be statically associated to 

(and saved within) the documents. Static annotation associated to a document can: 

1. be incomplete or incorrect when the creator is not skilled enough; 

2. become obsolete, i.e. not be aligned with page updates; 

3. be irrelevant for some use(r)s: a page in a florist web site can be annotated with 

shop-related annotations, but some users would rather prefer to find annotations 

related to flowers. 

Different annotation can be imposed on a document using different ontologies. 

An ontology is required because it describes concepts and relationships that occur in 

a very restricted view of the real world, basically it describes the domain in which 

we are working. In the future, most of the annotation is likely to be associated 

by Web actors other than the page's owner, exactly like nowadays' search engines 

produce indexes without modifying the code of the page. Producing methodologies for 

automatic annotation of pages with no or minimal user intervention becomes therefore 

important: the initial annotation associated to the document loses its importance 

because at any time it is possible to automatically (re)annotate the document and 

to store the annotation in a separate database or ontology. In the future Semantic 

Web, automatic annotation systems might become as important as indexing systems 

are nowadays for search engines. 

Therefore, we propose a methodology that learns how to annotate semantically­

consistent portions of the Web by, extracting and integrating information from differ­

ent sources. All the annotation is produced automatically with no user intervention, 
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apart some corrections the users might want to perform. The methodology has been 

fully designed and implemented by myself in Armadill02 , a system for unsupervised 

information extraction and integration from large collections of documents. 

The natural application of such methodology is the Web, but large companies' 

information systems are also an option. In this chapter we will focus on the Web, and 

in particular we will take a look at the task of mining Computer Science Departments 

websites. All the process is based on integrating information from different sources 

in order to provide some seed annotations. This will then bootstrap learning which 

in turn will provide more annotations and so on. In synthesis we start with a simple 

methodology which requires limited annotation, and move on to produce further 

annotation to train more complex modules. 

In the next section we will present the generic architecture that we have used to 

build the application. Then we will describe the CS Department task. It will be 

shown how the information from different sources is integrated in order to learn to 

annotate the desired information. 

5.2 Armadillo: 
A Generic Architecture for 
Automatic Annotation 

The Armadillo methodology is centred around the idea of exploiting the redundancy 

of the web to bootstrap IE learning. This idea is not new since it was proposed by 

Brin (15) and Mitchell (87). The difference with our approach is the way in which 

learning is bootstrapped. Brin uses user-defined examples, while Mitchell uses generic 

patterns that work independently of the site or the page being analysed. We use both 

2http://www.aktors.org/technologies/ Armadillo/ 
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"Strategies 

Strategy 1 

Strategy N 

Data 

Figure 5.1: The Armadillo Methodology. 

the above, but in addition, we exploit the redundancy of information and integrate 

information extracted from different sources with different levels of complexity. 

Since there can be many potential applications of the proposed technology, we 

decided to make the Architecture as generic as possible. In order to do so, the 

Architecture had to be portable and scalable. This was achieved by making use of a 

simple methodology that requires no special configurations built around a distributed 

web service architecture. The methodology is made up of four main items, these 

include a set of Strategies, a group of Oracles, a set of Ontologies and a Database 

(See Figure 5.1). 
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5.2.1 Set of Strategies 

Strategies are modules capable of extracting information from a given document using 

very simple techniques. Each strategy takes as input a document, performs a simple 

extraction function over that document and returns a typed output. 

The input document is not restricted to any particular text type and can range 

from free text to structured text. The limitation is only imposed by the processor 

involved in pre-analysing the particular document. In fact, there is nothing stopping 

the input document from being a picture or a piece of music. The module itself is 

responsible for implementing or accessing these preprocessors. Since the system is 

built around a distributed architecture, the preprocessor (if needed) could be either 

a process within the module or even a process running somewhere over the network 

like a web service. 

The extraction functions found in the strategies do not use any complex Artifi­

cial Intelligence (A.I.) techniques but rather weak strategies such as simple pattern 

matching routines. The idea is that whenever weak strategies are combined together, 

they manage to produce stronger strategies. The process does not have to be some­

thing perfect, an error rate is tolerated at this stage since the validity of the data will 

be further confirmed by the Oracles. 

The output from every module is a set of instances belonging to a particular con­

cept which is described in one of the ontologies used by the system. These instances 

are stored in the central database and are typed according to the name of the concept 

which they belong to. 

To better illustrate the role of a strategy, imagine we need to extract the potential 

names of people found in a particular document. For this task, we do not need any 
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particular preprocessor. We just need a good heuristic to extract the names. A very 

simple yet highly effective heuristic would be to extract all the bigrams3 containing 

words starting with a capital letter. This works pretty well and manages to return 

bigrams like" Alexiei Dingli" , "Yorick Wilks" , etc. One can argue that this approach 

would probably return some garbage as well like the words "The System". This is 

true, but this problem is solvable in two ways. First of all, there is nothing stopping a 

module from having a postprocessing procedure inside it used to filter away garbage 

obtained by the simple approaches. In fact, the module used as example in this 

paragraph is part of the current implementation of the Armadillo system and it does 

have a post processing procedure which filters out bigrams that contain stopwords4 

inside them. This would filter out wrong instances such as "The System" since the 

word "The" is a stopword. Secondly, we should keep in mind that any instance 

returned by this module must be verified by an Oracle before being inserted in the 

main database. 

In synthesis a strategy is a module that allows us to implement very simple yet 

extremely fast strategies in order to extract information. They do not have to be 

highly sophisticated tasks and not necessary with high precision. The most important 

thing is that these strategies provide some seed examples which are used by the 

Oracles to discovery of other instances. 

5.2.2 Group of Oracles 

An Oracle is an entity which can be real or artificial, that possesses some knowledge 

about the current domain. To better understand what Oracles do, it might be useful 

3 A bigram is a pair of adjacent words. 
4 A stopword is a word that is very common inside a textual document (e.g. prepositions and 

articles). 
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to think about them as filters. These filters accept as input some data of a particular 

type found in the ontology and return data of the same type, but the data they return 

is validated. The validity of this data is guaranteed by the Oracle. This adds a certain 

degree of accountability to the system since an Oracle is responsible for the data it 

validates. Therefore, if an item of data is wrong and it was validated by a particular 

Oracle, we could pinpoint exactly which Oracle validated the data and take appropri­

ate corrective actions. These actions include adjusting the validation mechanism of 

the Oracle or even excluding it from future validations. The exclusion of one Oracle 

is normally not a big loss since a system has different Oracles performing the same 

validation using different methods. Having redundant Oracles is very important if we 

want to exploit the redundancy of the web to the full. Since the same information is 

available from different reliable sources, it is vital for the system to have an Oracle 

for each and every source. The combination of these sources will thus produce very 

reliable data since it is not up to one Oracle to decide if an instance is valid or not 

but rather to a committee of Oracles (similar to having a panel of experts to evaluate 

the data). 

An Oracle performs another task apart from the filtering, if the Oracle posses 

some additional information on the subject being analysed which is not part of the 

central database, it adds it to the database. This information is reliable since it is 

supplied by the Oracle. 

To summarise, an Oracle filters away information that is marked as being an 

instance of a particular domain but which in reality is not (according to the Oracle) 

and adds any additional reliable data it posses. There can be different types of Oracles 

such as humans, gazetteers, web resources and learning algorithms. The list is not 
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an exhaustive one but highlights the most commonly used Oracles. 

Humans are the best kind of Oracles we can use. They contain a huge amount 

of information and they are excellent information processing systems. The 

problem with humans is that the whole scope of this system is exactly to spare 

them from doing the tedious job of finding instances in documents. Our strategy 

is to make use of humans only if we cannot find any other Oracle to do the job 

and use them only for the starting phase in order to initialise the whole process 

with a small set of high precision data. Then, the remaining tasks should be 

preformed by the other kinds of Oracles. This does not mean that the role of 

the user stops there, at any stage the user can see what the different strategies 

and Oracles are producing, and review their data if necessary. 

Gazetteers are lists of elements which belong to the same class. These lists can 

contain anything like lists of names, countries, currencies, etc. Each list is 

associated with a concept found in one or more ontologies. If the output ob­

tained from one of the strategies is found in one of the lists, then that element 

is confirmed as being an instance of the particular concept represented by the 

list. The element would have both a time stamp and a signature signifying 

that the information was confirmed by this particular Oracle. Lets assume 

for a second that one of the strategies returns the words" United Kingdom". A 

search is performed through the lists to identify whether this word is an instance 

that occurs in any of the available lists. In this example the phrase" United 

Kingdom" was found in the gazetteer called countries. This gazetteer is itself 

attached to a concept in one of the ontologies used called country. Therefore, 

the system assumes that" United Kingdom" is equivalent to the instance found 
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in the countries gazetteer and thus, it is semantically typed as being a country. 

Once we have semantically typed data which is verified by an Oracle, we can 

insert it in the database. Apart from Gazetteers, an Oracle could also exploit 

a Knowledge base containing a store of knowledge about a domain represented 

in machine-processable form. The data may include rules (in which case the 

knowledge base may be considered a rule base), facts, or other representations. 

Web resources include any reliable list or database found over the web which can 

be used to verify wether an instance is part of a particular class or not. The 

information must be very reliable and up to date since at this stage, a minor 

error rate is not allowed if we want the data to be reliable. The task of querying 

these web resources, it is not always straightforward. First of all, if the web 

resource is accessible through a web service, the system can easily access the 

web service by making use of standard techniques. If no web service is available, 

a strategy must be defined by the user in order to instruct the system which 

information to extract from the web page. Luckily for us, these pages are 

normally front ends to databases. Therefore, since their content is generated 

on the fly using some program, the layout of the page would be very regular. 

In this case, the user is asked to mark a couple of examples in the documents 

and the system learns how to extract these instances by using an underlying IE 

engine. The learning algorithm used is based on simple wrapping techniques 

and manages to achieve very good results since the web pages are very regular. 

These resources are not very different from a gazetteer, the main difference being 

that while a gazetteer is generally a static list, a web resource has dynamic data 

which is continuously being updated by a third party. 
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Learning algorithms include technologies such as ML and IE tools, basically any 

classifier available which can identify whether an element is part of a particular 

class or not. These algorithms are much more sophisticated than what we 

have seen so far. They specialise on extracting information from individual 

documents which are not regular and therefore, learning a common wrapper 

as we have seen before is impossible. These algorithms do not even need any 

training by humans. They typically get a page, partially annotate it with the 

instances which are available in the database, they learn from those instances 

and extract information from the same page. The cycle continues like that until 

no more instances can be learnt from the page. The main difference from these 

classifiers and the ones mentioned before in the strategies is that they must 

have high precision since at this stage, we are verifying the data and no longer 

harvesting the information. 

5.2.3 Ontologies 

An ontology is a formal, explicit specification of a shared conceptualisation of a do­

main of interest (60). In simpler terms, the ontology specifies the concepts found in 

a domain5 together with some existing relations between those concepts. Ontologies 

are important for the system to work correct because they are the glue that makes 

it possible for the data produced by the system to be related together. Apart from 

this, the different modules are semantically typed meaning that whatever they return 

must always be an instance of one of the concepts in the ontologies. To understand 

better the role of the ontology, imagine we have a module which returns the title 

of a book called" Animal Farm" and an author called" George Orwell" from a web 

5 A domain is a subset of the real world 
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page found in an online book store. Although for us it is quite easy to figure out 

that the two pieces of data are related i.e. an author writes a book and that book 

has a title. For the system, there is no way in which this can be achieved unless 

it is explicitly stated somewhere. Ontologies are the places where these associations 

between concepts are expressed. Using the ontology and the data gathered from the 

other modules, the system would infer that the title of the book is "Animal Farm" 

and every book has an author. The author for the book" Animal Farm" is "George 

Orwell". These relations are all stored inside the database and can be used by other 

modules to discover further information. 

5.2.4 Database 

The database is the central repository where all the information gathered is stored. A 

database is typically made up of a set of tables, which define the structure of the data 

and relationships between the data. Inside the tables, one finds the actual data in­

stances which were discovered by combining the strategies and the Oracles mentioned 

before. The relationships are discovered when the data is integrated together. The 

information gathered from each source consists of a group of data which is semanti­

cally typed (therefore being an instance of one of the concepts found in one of the 

ontologies). The data found in this group, although obtained from a source without 

a formal structure can be easily structured by using the relational information found 

in one of the ontologies. Eg: if we find a book author in the same context as a book 

title and we have an ontology containing rules related to books, we would probably 

find a rule which states that an author writes a book and a book has a title. The 

problem here is how to find a good context. The simplest way to solve this problem 

is to use proximity. If the name of a person appears somewhere in the text not far 
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from the title of a book, then the person is considered a potential author. Obviously, 

this is not good enough for our needs since this heuristic does not guarantee that 

the person is actually the author of the book, but because we have several Oracles 

all validating the same data, then we can check if the person is the actual author of 

the book or not (Eg: in this case, we could have an Oracle that checks authors and 

book titles using the Amazon web service). This example is not only relevant for data 

found in the same context, the same approach is also used for data found in different 

contexts or even documents. Eg: Imagine that in a particular page we find the name 

of a person in the proximity of a book title and in a different page we find the book 

title in the proximity of an ISBN number. A search in one of the ontologies reveals 

that a book has an author and an ISBN number. Using this rule, the three items of 

data are integrated together. In this case, the integrating element was the book title 

since it was common in both contexts. Once again, the validity of the data and their 

relationships is checked by the various oracles. There is a tight coupling between the 

ontologies and the database because the information extracted from the documents 

are just instances of the concepts found in the ontologies. Therefore it makes much 

more sense to store the ontological relationships inside such a database as well. 

5.2.5 The Armadillo methodology 

The Armadillo methodology annotates large repositories with domain-specific anno­

tations. It performs this task by harvesting and extracting information from different 

sources which is then integrated into a common repository. The methodology is 

largely unsupervised meaning that the user's intervention is very limited. 

The approach adopted in this methodology is the following; the user provides: 
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1. an Ontology (or a set of Ontologies) which define the domain being processed. 

2. a set of possible instances (each of which is associated with a concept in the 

ontology). 

3. a reference to a set of documents that need to be annotated (can vary from a 

small set of documents to the whole Internet). 

The set of possible instances (referred to previously as strategies) can be expressed 

using either a list of instances or using generic patterns capable of spotting a whole 

set of potential instances. There is no need for the instances discovered to be highly 

reliable since they will be confirmed at a later stage using other strategies (E.g. 

multiple occurrences in other documents, etc.). 

The cycle begins by going through a subset of documents available for processing 

and discovering possible instances using the partial set of instances already available. 

