ANNOTATING THE SEMANTIC WEB

By
Alexiei Dingli

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
AT
THE UNIVERSITY OF SHEFFIELD
DEPARTMENT OF COMPUTER SCIENCE
REGENT COURT, 211 PORTOBELLO STREET,
SHEFFIELD, S1 4DP. UNITED KINGDOM
JULY 2004

(©) Copyright by Alexiei Dingli, 2004

THE UNIVERSITY OF SHEFFIELD
DEPARTMENT OF
DEPARTMENT OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and
recommend to the Faculty of Science for acceptance a thesis entitled
“Annotating the Semantic Web” by Alexiei Dingli in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

Dated: _July 2004

External Examiner:

Professor Nigel Shadbolt

Research Supervisors:

Professor Yorick Wilks

Professor Fabio Ciravegna

Examining Committee:

Dr Mark Hepple

i

THE UNIVERSITY OF SHEFFIELD

Date: July 2004

Author: Alexiei Dingli
Title: Annotating the Semantic Web

Department: Department of Computer Science

Degree: Ph.D. Convocation: August Year: 2004

Permission is herewith granted to the University of Sheffield to circulate
and to have copied for non-commercial purposes, at its discretion, the above
title upon the request of individuals or institutions.

Mmm DW

Sigetut of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

il

To my dear parents and girlfriend, who have always been
the beam that supported me and to God who was always

there to sustain that beam and me.

v

Table of Contents

Table of Contents

Abstract

Acknowledgements

1 Introduction
1.1 Motivation

1.2 Goal

....................................

2 Annotation
2.1 Motivation
2.2 Previous Work,

2.2.1
2.2.2
2.2.3
224
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12

Alembic
Annotation System Lo
Annotea
CritLink
iMarkup
MnM
S-CREAM,
SHOE Knowledge Annotator.
SMORE
The Gate Annotation Tool
Trellis Web
Yawas o e

2.3 Conclusion

3 Information Extraction and Integration

3.1 Motivation forusing AIE,
3.2 Previous Workin AIE
3.2.1 Information Extraction Terminology
3.2.2 Shallow Approaches
3.2.3 Deeper Approaches
3.3 Motivation for using IT
34 PreviousWorkin IT.
341 Ariadne
3.4.2 KIND
343 PROM
3.4.4 Name-Matching
3.45 StatMiner
3.5 Conclusion
4 Melita: A Semi-automatic Annotation Methodology
4.1 Introduction
4.2 Melita: A Semi-automatic Annotation Methodology
4.2.1 Dealing with timeliness
4.3 The methodology atwork
4.3.1 Intrusiveness
432 Timeliness,
4.4 Melita Evaluation
4.4.1 CMU Seminar Announcements Task
442 The PASTAtask
4.4.3 User Oriented Evaluation
4.5 Future Development: Adapting to different user groups
4.5.1 Naive Users e
4.5.2 Application Experts L.
453 IEExperts.
4.6 Conclusion
5 Armadillo: An Automated Annotation Methodology
51 Inmtroduction
5.2 Armadillo: A Generic Architecture for Automatic Annotation
5.2.1 Set of Strategies
522 GroupofOracles
5.2.3 Omntologies
52.4 Database

vi

51
02
o4
o4
60
87
94
95
95
97
98
99
100
101

103
103
107
110
113
116
121
123
123
132
140
144
145
146
147
148

5.2.5 The Armadillo methodology 162

9.2.6 The methodology at work 164
5.2.7 Future Development 175
5.3 The Computer Science Department Task:
Acasestudy 178
5.4 Armadillo Evaluation 190
5.4.1 Finding People’s Names 190
54.2 Paper Discovery. 202
54.3 Otherdomains 207
5.4.4 Analysis and Observations 214
5.5 Conclusion 217
Conclusion 218
6.1 Research Contributions 218
6.2 Future Directions 226
6.2.1 IEandtheweb 227
6.2.2 IE and the SW challenges 229
6.2.3 Il and the SW challenges 230
6.2.4 Armadillo: Agents over the Grid, 231
6.2.5 The Semantic Annotation Engine 237
6.2.6 The Semantic Web Proxy 240
6.2.7 Semantic Plugins o0 242
6.3 Summary e e 246

vii

Abstract

The web of today has evolved into a huge repository of rich Multimedia content
for human consumption. The exponential growth of the web made it possible for
information size to reach astronomical proportions; far more than a mere human can
manage, causing the problem of information overload. Because of this, the creators of
the web(10) spoke of using computer agents in order to process the large amounts of
data. To do this, they planned to extend the current web to make it understandable
by computer programs. This new web is being referred to as the Semantic Web.
Given the huge size of the web, a collective effort is necessary to extend the web. For

this to happen, tools easy enough for non-experts to use must be available.

This thesis first proposes a methodology which semi-automatically labels semantic
entities in web pages. The methodology first requires a user to provide some initial
examples. The tool then learns how to reproduce the user’s examples and generalises
over them by making use of Adaptive Information Extraction (AIE) techniques. When
its level of performance is good enough when compared to the user, it then takes over
the process and processes the remaining documents autonomously.

The second methodology goes a step further and attempts to gather semantically
typed information from web pages automatically. It starts from the assumption that
semantics are already available all over the web, and by making use of a number of
freely available resources (like databases) combined with AIE techniques, it is possible

to extract most information automatically.

These techniques will certainly not provide all the solutions for the problems

viii

ix

brought about with the advent of the Semantic Web. They are intended to provide

a step forward towards making the Semantic Web a reality.

Acknowledgements

I would like to thank my supervisor Professor Yorick Wilks for giving me this op-
portunity and also for his support and comments through out these years. I would
also like to thank Professor Fabio Ciravegna for the many times I disturbed him with
questions, for the patience he has whenever I turn around and for the helpful com-
ments he always gives me. Finally, but not least, I would like to thank Professor
Niranjan for accepting to be the chair of my PhD panel.

Of course, I am grateful to my parents and girlfriend for their patience and love.
Without them this work would never have come into existence (literally).

Sheffield, United Kingdom Alexiei Dingli
July 1, 2004

Chapter 1

Introduction

1.1 Motivation

Research on an experimental computer network driven by the fear of a nuclear war has
become, many decades later, one of the most popular and important communication
media in the world. It originally had the form of a wide area network referred to at
the time as ARPANet (Advanced Research Projects Agency Network). Its purpose
was to exchange military information efficiently in the eventuality that a nuclear
attack would have made specific parts of the network unusable. Later on, universities
recognised the power of such a network and started hooking themselves to it and
also providing access to their students. Today this huge network has grown by many
orders of magnitude, spans every corner of the earth and is more commonly referred
to as the Internet.

In the past years, the web started growing at a very fast rate. The main catalyst
for this increase in information!® is the move (which happened some years ago) towards
an information society succeeded by the present drive towards a knowledge? society.
Globalisation is another factor that is bringing about huge information strains and

demands on several organisations since organisations do not have to compete just

Information is data which is interpreted.
2Knowledge is information transformed for effective use.

with other organisations in their own neighbourhood but they must compete with
organisations all over the globe. For these to survive, in this fast changing world, it
is imperative that they restructure themselves and move towards modern techniques
of Knowledge Management (KM) in order to be able to handle all the knowledge
available.

KM is an emerging, interdisciplinary business model dealing with all aspects of
knowledge within the context of the firm. It seeks to improve the performance of
organisations by helping users to capture, share and apply their collective knowledge
with the aim of leading the organisation towards making optimal decisions in real
time. These techniques make effective use and reuse of the knowledge within the
organisation with the effect of increasing efficiency, productivity and service quality.

KM is not a separate process performed continuously by a particular department
but it should happen in the background by everyone as part of the day-to-day run-
ning of the business. In this era where companies are moving towards installing in
their company a Digital Nervous System(55), it is imperative that the information
is available where, when and to whoever needs it, rather than hidden in the senior
management offices. An effective digital nervous system allows a company’s internal
processes to operate smoothly and quickly, enables an organisation to respond to cus-
tomer feedback quickly, gives it the ability to react to its competitive environment in
a timely manner, and empowers employees with critical knowledge. The key is how
effectively an organisation manages the flow of its digital information. All kinds of
information-numbers, text, audio and video can now be put into digital form. Widely
available hardware and software has also made it possible and necessary for organi-
sations of all sizes to reshape the way they conduct their business. A combination of
modern technology together with effective use of humans can make an explosive mix.
Modern technologies can supply any kind of information at the touch of a button

while humans are natural consumers of any type of information and have the unique

ability of efficiently and effectively processing the information.

The basic organisational unit of KM is the Community of Practice (COP)(16).
A COP is a group of people, informally bound to one another through exposure to
a common class of problems, common pursuit of solutions, and thereby themselves
embodying a store of knowledge. Individuals are a very important asset in any or-
ganisation because they bring into the company an intellectual capital brought from
their previous experiences. Also humans are capable of processing a wide variety of
information represented in any kind of media. A COP is something around which all
the information processes circulate. It becomes much more complex once the COP is
spread amongst several distributed locations around the globe but this is inevitable
since more users seem to be moving towards virtual collaboration.