When new instances are discovered, they are; 

1. confirmed by the Oracles by using a number of methodologies such as using 

multiple evidence from different sources (E.g. a new piece of information is 

confirmed if it is found in different linguistic or semantic contexts). 

2. if they are valid instances they are; 

(a) integrated with the existing data found in the central database (E.g. some 

entities are merged, updated, etc.). 

(b) used by the Strategies to discover new seeds. 

( c) used by the Oracles to validate new data. 
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3. otherwise, they are discarded. 

This cycle continues until there is no more information to discover. The result of 

this whole process is a database containing structured data which can be subsequently 

used for several tasks (such as semantically annotating documents, etc). 

The Armadillo methodology can be applied to any domain. In fact, to port it to 

new applications does not require knowledge of IE. All the methods used are domain 

independent and based on generic strategies. The only domain specific parts are the 

initial settings. The next section will take a look at how the implementation of the 

methodology works. 

5.2.6 The methodology at work 

The internal workings of the Armadillo methodology (See Figure 5.2) are quite 

straightforward too. To make use of the system, one has to go through two phases, 

the first phase is the domain setup aimed at the Domain Architects and the second 

one is the actual system usage aimed at the normal user. 

Domain Setup 

In the Domain Setup phase, a Domain Architect is required to plug together the 

different strategies, Oracles and ontologies. The database is hidden from the user since 

it is part of the ontology handling mechanism. Whenever a new instance is inserted 

in the ontology, the system automatically inserts it in the underlying database. The 

insertion process is transparent and does not impose any additional overhead on the 

system or on the user. The Domain Architect must perform two main tasks, the first 

task is to define the various modules and the second task is to attach them together. 
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To facilitate this task, Armadillo provides a Domain Setup interface designed to 

ease the life of the Domain Architect (See Figure 5.3). In this interface, the user is 

not expected to do any programming (although it does not limit the user from doing 

so). The first steps in creating a domain include: 

Loading an Ontology A user can add one or more ontologies to the system. The 

ontologies are used to type all the data in the system and glue the different 

modules together. The interface loads ontologies written in DAML+OIL. 

Loading a Reusable Component A reusable software component (such as a Java 

Bean) is a self-contained object that can be controlled dynamically and as­

sembled to form applications. Component software environments, along with 

object-oriented techniques, allow applications to be built using a building-block 

approach. For such an approach to work, components must interoperate accord­

ing to a set of rules and guidelines, and must behave in ways that are expected. 

The system provides a common interface capable of discovering the several 

methods found inside the component. It also allows the user to simply add new 

components. The inputs and outputs of these methods are then typed using the 

ontologies loaded in the system. If the user does not find adequate components 

to include in the system, they can always be created programmatically. 

Creating or Loading a Gazetteer A user can load existing lists and gazetteers 

to the system. When a gazetteer is loaded, its contents can be modified using 

the interface. Once again, the elements found in these lists must be typed to 

a concept in the ontology. E.g. a gazetteer containing the elements " China, 

France, Italy, United Kingdom, etc." is typed with the concept in the ontology 
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called "World Countries". 

Creating a Heuristic A heuristic is similar to a gazetteer in the sense that it rep­

resents a class of objects. The main difference is that whilst a gazetteer lists 

the instances belonging to that class, the heuristic allows a user to define a rule 

using regular expressions6 to define all those instances. As an example, lets take 

a look at a heuristic that discovers names of people. Using regular expressions 

we could easily write a pattern that retrieves all the bigrams whose first letter 

is a capital letter. 

Binding to a Web Service Web services are software components containing a set 

of functions that can be accessed remotely using TCP lIP as the transportation 

medium. They are quite similar to the Java Beans we saw earlier. The main 

difference is that they are accessed remotely and run on another machine some­

where over the internet while a Java Bean is executed locally. The system 

provides a common interface capable of discovering the several methods found 

inside the web services. The inputs and outputs of these methods are then 

typed using the ontologies loaded in the system. If the user does not find ade­

quate web services to include in the system, they can always be created using 

standard web service techniques in any computer language available. 

Creating a Wrapper A wrapper is a template of the data and layout surrounding 

information which needs to be extracted in a set of documents. It is normally 

used by software agents who need to locate and extract data from a set of similar 

documents. Lets take as an example a corpus of documents made up of seminar 

6 A regular expression is a formula for matching strings that follow some pattern. 
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announcements. In these documents it is quite common to find a starting time 

for a seminar in the following format "Time: 12:30". The main difference 

between documents is that the time changes depending on the seminar. A 

typical wrapper would use the word "Time: " as the data surrounding the time 

which needs to be extracted and anything that follows it as being the actual 

information that needs to be extracted. 

The system presents to the user a very simple interface to create wrappers, 

by using positive examples provided by the user himself. The user is asked 

to mark a couple of examples in the documents and the system learns how 

to extract these instances. The learning algorithm used is based on simple 

wrapping techniques and manages to achieve very good results since the web 

pages are very regular. 

Downloading Web Pages This download module was inserted in the system for 

convenience's sake. Since the basic raw material of the system is a collection 

of web pages, it makes sense to provide a module that facilitates the task of 

retrieving them. 

Once the creation of these modules is completed, they are stored inside the appli­

cation for later use. In fact, these modules are not bound to a specific domain and 

can be reused over and over again even in different applications. Since standard tech­

niques are being used, they can also be easily exported and used in different systems. 

Although we now have all the tools necessary to create the strategies and Oracles, 

there exist no connection what so ever between these modules. This takes us to the 

second task of the Domain Architect. 
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As can be seen in Figure 5.3, the user must select the components which were 

created previously, create instances of them and compose them together. In the 

example shown in Figure 5.3, the diagram in the right panel represent a crawler 

created in this way. It is made up of four components: 

URL List is a module that takes as input a URL or a list of them and return as 

output the first URL in the list when a request is made. 

Site Grabber is a module that consumes a URL and returns as output an object 

which represents a Web Page (Basically it downloads the web page specified in 

the URL and returns it). 

Extract URL's is a module that given a web page as input, looks for a pattern inside 

the page that represents a URL. The URL is then extracted and returned as 

output. The pattern is expressed using regular expressions. 

Sites is a module that takes as input a web page and adds it to a list. When a 

request is made, it returns as output the first web page in the list. It works in 

a similar way as the URL List but the type of the data is different. 

There are a number of things to notice at this stage. First of all, the inputs and 

outputs are typed using the concepts found in the ontologies. The concepts used are a 

URL and a Web Page. Secondly, the composition was performed by simply selecting 

a module and dragging a line to the connecting module. Since all the inputs and 

outputs are typed, the system can check for semantic type mismatch. Finally, there 

does not seem to be any entry point for the crawler. The reason is that all modules 

work using a data driven approach. Therefore, to start operating the crawler, it is 
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simply a matter of inserting a URL in the URL List module. This can be inserted 

either programmatically or manually. Immediately, the Site Grabber is called using 

the newly inserted URL. The module downloads the web page and sends a copy to 

the Extract URL's module and to the Sites module. The Extract URL's module 

applies the pattern to extract URLs over the newly downloaded site and sends the 

resulting URLs to the URL List. The Site module is just a store which can be used 

for further processing. The cycle continues like this until either there are no more 

sites to download or until the user decides to stop the crawler. 

Although this was a very simple example, there is nothing stopping the Domain 

Architect from creating much more complex modules. Whenever a module is created, 

it can be stored as a bean or executed as a web service and used by other modules. 

As can be seen, the Domain Architect can model the whole domain using these basic 

yet powerful tools. 

System Usage 

Since most of the work is performed by the Domain Architect, the role of the user 

is quite simple. It only involves setting up the initial system and monitoring its 

execution. The system generally starts from a set of generic strategies defining where 

to search for information and what to look for. If some initial data is required, it 

is supplied by the user. Since the whole system is data driven, in order to use the 

system for a different application of the same domain, it is just a matter of altering 

the initial settings. In the example of the crawler found in Section 5.2.6, to crawl web 

site X rather than web site Y, it just involves supplying web site X as the start URL. 

When data is harvested using the strategies defined in the domain, it is passed to 

an Oracle to verify whether the information is valid or not. The task of the Oracle 
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is to identify which items returned by the strategies are instances of concepts found 

in one of the preloaded ontologies. Strategies and Oracles are created in exactly the 

same way using the Domain Setup tool. The major difference is the validity rating 

which they assign to the data they discover. An item of data verified by an Oracle has 

a higher rating than one verified by a strategy. Once the data is verified it is stored 

inside the main database. The system then checks which strategies can be used to 

process the new information available by matching the type of the new data with the 

type of the inputs which the modules require. When these modules are identified, 

they are then executed using the newly added information. This is done to try to 

discover further information. The results are then given to other more specialised 

Oracles and the system keeps on looping until either the system manages to discover 

all the information which can be discovered or the user decides to interrupt the cycle. 

At any stage, the user can interrupt the execution and inspect the data. He can 

make any changes required to the data and then resume the system from where it 

was interrupted. For example if a person name is missed by the system, it can be 

manually added by the user. The modules that receive as input the output of that 

name finder will then be re-run and further information will hopefully be retrieved. 

The data modified has a very high ranking since an Oracle of type human is considered 

the most reliable Oracle in the system. If one or more modules are not producing 

good results, the user can reduce the ratings of that module (even if it is an Oracle). 

This has the effect of reducing the whole impact which that module has on the whole 

system. 

The defined architecture works as a "Glass Box". All the steps performed by the 

system are shown to the user together with their input and output. The user can check 
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the intermediate results and manually modify their output, or change their strategy 

(if possible, such as in the case of modules who integrate information). In this way 

the user is able both to check the results of each step and to improve the results of the 

system by manually providing some contributions (additions, corrections, deletions). 

Rationale 

It is clear that we do not make any assumptions about any particular domain. The 

strategies range from simple/generic ones (like looking for capitalised words) to more 

complex ones (like setting up and using IE tools) and they can be easily created for 

any domain. This technique works because a key feature of the web is the Redun­

dancy of information. Redundancy is given by the presence of multiple citations of 

the same information in different contexts and in different superficial formats. This 

factor is currently used for improving question answering systems (39). When known 

information is present in different sources, it is possible to use its multiple occurrences 

to bootstrap recognizers that, when generalized, will retrieve other pieces of informa­

tion, producing in turn more (generic) recognizers (15). Information can be present in 

different formats on the Web: in documents, in repositories (e.g. databases or digital 

libraries), via agents able to integrate different information sources, etc. From them 

or their output, it is possible to extract information with different reliability. Systems 

such as databases generally contain structured data and can be queried using an API. 

In case the API is not available (e.g. the database has a web front end and the output 

is textual), wrappers can be induced to extract such information. Wrapper Induction 

methodologies are able to model rigidly structured Web pages such as those produced 

by databases (79) (89). When the information is contained in textual documents, ex­

tracting information requires more sophisticated methodologies. Wrapper induction 
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systems have been extended to cope with less rigidly structured pages (47), free texts 

and even a mixture of them (23). There is an obvious increasing degree of complexity 

in the extraction task mentioned above. The more difficult the task is the less reli-, 

able generally the extracted information is. For example wrapper induction systems 

generally reach 100% on rigidly structured documents, while IE systems reach some 

70% on free texts. Also, the more the complexity increases, the more the amount of 

data needed for training grows: wrappers can be trained with a handful of examples 

whereas full IE systems may require millions of words (85). This is just an example 

of the idea. The more the task becomes complex, the more information is needed for 

training, the more reliable input data becomes difficult to identify. 

To make the system scalable we have implemented an architecture based on Web 

Services where each task is divided in subtasks. Each subtask is performed by a server 

which in turn will use other servers for implementing parts of the subtask. Each server 

exposes a declaration of input and output, plus a set of working parameters. Servers 

are reusable in different contexts and applications. For example one server in the CS 

department task mentioned in Section 5.3, will return all papers written by a person 

by accessing Citeseer. Another one will do the same on another digital library . The 

named entity recogniser server (whose role is to decide if a string is a name) will 

invoke these servers and integrate the evidence returned and decide if such evidence 

is enough to conclude that the candidate string represents a person. 

Facilities for defining wrappers are provided in our architecture by Amilcare 

(nlp.shef.ac.uk/amilcare/), an adaptive IE system based on a wrapper induction 

methodology able to cope with a whole range of documents from rigidly structured 

documents to free texts (25). Amilcare can be trained to work on rigid documents 



175 

(e.g. Citeseer or Google output) by providing a handful of manually annotated ex­

amples, while it needs some hundreds of examples for more sophisticated cases (24). 

All the servers are defined in a resource pool and can be inserted in a user-defined 

architecture to perform some specific tasks. New servers can be easily defined and 

added to the pool by wrapping them in a standard format. In the CS website task, 

wrappers are defined for all the resources described in Section 5.3. 

5.2.7 Future Development 

Although the current implementation of the Armadillo system is based around Web 

Services, it still executes on a stand alone computer. This was important for the 

scope of this thesis since when we were testing the core methodology, it facilitated 

the debugging of the system per se. Now that we are confident that the methodology 

works fine and produces effective results, we will take a peek at the direction which 

fu ture enhancements of the system should take. 

Due to the distributed nature of the web and with the intuition that a distributed 

application can exploit better the resources on the web, we decided to model our sys­

tem on the same concept. In fact, Armadillo was originally designed using a modular 

architecture. The rational behind our architectural choice was that eventually, we 

wanted to get each module, separate it from the core architecture and transform it 

into a self contained entity over the web with as little effort as possible. In doing 

so, we were not thinking of creating any new standard but rather, make use of the 

existing ones (such as web services, etc). Also, we did not want to restrict anyone 

with proprietary formats, but we wanted to make the system easily adaptable by 

everyone. It is our conviction that if we want the SW to become a reality, a global 

voluntary effort is necessary whereby everyone contributes a little towards making 
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the SW a success. 

The way forward for Armadillo is basically to repackage the modules either as web 

services or as mobile intelligent agents. The web service approach has the advantage 

of exploiting resources which are located somewhere remotely. As such, a powerful 

central server is not required since the only task of the core Armadillo system would 

be to coordinate the distributed modules. The problem with web services is that if 

the server or the connection to the server which hosts an important web service is 

not reachable, the processing of the Armadillo system can reach a halt until the web 

service is available again. With mobile intelligent agents, this problem can be partially 

solved. If we imagine a scenario, whereby a server hosting an agent is going off-line, 

the mobile agent can easily transfer itself to another server which will stay on-line. 