For KM to be more effective, it can make use of Artificial Intelligence® (AI) tech-
niques such as Knowledge bases to be able to filter and process the huge amount of
data which users are faced with. Knowledge bases store the data in data structures
which make it easy and fast for users to retrieve it back. These knowledge bases
facilitate users who would like to perform from simple searches to complex queries.
Al must face a number of challenges in order to make KM successful. It must work
for a wide range of people, not just for the expert user. If complex tasks need to be
performed by humans, Al techniques must disguise the burdens introduced by the
complexity of the task. One of the main bottlenecks in any KM system (where Al
can make a huge difference) is the extraction of information from various sources (See
Chapter 3 for more details). Another bottleneck in terms of costs is the harvesting,
organising and storing of information. Since KM cannot afford to use poor quality in-
formation which is inaccurate or out of date, KM techniques reuse information from

multiple tasks and multiple audiences to reduce the costs and risks involved (See

3ATI is the field concerned with making computer programs achieve goals in the real world using
different techniques capable of learning and improving themselves.

Chapter 3.2.3). The possibilities are endless but unfortunately the main problem
which is hindering further progress is the Internet itself.

Although the long tentacles of the web are reaching almost every aspect of our
lives, it is still not mature enough and it is quite far from reaching its full potential.

The committee of the W3C? have stated that:

for the Web to reach its full potential, it must evolve into a Semantic Web,
providing a universally accessible platform that allows data to be shared and

processed by automated tools as well as by people.

The important question at this stage is what is the Semantic Web (SW)(10) and
why is there a need for it? The SW is basically similar to the existing web but
with an added dimension, the semantic dimension. This dimension does not visually
alter the web pages in any way, and users will still see pages the same as they see
them today. But this dimension adds meaning to web pages. Lets take a small
example to understand better what we mean. Imagine we have a very simple Online
Book Shop containing many pages with details regarding books. Let us also assume
that every single page (which describes a book) must have at least the name of the
book and the author of the book. When a person views such a page, he immediately
identifies and distinguishes between the name of the book and the name of the authors.
Humans manage to do so using a number of tricks. First of all they are equipped
with a powerful data processing system commonly known as the brain. The brain
is specialised at creating associations between this data and is capable of processing
huge amounts of data. It is also very good at inferring new facts using existing facts
combined with logical rules. Keeping this in mind, lets see how humans manage to
identify the names of the authors. Since they are social animals, throughout their

life, they come in contact with other humans like them, all with different names.

4http://www.w3c.org/

Therefore, it is easy for humans to distinguish between words and names because
they have stored in their brain a partial database containing some of the names of
the people they met through out their life. If an author’s name is similar to the name
of a person they met, the brain manages to generalise and infer that the particular
word being analysed is probably the name of a person. Using this information and
the conscious knowledge that the web site is an online book store, the person infers
from his past experiences that a person mentioned in a web page of an online book
store most probably is the author of a book. Since the authors were identified, (by
exclusion) the other words present in the page must be the title of the book.

This was a very simple example. What happens if the author has a previously
unseen name? Once again, the brain comes to the rescue. Using its powerful gener-
alisation functions over the partial list of names which it has, it manages to extract a
set of linguistic cues that offer hints towards identifying names. One such cue could
be that names normally start with a capital letter. Another cue could point to the
fact that the name of a book is normally called a title and therefore, the identifi-
cation of the word title in the text could signify that the name of the book is to
be found somewhere in its proximity. The number of cues and their complexity is
enormous and humans use them continuously in order to understand the meaning of
the world around them. But what would happen if a person had no experiences, no
cues, nothing? It would be impossible to understand the world around him.

This is the current situation with any program that analyses data. When a com-
puter program is created, it has no experiences, no partial lists, no memory, nothing,
just instructions. So far these programs were created for closed domains where their
mode of operation is well defined by their creator and any cues and lists of data they
need to operate is also supplied by him. So if a program is needed to perform the
same task as described above, a very simple approach would be to write a program

that goes through the page, gets every word in the page and compares it with a list

of names. Obviously, the list of names must be supplied by the programmer. This is
not very effective though since any list of names is finite and cannot contain all the
names in the world. The programmer could also hardwire cues inside the program.
A cue could be that a word starting with a capital letter is potentially the name of
a person. But what happens if the word is the name of a company or it is the first
word in a sentence? Those too start with a capital letter! These cases can be catered
for by writing other rules, but obviously their complexity is always increasing!

A smarter approach would be to use Al techniques. Al is divided into several
subfields and the subfield concerned with trying to understand human language is
Natural Language Processing (NLP). The task of understanding human language is
very complex. It involves identifying entities (such as names in a sentence), finding
out the relationship between them, the context in which they were mentioned and
a million other issues. For the simple task we mentioned before, we only need to
use the techniques to identify names in a sentence. There are various, the technique
most relevant is Named Entity Recognition and Classification (NERC) whose task is
to identify names of people, organisations, currencies, dates and basically all other
named entities. To achieve this task, it makes use of a set of rules and lists in a
similar way to what we mentioned before. For a more specialised approach, we could
make use of Information Extraction (IE). It refers to the activity of automatically
extracting pre-specified information from a document. So in our previous example,
an IE engine could be used to extract the names of the authors and the title of the
book. The difference between a NERC and an IE engine is that normally a NERC
is generic to any domain therefore it does not require any prior training before it
is used in a new application. An IE engine is specific to a particular domain and
requires training so that it is customised to the domain being analysed. The training
phase normally involves either giving the IE engine some extraction rules or some

example documents so that it can learn which facts it needs to extract. Obviously,

the training phase that makes use of an IE tool is more complex than a NERC since
a NERC does not require training, but the NERC has some serious limitations. Let
us go back to the scenario we were analysing before and complicate life a little bit
more, by introducing the name of the editor in the page. So now we have 3 pieces of
information on every page, the title of the book, the names of the authors and the
name of the editor. A NERC would spot the names of the authors and that of the
editor without any problems but it cannot distinguish who is who. Le. it cannot tell
that the first name found is the name of the author and the second name found is
the name of the editor, or vice-versa. To perform this, we need to use an IE engine.,
The IE engine learns to spot linguistic cues from the document which help identify
where the name of the author is normally found and where the name of the editor
is normally found in the document. Both names are treated as two distinct entities
because they come from different sets (the first from the set of people who are authors
and the second from the set of people who are editors).

IE is a very powerful methodology, however most of the current IE technologies
require skilled human effort to port the IE to new domains (e.g. NLP experts). To
simplify their usage, the IE community uses techniques borrowed from another sub-
field of AI called Machine Learning (ML). ML refers to a broad class of probabilistic
and statistical methods for estimating dependencies between data and using these de-
pendencies to make predictions. ML based IE is called Adaptive IE (AIE)(18; 7; 27).
It can be exploited to allow naive users (i.e. users knowledgeable about their domain
but having limited knowledge when it comes to computing) to port IE systems so as
to avoid referring to NLP experts. In AIE, only three items are required to extract
information from any domain. First and foremost, the set of documents from where
data needs to be extracted. Secondly, a set of training documents which are used to

train the IE engine and thirdly an ontology® defining the concepts which need to be

5An ontology is a formal specification of a shared conceptualisation (61)(12).

extracted. Lets look at each one in more detail.

The set of documents used for extraction is normally referred to as the test
corpus®. These documents can be free texts, structured texts (texts containing
tables, lists etc) or a combination of both. Most important of all, a subset of
these documents generally contain the information that needs to be extracted.
In the scenario we are analysing, this corpus would consist of all the pages

containing the names of the authors, editors and books.

The set of documents used for training is called the training corpus. It is made
up of documents similar in structure and content to the test corpus but con-
taining internal or external markers showing which information needs to be
extracted. These markers are called annotations and a document having anno-
tations is called an annotated document. In the case of outside annotations,
the annotations are referred to as template annotations whereby a template is
associated with one or several documents and its instances point to the elements
found in the documents. The process of creating these annotations is referred to
as the annotation process. There are several kind of markers which one can use,
the most commonly used are called tags. A tag is a label assigned to a section
of the document in order to identify some data. To understand better what
we mean, imagine in the Online Book scenario we have the details regarding a

random book as follows:

Oliver Twist - Charles Dickens

The text means nothing on its own for a machine. It is just a sequence of
letters and symbols. Therefore, if we want the IE system to learn examples
from this documents we must insert training tags inside the document to mark

the examples as follows:

6 A corpus is a large collection of writings of a specific kind or subject, used for linguistic analysis.

(BookT'itle)OliverTwist(/ BookTitle) — (Author)CharlesDickens(/Author)

The (BookTitle) tag marks the start of a book title while (/BookTitle) marks
the end of the book title. The text in between those tags is the title of the book
(it is referring to the book Oliver Twist). The same holds for the (Author)

tag which marks the start and end of the author name (in this case Charles

Dickens).

An ontology defines a subset of the real world made up of concepts and relationships
between them. There exist several formats and standards for ontologies. A

simple representation for the Book Shop scenario would be as follows:

(Book)
— has a (BookT'tle)
— is written by one or many (Author)

— edited by an (Editor)

This representation does not follow any particular standard, its purpose is to il-
lustrate the concepts behind an ontology. The words within () are concepts
while the words in bold represent the relationship between these concepts.
Therefore, the above ontology states that a book has a title, it is written by
one or more authors and is edited by an editor. An ontology is used to specify
all the elements required in any domain and their relationship. It is useless
annotating the document with tags that are not linked to an ontology because
tags on their own are meaningless unless they are put in a context of some sort.

If we look at the tag Editor on its own, we know that an editor can be:

1. A person who edits.

2. A person who writes editorials.

10

3. A device to edit film.

4. A program used to edit text.

If the context is not supplied, it is quite difficult to disambiguate what the

particular word means.