Thus, Armadillo will still be able to access the service offered by the agent even if its 

original hosting server is off-line. A more intelligent way of solving such a problem 

would be to have similar mobile agents, located on different servers collaborating 

together on the same task. Thus if one of them goes off-line, it is just a matter of 

distributing the work, assigned to the off-line agent, to the other similar agents that 

are still online. 

Another future enhancement of the system relates to the composition of services. 

The original system allowed the users to define a list of services which are executed 

in a sequential order. The final version of the system presented in this thesis, went a 

step further and offered a graphical user interface. This gave the users, the facility to 

plug-in different components visually and create a flow diagram whereby several com­

ponents can be executed in parallel. Unfortunately, this system is still too complex 

to configure for non-expert users. This complexity arises from two essential tasks, 
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first of all, the user must find and define the services to use. Secondly, the user must 

also compose the services manually. 

The discovery of services can be automated to a certain extent. If we make use of 

systems like the Universal Description, Discovery and Integration7 (UDDI) directory 

we could make it possible for users to discover available web services without going 

into too much hassle. 

The composition of services is still a complex task which is very hard to automate. 

There is currently heavy research going on, regarding ways in which this can be done 

by using planners. These programs have special purpose algorithms which take as 

input some problem and goals in a planning domain, and returning a plan to meet 

those goals, or a determination that no plan is possible. If we add a learning algorithm 

to the planner and use a methodology similar to the one developed in Chapter 4 ( 

whereby a learner is being trained by the user), we might be able to automate simple 

repetitive tasks and eventually move towards automating more complex tasks. 

In the original system, we also made us of the recognise-act cycle whereby when-

ever data is harvested ... 

1. The data is identified as being an instance of a concept found in one of the 

ontologies. 

2. A search is made through all the services available in order to recognise which 

services accept the newly discovered data as input. 

3. The system acts upon this new found data by invoking the service using this 

data. 
7 A directory model for web services. UDDI is a specification for maintaining standardised direc­

tories of information about web services, recording their capabilities, location and requirements in 
a universally recognised format. 
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4. The cycle continues until there is no more data which can be consumed by the 

services. 

Although this system worked quite successfully, it is our believe that in future 

systems, it should be researched and exploited further. Such a producer-consumer 

approach can help reduce a lot the need of composition since the composition of 

services can be induced from the type of the available data. 

5.3 The Computer Science Department Task: 
A case study 

To highlight the internal workings of the methodology mentioned above, we will take 

a look at the Computer Science Department Task. The goal is to discover the people 

who work in a specific department and their publication list. For the first task, we are 

not just limited to the name of the person but also to other personal information such 

as position, home page, email address, telephone number, etc if this is available. For 

the second task, the list of published papers must be larger than the one provided by 

online services such as Citeseer. On the web, we cannot really assume anything about 

the structure and layout of the web pages. They will probably be different for each 

and every department but we can expect to find some higher level constructs, such as 

a page listing all the people working in the department and many other constructs. 

These are all cues which the Domain Architect inserted inside the system when it 

was being designed. 

Finding People Names 

The task of finding people's name who work in a specific department is the first 

step towards starting the whole process. Without these names, one cannot find the 
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related details and publications. At first, it might seem like a trivial task but let 

us not mix it with the same problem which a generic Named Entity Recognition 

caters for. This task is much more complex because the site contains many irrelevant 

people's names, e.g. names of undergraduate students, clerks, secretaries, etc, as 

well as names of researchers from other departments that e.g. gave seminars in 

the department, participate in common projects or have co-authored papers with 

members of staff. One could still make use of a generic Named Entity Recogniser 

(NER) such as Annie (www.gate.ac.uk) but this option is not always viable. Apart 

from recognising ALL the people's names in the site (without discriminating between 

relevant and irrelevant), if we apply it on a normal web site the classic NER would 

be very slow. We performed some initial experiments using this approach on the OS 

department site at the University of Southampton. This site was chosen because it 

was neither too big nor too small and contains around 1,600 pages most of which are 

generated automatically by a database (therefore containing a very regular structure). 

The experiments showed that an NER tends to be quite slow if launched on such 

sites and can be quite imprecise on Web pages, as they are generally defined for 

newspaper-like articles. Because of this, we use a short list of highly reliable seed 

names discovered either by using simple strategies or else we utilise a NER in a very 

restricted way (i.e. rather than applying it on a whole document, we use it on a 

subset of the document). These names are then used as seeds to bootstrap learning 

in order to find further names. 

Finding Seed Names 

The search for seed names makes use of a number of weak strategies combined with 

Oracles. The process works as follows: 
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1. The system crawls the web site looking for strings that are potential names of 

people (e.g. using a gazetteer of first names and a regular expression such as 

<first-name> followed by a capitalised word, using a NER, etc.). 

2. As soon as the system has some potential names, it makes use of the following 

Oracles to try to validate those names: 

• AKT 3store 

(inanna.ecs.soton.ac.uk/3store/): 

- Input: the potential name; 

- Output: a list of papers, co-authors, personal details and a URL for 

the home page (if any); 

• Annie 

(www.gate.ac.uk): 

- Input: the potential name and the text surrounding it; 

- Output: True/False indicating whether the string is a name or not; 

• Citeseer 

( www.citeseer.com ) : 

- Input: the potential name; 

Output: a list of papers, co-authors and a URL for the home page (if 

any); 

• Google 

(www.google.co. uk) 

- Input: the potential name and the URL of the site in order to restrict 

search; 



- Output: Relevant Pages that are hopefully home pages; 

• HomePageSearch 

(hpsearch. uni-trier .de): 

- Input: the potential name; 

- Output: a URL for the home page (if any); 

• The CS bibliography at Unitrier 

( www.informatik.uni-trier.de/ley / db/): 

- Input: the potential name: 

- Output: a list of papers and co-authors (if any); 
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The information returned by the digital libraries (AKT 3store, Citeseer and 

Unitrier) is used to confirm or deny the name identity of the string. If the 

results they return are reasonable for a specific name, this name is retained as 

being a potential name. At this stage, it is important to understand what we 

mean by a reasonable result and why we included this restriction. A reasonable 

result is one where the system returns neither too many hits nor too few. If a 

string is a valid name, we expect to have a number of papers returned, otherwise 

the output is either empty or with unlikely features. 

For example, when querying these digital libraries with a popular term like 

"Smith", AKT 3store, Citeseer and Unitrier return more than 10,000 related 

papers each. This is definitely not a reasonable result since the probability that 

a person writes more than 150 papers is quite low. In these cases, the name is 

discarded. The opposite happens when looking for a non-name (e.g. the words 

"Sea Lion"), no papers are returned and therefore the potential name is not 
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accepted. The criterion we use is quite restrictive and generally accepts a name 

when the system returns more than 5 papers and less than 50. These upper and 

lower bounds were decided empirically and were based upon which thresholds 

keep reliability high. The lower bound may seem small but as already noted 

by Brin (15), the redundancy of information allows to bootstrap learning using 

just a limited amount of information. The results of the digital libraries are 

integrated with those of the classic Named Entity Recogniser run on a window 

of words around the candidate (so to avoid the problem of slow processing). The 

result of this process is a set of people which fall into three main categories: 

(a) those working for the department; 

(b) those who do not work there, but they are cited because, for example, they 

have collaborated with some of the researchers of the department; 

( c) and false positives (those who are not even names of people). 

Out of the three categories, only the people in the first one are correct. The 

remaining people must be filtered out. For this reason, other Oracles are used 

such as AKT 3store, Citeseer, Coogle and HomepageSearch to look for a per­

sonal web page in the site. If such a page is not found, the names are discarded 

since in general, most people have their personal web site. The personal web 

pages are recognised using simple heuristics such as looking for the name of the 

person or the words "Home Page" in the title. 

The different strategies mentioned above are all weak, and they all report high 

recall but low precision. This does not matter much because they were only 

meant to determine a small reliable list of names, which can be used as seed 
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to bootstrap the learning phase. Since each weak process is not working in 

isolation but rather in collaboration with the others (by using results obtained 

from the other modules), their combination manages to produce highly accurate 

data. 

Learning Further Names 

Starting from a list of seed names makes the discovery of further names easier. These 

seed names although distinct, have one common feature, they all represent people 

working in the same place. The strategies we used previously therefore gave us a 

subset of people working in a particular department. If we manage to find other 

pages where the people in this subset are mentioned together, we might be able to 

discover new names of people that belong to this set using more refined strategies. To 

do this, we make use of Google to try to find pages where these people are mentioned 

together. 

Once we have these pages, all the occurrences of seed names are then annotated 

on the retrieved documents. Initially, the program looks for HTML structures such 

as lists and tables containing names which were annotated. Such structures normally 

have an implicit semantic relationship. Lists generally contain elements of the same 

type (e.g. names of people), while the semantics in tables is generally related to 

the position either in rows or columns (e.g. all the elements of the first column are 

people, the second column represents addresses, etc.). If a reasonable quantity of 

known names (at least four or five in our case) is found, learning is performed on 

these sub parts of the documents. A classifier capable of learning linguistic and/or 

formatting features (e.g. relevant names are always the first element in each row) is 

trained and used to identify where the names appear. If we succeed, we are able to 
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reliably recognise the other names in the structure. 8. 

In the approach mentioned in this section, we are assuming that a department 

contains lists and tables of some kind (including a staff list). This is a valid assumption 

which we obtained from our experience after many years spent browsing through web 

sites. Our search is not only limited to simple lists or tables, but other more complex 

structures can be useful as well provided we can discriminate between the information 

found in these structures. One typical example commonly found in these web sites is 

a table assigning supervisors to students. In this case a strategy could be used which 

discriminates between supervisors and students by retaining only the names found in 

a particular column of the table. 

When new examples are identified, the site is further annotated and more patterns 

can potentially be learnt. New names are cross-checked on the resources used to 

identify the seed list such as the digital libraries. In our experiments this is enough 

to discover a large part of the staff of an average CS website with very limited noise, 

even using a very strict strategy of multiple cross-evidence. To accept a learnt name, 

we use a combination of the following strategies: 

1. either the name was recognised as a seed by the previous strategy; 

2. or the name is included in an HTML structure where other known occurrences 

are found such as a list; 

3. or there is evidence from generic patterns (as derived by recognising people on 

other sites) that this is a person (inspired by (87)). 

8Classifiers are induced in our implementation by Amilcare (http://nlp.shef.ac.uk/amilcare/), 
an adaptive IE system developed at Sheffield (25) 
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Extracting Personal Data 

Personal data such as email address, telephone number, position, etc is slightly more 

tricky to find. This information is normally found in one place, generally inside 

the personal home page (or a page with a similar role) of that particular person. 

Once again we combine information from Citeseer, HomepageSearch and Google to 

check if the person has a known page in the current web site. Otherwise we look 

for occurrences in the site in which the name is completely included in an hyperlink 

pointing internally to the site. We must be careful where the links lead to. In many 

departments, these links lead to intermediate pages automatically generated by a 

database. Heuristics can be used to help us avoid such pages. 

When we manage to reach a personal page, we make use of a named entity recog­

niser (e.g. Annie) to easily identify the personal data. This analysis is not just 

performed on the main page but also on subpages pointed to by the main home page. 

It is quite common in a home page to have contact details mentioned in a sub page 

inside the web site. To avoid falling into the trap of following links all over the web, 

we consider only pages with an address under the same domain. 

Discovering Papers 

Discovering the title of papers and their authors is a very difficult task. First of all 

there is no standard format in which publications are listed. If the publication pages 

are formatted in the same way, it would be easy to extract the information but this 

happens very rarely. In most cases each person writes the list using a personal format. 

Even in these cases, it is very rare that the person uses the same style in the entire 

page and very often the style is quite irregular since the list is compiled manually in 
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different times. This is a typical case in which the classic methodology of manually 

annotating some examples for each page for each member of staff is infeasible, due to 

the large number of different pages. Also irregularities in style produce noisy data and 

classic wrappers are not able to cope with noise. A generic methodology is needed 

that does not require any manual annotation. 

Secondly, although there is no written rule, normally a publication list contains a 

list of papers having the title of the paper, the conference where it was published and 

the authors of the paper. A title is normally a random sequence of words (e.g. the 

title of (39)) and cannot be characterised in any way (i.e. we cannot write generic 

patterns for identifying candidate strings as we did for people). A title can also be 

very similar to the name of a conference and it might be hard to distinguish which is 

the title of the paper and which is the name of the conference where it was published. 

Finding out the names of the authors is not difficult as we have seen in the previous 

section. The problems arise when we try to associate authors with a particular paper. 

There is nothing apart from visual cues which create the association. Unfortunately, 

we cannot characterise these cues since there are no rules which state whether the 

name of an author must appear before or after the title of a paper. Authors are names 

in particular positions and in particular contexts. They must not be confused with 

editors of collections in which the paper can be published, nor they must be confused 

with other names mentioned in the surrounding text. 

Finally, most publications have more than one author, it is very possible that each 

paper is cited more than one time even in the same web site by different co-authors. 

N early every department and member of staff in a CS department provide a personal 

updated list of publications. 
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The strategy we propose uses the names of staff members as keywords to query 

the digital libraries (AKT 3store, Citeseer and UniTrier). These digital stores return 

a list of papers for every staff member. Since all the available libraries are based upon 

manual or semiautomatic techniques to harvest the information, all the lists retrieved 

are incomplete. This is not a problem because we only require a small number of 

examples to bootstrap the paper discovery process. The next step is to use the titles 

in the list to query a search engine and get a number of pages containing multiple 

paper citations (We accept only pages which contain at least four paper titles). Titles 

are used because they tend to be unique identifiers. Pages with few hits are discarded 

since it is unlikely that they contain other examples for the same author. Pages with 

many hits are discarded too so as to avoid titles which contain very common strings 

such as "System" . 

Once we have a set of pages containing good examples, we take each page and 

annotate the titles of the papers and the names of the authors. Examples stored in 

HTML lists and tables for which we have multiple evidence, are favoured over other 

examples since it is much easier to divide the page into smaller chunks and extract 

those chunks. Each chunk will contain a complete set of data elements, consisting of 

one paper title together with the related conference name (where it was published) 

and its authors. Please note however that the structure of the citation is often not 

very structured internally. The following two examples refer to chunks representing 

the same publication but they come from two different web pages
910

. 

Yorick Wilks: On-line Curriculum Vitae 
<p> 
<span lang=FR style='mso-ansi-language:FR'> 

9http://www.dcs.shef.ac. uk/ ""yorick/ cv.html 
lOhttp://www.dcs.shef.ac.uk/ ""fabio/cira-papers.html 



Dingli, A., Ciravegna, F. and Wilks, Y. (2003) 
Automatic Semantic Annotation using Unsupervised 
Information Extraction and Integration. 
In Skuppin (ed.) Proc. Second Internat. 
Conference on Knowledge Capture (KCAP03). 

</span> 
</p> 

Publication List of Fabio Ciravegna 
<Ii class=MsoNormal style='mso-list:116 leve11 If023'> 
<span lang=EN-US style='mso-ansi-language:EN-US'> 

Alexiei Dingli, Fabio Ciravegna, and Yorick Wilks 
<br> 
<a href="paperi\KCAP03.pdf"> 

Automatic Semantic Annotation using 
Unsupervised Information Extraction and Integration 

<fa> 
<br> 

in Proceedings of the 
</span> 
<span class=small> 
<a href=''http://sern.ucalgary.ca/ksi/K-CAP/K-CAP2003/''> 

K-CAP 2003 
<fa> 
<a href=''http://km.aifb.uni-karlsruhe.de/ws/semannot2003/''> 

Workshop on Knowledge Markup and Semantic Annotation, 
<fa> 

,Sanibel, Florida, October 26, 2003 
</span> 
<br style='mso-special-character:line-break'> 
<! [if !supportLineBreakNewLine]> 
<br style='mso-special-character:line-break'> 
<! [endif] > 
</li> 
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The example clearly shows that simple wrappers relying on the HTML structure 

only would be ineffective. The number of tags varying between documents varies 
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according to the different styles and layouts used. HTML is a language that pro­

vides only information about the layout and there is no way to discriminate between 

authors and editors and title of paper and title of collection since there is no seman­

tic information stored inside the document. More sophisticated wrapper induction 

systems are needed, like that provided by Amilcare (25), which exploits both XML 

structures and (para-)linguistic information (24). 

By adopting a strategy like we mentioned before made up of a cycle of annota­

tion/learning/ annotation, we are able to discover a large number of new papers. The 

cycle terminates when there is no more information to discover or the user decides to 

interrupt the cycle. Every time co-authorship amongst people is discovered, we ex­

ploit the redundancy again by using the other authors to discover more collaborations 

between the co-authors. 
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5.4 Armadillo Evaluation 

The architecture mentioned is fully implemented and we made extensive experiments 

on a number of Computer Science (CS) web sites. We have experimented on the sites 

of (1) the Computer Science Department of the University of Sheffieldll , UK, (2) the 

School of Informatics at the University of Edinburgh12 , UK, and (3) the Department 

of Computer Science of the University of Aberdeen13 , UK. In the following sections 

we extensively report about the results obtained on these sites. 

5.4.1 Finding People's Names 

The first task was to identify the names of people working in a particular site. It 

was not enough to return just the names of all the people mentioned in the site 

since such a list could also include names of students, names of people from other 

departments who collaborated with the current CS department, etc. Therefore it is 

not just a matter of discovering named entities but it is a much more complex task. 

The experiments show that the names of people can be found with a high reliability. 

The following are the results for the various sites: 

The Computer Science Department of the University of Sheffield 

In the case of the Sheffield's department using just Information Integration (II) 14 

techniques the system discovers 40 seed names of people belonging to the department 

as either academics, researchers or PhD students, 35 correct and 5 wrong. A quali­

tative evaluation of the errors is worth doing. The false positives can be divided into 

llhttp://www.dcs.shef.ac.uk 
12http://www.inf.ed.ac.uk 
13http://www.csd.abdn.ac.uk 
14By II techniques we mean that no IE is involved. Information is just harvested from online 

sources and integrated together. 
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three groups: 

Spurious Hits refer to entities which are truly wrong but for which a home page 

was also erroneously found. In general, their number is quite low in proportion 

to the total number of names. Recognising these names as false hits is quite 

easy for a person, so if the results are to be used or checked by a person, they 

do not constitute a problem. The only spurious hit we got (Computer Science) 

is actually the name of the departmental home page. A tighter post processing 

filtering technique was also applied whereby potential names containing stop 

words (such as An, For, The and Is) are discarded. This removed spurious 

names including the entities" An Journal", "For Information" and "The Is" 

which were returned by the system in the initial phases, thus leaving only the 

one reported here in the final results. 

Wrong Persons refer to names of people who are researchers in other institutions 

but which also have a web page similar to a home page in the Sheffield Computer 

Science department. The list of people include: 

• Eugenio Moggi 

• Jose Principe 

• Sophia Ananiadou 

The recognition of these people is due to the wrong identification of some web 

pages within the departmental site as their home pages. This occurred because 

in the past, these people all collaborated in some project with someone from 

within the department and their name is mentioned in a heading of one of the 

pages in the web site of the department. 
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Wrong Criterion refers to wrong information found within the web site. This in­

cluded the name of the following person: 

• Florentine I pate 

The system accepts a person as being part of a department if he/she has a 

home page in the departmental web site. In fact this person does have a home 

page at the department and further examination reveals that he was in fact a 

past student or employee. Therefore, the system could not possibly know that 

he is no longer employed within the department since the old web pages are 

still accessible and there is absolutely nothing on them that indicates that the 

particular person no longer studies or work over there. 

These potential names are then used to seed the learning algorithm. But before 

doing so, it must find out the best pages from which to learn. Pages are considered 

good if they contain lists of people. A search is conducted in the Computer Science 

web site using a number of queries similar to this: 

site:dcs.shef.ac.uk "academics I personnel I academics I staff I faces I list" 

Lapata Clayton Demetriou 

The first element in the query is the name of the site we are searching through 

in this case dcs.shef. ac. uk. The second element is an OR list containing relevant 

keywords such as academics, personnel, etc. This list is generated automatically 

from a domain dependent list of words. The final element is a list of seed names 

and surnames obtained from the previous procedures. These lists normally contain 

about three names or surnames chosen randomly. In this case the surname Lapata 
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and Demetriou, and the name Clayton. All of these are people who work in the 

department and who were discovered earlier. We use just three names because of 

limitations imposed on us by the search engine. In Google, a query cannot be bigger 

than a certain length. The system performs around 30 such queries and then selects 

from the results the web pages that appear the most. The top five web pages obtained 

from these experiments were: 

1. http://www.dcs.shef.ac.uk/department/people/groups.htm 

2. http://www.dcs.shef.ac.uk/department/people/atoz.htm 

3. http://www.dcs.shef.ac.uk/research/publications.html 

4. http://www.dcs.shef.ac.uk/people/atoz.htm 

5. http://www.dcs.shef.ac.uk/people/groups.htm 

If we examine this list, we find that all the pages (except for the third page) contain 

structured lists of names belonging to people that work in the department. Therefore 

four out of five of these pages are easy to learn by using our learning algorithm. The 

third page in the list is a very unstructured page containing lists of people together 

with their publications. It obviously ranked well in the search because it contains 

a list of all the publications in the department and all the people who published 

papers are mentioned in this page. Since this unstructured page is quite difficult to 

learn by using a learning algorithm, we expect to have some errors introduced in the 

Information Extraction (IE) phase. 

The Amilcare IE tool we used, managed to discover a total of 84 names from this 

department. Of these 116 were correct and 8 were wrong. An analysis of the wrong 
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names (introduced in the IE phase and before filtering) shows that four of them were 

spurious hits similar to the ones we saw earlier while the remaining three were real 

errors. These included: 

• For Translation 

• The Of 

• In To 

• The Research 

• Prospective Student 

• Reading Reading 

• Piek Vossen 

As mentioned before, these spurious errors were filtered by making use of a stop 

word list since most of them contain a stop word in them. This list was reported here 

because they add a further insight into the problems which Armadillo is facing. Since 

the phrases in the list do not even make grammatical sense, it seems to suggest that 

the system is not delimiting adequately the different sections of a document. What is 

happening is that tags found in the HTML documents are not being treated correctly. 

More adequate sentence splitting should be investigated when HTML documents are 

being analysed in order to prevent these errors from the very start. 

The remaining error was a name of a real person but who did not work in the 

department. His name is "Piek Vossen" and he was mistaken for a person working 

in the department because he appeared in several pages of the CS web site. A search 
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through the site reveals that in the past he collaborated paper writing with some 

people working in the department. 

While browsing through the Sheffield's CS department web site looking for such 

anomalies, we carne across several other sites with potential problems. There were 

several people who did not work in the CS department but who had a web page 

dedicated to them. These consisted mainly of people who gave a seminar in Sheffield. 

In other cases, pages similar to horne pages were found in the horne page of one of the 

members of the department. Apparently, she keeps a bibliography of the publications 

of these people in separate pages dedicated to them. In our experiments, these people 

were not considered part of the CS department because probably, their name does 

not appear in the main lists of people. In other sites, such pages with names could 

cause problems because even though the model we use to spot a horne page of a 

person works in most cases, there are definitely some exceptions. This means that 

the heuristics which we use should be refined further in order to cover as much as 

possible only positive cases. 

To evaluate these results, we manually counted the number of academics, research 

staff and research students found in the groups page15 (and filtered out secretarial staff 

which were also included in the list). The total number of people in the department 

was of 139. If we now calculate Precision, Recall and F-Measure for the data obtained 

so far, we get the results in Table 5.1. 

These experiments show a drastic increase in both precision and recall when In­

formation Extraction (IE) is applied on top of results obtained using Information 

Integration (II). Precision increases by almost 7%16 while recall increases by more 

15http://www.dcs.shef.ac.uk/people/groups.htm 
16 i~.~~ X 93.5% = 106.9% obtaining almost a 7% increase 
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Possible Actual Correct Wrong Missing Precision Recall F-Measure 

139 
139 

40 
124 

35 
116 

5 
8 

104 
23 

87.5% 
93.5% 

25.2% 
83.5% 

39.1% 
88.2% 

Table 5.1: Results in Discovering People and Associated Home Page. The first line 
refers to accuracy in discovering names using the procedure for seed names (Cite­
seer+Google, etc.), the second one refers to the discovery using adaptive IE. 

than 200%17 over the II results. The results indicate that the II techniques are good 

to boost up precision while recall is fairly low. The main reason for this is that the 

searches are directed by the web page (since potential names are harvested by crawl­

ing the web page). This means that since the system has no specific entry point to 

the web site, it is never guaranteed that it will find links that will take him to a page 

rich in information (in our case rich in names). Therefore the data being collected has 

very low recall since the few examples collected are purely by chance and using simple 

heuristics. Also, the II methods are restricted to a limited number of databases or 

Oracles. Therefore, their knowledge cannot be greater than the knowledge found in 

these Oracles. This restriction keeps recall quite low since the system is dependent 

on these sources. Precision on the other hand rockets up because we are collecting 

information from these Oracles which have very structured sources. Therefore the 

wrappers we create manage to collect precise information without any errors. 

When we use IE, the story changes. Recall rockets up while precision increases 

too but the increase in precision is minimal. This increase in recall occurs due to the 

fact that the IE is not just being applied on an arbitrary web page but on a carefully 

17 i~.~~ x 83.5% = 331.4% obtaining around 231% increase 
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selected page rich in names. The page is selected by querying an Information Retrieval 

engine (in our case Google) using the information discovered in the previous stage as 

query terms. The retrieved page is then annotated using very precise data obtained 

from the II stage so when the IE engine trains, it is training on good examples. It 

then learns from the structure of the particular page how to recognise names and 

returns new examples. The slight increase in precision is still very good. Normally, it 

is expected to have a decrease in precision because the IE engine tends to introduce 

new errors but the quality of the examples used for training, makes it possible for 

the IE engine to maintain the same precision. Recall is obviously increased since we 

are now using a more robust classifier capable of finding new instances of the target 

concept, trained on very good examples and which is applied on carefully selected 

pages. 

The School of Informatics at the University of Edinburgh 

In the experiments performed on the site of the School of Informatics at the U ni versi ty 

of Edinburgh the system using just II discovers 13 seed names of people working in 

the department, 11 correct and 2 wrong. According to the lists found on their web 

site1819 , the University has a total of 216 people working over there made up of 

academic staff, research staff and fulltime postgraduates. 

If we take a look at the type of errors returned back by the system, we find out 

that they are very similar to the errors found in the Sheffield site. The first error 

included a spurious phrase like "Computer Science". The second error was a name 

of a real person called" Javier Esparza". This happens to be the name of person who 

18http://www.inf.ed.ac.uk/research/iccs/directory.html 
19http://www.inf.ed.ac.uk/research/iccs/students.html 
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used to work in Edinburgh many years ago. In the site there are several references 

pointing to this person because he published and co-authored papers with people who 

still work over there. Since the system managed to find a copy of one of these papers 

within the CS web site having his name as the title of the page, the system thought 

that it was a valid personal page and accepted the name of the person. 

The next phase makes use of several IE strategies like the ones mentioned earlier. 

In this phase the results we obtain depend on a number of factors. When we search 

for a page, the queries are designed to look for lists of names which can be easily 

learnt by the IE engine. These pages are generally very structured and therefore, few 

examples are required to bootstrap the learning process. In this phase, we cannot 

exclude the possibility of analysing a few unstructured pages, therefore the IE system 

returns some spurious results. In fact, the IE tool managed to discover a total of 

163 names from this department. Of these 153 were correct and 10 were wrong. An 

analysis of the wrong names (introduced in the IE phase) shows that they were all 

spurious hits similar to the ones we saw earlier. These included: 

• Students Home 

• Postgraduates Research 

• Management Science 

• Intranet Home 

• Computer Literacy 

• Computer Programming 

• Cognitive Science 
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Possible Actual Correct Wrong Missing Precision Recall F-Measure 

II 
IE 

216 
216 

13 
163 

11 
153 

2 
10 

205 
63 

84.6% 
93.9% 

5.1% 
70.8% 

9.6% 
80.7% 

Table 5.2: Results in Discovering People and Associated Home Page at the School 
of Informatics at the University of Edinburgh. The first line refers to accuracy in 
discovering names using the procedure for seed names (Citeseer+Google, etc.), the 
second one to the discovery using adaptive IE. 

• Centre Research 

To evaluate these results, we manually counted the number of academics, research 

staff and research students found in the groups page20 
21 (and filtered out secretarial 

staff which were also included in the list). The total number of people in the depart­

ment was of 216. If we now calculate Precision, Recall and F-Measure for the data 

obtained so far, we get the results in Table 5.2. 