So far we have seen that IE can be used to automate the process of adding an-
notations to any kind of page. These annotations are linked to an ontology and
therefore have a well defined meaning. In other words, IE can be used to add mean-
ing/semantics to pages. Unfortunately, this comes at a cost since it requires a certain
amount of training. This training is normally supplied by a human whose job is to
manually annotate the training corpus. This has been very successful so far since the
tasks being tackled were restricted to closed domains. But when it comes to larger
scenarios, the IE methodology starts facing problems. The largest scenario possible
is without doubt the SW scenario.

In this scenario all the pages on the Internet need to be annotated with meanings
so that they can be processed by programmes. The need for having these programs
analysing the web arises from the fact that the web is full of both relevant and
irrelevant information on any topic imaginable. The amount of information available
is such that a human being cannot cope with it. This problem is also referred to
as information overload. Therefore to make this process tractable, a human requires
the aid of some automated agent(70) capable of analysing the data in order to search
and filter out, redundant and irrelevant information whilst directing the user’s search
through this information space. The only problem with this approach is that the
agents do not understand anything which is on the web because for them, all the
information present is just a bunch of binary symbols. What the agents need is a
way to help them understand the data so that they can process it in a more meaning

full way. This is exactly the goal of the SW. Basically the SW is a silent revolution

11

whose aim is to add semantics to the web which can be understood and used by both
humans and automated agents.

If we try to insert this meaning manually into web pages, we immediately realise
that this task is not feasible. The documents which are already semantically anno-
tated in the current web are few. The number of un-annotated web sites is enormous
and, every day, more and more new web sites are being created. If we assume for a
second that the process of manually annotating these web sites is tractable, and if we
ignore that it is both time consuming and error prone when performed by humans,
the task is still difficult to perform by non-experts. To help the users perform these
tasks, there is lack of adequate tools capable of providing some kind of support to
semi-automatically assist the annotation process.

IE can surely help in this respect but we are now faced with a scalability problem,
i.e. how can we provide enough training documents to annotate the web? A possibility
would be to make use of the data already available on the web to annotate the training
documents. If we take a look back at the Online Book Shop scenario, all we require
is a partial list of authors and book titles. Once we have this partial list, it can be
used to automatically annotate some of the documents in the test corpus so that we
create a training corpus. Then the training corpus is used to train the IE engine.
The trained IE engine is applied over the remaining test corpus and new authors and
titles are extracted. The annotation part is automatic because it is simply a matter of
going through the authors and book titles in the lists, searching for them through the
documents, and then adding the appropriate annotation around their instance. The
lists can be found quite easily using any search engine and involve little effort on the
human’s side. The only problem remaining is the fact that these lists are normally
distributed around the web probably stored in several databases. To overcome this
we can make use of Information Integration (II) techniques. II refers to a collection

of techniques which let applications access data as though it were a single database,

12

whether it is or not. It enables the integration of data and content sources to provide
real-time read and write access. Therefore, if in the Online Book Shop scenario, we
need to annotate some of the authors and we find two partial lists of authors, II
methods can help us access this list as if it was a huge single list.

The combination of the different technologies mentioned above proposes a real-
1stic path towards the creation of the SW. This marriage of Al with Information
Technology on the web gave birth to a new field referred to as Web Intelligence
(WI)(80)(106). WI is a very recent field that combines different research interests of
individuals whose goals are related to producing next generation applications on the
web. It seeks to exploit a combination of Artificial Intelligence (AI) and advanced
Information Technology (IT) techniques on the Internet with the aim of creating In-
telligent Web Information Systems (IWIS). WI seeks to build the next generation of
Web-empowered systems, environments and activities in order to address a number
of emerging challenges on the web.

Even though most of the techniques and methods used in WI have been in use for
years (if not decades), the growth of the Internet created new needs in the research
community. All the techniques used so far work fine in their particular restricted
domain but most of them are not usable over the Internet due to the new properties
and structure which this new medium has. The Internet brought with it several open
issues which were not considered before. First of all, the structure itself is quite dif-
ferent than any other structure seen before. Not only, the documents themselves can
be either free text, semi-structured texts or structured texts, but they also contain
a number of multimedia objects within them. So existing theories and technologies
need to be modified or enhanced in every field to handle these intra-document ele-
ments. But this is only a small portion of the problem, on the Internet one can also
find inter-document elements by using hyperlinks. A side effect of using hyperlinks

is that they extend the boundaries of a document beyond the ”physical” boundaries

13

of that file. This obviously means that the complexity dealt with when analysing
and processing these pages is much higher than with traditional documents. Apart
from this, if we take a look at the growth rate of the internet(30), we immediately
realise that the size of the net is almost doubling every year, therefore making it
unmanageable for traditional systems. Basically, the web increases the availability
and accessibility of information to a much larger community than other computer
applications.

This new platform does not only bring about new problems, it provides some new

and exciting possibilities.

Web Mining The process of finding correlations or patterns among dozens of fields
in large relational databases (Traditionally known as Data Mining) is being
extended to the web. The fresh stream of reliable information which Web
Mining produces is vital for E-businesses, marketing departments and other
decision making sections of an organisation since information can help them
gain competitive advantage over their competitors. The use of explicit physical
links between web documents (11) provides new logical connections between
whole documents or segments of them. These techniques make it possible for

the system to create personalised views of the web.

Web Information Retrieval Making use of information retrieval engines is the
most popular way of finding information on the web. These search engines are
and will be very important in the coming future but unfortunately they are
currently very limited. A search through the statistics gathered by one of the
most popular search engines available shows that the queries in English count
to only about half of the searches " and other languages are slowly gaining

popularity. This shows that there is a growing need for more multi-lingual

Thttp: //www.google.com/press/zeitgeist.html

14

retrieval. There is also a need of more personalisation and therefore the creation
of personal search agents. Finally, the SW is bringing about a new way of
searching. There will be no more the need to invent a bag of words in order to
try to find the information required. A search through the semantic space rather

than through the syntactic space would make queries much more accurate.

Intelligent Web Agents The current generation of web agents are quite dumb.
One of the main reasons is that they do not posses the necessary technology to
process and understand what is written in web pages. That is one of the reasons
why the SW is being setup. Once this is done, we will be able to see agents
that can perform any kind of intelligent tasks from more powerful searches to
execution of complex processes. This could also lead to the creation of virtual
representations of individuals in the web. The tasks of these would be to execute

tasks which they get from their counterpart in the real world.

In synthesis, WI seeks to address a number of future challenges. First of all a major
goal is the SW per se. Once the SW is set up, it must be populated with agents.
Agents can handle simple tasks easily but when it comes to complex tasks problems
start arising since a degree of planning is essential. A plan is a sequence of actions
used to achieve the goals, given an initial state. In this context planning information
is interpreted from semantic Web documents while meaning and relationships of the
words in the documents are specified in ontologies. If this scenario is reached, the next
step would be to have agents distributed over the whole web and collaborating with
each other. Finally, these agents will start representing humans in the real world,
and they will start forming a social self-organising network. According to (80), if
WI manages to tackle these challenges, we would have created what they call the
Wisdom Web. This web would enable humans to gain practical wisdom of everything

existing both in the virtual and real world, while providing a medium for sharing

15

knowledge and experience. It would also facilitate the creation of knowledge and
social development by making use of its self-organising resources. WI is still in its
infancy but it is a field that is trying to reach very ambitious targets.

So far, we only considered the technological revolution which the SW is expected to
bring. But if the SW is to become a reality there is a need of a cultural change amongst
the users. Individuals should be inclined towards a Knowledge-sharing culture where
people are not afraid to share their knowledge and learn from others. Since in such
a society, the most important resource is knowledge itself, incentives and recognition
must be provided to encourage people to share their own knowledge. But people
will not just share knowledge for the sake of it, first of all some users tend to be
conservative, therefore, these knowledge technologies must infiltrate into day-to-day
use by making gradual changes in the traditional systems. Secondly, if new fascinating
technologies start emerging, one must make sure that they provide an added value
to the user in real time even before the users start accessing it. The reason is that
it is difficult to convince users to contribute to something which is empty, therefore,
new technologies must not wait for users to bootstrap the process but they must
seed the process before their technology is used. Users utilise a technology only if
it solves their problems today and not someday! The basic organisational structure
of the data is normally stored in knowledge structures or ontologies which allow the
users to search in the ”semantic neighbourhood” (29) of a concept, therefore making
the search much more powerful and natural for the user. Since such an ontology is
normally defined as a formal specification of a shared conceptualisation(60) and since
every user might need to see a different conceptualisation, different ontologies can
be used to present different views of the same data. This is very important since it
allows future technologies to be transparent for the busy knowledge workers and only

present to them what they need to see them.

The SW is such a huge initiative that it will take a lot of time and effort before it

16

becomes accessible and usable by everyone. In the coming chapters, we will present
two methodologies that will contribute a small step forward towards reaching these

targets and eventually making the SW a reality.

1.2 Goal

The future of the Internet may well be based around the SW concept. For this web
to become a reality, most of the documents available online must be semantically
annotated in order to be usable by automated agents. It is unrealistic to believe
that people will just sit down and semantically annotate their pages for the sake of
creating the SW. Many people still have no idea what the SW is and why it is being
created. If we want the SW to be a success, this annotation process must itself be
automated. The goal of this research will focus on how to use different approaches
in order to automate as much as possible the process of semantically annotating the
web. This task can be further subdivided into two distinct subgoals.

The first subgoal must cater for documents which are not represented adequately
on the web and therefore, the need of user intervention is inevitable. Our research
focuses on using a semi-automatic methodology combined with AIE techniques in
order to help the users annotate documents. In this case AIE can be used in the
traditional way i.e. by having a user annotate a set of examples and training a
learning algorithm. To do this, we researched and examined how an annotation tool
for AIE should work. We then propose a methodology that reduces the user’s input
as much as possible by exploiting the annotations which were already encountered
in the document. So if the user annotates the name of a person which is repeated a
further four times in the document being annotated, the system will cater for those
annotations itself by annotating them automatically. Also, with the help of an AlE
engine, it will be learning from the user what kind of annotations are required in

the document. The system will continuously evaluate itself and when it learns to

17

reproduce these annotations, it will take over the annotation process and annotate
the remaining documents for the user. The task of the user will change from the hard
task of annotator, to the much lighter task of supervisor of the annotations inserted
by the system. This methodology is expected to give two main benefits, first of all
the effort expected from the user is diminished and focused only on the most difficult
annotations. Secondly, the time taken to annotate will be reduced drastically.

On the other hand, the second subgoal is aimed to handle the huge amount of
information available on the internet. Since the information found online is not cen-
tralised (But it is normally distributed amongst different sources such as lists, search
engines, digital libraries etc.), it is common to have a lot of redundancy. This is given
by the presence of multiple citations of the same fact in different documents. When
known information is presented in different ways, it is possible to use multiple occur-
rences to bootstrap several recognisers which are then generalised further and utilised
to recognise new information. Therefore the main focus of this research will be on
how to exploit the redundancies of the web and combine them with AIE techniques
in order to discover more information. The approaches we will explore are varied
and range from using Human Language technologies such as Information Extraction
to other information and resources available on the web. The result of this research
will be a methodology capable of semantically annotating web pages using just some
initial configuration from the user’s side.

The path towards achieving these goals raised various interests amongst the sci-
entific community. In fact throughout these past years, we managed to present our
work to several different subgroups in the computing community World wide and also
publish a long list of papers. The following, is the complete list of publications which

were produced as a direct result of the research we conducted:

18

Book Chapters

e Ciravegna, Dingli, Wilks and Petrelli : ”Using Adaptive Information Ex-
traction for Effective Human-centred Document Annotation” in Text

Mining (Springer Verlag 2003)
Papers

e Dingli : ”Next Generation Annotation Interfaces for Adaptive Infor-
mation Extraction ” in 6 th Annual Computer Linguists UK Colloquium

(CLUKO03) , January 6-7, 2003 , Edinburgh, UK

e Dingli, Ciravegna and Wilks: ” Automatic Semantic Annotation using
Unsupervised Information Extraction and Integration” in International
Conference on Knowledge Capture (K-CAPO03) held in collaboration with the
International Semantic Web Conference 2003 (ISWC03) Workshop on Knowl-
edge Markup and Semantic Annotation (K-CAPO03), Florida, United States,
October, 20-23

e Ciravegna, Dingli, Iria and Wilks: ”Multi-Strategy Definition of Anno-
tation Services in Melita” in International Semantic Web Conference 2003
Workshop on Human Language Technology for the Semantic Web (ISWCO03),
Florida, United States, October, 20-23

e Ciravegna, Dingli, Guthrie and Wilks: ”Integrating Information to Boot-
strap Information Extraction from Web Sites” in IJCAI 2003 Work-
shop on Information Integration on the Web, workshop in conjunction with

the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003),
Acapulco, Mexico, August, 9-15

e Ciravegna, Dingli, Guthrie and Wilks: »Mining Web Sites Using Adap-

tive Information Extraction” in Research notes and demos section of the

19

10th Conference of the European Chapter of the Association of Computational
Linguistics (EACL 2003), Budapest, Hungary, April, 12-17

Ciravegna, Dingli, Petrelli and Wilks : ” User-System Cooperation in Doc-
ument Annotation based on Information Extraction” in 13th Inter-

national Conference on Knowledge Engineering and Knowledge Management

(EKAW02), 1-4 October 2002 - Sigenza (Spain)

Ciravegna , Dingli , Petrelli and Wilks : ” Timely and Non-Intrusive Active
Document Annotation via Adaptive Information Extraction” in Se-
mantic Authoring, Annotation and Knowledge Markup (SAAKM 2002) , ECAI
2002 Workshop July 22-26, 2002 , Lyon, France

Ciravegna, Chapman, Dingli and Wilks: ” Learning to Harvest Information
for the Semantic Web” in Proceedings of the 1st European Semantic Web

Symposium, Heraklion, Greece, May 10-12, 2004

Glaser, Alani, Carr, Chapman, Ciravegna, Dingli, Gibbins, Harris, Schraefel
and Shadbolt: ”CS AKTiveSpace: Building a Semantic Web Applica-
tion” in Proceedings of the 1st European Semantic Web Symposium, Heraklion,

Greece, May 10-12, 2004

Posters

e Dingli : ”Active Document Annotation via Adaptive Information Ex-
traction” in University of Sheffield, Department of Computer Science, Re-

search Retreat 6 th November 2002, Sheffield (Runner up for first prize)

e Ciravegna, Dingli and Petrelli : ”Active Document Enrichment using
Adaptive Information Extraction from Text” in st International Seman-

tic Web Conference (ISWC2002) , June 9-12th, 2002 Sardinia, Italia (Runner

up for first prize)

20

e Ciravegna, Dingli and Petrelli : ”Document Annotation via Adaptive In-
formation Extraction” in The 25th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval August 11-15,

2002, in Tampere, Finland

e Ciravegna, Chapman and Dingli: ” Armadillo: Harvesting information for
the Semantic Web” in The 27th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval July 25-29, 2004,

in Sheffield, United Kingdom

1.3 Thesis Structure

The first part of the thesis takes a look at the different technologies involved. Chapter
2 describes the problem of annotation for the SW together with a literature review.
Chapter 3 describes the problem of automatically extracting and integrating semantic
information. Both the IE and II sections are followed by a literature review.

In the second part, starting from Chapter 4 we will explain the semiautomatic
methodology we propose. Chapter 4.4 will report the evaluation of the system and
some concluding remarks. Then we take the problem a step further and explore the
possibility of using fully automated techniques. In Chapter 5 we will explain the
automated methodology we propose. Chapter 5.4 will report the evaluation of the
system and some concluding remarks. Finally, Chapter 6 will present our vision of

the future of annotation for the SW together with a general conclusion.

Chapter 2

Annotation

This chapter will deal with some of the most relevant research and work done in
the use of Adaptive Information Extraction as support for annotation. The first
section will highlight the main motivations behind our work. It will show some of the
current problems in the field and the arising needs of the computing community. The
following section will provide a comprehensive survey of the different approaches used
so far to tackle this problem. It will also give an overview of similar systems used for

other problems but which can provide ideas useful for our domain of research.

2.1 Motivation

The web of the future, most commonly referred to as the Semantic Web! is currently
being constructed. It is invisible to the naked eye and most people who use the
internet are unaware that the web is slowly changing not in style but in content. This
change in content involves enriching the data contained in the web with semantic
content in order to facilitate the work of automated agents trying to interpret the

contents of a web page. A fundamental task in order to achieve this goal is to

Lhttp://www.w3.0rg/2000/01/sw/

21

22

assoclate metadata with content. Metadata enriches the information on the web with
properties about some given content even if the medium in which the information is
stored does not directly support it. This kind of data is not only useful to describe
content but it can also be used for organisational and classification purposes since it
supplies additional properties which can be used for groupings.

The impact of this kind of data is unimaginable. If we just consider a common
search problem as an example we can appreciate the potential of metadata. Until now
whenever a user searches for information, this is done by selecting keywords which
may be related to, or which are normally found in proximity of a particular concept.
This has the obvious limitation that the search criteria is purely based on guessing
related keywords based on world knowledge of the user. Because of this the search
tends to be inexact and ambiguous. All this could be replaced by Intelligent agents
capable of performing searches based on semantic information rather than on related
keywords. These kind of searches would be more exact because the similarity of a
page to the search query would not be based on bags of words and their occurrences
in related contexts but rather on exact semantic information. This example can be
extended to unlimited domains such as online shopping, any type of queries etc.

What is frustrating about the current web is that the technology to make this
possible exists. Browsers became much more sophisticated than the original Mosaic?
allowing customisable styles, applets, any kind of multimedia etc. Standards too have
evolved from the powerful yet difficult-to-use SGML to much more usable XML and
all its vocabularies like RDF, XHTML etc. Finally and most importantly all the

information we need is available in the web pages, yet there is no automated way (so

thtp://archive.ncsa.uiuc.edu/SDG/Software/Mosaic/NCSAMosaicHome.html

23

far) of extracting the semantic information from them. This is the reason why it is
imperative to semantically annotate the web pages before they are of some use for the
semantic web. Semantic annotation is the process of associating metadata to whole
or parts of a documents.