These experiments show a significant change in both precision and recall when IE 

is applied on top of the II results. Precision increases by almost 11%22 while recall 

increases by more than 1200%23 over the II results. Once again, we are confirming 

what we saw earlier, basically the fact that the II techniques are good to boost up 

precision and the IE techniques are good at boosting recall. The increase experienced 

in this experiment shows that only a few quality data items (from 11 correct names to 

153 correct names) are required to bootstrap the whole process and obtain excellent 

results. The combination of both these techniques seems to be the answer towards 

20http://www.inf.ed.ac. uk/research/iccs/ directory.html 
21 http://www.inf.ed.ac. uk/research/iccs/students.html 
22 i2.~~ X 93.9% = 111% obtaining almost an 11 % increase 
23100;5 x 70.8% = 1388.2% obtaining around 1288% increase 

5.1,0 
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achieving high precision and recall in knowledge extraction applications. 

The Department of Computer Science of the University of Aberdeen 

The Computer Science department at the University of Aberdeen is quite small when 

compared with the other departments. It is composed of 70 people made up of 

academics, research staff and research students. When Armadillo was tested on this 

site, the results obtained were quite similar to those already seen. Using just II 

techniques the system discovers 22 seed names of people belonging to the department 

as either academics, researchers or PhD students, 21 correct and 1 wrong. An analysis 

of the errors shows that the name belongs to an ex PhD student of the department. In 

the web site, one can still access a site with the name of this person on it. There was 

also another error which i did not include in these results. The name found belonged 

to an ex member of staff but in this case, it is curious to note that the name of the 

person is actually still mentioned in the staff page24
. The staff page contains two 

additional lists entitled" Honourary Staff" and" Former Staff". The former list is 

made up of 5 people from other Universities who were given an honourary title by the 

University of Aberdeen. The latter list contains the names of two people who used to 

work at the University. For the purpose of this evaluation the people found in these 

lists were included as part of the total number of people working in the department. 

Most of them still have a personal web page somewhere in the site and there are 

several references to them scattered here and there. In order to figure out who still 

works in the site, we had to manually go through the site, analyse what was written 

and deduce from the various clues whether or not the person still works at the CS 

department. This obviously involves a higher level of intelligent inferencing, much 

24http://www.csd.abdn.ac.uk/people/ 



201 

Possible Actual Correct Wrong Missing Precision Recall F-Measure 

II 
IE 

70 
70 

22 
65 

21 
63 

1 
2 

49 
7 

95.5% 
96.9% 

30% 
90% 

45.7% 
93.3% 

Table 5.3: Results in Discovering People and Associated Home Page at the Depart­
ment of Computer Science of the University of Aberdeen. The first line refers to 
accuracy in discovering names using the procedure for seed names (Citeseer+Google, 
etc.), the second one to the discovery using adaptive IE. 

higher than Armadillo can handle. Because of this, if we did not include these people 

as positive results, the evaluation would be unfair since it would be unreasonable to 

expect the system to identify them as persons working at the University. 

In the next phase, the IE tool managed to discover a total of 65 names from this 

department. Of these 63 were correct and 2 were wrong. An analysis of the only 

wrong name (introduced in the IE phase) shows that it was the name of a past M.Sc. 

student called" Richard Martin". Although his name is not included in the staff page, 

he does has some publications and also a web page dedicated to him. Therefore, it 

was difficult for the system to figure out whether or not the student is still there or 

not since the different cues associated with this student matched cues associated with 

typical researchers working at the department (i.e. they must have a home page and 

a number of publications). A possible solution to this problem could be to analyse 

and keep record of the date when a piece of information was created on the web. In 

this way, papers which were published or web pages which were updated many years 

ago should not be considered as valid clues towards deciding whether or not a person 

still works in a particular site. 

To evaluate these results, we manually counted the number of academics, research 
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staff and research students found in the groups page25 . Then we calculated Precision, 

Recall and F-Measure for the data obtained up to that stage and we got the results 

in Table 5.3. 

These experiments continue to confirm the observations we saw in the other ex-

periments. Precision increases by almost 2%26 while recall increases by 200%27 over 

the II results. This seem to strengthen more our hypothesis that a collaboration of 

II and IE techniques is necessary to obtain results with high precision and recall. 

5.4.2 Paper Discovery 

After harvesting all the names of the people working in a CS department, the next 

task is to identify their publications. The task of discovering papers is very complex. 

If we analyse the implications associated with finding the title of a paper we realise 

that a title: 

• is made up of a variable number of words. 

• is generally a grammatical phrase or sentence but there is no rule binding it 

from being so! 

• it can contain any word, number or symbol in any order! 

All cues are not very helpful at identifying a name. If we try to examine the 

context in which paper titles appear, we realise that this is slightly more regular 

(since it generally contains the names of the authors, conference name, conference 

date, conference location, etc) but the author is not really bound to include any 

25http://www.csd.abdn.ac.uk/people/ 
26 J~.~~ X 96.9% = 101.5% obtaining almost an 2% increase 
27 ~ X 90% = 300% obtaining an additional 200% increase 

3070 



203 

information and the format is left to everyone's discretion. Unfortunately, there 

is not really a standard way of representation. Some formats are more prevailing 

than others (like BibTex28
), but we cannot assume the system will encounter just 

a particular format because on the net there can be an infinite number of different 

formats. The only thing we know for sure is that references to publications do not 

just appear anywhere on the web but in specific places. These include databases 

containing lists of publications, an author's personal publication list, references found 

in other papers, etc. Once again, most of these pages contain lists of papers in no 

particular format but they are definitely much regular. 

The experiments we performed were based on the ideas presented earlier. While 

harvesting the names of people working in a particular site, we also gather a partial 

list of their publications (from the online databases). For every author, we used this 

list to query a search engine and obtain a web page where all these publications 

appear. The rationale is that a page which contains the elements of a representative 

partial list, will probably contain other unknown members of the complete list. This 

is the same idea which we used to identify the names of people earlier. 

The results presented in this section refer to the experiments performed for the 

people working in the Sheffield CS department only. In our experiments a paper was 

considered correctly assigned to a person if it was a paper mentioned in the personal 

papers list of the author and the title is 100% correct. The seed procedure discovers 

143 papers, the learning procedure returns 407. If we manage to discover less than 

3 papers for a particular author, we do not consider this list as being representative 

28BibTeX is a program and file format designed by Oren Patashnik and Leslie Lamport in 1985 
for the LaTeX document preparation system. The format is entirely character based, so it can be 
used by any program. It is field based and the BibTeX program will ignore unknown fields, so it is 
expandable. It is probably the most common format for bibliographies on the Internet. 
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enough and therefore we exclude the author from the search. Checking the correctness 

of the results is very labour intensive, therefore we randomly checked the papers 

extracted for 10 of the staff members for which the seed papers exceeded 5 examples. 

These are shown in Tables 5.4 and 5.5. 



Possible Actual Correct Wrong Missing Precision Recall F-Measure 

Rl 12 5 5 0 7 100% 42% 59% 
R2 45 7 6 1 38 86% 13% 23% 
R3 49 22 22 0 27 100% 45% 62% 
R4 94 18 18 0 76 100% 19% 32% 
R5 48 8 8 0 40 100% 17% 29% 
R6 43 5 5 0 38 100% 12% 21% 
R7 81 27 27 0 54 100% 33% 50% 
R8 21 8 5 3 13 63% 24% 34% 
R9 31 18 15 3 13 83% 48% 61% 
RIO 103 25 24 1 78 96% 23% 38% 

Total 527 143 135 8 384 94% 26% 40% 

Table 5.4: Seed Paper Discovery Accuracy; each line represents the papers discovered for a person. Possible 
represents the number of papers present in the personal publication list page, Actual the number of papers returned 
by the systems. The actual results are divided in Correct, Wrong and Missing. 

to 
o 
CJ1 



Possible Actual Correct Wrong Missing Precision Recall F-Measure 

Rl 12 8 8 0 4 100% 67% 80% 
R2 45 40 36 4 5 90% 80% 85% 
R3 49 36 36 0 13 100% 73% 85% 
R4 94 82 50 32 12 61% 53% 57% 
R5 48 43 41 2 5 95% 85% 90% 
R6 43 20 15 5 23 75% 35% 48% 
R7 81 42 33 9 39 79% 41% 54% 
R8 21 18 17 1 3 94% 81% 87% 
R9 31 28 27 1 3 96% 87% 92% 
RIO 103 90 83 7 13 92% 81% 86% 

Total 527 407 346 61 120 85% 66% 74% 

Table 5.5: IE-based Paper Discovery Accuracy obtained by Amilcare using the seeds in table 5.4 to bootstrap 
learning. 

to 
o 
OJ 
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Possible Actual Correct Wrong Missing Precision Recall F-Measure 

II 
IE 

527 
527 

143 
407 

135 
346 

8 
61 

384 
120 

94.41% 
85.01% 

Table 5.6: Paper Discovery: Grand total 

25.62% 
65.65% 

40.30% 
74.09% 

The results follow what was noticed earlier in the other experiments, that the use 

of IE increases significantly the overall recall rate when seeded with results obtained 

using II. In fact, the recall grows from 26% (for seeds) to 66% (for IE-based), an 

increase of more than ~ of the total number of papers. Precision from 94% to 85% 

and F-measure from 40% to 74% (see Table 5.6). 

5.4.3 Other domains 

Armadillo works well in the CS domain discussed in Section 5.4.1, but what about 

other domains? It is useless creating a system so bound to one particular domain that 

it cannot be used in other domains. In order to test the portability of the system, 

myself together with a colleague of mine Mr. Sam Chapman decided to port Armadillo 

to another domain. Subsequently, the evaluation of this system (which follows) was 

performed exclusively by myself. For these tests we chose a totally different domain, 

the Artists domain. 

This scenario was created for the ArtEquAKT project29
. The ArtEquAKT group 

is building a system which accepts as input a name of a famous artist and the system 

will generate a biography of that artist on the fly. The aim of this project is to use 

knowledge acquisition and analysis techniques to extract information from web pages 

29http://www.artequakt.ecs.soton.ac.uk/ 
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on a given subject domain and construct a knowledge base overlaid with an ontology. 

The ontology together with story templates can then be used to construct stories. 

This is achieved by walking through the ontology, extract appropriate knowledge 

from the knowledge base underneath and insert them in the templates. The data 

they need is not obtained from any particular database but it is being harvested from 

the web on the fiy. A major problem they encountered is how to find the information 

and once it is found, how to extract it. Because Armadillo was designed to perform 

exactly this task we decided to take over the challenge and adapt our system for their 

domain. 

For the Artist scenario, we customised the basic Armadillo system and produced 

Art-madillo. This system basically takes as input a name of an Artist and returns a 

list of paintings for that particular artist together with other meta information such 

as dates, etc (if they are available). It works in a similar way to the CS domain seen 

previously. The only difference being that the main sources of information are related 

to artists rather than academic researchers. The sources used are various, some of 

which are listed in Table 5.7. 

When the system is given the name of an artist, it searches through these sources 

for information concerning that particular artist. The newly discovered information 

is all stored in a database within Art-madillo. As soon as the system has some 

information about an artist which can be used to bootstrap further information, 

a search is launched using Google to find new sites which might contain further 

information. These sites are annotated with the known information. IE is then used 

to learn the patterns in the site and reapplied on the same site in order to discover new 

facts. The cycle continues like that until no further information can be discovered. 



Site 

http://www.artcyclopedia.com 
http://www.artpublishing.com 
http://www.artrenewal.org 

http://www.bildindex.de 
http://www.postersposters.net 
http://www.postershop.com 
http://www.wholesaleoilpainting.com 

Artists 

Cezanne, Raphael 
Cezanne, Monet 
Caravaggio, Manet, 
Raphael, Renoir 
Cezanne, Manet 
Manet, Monet 
Cezanne, Renoir 
Caravaggio, Raphael 
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Table 5.7: A list of sites from where information about particular artists was collected 
during the manual evaluation. 

The following is the result of a comprehensive evaluation which we performed on 

the system. We took a random set of 6 famous artists and we used them to test 

the system. A problem we had during the evaluation was how to calculate the total 

number of pieces created by a particular artist. We could not find any site that 

gives a complete list of paintings probably because the exact amount is unknown. 

Therefore, we had to compute a manual estimate of the total number of pieces per 

artist. What we did was to find one or more sites that list most of the pieces done 

by a particular artist. Then we went through each site and manually counted the 

number of paintings. Since the paintings in most sites were listed in alphabetical 

order, it was possible to count the pieces while going through several sites at once. 

This was not a straightforward task since we also had to ignore duplicate names 

and duplicate paintings. There were several cases where some of the paintings were 

displayed more than once in the searches using the same name but in a different 

language. In other cases, the same painting was shown using the same name but 

having different dimensions. This mainly occurred because some of the sites we used 
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were online shops which sell prints of paintings. The complete list of sites we used 

for the manual evaluation to calculate the total number of paintings per artist can be 

seen in Table 5.7. Once we have this estimate, the rest was quite straightforward and 

basically consisted in going through the results and counting the correct and wrong 

entries. The results we obtained can be seen in Table 5.8. 



Artist Method Possible 

Caravaggio II 82 
IE 82 

Cezanne II 188 
IE 188 

Manet II 128 
IE 128 

Monet II 130 
IE 130 

Raphael II 162 
IE 162 

Renoir II 45 
IE 45 

Actual Correct Wrong 

50 50 0 
81 81 0 

51 51 0 
88 80 8 

38 38 0 
52 52 0 

19 19 0 
73 63 10 

97 97 0 
145 140 5 

19 18 1 
28 27 1 

Table 5.8: Artist Discovery 

Precision Recall 

100% 61% 
100% 98.8% 

100% 27.1% 
91% 42.6% 

100% 29.7% 
100% 40.6% 

100% 14.6% 
86.3% 48.5% 

100% 59.9% 
96.5% 86.4% 

94.7% 40% 
96.4% 60% 

F-Measure 

75.8% 
99.4% 

42.7% 
58% 

45.8% 
57.8% 

25.5% 
62.1% 

74.9% 
91.2% 

56.2% 
74% 

~ 
t-' 
t-' 
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If we analyse the results, we realise that the average precision for all the 6 artists 

during the II phase was 99.1 %. This is not something unexpected since our II sources 

were structured databases containing thousands of paintings. Therefore, it was easy 

for our wrapping algorithms to get the names of the paintings and the name of the 

relevant artist from the sites. The few errors introduced in the system were due to 

a number of factors some of which already mentioned before. The first kind of error 

encountered in the sites, was due to the fact that the sites contained duplicates. This 

was not really a problem since duplicates can be filtered easily from any list. The 

problems arise when the duplicate name is either spelt differently or else in a different 

language. If for example we take a famous painting of Renoir entitled "The Blue 

Vase" , in various sites, we found the following three versions of the name: 

1. The Blue Vase 

2. Blue Vase 

3. Le Vase Bleu 

They all refer to the same painting but for our system, its quite hard to realise 

that. The second name has a missing article when compared with the original name. 