But annotation is not the only limitation, having all the technologies and stan-
dards without having tools that make effective use of them is useless. A number of
prototypical systems have been designed yet they still lack a number of fundamen-
tal features. The basic and most important feature lacking in most systems is the
learning element. Manual annotation is without doubt a burden for human users
because it is a repetitive time consuming task. It is a known fact that humans are
not good at repetitive tasks and tend to be error prone. The systems that support
some sort of learning do so in a batch mode whereby the learning is not managed by
the application but rather by the user of the system. It can be seen clearly in tools
such as MnM (38), S-Cream (63) etc whereby a user is first asked to annotate and
then an IE engine is trained. There is a clear distinction between the tagging phase
and training phase. This has the adverse effect of interrupting the user’s work since
the user has to manually invoke and wait for the learner in order to learn the new
annotations. Apart from this, since the learning will be performed in an incremental
way, the user will not be certain whether the learner is trained on enough examples
considering the sparseness of the data normally dealt with. It may also be difficult
for the user to decide at which stage the system should take over the annotation pro-
cess, therefore making the handing over a trial and error process. Research towards
making annotation semi-automatic or rather fully automatic in order to semantically

annotate documents is still far from achieving this goal. Because of this there is still

24

lots of work necessary in this field of research.

2.2 Previous Work

This section highlights a number of existing systems that contributed in some way
or another towards adding annotations to web text. Some of the systems propose to
solve a different problem from the one we are trying to tackle. In our case the use of
annotation is mainly restricted towards a particular group of people: those annotating
documents in order to train an IE system. Most of the applications presented here
tackle the task of generic annotation. l.e. they want to empower users by giving
them the facility to add comments to a web site. The task of annotating for IE
builds upon generic annotation but is a step further. It is not just a matter of adding
comments in order to identify or highlight sections of the document but rather a
learning process whereby the annotator is teaching the IE system what concepts are
required to be learned. In our approach, the IE is constantly learning and when
the IE system has seen enough examples, the annotations stop, since the IE system
is capable of annotating the remaining documents. Therefore annotation is done in
order to support an IE system and not just to annotate the documents.

Even though the programs in this section have a different scope from our task,
they provide good indications as to how user annotation can be eased. This section
will first take a quick look at the initial systems and then focus on the most relevant

systems, those that can give a greater contribution to the solution of our problem.

1969 Standard Generalised Markup Language (SGML)! was developed by IBM in

a research project whose task was to integrate law office information systems.

11SO 8879:1986

25

It was meant to allow text editing, formatting, and information retrieval sub-
systems to share documents by having different meta information relevant to
specific tasks, coexisting in the same document. SGML can be considered as

the ancestor of modern markup languages.

1970-80’s TEX? was one of the initial typesetting systems, developed by Professor
Donald Knuth at Stanford University. The system is still used today with lots
of enhancements like the addition of BTEX?® which allows the user to define
higher level commands for common tasks. TEX reenforced the idea that layout
information and content can be mixed in the same document which lie at the

base of modern web languages like HTML.

1988 Xanadu® is the original hypertext project led by Ted Nelson. It is still alive
and proposing ideas as to how hypertext should exists together with different
styles of annotation. From it a number of prototypical applications were born

like CosmicBook etc which seek to promote the ideas of markup.

1994 CoNote (56) is a computer supported cooperative work system designed to
facilitate communication within a group via the use of shared annotations on
a set of documents. The annotation system is used to study how people can
collaborate when working with a set of shared documents. It allows a group
of people to share a set of documents and to make comments about them, all
of which are shared with the other members of the group. An annotation to

a document is a comment on or question about the document. Annotations

2http://www-cs-faculty.stanford.edu/ knuth/
3http://www.latex-project.org/
4http://www.xanadu.com/

26

can also refer to other annotations. For example, they can answer questions or

refute arguments.

1994 ComMentor (95) at the Stanford Digital Library was a research prototype for
annotating web pages with a special customized browser. It required the instal-
lation of trusted, platform-specific client-side software. The browser provided
a simple mechanism to identify a place on a currently visible page in which a
comment could be written. In making an annotation, the user simply selects
a region in the document being annotated, and the browser stores redundant
information about it. When a page changes, an attempt is made to relocate
the attachment point for the comment based on mechanisms such as embedded
tags and/or string match. Users can browse for annotation sets, and put to-
gether their personal selection. The selected sets are stored as part of the user’s
profile for their browser, which is built from the information about the user on
the annotation server. Among these sets, users can designate specific ones as
"active”. If a set is active, then the comments in this set for a document being
retrieved are retrieved from the comment server for this set. Annotations can
be indicated in an interface in a number of ways, including marginal markings
(as in ITEX), format-marking of annotated text (as in WWW browsers with
underlined anchors), in-line presentation of the annotation text, and in-place
annotation indicators. The tool is a generic meta viewer which can be used in a
variety of contexts to get ”preview” information faster than it is possible with
a full document-view window. Since annotations are documents too, they can

be recursively annotated.

27

1998 JotBot® is a Java applet that retrieves annotations from specialized servers
and presents an interface for reading and composing annotations. It is a thin
application when compared to all the others and only requires the installation
of client-side software in a trusted Java virtual machine. The existing editor
controls annotation size and does simple content validation. The existing version
only supports small annotations due to the fact that it maintains lightweight IP
connections. Although limited, this tool was the first to demonstrate lightweight

annotations over the web.

1999 Third Voice was a commercial company that created a browser plug-in for
annotation. The company is no more in existence mainly because of massive
preassure against its products®. The system was a kind of newsgroup enabling
people to talk and put comments in the contents of a site. The site was not
altered in anyway but users could see the comments attached to it if they
obtained the plugin.ThirdVoice was unpopular with many Web site owners,
who were disturbed by the idea of people posting critical, Off Topic, or obscene
material that would be presented on top of their site. Legal action was also
discussed. Another issue was privacy since the annotations were centrally stored

and controlled by Third Voice only.

1999 Annotate.net’ is a commercial company which makes it possible for companies
who are members of a privileged group to annotate specific pages in order to

divert customer traffic to their own sites.

Shttp://www.icc3.com/ec/architecture/webannotations.html
6http: //www.worldzone.net/internet/pixelsnttv/
Thttp://www.annotate.net

28

2000 The Annotation Engine® found at the Berkman Center for Internet and Society,
Harvard Law School is an open-source server based proxy written in perl. The
system makes use of a database in order to store user comments, pointers etc.
These entities are then added to a document before it is previewed by a user.
The original page is not physically added but what happens is that the page is
loaded through a proxy which adds the annotations to it. This proxy approach

allows the notes to be browser and operating system independent.

2002 VisualText™ is a development environment created by a commercial company
called Text Analysis®. It integrates multiple strategies, including statistical,
keyword, grammar-based, and pattern-based, as well as diverse information
sources, including linguistic, conceptual, and domain knowledge, to quickly and
efficiently develop text analysis applications. Apart from these it also imple-
ments methods for automatically generating rules from annotated text samples

in order to aid the user during annotation.

2.2.1 The Alembic Workbench

The Alembic Workbench(34) is made up of a set of integrated tools that make use
of several strategies in order to bootstrap the annotation process. The idea behind
Alembic is that whenever a user starts annotating, the annotations being inserted
are normally not bound to that specific document but can apply to other similar
documents. In order to reduce the annotation burden as much as possible, the system
should make use of such information. Therefore in Alembic, every piece of information

which can be used to help the user is utilised. Eventually the task of the user changes

8http://cyber.law.harvard.edu/projects/annotate.html
9http://www.textanalysis.com/

29

from one of manual annotation to one of manual reviewing.
A user inserts annotations in Alembic by marking elements in the document using
a mouse. Together with this method, some other strategies are used in order to

facilitate annotation such as;

e Simple string matching was used to locate additional instances of marked enti-

ties.
e Has in built a rule language used to specify domain specific rules for tagging.

e Provides a tool that lists potential phrases in documents in order to help users

identify common patterns

e Provide statistical information about words such as frequency count, potential

importance etc.

The most innovative feature of this application is the use of pre-tagging. The main
idea is that information which can be identified before the user starts tagging should
be tagged in order to support the user by preventing him from wasting his time on
elements which can be tagged automatically by the system.

Alembic also implements a bootstrapping strategy. In this approach, a user is
asked to mark some initial examples as a seed for the whole process. These examples
are sent to a learning algorithm that generates new examples and the cycle continues
like this. Eventually a number of markings are obtained and are presented to the
user for review. If the user notices that some of the rules are generating incorrect
results, it is possible for the user to manually change the rules or their order so
that the precision of the algorithm is increased. Although the machine learning rules

generate quite good results, they lack two important factors which humans have i.e.

30

linguistic intuition and world knowledge. The Alembic methodology does not cater
for redundant information, therefore allowing documents which are already covered by
the IE system to be presented to the user for annotation. This makes the annotation
process more tedious and time consuming for the user.

Experiments performed using the Alembic workbench has showed significant im-
provements in the annotation of documents. In several tests it was shown that users
double their productivity rate. Also, with the data provided both by the users and

automatically from the system, it was possible to train quite complex IE tools.

2.2.2 Annotation System

The Annotation System! developed at NCST Bangalore is one of the emerging anno-
tation systems specifically targeted for the Semantic Web. This system works using
a three tier approach made up of a thin client (which is normally a plug-in), an
application server and a database used to store the annotations.

The system proposes an extension to a normal web browsers by attaching to it the
functionality of annotating web pages directly from the browser. The user can select a
particular text in the current web page and either annotates it or creates an annotation
for the whole document. The system offers a restricted set of possible annotations
which could be changes required, comments, corrections, examples, explanations and
questions. This division into categories is important because it allows the user to
query for annotations in a particular category. Apart from this, the annotations are
grouped into subject hierarchies which a user can add/edit. He can browse through
the hierarchy and select the appropriate subject under which his annotation can

then be categorized. Annotations can also be stored in the corresponding subject

10nttp://www.ncb.ernet.in/groups/dake/annotate/

31

categories under different users and others can easily lookup the annotations made
for particular subjects, once they come to know that a person X is doing research on
topic Y. Once the annotation phase is completed the annotations are stored separate
from the document either locally or on a remote server. A strength of this system
is that virtually any resource on the web ranging from images, embedded objects,
to anything with a URI (Uniform Resource Identifier!!) can be annotated by this
system. These annotations are limited to whole documents and not to parts of it.
Another feature of the system is that users can not only view the annotations but
also reply to any annotations they see. This facilitates the creation of discussions
based on subparts of the whole document.

An important contribution of this approach is the fact that annotations are not
stored within the document. This makes it possible for documents to have multi-
ple annotations for different purposes. The filtering and searches performed on the
annotation database makes it possible for the users to navigate through the huge
annotation space without getting lost in the sea of annotations which one document
could have. A user is capable of viewing/hiding annotations according to several

criteria chosen by him.

2.2.3 Annotea

Annotea (74) is another system similar to the ones already described whose task is
to associate metadata with content. The main difference between this and other
systems is that Annotea is a W3C'? initiative and although its main aim is to create

a web-based shared annotation framework it does so using W3C standards as much

Uhttp://www.w3.org/Addressing/
12nhttp://www.w3.org/

32

as possible. The annotations are stored in an external document and the information
is stored as an RDF (Resource Description Framework)!® file. Together with RDF
additional information is stored by useing XPointer!4, XLink!® and HT'TP!6. The
current implementation makes use of the Amaya!” editor/browser and a generic RDF
database. This kind of database was used because it allows other applications that
use RDF to access it without having to change anything.

Annotea is capable of handling many types of annotations. It its simplest form,
an annotation can be seen as a remark about a document referenced by a URI, made
either by the document’s author or by a third party. The annotations are stored in
specialised servers and can be accessible and modifiable by anyone.

When Annotea was being designed, a number of issues were considered. It was
built around open technologies and standards in order to simply its interoperability
with other systems and to maximise its extensibility. To simplify the design of the
system, annotations were limited to XML based documents and the annotated doc-
uments must follow the basic XML rule of well-formedness. The annotations used
are typed using some sort of metadata for types. The types allow users to classify
annotations. Annotations can be either private or public. Private annotations are
stored locally while public ones are published on distributed annotations servers.

The system described is mainly a generic backend, but for the sake of our ends
we will change focus towards the client side called Amaya. Amaya is a full-featured

web browser and editor developed by W3C as a testbed. The system supports all the

Bhttp://www.w3.org/RDF/
Unttp: //www.w3.org/TR/xptr/
15nttp: //www.w3.org/TR/xlink/
16http: //www.w3.org/Protocols/
17http://www.w3.org/Amaya/

33

Annotea protocols and its main features include the creation, browsing and filtering
of annotations. First of all a user can annotate three things: a whole document, a
particular location in the document (based on where the cursor’s position is) or the
current selected text. As soon as an annotation is created, the user is asked to enter
metadata describing the annotation. The browsing of the annotations occurs in two
stages, first the annotations are downloaded either from the local repository or from
remote servers and then they are merged together with the document. A user goes
through the annotations by selecting them and their content plus all the associated
metadata is immediately displayed in another window. Finally, since a document
may be heavily commented, the system allows annotations to be filtered by author,
by annotation type or by annotation server. Amaya also has a query language called
Algae which allows the user to query the document for particular annotations only.
Annotea is a tool that allows users to associate metadata with web resources.
The system is built on open standards therefore it can be usable by different applica-
tions. Also the system is virtually clientless since it can exist on top of any browser
that handles the W3C standards. The model specified by this tool is used in vari-
ous other annotation projects like Annozilla'® which is basically an implementation
for the Mozilla web browser. A further enhancement over Annozilla is the COHSE
Annotator!® which adds to the basic system the possibility of using a DAML+OIL

ontology instead of just a list of concepts.

18http: / /annozilla.mozdev.org/screenshots/phoenix /annozilla_0.4
19http: //cohse.semanticweb.org/

34

2.2.4 CritLink

The idea behind the CritLink tool? is based upon the original hypertext idea where
users can insert comments in any web page in order to create an online discussion
about the particular page. It also allows new types of links like bidirectional linking,
extrinsic linking, fine-grained anchors, and link typing.

Bidirectional links are quite important especially for consistency’s sake. Currently
the web makes use of unidirectional links, this has the obvious limitation that when-
ever a link is followed, there is no simple way to trace the referent link. This omission
makes the logical flow of any web page unclear and difficult to follow.

Intrinsic links refer to links found in a document. They are inserted by the author
and no one else can modify or add new links. Extrinsic links are external links
which are stored somewhere outside the particular document but which origin from
a location within the particular document. This kind of link allows third parties to
add relations to other documents.

The link typing allows a link to have attributes that describe the relationship
between the two objects being linked. The reason for this is that whenever a link
exists, there is no way of understanding what is the purpose of the link unless the
link is followed or unless there is a description next to the link. This limitation makes
it more difficult to determine whether a link is relevant or not.

Anchor Granularity define anchors that explicitly define the part of the document
being anchored. Although this is part of the current HTML standard, most browsers
simply ignore it. Whenever an anchor is clicked in a document, the user is taken

to approximately the location referred by the anchor but there is no definite way of

20http: //crit.org/ ping/ht98 html

35

knowing the exact area.

These limitations degrade the current user experience on the web. If a user notices
an error on a web page, the page cannot be corrected or if a user wishes to add some
references to an existing web page, it cannot be done. This leads to lots of incomplete
information and waste of time. The web is not exploiting the benefits of having a
community of users who can contribute to enrich the information found in web pages.

The CritLink software offers all these features with the added benefit that no
change is required on the client’s side. What happens is that before web pages are
presented to the user, they are passed to an intermediate proxy called a mediator in
order to modify the content with annotations. The mediator processes the document,
examines the links in the database and inserts new links in the document in order to
create reversible links. The system displays different icons depending on the type of
the link. Therefore, the original page is not being altered in anyway and the users

experience is being enhanced.

2.2.5 iMarkup

iMarkup?! is a commercial tool whose purpose is to promote collaborative document
creation. It is similar in spirit to the other tools already mentioned. The system makes
use of a Context Review Server (CRS) in order to facilitate web-based collaboration
between pre-defined groups of users.

The iMarkup tools allow users to annotate, organize and collaborate on Web

pages and documents. The system allows the creation of various type of markup.

This include:

sticky notes This note is like a Post-It Note for web pages. It is a symbol that

21nttp: //www.imarkup.com/

36

can be "stuck” to any web page. The note is transparent therefore allowing
text underneath it to remain visible. The sticky notes can also be minimized or

displayed as a small icon on the Web page until the mouse is moved over it. At

the end of the session, the note is saved.

freeform drawings The program comes with a Paint Brush tool that enables freeform
drawing or to draw straight lines on any Web page. To create freeform marks
on a Web page, the mouse is used to draw lines on the screen. The Paint Brush

can be a variety of colors and sizes, even transparent.

text markup The system allows various text markup functions. Italics, underline,
bold, strike-through and highlight are all supported. It also allows the use of
a system similar to a highlighting pen whereby the background is changed to
a bright color (highlight) and the text remains intact. Additional notes and

comments can also be saved with the text markups.

voice annotations The latese version of the program also supports voice annota-
tions and markups. The system works by simply adding your annotations by
speaking ”into the markups”. Whenever a new voice annotation is inserted a
small speaker is shown in the text exactly in the position where the annotation
was inserted. To listen to a voice annotation, the user just needs to click on the
speaker icon that is associated with the markup. When sharing markups the

recipient can hear, instead of just read, ideas associated with the content on a

Web page.

hotlinks and file attachments The markups also support file attachments and

37

hotlinks. This is useful when the user wants to attach additional support infor-
mation to a document. Whenever a file is attached, a paperclip symbol appears

exactly in the place where the attachment was inserted.

The key benefits of using this system are that the collaborative environment allows
all team members to perform simultaneous reviews as part of the workflow process.
The different kind of annotations allows a clearer delivery of ideas therefore making

sure the message is sent across to the other members of the team.

2.2.6 MnM

MnM (38) is an annotation tool that aids the user whose task is to annotate documents
by providing semi-automatic or fully automatic support for annotation. The tool has
integrated in it both an ontology editor and a web browser. MnM support five main
activities browse, markup, learn, test and extract.

Browsing is the activity of presenting to the user ontologies stored in different
location through a unified frontend. The purpose of this activity is to allow the
user to select concepts from the ontologies or whole ontologies which can be used to
markup the documents in future stages. To do so, the application provides several
views, various previews of the ontologies and the data stored in them. This part is
also referred to as ontology browsing.

Markup is the activity of semantically annotating documents. This is done in
the traditional way, i.e. by selecting concepts from the chosen ontology and marking
up the related text in the current document. When a specific section is marked, an

XML tag corresponding to a concept in the ontology is inserted in the body of the

document.

38

For the learning phase, MnM has a simple interface through which several learning
algorithms can be used. The IE engines tested were various ranging from BADGER??
to recently Amilcare?®. The role of IE in MnM is to learn mappings between annota-
tions in the documents and concepts in the various ontologies.