We could exclude articles but how can we be sure when an article is part of the 

name or not? And what happens if we exclude articles and then realise that there 

is another painting entitle just "Blue Vase"? How would we go about distinguishing 

them? These are all open questions for which we do not really have an answer but they 

are definitely worth asking. The third name is 100% correct when compared with the 

original name, but it is written in French. If a system would analyse this, it would be 

considered entirely different from the original name (unless the system knows some 
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French!). A possible solution to this could be to add a translation component to 

the system. In the previous domain, there was no need for such a component but 

in the Artists domains, since it is a multilingual domain, such a component could 

come useful. Unfortunately, translation components are far from being perfect and 

therefore it would not solve the problem entirely. The second kind of error has to do 

with wrong entries inside the databases from which we gather information. We have 

already encountered such an error when we were working earlier in the CS domain. 

We cannot really do much about this kind of error since as default, we consider the 

entries inside a database as being 99.99% reliable because for us, a database is an 

Oracle! If the database is not considered reliable, then it is not used for II in the first 

place. In the case of the Artists domain, the errors in the databases were negligible 

therefore they were still used as part of the II techniques. With regards to recall, this 

depends entirely on the popularity of the particular artist. The more popular the 

artist was, the more the system is likely to gather information during the II phase. 

Since as we mentioned before, there is no single database containing a comprehensive 

list of paintings per artist, we had to use several sources. The recall obtained during 

the II phase represents the total paintings discovered for a particular artist using 

different sources. 

When it comes to the IE phase, the precision value remains stable or increases 

in half of the tests while decreases slightly in the other half. This slight decrease 

was due to the fact that the IE always introduces some errors in the whole process. 

These errors have to do with wrong boundaries when it comes to detecting names of 

paintings. On the other hand, recall increases drastically in all cases (and on average 

it doubles). 
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We should not forget that the results obtained in the II phase indicate the popu­

larity of the artists in the sites we used as a source for our information. Basically, this 

means that the more represented an artist is in that site, the more we manage to find 

structured information about that artist. Because of this, some of the famous artists 

like Monet were penalised. The results do not imply that Monet is less famous than 

the other artists, but they just indicate that our sources of information did not have 

much information about Monet. Unfortunately, we could not really do much about 

it since there is no site on the web which contains a comprehensive list of paintings. 

This reminds us once again about the nature of the web, basically that the in­

formation is rarely stored in one place, but it is distributed. This is definitely not a 

big problem since in all the experiments presented in this document, our approach 

manages to overcome this problem. If we now take a look at the IE results, it still 

manages to find new paintings for every artist even though the paintings which are 

used as seed (i.e. those that were found by using II) are few in some cases. If we keep 

on looking at the results we got for Monet, the recall increases by 132% when the 

IE techniques are used. 

On the whole the methodology starting only from the name of the artist manages 

to find quite a big list of paintings for each artist. In all cases II and IE combined 

together proved to be the way forward to gather information from the web effectively. 

5.4.4 Analysis and Observations 

In summary, when we analyse all the results, some interesting trends emerge. When 

the modules make use of II techniques, they all manage to get a high precision and a 

low recall. When IE techniques are used on top of the II techniques, the precision in 

all cases is stable (i.e. it either drops or rises by a slight amount or else it stays the 



215 

same) while the recall increases drastically. Therefore, whenever our methodology is 

fully applied, we manage to obtain both high precision and recall. Since this pattern 

was constant through out all the experiments, we conclude that it is the default modus 

operandi of how our methodology behaves. These results are important because they 

show that our system manages to strike a high balance between both precision and 

recall. The results obtained in most of the IE systems mentioned in Chapter 3 all 

manage to get high precision but low recall (or vice-versa). Our methodology on the 

other hand shows that if II and IE techniques are combined together, we can easily 

obtain high recall and precision. 

The rationale behind our results is the following. With II techniques, we manage 

to obtain high precision but low recall. The results exhibit this trend because the 

several sources found on the web, no matter how updated they are cannot possibly 

manage to be as up to date as the place from where the data originates. Therefore 

with II we manage to get a high level of precision because: 

• The sites contain next to perfect information and therefore we are confident that 

the data we gather from these sites is generally correct. We are not guaranteed 

it is the most up to date, but we are guaranteed its correctness since these sites 

are specialised in providing such data . 

• These sites contain information presented in a structured way. Therefore, it 

makes the process of extracting information from these sites much easier and 

less error prone. Because of this, we eliminate lots of noise from our data 

immediately. 

The only problem with II techniques is that the information obtained from the 

different sources is generally not the latest piece of data. In our methodology, we are 
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interested in harvesting the latest information from the web. When we test the results 

(which we obtain from the II techniques), most of the data is correct (therefore the 

precision is high) but since it is not the latest, the recall appears to be low in most 

cases since our data does not include the most recent information. 

At this stage IE comes to the rescue, it allows us to bring up the recall of the 

system. First of all we make use of the precise examples (which we found using the 

II techniques) to find web pages where these examples appear. Our rationale here 

is that if these examples appear in a page, it is likely that the page contains other 

unseen examples. Once we have these pages, we mark the examples which we already 

know, get these examples together with some context and send these phrases to the 

IE algorithm for training. The trained IE system is then reapplied on the same page 

with the hope of discovering some new examples. Since the system is learning from 

good information, it is very unlikely that noise is introduced therefore precision is very 

stable. Recall shoots up because the page from which we are extracting information, 

is the page, which contains the latest information. In most cases, the pages returned 

by the search engines are the original pages written by the owner of the information 

therefore they are the most up to date. In synthesis, the IE succeeds because it learns 

the page structure and exploits that information to gather more information found 

in the page. 

The conditions for our methodology to work are very simple, basically the sys­

tem only needs an external partial source of information which helps the system spot 

precise information (but which must not necessarily be complete). Once this infor­

mation is available it is used to seed the IE process, bootstrap learning and make the 

discovery of new instances possible. 
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5.5 Conclusion 

In the Armadillo methodology, we have shown how to exploit two features of the 

web, the redundancy of information and the availability of information. Redundancy 

is an important feature of the data found on the web and refers to the property 

that the same information is not stored in just one place but is repeated in different 

repositories around the web. The availability of information discussed in (14) refers 

to the fact that online information can be used to bootstrap this process but in some 

cases, this information is not available online for a number of reasons. These include 

cases where the information is expected to be known by everyone and therefore no 

one bothers to publish it online. There are many other domains which suffer from 

the same problem of lack of published information and so far there are few plausible 

ways of tackling it apart from this methodology. 

Armadillo is far from solving all the open issues related to the annotation task 

on the web, but the results clearly show that what we propose, is definitely as step 

forward in the right direction. To conclude, in the coming chapter we will summarise 

the research found in this thesis, share our vision of the future of the SW and we 

will propose new (sometimes daring) ideas. In so doing, we hope to stimulate more 

research in the SW field. 



Chapter 6 

Conclusion 

6.1 Research Contributions 

Throughout this thesis, we have seen how vital the whole annotation process is for 

the success of the Semantic Web (SW). All SW researchers understand the potential 

of this new web, they all expect great things to happen in the near future but most 

of them seem to put aside the annotation problem. As can be seen from the SW 

Wave diagram1 (See Figure 6.1), these tags are the building blocks upon which the 

SW idea is built. At the bottom, we find the markup languages (SGML, XML, etc.) 

and on top of them, all the other layers starting from resources and proceeding up to 

trust. Unfortunately the annotation task is far from being trivial since it is tedious, 

error prone and difficult when performed by humans. Apart from this, the number of 

web pages on the internet is increasing drastically every second, therefore making it 

unfeasible to have someone manually annotating all these pages. We could consider 

asking the authors of the web sites to include semantic annotations inside their own 

documents but would not this be similar to asking users to index their own pages? 

How many users would go about doing so? 

1 http://www.w3.org/2003/Talks/0l-siia-tbl/slide19-0.html 
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Figure 6.1: The Semantic Web "Wave" as presented by Tim Berners-Lee. 
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Some years ago, pressure was made towards inserting meta tags inside HTML doc­

uments. These tags insert information into the header of web pages. The information 

is not visible by those viewing the pages in browsers. Instead, meta information in 

this area is used to communicate information that a human visitor may not be con­

cerned with, for example, it can tell a browser what" character set" to use or whether 

a web page has self-rated itself in terms of adult content. These tags laid the initial 

steps towards inserting semantic information2 into a web page. Since the users could 

not really understand the benefit they get from inserting these tags and considering 

search engines were not giving them particular weight, the meta tag suffered a quiet 

death. 

The web reached this massive popularity and exponential growth mainly due to 

sociological factors. It was a structure originally created by people for people. Since 

people are social animals, they have an innate desire to socialise, take part in a 

community and make themselves known in that community. Also, in the fast moving 

world of today, we live in a society where people want results immediately and they 

expect immediate gratification for their efforts. The web offers just that! 

The original web consisted of a network of academics. These people all came from 

the same community. They needed to get to know other people working in their area, 

share their knowledge and experiences, and also collaborate together. Snail Mail 3 

was the only form of communication available between these academics but it was too 

slow. E-mail changed all this and made it possible for academics working far away 

2The meta keywords tag allows the user to provide additional text for crawler-based search 
engines in order to index the keywords along with the body of the document. Unfortunately, for 
major search engines, it does not help at all since most crawlers now ignore the tag. 

3 A slang term, used to refer to traditional or surface mail sent through postal services. Nicknamed 
snail mail because the delivery time of a posted letter is slow when compared to the fast delivery of 

e-mail. 
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to exchange information in a few seconds. These academics saw a potential in this 

technology and therefore decided to grant access to this service even to their students. 

The latter saw even greater potential in this network and started experimenting with 

new ideas such as Bulletin Board Services (BBS) and online games (such as Multi 

User Dungeons (MUDs)). The original scope of the net was changed completely. It 

was not only limited to collaboration between individuals for work related purpose 

but became also a form of entertainment. This new and exciting technology could 

not be concealed for long within the university walls and quickly, people from outside 

these communities started using it too. It was a quick way of communicating with 

people, obtaining multimedia files, playing games etc. This web grew mainly because, 

it gained popularity in a closed community which was very influential and which gave 

it a very strong basis from where to expand. Subsequently, since this technology is 

easy to use by anyone and requires no special skills, its usage expanded at a quick 

rate. 

Even though all this happened before the web as we know it today was even 

conceived, the current web grew exactly in the same way. With the appearance 

of web browsers, people who have been using the internet realised that they could 

move away from the dull world of textual interfaces and express themselves using 

pages containing rich multimedia content. People soon realised that it was not just 

a way of presenting their work, this new media gave them an opportunity even to 

present themselves to others. It allowed anyone to have his/her own corner on the 

internet accessible to everyone else. A sort of online showcase which was always there 

representing the personal views, ideas, dreams etc twenty four hours a day, seven 

days a week! The technology to create these pages was a little bit difficult to grasp 
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initially but soon became extremely user friendly having editors very similar to text 

processors (a technology which has been around for decades and which was known by 

everyone who was computer literate). To cut a long story short, everybody wanted 

to be present in this online world. Most people did not even know why they wanted 

to be there! 

The initial popularity grew mainly due to word of mouth, but that growth is 

insignificant when compared with the current expansion which the web is experi­

encing. Search engines were quite vital for this success. Before search engines were 

conceived, one knew where to find information only by asking other people or com­

munities (which were specialised in the area) regarding sites where information could 

be found. After, the process of looking for information was just a matter of using a 

search engine. Therefore, information did not have to be advertised anywhere since 

automatic programs called crawlers were capable of searching the web for information 

and keeping large indexes with details of where that information is found. 

The creator of the SW (Tim Berners-Lee who happens to be also the creator 

of the web) is trying to make the SW a reality using the same approach. I.e. the 

SW should not be something created by a group of academics for people, but it 

should emerge as being something made by people for people. For this to happen 

we should base our work upon previous experiences learnt when creating the current 

web. In the same way as search engines are vital for the web of today, semantic 

search engines will be vital for the web of tomorrow. These search engines will 

allow searches to be conducted using semantics rather than using the bag of words 

approach (popular in today's search engines). For this to happen, we must have 

programs similar to crawlers that create semantic indexes containing references to 
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documents using semantics, rather than keywords. To discover these semantics, we 

further require some automatic semantic annotators which semantically annotate the 

documents. In this thesis, we tackled exactly this task by proposing two annotating 

methodologies. 

The first one is semiautomatic and makes use of the interaction between user , 

interface and Information Extraction System (IES) for human-centred document an­

notation that both maximises timeliness and minimises intrusiveness of the IES sug­

gestions. An important feature of this methodology is that it manages to empower 

users to maximally customise the degree of proactivity so as to obtain the desired be­

haviour from the IES. Originally, it was intended as a prototype system designed to 

show case how Information Extraction (IE) can be utilised efficiently and effectively 

especially during the training phase. Melita is an annotation interface that actively 

supports interaction between users and an adaptive IE system. The idea is that while 

users tag documents for training the IE system, Melita 

1. avoids the user re-annotating examples for which the IE system is already able 

to annotate. 

2. helps selecting the more informative documents to be annotated (to maximise 

effectiveness of the training process) 

To do that, Melita runs in the background an adaptive IE system and provides timely 

annotation of already covered cases. The selection of documents for annotation is 

also based on an analysis of the IE system's performance on an un-tagged corpus. 

This methodology has proved to be suitable and effective whenever a closed set of 

documents need to be annotated. In the experiments conducted, we have shown that 

the IES provides effective high quality annotation with little effort. 
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The second methodology is similar to the first one but the human factor is vir­

tually eliminated by making use of Information Extraction (IE) and Information In­

tegration (II) technologies. Information is initially extracted by starting from highly 

reliable/easy-to-mine sources such as databases and digital libraries and is then used 

to bootstrap more complex modules such as wrappers for extracting information 

from highly regular Web pages. Information extracted by the wrappers is then used 

to train more sophisticated IE engines. All the annotated training corpora for the IE 

engines is produced automatically. Experimental results show that the methodology 

can produce high quality results. 

The user intervention is limited to provide an initial element of information in 

order to instruct the engine where to start searching for the desired data and to act 

as an Oracle by adding information, missed by the different modules, when the com­

putation is finished. No preliminary manual annotation is required. The information 

added or deleted by the user can then be reused for restarting learning and therefore 

getting more information (recall) and/or more precision. The type of user needed is 

a person able to understand the annotation task. No skills in IE are needed. 