In MnM there are basically two ways of performing tests, explicitly or implicitly.
In the explicit approach, the user is asked to select a test corpus which is either stored
locally or somewhere online and the system performs tests on that document. In the
implicit approach, the user is still asked to select a corpus like the implicit approach.
The difference is that the strategy for testing is handled by MnM and not all the
documents are necessary used for testing. The corpus is divided between tests and
training corpora automatically by the system.

The final phase is the extraction phase. After the IE algorithm is trained, it is used
on a set of un-tagged documents in order to extract information. The information
extracted is first verified by the user and then sent to the ontology server to populate
the different ontologies.

MnM is part of a new breed of tools that integrate ontology editors with annotation
interface. These together with the support of IE engines surely make the annotation
task easier. Tools of the like of MnM are very important and will surely give a push

towards the realisation of the semantic web.

2.2.7 S-CREAM

S-CREAM (63) (Semi-automatic CREAtion of Metadata) is an annotation framework

that facilitates the creation of metadata and which can be trained for specific domains.

22http: //www-nlp.cs.umass.edu/software /badger.html
23http://nlp.shef.ac.uk/amilcare/

39

On top of this framework, there is Ont-O-Mat, an annotation tool. This tool makes
use of Amilcare, an adaptive information extraction engine. Amilcare is trained on
test documents in order to learn information extraction rules. The IE engine is then
used to support the users of Ont-O-Mat, therefore making the annotation process
semi-automatic.

The origins of S-CREAM lie in another system called CREAM which is an an-
notation and authoring framework. The system makes use of an Ontology together
with annotations. In this application, annotations are elements inserted in a docu-
ment which can be of three types; tags part of the DAML+OIL?* domain, attribute
tags that specify the type of a particular element in a document also referred to as
Metadata or a relationship tag also called Relational Metadata. A user can interact
with CREAM in three ways; by changing the ontology and the fact templates manu-
ally, by marking concepts in the document and then associating them with elements
of the ontology or by grabbing concepts from the ontology and marking them in the
document available.

S-CREAM goes a step forward and exploits the power of adaptive IE offered by
Amilcare in order to improve the CREAM model. Whereas before in CREAM, all
the interaction occurred almost exclusively manually, the process in S-CREAM is
as follows. The first kind of process is similar to the one in CREAM i.e. a user
manually annotates and performs the mappings between the web documents and the
ontology. The second kind is the same like the first but instead of a user, an IE engine
(in this case Amilcare) is used to automatically perform the mappings. Obviously,

this can only occur after the IE engine is trained on substantial number of examples

24pttp: / /www.w3.org/ TR/2001/NOTE-daml+oil-reference-2001 1218

40

provided by the user. The last kind of process uses a discourse representation to
map from the tagged document to the ontology. This discourse representation is a
very light implementation of the original theory. The reason being that discourse
representation was never intended for semi-structured text but rather for free text.
Therefore to overcome this limitation, the one used in S-CREAM is a light version
made up of manually written logical rules in order to map the concepts from the
document to the ontology.

S-CREAM is a comprehensive framework for creating metadata together with re-
lations in order to semantically markup documents. The addition of an IE engine
makes this process even easier and helps pave the way forward towards building auto-
mated systems in order to automatically semantically enrich the millions of documents

which are still not ready for the next evolution of the web, the Semantic Web.

2.2.8 SHOE Knowledge Annotator

The Knowledge Annotator (82) (68) is a tool that makes it easy to add SHOE*
specific knowledge to web pages by making selections and filling in forms. The tool
has an interface that displays instances, ontologies and assertations. A variety of
methods can be used to view the knowledge in the document. These include a view
of the source HTML, a logical notation view, and a view that organises assertions by
subject and describes them using simple English. The Annotator can open documents
from both the local disk or the Web. These are parsed using the SHOE library, and
any SHOE instances contained in the document are displayed in the Instances panel.
The Knowledge Annotator can be used by inexperienced users to create simple SHOE

markup for their pages. By guiding them through the process and prompting them

25QHOE is an HTML-based knowledge representation language.

41

with forms, it can create valid SHOE without the user having to know the underlying
syntax. For these reasons, only a rudimentary understanding of SHOE is necessary

to markup web pages. However, for large markup efforts, the Annotator can be quite

slow.

2.2.9 SMORE

SMORE (3) is an integrated environment for creating online content. The system is
made up of a Semantic Markup tool, an Ontology viewer /editor and an RDF Editor.
The scope behind SMORE is to create a tool that facilitates the seamless insertion
of semantic markup into any online content.

The idea being promoted in this tool is that anyone should be able to say any-
thing about anything. To achieve this, there should not be constraining things like a
predefined ontology. Because of this, SMORE tries to move away from the traditional
knowledge engineering tools towards web authoring tools. Basically the insertion of
semantics should be a side effect of the creation of a web site rather than the main
concern of the user. This philosophy can be seen in several parts of the tool. First
of all, it has a WYSIWIG?® editor which allows users to insert annotations as RDF
triples while they are creating the actual page. A user can also write emails from
within the tool for which the standard fields (such as subject, to, from, body etc.)
are attached to an email ontology and the user can annotate sub parts of an email.
One typical use is whenever an email is sent requesting a meeting. Date, time, loca-
tion, etc are annotated with concepts from an ontology which is sent as an attachment
with the email which could be used by agents on the receiving side (if they are capable

of processing the ontology). Some additional features of the tool include annotation

26What You See Is What You Get

42

of one whole or parts of an image, an advanced ontology management facility, web
scraping and a semantic virtual portal (that provides other semantic links).

The tool basically promotes the idea of semantic annotation not as a process
separate from other web processes but as something which can be integrated with
any web application. It also removes the boundaries from traditional annotation and
proposes annotation of various different types of media. A key feature is the flexibility
offered by this tool whereby one or more ontologies can be used to model the domain

and if one is not available, then the user is free to create his own ontology ad hoc.

2.2.10 The Gate Annotation Tool

GATE 27 (General Architecture for Text Engineering) from the Natural Language
Processing Group at the University of Sheffield, is an infrastructure which facilitates
the development and deploying of software components used mainly for natural lan-
guage processing. The GATE package comes complete with a number of software
components such as IE engines, Part of Speech taggers etc. One of the main features
of the Graphical User Interface (GUI) provided with GATE is the annotation tool.
The annotation tool is first of all an advanced text viewer compliant with many
standard formats. A document in GATE is made up of content, annotations and
features (attributes related to the document). The annotations in GATE (as any
other piece of information) is described in terms of an atribute/value map. The
attribute is a textual description of the object while the value can represent any java
object (ranging from a simple annotation to a whole java object). These annotations
are typed and are considered by the system as directed acyclic graphs having a start

and end position.

2Thttp://gate.ac.uk/

43

The annotation interface works like similar tools whereby a user selects a con-
cept from an ontology and highlights the instances of the concept in the document.
The system also supplies some generic tools which are capable of extracting generic
concepts from documents. These tools can be extended by use of a simple grammar
to cover more domain specific concepts. Being an architecture, GATE allows other
external components to be loaded which can aid to locate concepts. The results of
these tools are then presented in the annotation interface in the form of a tree of
concepts. The user simply needs to highlight a concept or a group of them and the
annotations are immediately displayed in the document viewer as coloured highlights.

The GATE annotation tool is a powerful tool since it allows several independent
and different components to work together. It also presents the user with a unified

view of results obtained from these components.

2.2.11 Trellis Web

Trellis Web(57)(58) is an annotation tool with a different purpose. Instead of allowing
users to add any kind of comment to a particular web site, it restricts these comments
to a well defined set of annotations having specific meaning. These annotations are
used to express either discourse relations, logical connectives or temporal relations.
Since these relations can be too strict at times, some partial ones are also allowed. The
reason why Trellis Web takes this approach is because its application is not oriented
per se towards normal web annotation but rather towards information analysis and
decision making. To make this analysis possible in an automated way, it is imperative
that the grammar used is well defined and restricted. This makes it possible for the
tool to perform some automatic inferences on the connected data available.

A plus of this tool is that since the comments inserted are based upon well defined

44

relations, the user does not need to Justify or explain why a certain comment was
written since it was inserted in a structured and logical way which can be interpreted
unambiguously by anyone. If one of the decisions needs to be updated, this too does
not pose a problem because all the explanation of why the decision was reviewed
is available. Although this tool is very useful, it has an obvious drawback. Users
must be accustomed to the vocabulary used to define the relationships. This can be

limiting in some cases since the relations offered do not cover all the domains.
2.2.12 Yawas

An annotation tool that is oriented towards allowing users to insert comments directly
in the web is Yawas. This tool as described in (36) tries to address a number of
problems. Users do not remember why some pages were kept for future reference,
they do not understand how they found a page (e.g. the navigational path is lost).
The scope of Yawas is to have an annotation tool working with a Web browser in
order to help to overcome problems such as handling the explosion of bookmarks
in web browsers, remembering why bookmarks were created and storing information
about context of page, e.g. the path that led to it.

Yawas helps the user solve these problems in a number of ways. First of all, by
highlighting specific texts, the user can remember what was of interest in a particular
page. Secondly, by keeping the parent URL of each highlighted document, the user
is provided with a context of the book-marked pages. Thirdly, the annotations can
improve personalised document clustering. Most of these features are not new and
they all have a number of weaknesses. The main one being that each one of them has
the potential of altering the contents of a page and it is very difficult to control who

has the right to do so without being intrusive. The original solutions were oriented

45

towards a client server approach whereby the client is presented with a platform
independent interface and the changes are stored somewhere remotely on a server.
This approach was later discarded due to the fact that the delay imposed on the user
in order to connect to the server would be annoying and intrusive in the annotation
cycle. Apart from this, the server approaches raises some privacy issues about who
has the right to store the data.