The natural application of such a methodology is the Web, but large companies' 

repositories are also an option. In this document we have focused on the use of the 

technology for mining web sites, an issue that can become very relevant for the Seman­

tic Web, especially because annotation is provided largely without user intervention. 

It could potentially provide a partial solution to the outstanding problem of who is 

providing semantic annotation for the SW. It can potentially be used either by search 

engines associated to services/ontologies to automatically annotate/index/retrieve 

relevant documents or by specific users to retrieve the required information on the 
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fly. 

The idea of using the redundancy of information to bootstrap IE learning is not 

new, having been already proposed by Brin (15) and Mitchell (87). The difference 

with our approach is the way in which learning is bootstrapped. Brin uses user­

defined examples, while Mitchell uses generic patterns that work independently from 

the place at hand (e.g. the site or the page). We use both the above4 , but in addition, 

we exploit the redundancy of information and integrate information extracted from 

different sources with different levels of complexity. In this respect our approach is 

to our knowledge unique. 

As noted by Brin, great care is needed in order to select only reliable information 

for annotation for learning. The integration of different knowledge sources multiplies 

the available information, and therefore allows learning to be seeded only when mul-

tiple evidence is found. The experimental results described in this document were 

obtained by fixing high precision (>90%) and testing the obtained recall. One relevant 

question for the effective usability of the methodology in real applications concerns 

the required level of accuracy (as a balance of precision and recall) the system has to 

provide. As Web applications are concerned, it is well known that high accuracy is 

not always required. Search engines are used every day by millions of people, even if 

their accuracy is far from ideal: further navigation is often required to find satisfying 

results, large portions of the Web are not indexed (the so called dark and invisible 

Webs), etc. Services like Citeseer, although incomplete, are very successful. What 

really seems to matter is size: the ability to both retrieve information dispersed on 

the Web and create a critical mass or relatively reliable information. In this respect 

4Generic patterns are used in the named entity recogniser. 
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the proposed methodology is satisfying. Experiments show that in the case of pa­

per discovery, it is able to discover a large part of the information that the digital 

libraries (which were used to seed) did not have (+50%). Precision is topping 90%, 

so the information provided is very reliable. This methodology was implemented in 

the Armadillo system. 

Both systems proved to be so useful that they opened various doors into sev­

eral other fields of research such a Human Computer Interaction, Visualisation and 

Adaptive Information Extraction. The systems were also distributed to a number of 

Universities and private companies for evaluation purposes. They have both gained 

national and international recognition. In fact, the Melita system has been evaluated 

by a British Company with the intent of commercialising it and Armadillo was a core 

component of the CS AKTive Space (99) (100) (59) application that won first prize in 

the 2003 Semantic Web challenge5 . Both applications were also used as demonstra-

tion tools in various international Summer Schools. They were also rated world class 

in a mid-term review report created for the AKT project6 by a panel of international 

experts whose chair was Professor James Hendler (one of the creators of the Semantic 

Web). Although, these methodologies do not manage to solve all the problems asso­

ciated with the SW, they definitely contribute a step forward in the right direction 

towards making the SW a realityl 

6.2 Future Directions 

This section takes a look at what we believe to be the future directions where SW 

related research should go. The first sections highlight what problems IE and II face 

5http://www-agkLtzi.de/swc/ 
6http://www.aktors.org/ 
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when confronted with the web. The final sections will present several potential future 

enhancements and usages of the methodologies developed in this document. They 

will propose different ways in which annotations will change from how we know them 

today and what their new role will be in the big SW picture. 

6.2.1 IE and the web 

From a semantic point of view, the web of today is not very different from the SW of 

the future. In fact it already contains a lot of information, but the only problem is 

that it is targeted for human consumption. Machines are not capable of interpreting 

this data in order to process it further. Thus, the need arises to annotate all the in­

formation found on the internet using tags which are understandable both by humans 

and machines. 

As we have already seen, manual annotation is difficult and time consuming to 

perform. The resources which such an exercise would require are unimaginable. If we 

make use of a semi or fully automatic methodology (like the ones presented in this 

thesis), the task would be simplified by many orders of magnitude, but can we do 

better than that? 

An important component of our approach is IE. IE algorithms are first trained to 

identify the information which is important for us. Then they automatically extract 

similar information from other unseen documents. Unfortunately, the results we ob-

tain are not always very good and sometimes, they are very much dependent upon 

the complexity of the page being processed. So far, most of the successful algorithms 

focused on linguistic approaches and very few of them took into consideration prop­

erties associated with the document structure, layout, etc. Basically, most of them 

were ignoring the visual properties of a document, that is why we are proposing a 
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new breed of IE tools called Visual IE (VIE). 

VIE is not something new, the most advanced information processing system (the 

human being) has been using it for thousands of years, so why not replicate it? The 

brain is a fantastic organ which makes use of associative memory whereby different 

elements are associated together. These elements can be of various types, they can 

be linguistic, visual or an infinite number of other types. Like a big jigsaw puzzle, all 

these associations in the brain make it possible for a person to relate several pieces 

together and in so doing, groupings start to emerge until finally, the big picture 

becomes clear. The huge number of associations also makes it possible for the whole 

process to cater for noisy environments. If we take a look at the text" SOMEl GR8", a 

machine would not be capable of interpreting it whilst a human can easily understand 

that it means "Someone great". This trick is currently being used by spammers all 

over the internet to fool automated email filters and so far, we must admit that they 

are succeeding in doing so! 

Our VIE system does not necessarily has to be as sophisticated as the human brain, 

but at least we should start taking visual cues into consideration. The VIE must be 

taught the effect of specific formatting, not just visually, but also semantically. For 

example, a text in bold or italics might signify a certain degree of importance with 

respect to the other text in the document. Another important visual cue is proximity, 

it refers to the fact that elements close to each other might be related together in 

some way. A piece of text which is closer to an image than to other elements in the 

document might be the caption of the image. Some text which is formatted as being 

important at the top of the document might be the title of the document. The list 

of examples can keep on going on forever. If we abstract further, a group of words in 



229 

the proximity of each other form a paragraph. And what is a paragraph if not a small 

set of ideas which when combined with other related paragraphs form a document? 

What about other complex structures such as tables and lists, aren't they a grouping 

of related data as well? 

There is an infinite number of visual cues one can learn to extract from a document. 

To cover them all, one would require another thesis solely dedicated to this subject. 

The message we would like to convey is that the information already exists on the 

web, there's no need of annotating everything. The information is there waiting for 

us to harvest it, and only with tools like VIE we can manage to do so! 

6.2.2 IE and the SW challenges 

From the IE point of view with regards to the SW, there are a number of challenges in 

learning from automatic annotation, instead of using human annotation. On the one 

hand not all human annotation is reliable: the use of multiple strategies and combined 

evidence reduces the problem, but still there is a strong need for methodologies robust 

with respect to noise. On the other hand, many IE systems are able to learn from 

completely annotated documents only, so that all the annotated strings are considered 

positive examples and the rest of the text is used as a set of counterexamples. In our 

cycle of seed and learn, we generally produce partially annotated documents. This 

means that the system is presented with positive examples, but the rest of the texts 

can never be considered as a set of negative examples, because un-annotated portions 

of text can contain instances that the system has to discover, not counterexamples. 

This is a challenge for the learner. At the moment we present the learner with 

just the annotated portion of the text plus a windows of words of context, not with 
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the whole document. This is enough to have the system learning correctly: the un­

annotated examples that become negative examples entering the training corpus is 

generally low enough to avoid problems. In the future we will have to focus on using 

machine learning methodologies that are able to learn from scattered annotation. 

6.2.3 II and the SW challenges 

The methodology proposed in this document is based on using the redundancy of 

information. Information is extracted from different sources (databases, digital li­

braries, documents, etc.), therefore the classic problems of integrating information 

arise. Information can be represented in different ways in different sources from both 

a syntactic and a semantic point of view. 

The syntactic variation is coped with when we define the architecture because 

when two modules are connected, a canonical form of the information is defined, e.g. 

the classic problem of recognising film titles as "The big chill" and" Big chill, the" 

can be addressed. More complex tasks need to be addressed, though. For example, a 

person name can be cited in different ways: J. Smith, John Smith and John William 

Smith are potential variation of the same name. But do they identify the same person 

as well? When a large quantity of information is available (e.g. authors names in 

Citeseer) this becomes an important issue (4). This problem intersects with that of 

intra- and inter-document co-reference resolution well known in Natural Language 

Processing. 

We are currently focusing on mining websites, because this allows to apply some 

heuristics that very often solve these problems in a satisfying way. For example the 

probability that J. Smith, John Smith and John William Smith are not the same 

person in a specific CS website is very low and therefore it is possible to hypothesise 
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co-reference. Different is the case of ambiguity in the external resources (e.g. in the 

digital libraries). Here the problem is more pervasive. When querying with very 

common names like the example above, the results is quite disappointing, as papers 

by different people are mixed. This is not a problem in our approach because the 

information returned is used to annotate the site. Papers from people from other 

departments or universities will not introduce any annotations and therefore will not 

cause any problems. The same applies in case multiple home pages are returned: if 

they do not have an address local to the current site, the page is not used. In the 

generic case, though, this is a problem. 

We live in a fast changing world full of discrepancies which are accepted by every­

one. If we image a task where we need to integrate information concerning number 

of people living in a country, it is very likely that different reliable sources will have 

different values, therefore creating discrepancies. These values might be correct if 

they present a number which is approximately equal to a common average, accepted 

by everyone (but which is not necessarily the exact number!). 

6.2.4 Armadillo: Agents over the Grid 

Armadillo is primarily a web based system aimed at automatically harvesting infor­

mation from the web. Although it serves its intended purpose quite well, it suffers 

from a number of limitations. 

Exploitation of Resources Resources are limited and if they are not managed well, 

we risk wasting some of them. The internal modules of the current system work 

on a single machine. They do not exploit other machines available on a network. 

If these computers are available, it would be useful to distribute the internal 
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modules over several machines and execute them in parallel. 

Coordination The distributed nature of the system is still coordinated by a cen­

tralised module. Although there is nothing wrong with this approach since most 

systems (even in the physical world) have a centralised control in itself control , , 

imposes additional overheads over the whole system. This module wastes a lot 

of precious processing power which can be used to perform further processing. 

Robustness Since the system connects directly to external resources (such as web 

services), if these resources are not available, the whole process reaches a stalling 

point especially if the resource provides a critical function. These resources are 

not intelligent enough to cater for failures. 

Accountability A module is not accountable for the data it produces. Although, 

every item of data is signed by the module which produces the data, if a mod-

ule produces spurious data, there is nothing which stops the module or which 

calibrates it in order to produce correct data. All the data verification must be 

performed manually by the user. 

To overcome these limitations, the system can easily be ported towards an agent1 

based architecture which exploits new technologies in distributed computing such as 

grid8 computing. Let us take a look at how Agents and Grid Technology can overcome 

the different limitations of Armadillo. 

7 A computer program that carries out tasks on behalf of another entity. Frequently used to 
reference a program that searches the Internet for information meeting the specified requirements 

of an individual user. 
8 A grid is a software framework providing layers of services to access and manage distributed 

hardware and software resources. 
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In any computerised system, resources (such as processing power, secondary stor­

age, main memory, etc.) are always scarce. No matter how much we have available a , 

system could always make use of more. Systems like Armadillo are very demanding, 

much more than normal ones. The system needs to process huge amounts of texts 

using complex linguistic tools in the least possible time. These demands have taken 

Armadillo away from the normal desktop platform found in every home, towards top 

of the range systems (and even servers). Physical resources are not the only bottle­

neck in the whole system. The raw material which the system utilises are web pages, 

downloaded from the internet. Unfortunately, this process is still extremely slow, 

especially when several pages are requested simultaneously from the same server. In 

synthesis, we can conclude that such systems are only usable by top of the range 

computers having a high bandwidth connection to the internet ... or is it? 

Agents and Grid technology can make all the difference by efficiently exploiting 

the resources we have to the maximum. To achieve this, first of all we need 

to create an environment where agents can live accessible from anywhere over the 

internet. This would be like a virtual city, accessible over HTTP where agents can 

decide to go and live or work for some time. This city is basically just a server in 

which mobile agents can upload themselves freely. This community would have some 

Immigration Control Agents which monitor upload requests and they can: 

Refuse entry to an agent based on some predefined heuristics (Eg Agent is black 

listed) . 

Grant an entry visa which allows an agent to exist in the city but with very little 

resources allotted to it. In this way, the agent can do simple processes like 

looking for another community, contact its creator for further instructions, etc. 
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Under this visa, the agent is expelled from the system after a certain period 

by either sending it to another community which is accepting agents or just 

deleting it. 

Grant a work permit which allows an agent to exist in the city using as much 

resources as he can get from the city. This kind of visa is not bound by a time 

limit. 

Once an agent is inside the city, it can utilise the resources of the city such as 

processing power, memory, etc. A city could also act as a portal to a grid network. 

This would allow agents to execute functions over the grid transparently without 

altering anything in the agents. The system would take care of distributing work 

over the grid. Other services must also be created for this community to work such as 

search engines which return links to cities together with related statistics (regarding as 

agent population, resource utilisation, etc). A city can be installed on any machine, it 

can be configured to use as little or as much resources are available. As for Armadillo, 

it is already divided into several modules, some internal and others external. All of 

these modules should be packaged inside an intelligent agent for the architecture to 

work. 

The benefits of this system are various. Since the system is made up of several 

agents on the client side there is no more the need of a powerful machine with , , 

huge network bandwidth. The client is just a thin system whereby the user defines 

the strategies (As is the case in the current version of Armadillo). When the user is 

happy with the strategy, the system is initialised. Agents are created for every module 

used in the strategy and sent to a city somewhere over the internet for execution. Over 

here we are exploiting the property that an agent is able to move from one system to 
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another and through various architectures and platforms, also referred to as Agents 

Mobility. If no cities are found then they are executed locally. 

A legitimate question to ask is, how would agents go about coordinating their 

activities? From our previous experiences with the Armadillo system, a data driven 

approach was enough to coordinate everything. This means that the data of the 

system is stored somewhere centrally, within reach of every module and each new data 

item inserted in the database acts as a trigger for a module to start execution. Every 

module had at least an input and an output. The data passed between modules was 

all semantically typed, therefore it was possible to have hooks connected to specific 

fields in the database which executed functions in a module whenever new data was 

available. The same can be applied to distributed agents. All we need is an agent that 

acts as a gatekeeper for the database and another agent used to wrap every module 

in the system. Agents can do this easily since they are: 

• capable of interacting and cooperating with other agents or human beings in or­

der to complete a task. Therefore the gatekeeper agent could easily ask another 

agent to execute a particular function whenever new data is available . 

• capable of choosing what it will do, and in which order, according to the external 

environment. Since an agent can easily be overloaded with work, it can clone 

itself, send the other copies to other server and instruct them to perform a 

subtask of his work. A typical example would be an agent used to download a 

list of web pages. The agent could easily, clone itself and send the cloned agents 

to download a sublist of the whole list. 

Another issue to consider is robustness. In a system which makes heavy use 

of the web, it is very common to try to access links or resources that are no longer 
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available. There can be various reasons for this, a server could be down, a page 

does not exist any longer, etc. Agents come to the rescue once again. Since agents 

are goal-oriented, they accept precise "human requests" and decide how to satisfy 

them. If an external resource which they require is not available they are able to take 

initiatives in an autonomous way and they can exert control over their own actions. 

In other words, they are capable of defining their own objectives and achieving them 

without human supervision. Lets imagine an agent requires an online resource which 

is not available, there are several strategies it could take. The most intelligent agent 

would look for another online resource as a substitute (But probably we are expecting 

too much from them!). A more realistic view is to contact the client and ask for the 

link to another resource. Another approach which an agent might take is to go to 

sleep and try to access the service later. It is quite common on the internet to have a 

server down for some time. Agents can easily do this because contrary to traditional 

software, an agent can decide to start an action at a precise moment, based on the 

state of the external environment. 

The last weakness of the system is accountability. Whenever new data is pro-

duced agents should add to this data some meta information such as which agent 

created this data, at what time and from which source it obtained the data. Agents 

should be able to adapt to the users needs by analysing its past actions. Therefore, 

if an item of data was reviewed by a user and rejected, the agent should reevaluate 

the reliability rating of the source from where the data was obtained. The global 

reliability rating of a site must be a reflection of the data it produces. 

The system should also be capable of performing automatic checks without the 

user's intervention and deciding what appropriate action to take when necessary. 
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Imagine some seed data is used to train a learning algorithm. If the precision of 

the algorithm is low when tested on the training data itself, then the agent should 

realise that the learning algorithm is not good enough and exclude it from the whole 

process automatically. This is just one of the many automatic tests which can be 

performed by agents. The degree of automation of these tests depends entirely upon 

the application and its complexity. 

6.2.5 The Semantic Annotation Engine 

A Semantic Annotation Engine is a engine that given a document annotates it with 

semantic tags. The need for such an engine arises from the fact that the web currently 

contains millions of documents and its size is constantly increasing(30). When we are 

faced with such huge tasks, it is inconceivable that humans will manage to annotate 

such a huge amount of documents. An alternative would be to use automated tools 

such as Armadillo (Refer to Chapter 5). Armadillo makes use of the information 

present on the web combined with IE and II techniques in order to discover new 

facts in the document. But this is a partial solution which also is not very feasible 

even though it would be more successful than manual annotation for sure since the 

system would not get bored of annotating huge amounts of documents. There are 

a number of problems to face with this approach. First of all the system is specific 

to a particular domain and cannot just semantically annotate any document (espe­

cially if that document is not related to the current domain). If we imagine that the 

system could annotate any document, a problem arises regarding which annotation 

is required for which document. In theory a document could have an infinite num­

ber of annotations because different users would need different views of a particular 

document. Therefore, deciding which document contains which annotations should 
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not be a task assigned to the annotation system but rather to the user requesting the 

annotations. Apart from this, there are still some open issues with regards to anno­

tations per se, like should annotations be inserted as soon as a document is created 

or not? Some annotations can become out of date very quickly like weather reports, 

stock exchange rates, positions inside a company, etc. What would happen when this 

volatile information changes? Would we have to re-annotate the documents again? 

But that would mean that we would not need annotation engines but re-annotating 

engines constantly maintaining annotations. The order of magnitude of the problem 

would therefore increase exponentially. The second problem is that probably, the rate 

at which the web is growing is much faster than such a system could annotate. We 

would therefore require a small army of Armadillo's to try to catch up with such a 

growth. 

Another more realistic and generic solution than Armadillo would be to provide 

annotations on demand instead of pre-annotating all the documents i.e. the Semantic 

Annotation Engine (SAE). This means that annotations will always be the most 

recent and there would not be any legacy with the past. If a document is out of 

date or updated with more recent information, the annotations would still be the 

most recent. The system would make use of currently available technologies but in a 

smarter way as can be seen in Figure 6.2. 

In traditional Information Retrieval (IR) engines (like Google
9

, Yahoo
lO

, etc) a 

collection of documents (such as the web) is crawled and indexed. Queries using a 

bag of words are used to retrieve the page within the collection that contains most 

(if not all) of the words in the query. These engines do a pretty good job at indexing 

9http://www.goog1e.com 
lOhttp://www.yahoo.com 
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a substantial part of the web and retrieving relevant documents, but they are still 

far from providing the user exactly what he needs. Most of the time, the users 

must filter the results returned by the search engine. The SAE would not affect in 

any way the current IR setup. The search through all the documents would still be 

performed using the traditional IR methods, the only difference would be when the 

engine returns back to the user the results. Instead of passing the results back to the 

user, they are passed to a SAE. As can be seen from Figure 6.2, the system contains 

an index of the different SAEs which are available online. The SAEs are indexed using 

keywords similarly to how normal indexing of web documents works. Whenever an 

IR engine receives a query, it not only retrieves the best document with the highest 

relevance but also the SAEs with the highest relevance. These are then used to index 

the documents retrieved by the search engine before passing them back (annotated) 

either to the user or to an intermediate system that performs further processing. SAE 

will provide on the fiy annotations for web documents therefore avoiding the need of 

annotating the millions of documents on the web beforehand. 

One relevant question for the effective usability of this methodology in real appli­

cations concerns the required level of accuracy (as a balance of precision and recall) 

the system has to provide. As Web applications are concerned, it is well known that 

high accuracy is not always required. Search engines are used every day by millions of 

people, even if their accuracy is far from ideal: further navigation is often required to 

find satisfying results, large portions of the Web are not indexed (the so called dark 

and invisible Webs), etc. Services like Citeseer, although incomplete, are very suc­

cessful. What really seems to matter is size: the ability to both retrieve information 

dispersed on the Web and create a critical mass or relatively reliable information. 
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Figure 6.2: A potential architecture for a Semantic Annotation Engine. 

6.2.6 The Semantic Web Proxy 

A Semantic Web Proxy (SWP) is similar to a normal web proxy 11 , it provides all 

the functionality associated with such a program. The main difference is that it also 

provides some semantic functions hidden from the user. 

To understand what these semantic functions are, lets take a look at a typical 

example. Imagine a user would like to purchase a computer having a 17 inch flat 

screen monitor, 1 GBytes of RAM, a 3 GHz processor, etc. The user would go to 

an online store, look for a search form where he can write the search criteria and 

perform the search for the desired product. This operation must be repeated for each 

and every online store he would like to query. 

A SWP would simplify this process in several ways. First of all, it would keep 

a record of all the forms being filled in a single session 12 and the content of these 

11 A proxy is an intermediate server that sits between the client and the origin server. It accepts 
requests from clients, transmits those requests on to the origin server , and then returns the response 
from the origin server to the client. If several clients request the same content , the proxy can deliver 
that content from its cache, rather than requesting it from the origin server each time, thereby 
reducing response time. 

12 A session is a series of transactions or hits made by a single user. If there has been no activity for 
a period of time, followed by the resumption of activity by the same user, a new session is considered 



241 

forms. If the forms are semantically tagged or associated with an ontology, then the 

details inserted by the user are automatically tagged as well. Once ready, the user 

would then go to a different site and perform a similar search. The system would 

notice that the form in the new site is filled with the same details as those in the 

other site and it would take the following actions: 

1. tag the details inserted by the user with the semantic tags found in the new 

site. 

2. create equivalence relationships between the semantic tags in the first site and 

the tags in the second site. 

3. make these relationships available to everyone. 

The effect of this process is the following. If another user performs a search for 

a similar item in one of the sites already in the SWP, the system uses the shared 

relationships (obtained before through the interaction with the other users) and au­

tomatically searches the other online stores. All the results are returned to the user 

for evaluation. 

The system basically creates links between ontologies in a shared way collabora­

tively without the user realising it. It does so by examining the browsing habits of the 

user and deducing implicit relations when possible. Once again, the system adopts 

the same ideas used to create the web. Basically, it exploits the little work of many 

users (without adding any extra effort) to automatically create relationships between 

concepts over the web. 

started. 
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6.2.7 Semantic Plugins 

Semantic Plugins (SP) are application addons which can be inserted to any applica­

tion having two major tasks. First of all , they must harvest semantic information 

from the user without the user realising it. This information must be stored in ways 

which can be reused by other applications. Secondly, they must provide a value added 

service to the user without increasing the effort of using the application. If they do 

increase a little the effort required, they must make sure that the return is worth the 

extra effort. This second requirement is important because as we have already seen 

in Section 6.1 (with the example of the Meta Tag), if a user does not get an imme­

diate return from using a new technology, then no one will go through the learning 

curve involved to use that technology. As an example of a SP, imagine a normal word 

processor enhanced with a SP aimed specifically for paper writing. 

If we look at the process involved in writing a paper (or even any other document) 

we immediately realise that it is quite an unnatural process. People just dump down 

their thoughts in an ordered way and then they must further structure the text making 

sure their ideas are coherent and finally, gather external evidence and supporting 

statements from other documents. All this makes the whole process quite difficult 

to perform unless the author is a skilled writer well trained in the art of writing. 

Unfortunately, this writing methodology is most probably far from the way human 

thoughts are structured. Information is not stored in the brain as a big structured 

document but rather as small atomic and composite concepts attached together by 

several relationships. The idea we propose here is not to drastically change the way 

humans have been writing for thousands of years, but rather to start moving slowly 

towards this new model of writing which is slightly more natural than traditional 
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methods. Whilst doing so, we must not forget our main aim, i.e. provide tools in 

normal text editors which allow people to transparently insert semantics in document 

without themselves knowing it. 

Let us look at a scenario where a user is writing a paper. The process involves 

writing the paper and adding references from papers (which the author previously 

read). So basically, the paper is a self contained piece of knowledge which has no 

physical links to anything else. There are only implicit semantic links expressed 

in the form of references and one need a powerful processor like a human or some 

clever code in order to try to find which link refers to what. The SP would be a 

program running in the background which analyses what its being written. It grasps 

a sentence (could be a paragraph or phrases too) at a time and compares them with 

papers already published. When it finds similar sentences, it shows the extracts to 

the user in a continuously updated list. The user sees this list and he can read the 

extract and insert a reference where he is writing by just clicking on the link. Adding 

references to a paper is a must do for every user, therefore this program will make 

the user's life easier. There is no need for the user to dig in his memories trying to 

remember in which paper he read about a particular concept many months ago. This 

program will also add value to his paper. If there is a relevant paper which the user 

did not read, the program might be able to find it for him. 

Contrary to what is happening today, a paper produced with the help of the SP 

is not a self contained piece of knowledge but it should contain links to semantic 

information about the references. These links could point to a location inside the 

same document or to a URI somewhere over the Internet. In synthesis, it should be 

semantically annotated with tags stating that a particular concept in the document is 



244 

the same as the concept defined in the paper being referenced. The relationships can 

be created automatically by the system since each time a user inserts a reference, he is 

implicitly creating a semantic link between that portion of the text and the contents 

of the reference. What we are doing differently here is that the SP is automatically 

explicitly defining that relationship in the document. 

This allows the system to associate pieces of text inside one document with other 

pieces of text inside another document. All the information provided by the user will 

be kept. So another system could further infer with a very high degree of certainty 

that line X in document A is associated with line Y in document B. The parts not 

associated with any other documents are probably original parts referring to the new 

work in the document per-se. The same should be done for picture references, table 

references etc. They are not objects inserted in the document at random. They 

normally would have a caption associated with them and apart from that, they are 

mentioned somewhere in the document as well. 

The document could be further analysed with NLP techniques such as co-reference 

resolution, relational IE etc in order to make it easier to find new facts. Also, since 

the SP in this domain would know things like authors etc, it could see previous publi­

cations of the same author(s) and find similarities between them. In this way it could 

find inter-document connections of documents written by the same authors. These 

connections might help establish the section of text which describes the innovative 

part from one document to another. I.e. the intersection between a new document 

and an old document is the innovative part of the new document. 

Documents could also be indexed semantically. The system would go about achiev­

ing this by guiding the user into writing a document using a new perspective. Instead 
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of writing a whole document, the user could be asked to first write a storyline, made 

up of just points and then gradually expanding and restructuring the order of those 

points. How the document evolves from a set of points to sentences and then para­

graphs is all stored since every step is a refinement of the previous one. Therefore 

these refinements could be used to semantically index the document. This kind of 

indexing would offer lots of benefits. Lets imagine that some months later, the user is 

compiling a report using these documents. The typical process involves going through 

the written documents looking for the paragraphs required for the new document. If 

instead of this, we have a semantic index which stores different granularities of the 

same idea (using the refinement technique mentioned before), the user could just 

look for specific paragraphs using their semantic content as search terms. The system 

would then insert the pieces of text inside the new document and the job of the user 

is just to glue the different pieces together. Some smart grammatical analysis can 

also be done at this stage to propose a possible glue. Basically, the job of the user 

would just be to check the document and correct it. The portion of text extracted 

from the other documents could either be a copy of the text or just a link to the other 

document. In this way, if the text in the original document is updated, the text in 

the new document is updated automatically. 

SPs propose a new way of interacting with the user which does not add any extra 

burden on the user's behalf, but which adds value to 

the user since the discovery of references is facilitated and the writing of a document 

is easier. 

the document since the document would contain semantic information stored in­

side it. This information can be further used for a variety of applications like 
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automatically compiling documents from other documents using just a guide­

line by the user, making semantic search engines a reality since the engines will 

index sub parts of a document semantically, etc. 

6.3 Summary 

In summary, we have presented two methodologies for annotating documents, one 

semi-automatic and the other fully automatic. They make use of several Artificial 

Intelligence techniques such as Natural Language Processing (NLP) and Machine 

Learning (ML). The combination of these techniques contributes towards creating 

systems capable of advanced text analysis that manage to discover which parts of 

the text to annotate and which can be easily adapted to new domains. We believe 

that these technologies are effective enough to support the annotation process which 

is a requirement of the SW. This smart combination of techniques made it possible 

to achieve SW objectives which were unreachable before! 
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