In synthesis, the Yawas system is a light annotation tool for the web. Annota-
tions are stored locally due to the previously mentioned reasons and makes used of
Dynamic HTML in order to dynamically modify the HTML document without the
need of reloading. Yawas works by allowing the user to insert highlights in the HTML
document simply by highlighting interesting areas. Comments can also be attached
to any document. The comments inserted in the text can be considered as being a
rough form of inserting semantics. In experiments performed with annotated docu-
ments using a classifier, the classifier produced more accurate and uniform semantic
descriptions of page clusters when the pages were already annotated by different users
than when un-annotated documents were used. These experiment suggests that an-
notations can improve the automatic clustering of Web pages.

The main problem with this application is that Yawas is platform dependent.
Apart from this, it is a research project and there are already other commercial

annotation tools that have appeared working on the same lines as Yawas and trying

to steal its scene.

46

2.3 Conclusion

In this chapter, we saw a number of systems all with different features and charac-
teristics. We started from the first systems that made a significant contribution to
the Annotation task and gradually moved towards the different annotation systems
we have today. To get a concise picture of all these systems, we have grouped these

system using the following attributes:

Usability shows whether the program is difficult or easy to use. This feature was
quite crucial in some of the systems mentioned above since a difficult to use

interface sometimes resulted in the silent death of the system.

Features refers to those characteristics that distinguish a system from the rest. E.g.
some of these programs mentioned before have special features that avoid du-
plicated annotations. Such features are too varied to be listed all, but with
this attribute, we are distinguishing between those systems that give an added

benefit to the user and those that just present a plain annotation tool.

Type refers to the different kind of applications and how they work. These can be

subdivided into four groups:

Stand Alone applications work on a single machine and they are not con-
nected to a server somewhere else. The benefit of this approach is that
the system generally works faster since no remote invocations occur. The
downside of the system is that since the program is self contained, it does
not share information with others and thus there’s no collaboration in-

volved.

47

Client-Server applications typically have a thin client on the user’s machine
which accesses a remote server. The benefit of such a, system 1s that since
these programs require a lot of processing power to function correctly, all
the processing is done remotely on the server and only the results are sent

to the thin client. Thus, the user does not need a powerful machine to use

the system.

Proxy based applications are similar to Client-Server systems but instead of
using a thin client, they typically use a normal web browser to access the
annotated page. In fact, the page is not annotated on the client machine
but rather when it is being passed through the proxy. This has the same
advantages of a Client-Server approach with the added benefit that the

user does not have to install any client application.

Distributed applications can be similar to either Client-Server or Proxy based
approaches but since the system is distributed, the same data can be ac-
cessed and modified by different users. Therefore, such systems would have
additional features that handle different user rights thus allowing secure

collaboration between different users.

IE distinguishes between systems that make use of IE and those that don’t. It also
differentiate between those systems that make use of a Batch approach or an

Incremental approach (See section 3.2.1).

Embedded /Linked refers to the method used to store annotated documents. The
former method modifies the body of the document and stores the annotations

inside it. The latter does not alter the document containing the data in any

48

way but stores the annotations in a separate document which contains links to

the information inside data document.

Annotations distinguishes between the different kind of annotations which can be

stored inside a document:

Layout annotations are used to define how a document should be displayed

visually, such as Bold, [Italics, etc.

Information annotations are used to insert any kind of information, such as
comments, inside the document. They are generally free text which are
not associated with a particular topic, therefore their purpose is generic

and not well defined.

Semantic annotations are used to assign meaning to a portion of text. These
annotations are normally associated with an Ontology and have a well

defined meaning.

Public attribute distinguishes between systems developed by public entities and

those developed by commercial organisations.

Secure systems offer a certain degree of protection when a user annotates a docu-
ment. The security features are various and include protecting the document
from unauthorised modifications or viewing of annotations, protecting docu-

ment editing in distributed environments, etc.

Systems Usability | Features Type I[E | Embedded/Linked Annotations Public | Secure
SGML Difficult N/A N/A N/A Embedded All Yes No
TEX Simple N/A N/A N/A Embedded Layout Yes No
Xanadu Simple N/A N/A N/A Linked Information Yes No
CoNote Simple Yes Distributed | N/A Linked Information Yes No
ComMentor Simple Yes Client-Server | N/A Linked Layout/Information | Yes No
JotBot Simple Yes Client-Server | N/A Linked Layout/Information | Yes No
Third Voice Simple Yes Client-Server | N/A Linked Layout/Information | No No
Annotate.net Simple Yes Client-Server | N/A Linked Layout/Information | No Yes
Annotation Engine | Simple Yes Proxy N/A Linked Layout/Information | No No
VisualText Simple Yes Stand Alone | Batch Embedded Information No Yes
Alembic Workbench | Simple Yes Stand Alone | Batch Embedded Information Yes Yes
Annotation System | Simple Yes Client-Server | N/A Linked Semantic Yes No
Annotea Simple Yes Client-Server | N/A Linked Semantic Yes No
CritLink Simple Yes Proxy N/A Linked Information Yes No
iMarkup Simple Yes Distributed | N/A Linked Information Yes Yes
MnM Simple Yes Stand Alone | Batch Embedded Semantic Yes Yes
S-Cream Simple Yes Stand Alone | Batch Embedded Semantic Yes Yes
Shoe Annotator Simple No Stand Alone | N/A Embedded Semantic Yes Yes
SMORE Simple Yes Stand Alone | N/A Embedded Semantic Yes Yes
Gate Annotator Simple Yes Stand Alone | Batch Linked Semantic Yes Yes
Trellis Web Difficult Yes Client-Server | N/A Linked Information Yes Yes
Yawas Simple No Stand Alone | N/A Linked Information Yes Yes

Table 2.1: Comparison of the different Annotation systems

6¥

50

Table 2.1 lists all the different systems mentioned earlier and their attributes.
From it, we can identify a number of desirable features which an annotation system
should have. First and foremost, such a system should be simple to use. Simplicity
does not imply that our system will lack special features. It just means that the
system should still have powerful features which enhances the user’s experience, but
they should be easy to use. The type of the application should be considered carefully
because a stand alone system would discriminate users having a slow machine whilst
the other approaches would discriminate users who do not have access to a network.
Because of this, an ideal system would cater for all the different situations. When it
comes to the issue of using IE, the most desirable feature is having a system capable of
interactive IE rather than batch IE. In fact no system mentioned above is capable of
having an interactive IE session with the user. The issue of having embedded or linked
annotations is very debatable, there are many pros and cons to both approaches and
it is very much dependent on the IE engine used. Regarding these issues, in Chapter
3 we will take a look at the various IE systems available.

The annotations which such a system should cater for are Semantic annotations.
There are two reasons for this, first of all the scope of the Thesis is the SW and sec-
ondly, Semantic annotations can be considered as being a superset of Information and
Layout annotations since both of them can be expressed as Semantic annotations. Fi-
nally, the program must be secure enough especially if it handles distributed domains.
These features and many others will be demonstrated in Melita, the annotation tool

mentioned in Chapter 4. The following chapters will then keep on building on the

ideas implemented in that tool.

Chapter 3

Information Extraction and
Integration

The two main technologies which are most relevant to our work are without doubt In-
formation Extraction (IE) and Information Integration (II). IE provides the adequate
capabilities necessary to learn new concepts, while II allows our systems to handle
huge amounts of information harvested from several different sources. In Section 3.1,
we will first take a look at why we need IE in the first place. To do so, we will
focus on a specific subgroup of IE techniques most commonly referred to as Adaptive
Information Extraction (AIE) techniques. This section will highlight the main mo-
tivations behind our work. It will show some of the current deficiencies in the field
and the arising needs of the computing community. Section 3.2 will start with a brief
introduction in order to explain some technical concepts used in the IE field and will
continue towards giving a comprehensive survey of the different approaches used so
far.

Section 3.3 will take a look at II and will try to give an overview of the most
relevant research done so far. It will highlight the main motivations behind our work

and will illustrate some of the main problems in the field. Section 3.4 will then give

51

52

an overview of the different approaches developed so far. Unfortunately, due to the
fragmented nature of the field we will only scrape the tip of the iceberg in our reviews
since a more comprehensive review of all the topics found in the II field would be

beyond the scope of this thesis. Instead, we will give an overview of the major topics

found in the field.

3.1 Motivation for using AIE

AIE is quite a recent field, it has its roots in traditional Information Extraction
(IE) but differs in a subtle aspect. Whereas traditional IE is more concerned with
producing systems which are capable of extracting information, AIE still has that as
its main goal but considers equally important the usability and accessibility of the
system. Although traditional IE managed to find the required information with a
high degree of success, it did not succeed much whenever the need arose to port the
existing system to new domains easily. There are a number of reasons for this. Such
systems are normally complex with large amounts of domain dependent data, because
of this, to port such systems, an IE expert is required. Also, due to the complexity
of such systems the process to port them to a new domain is very time consuming.
In synthesis one of the main barriers to the use of IE is the difficulty in adapting IE
systems to a new scenario (105). AIE seeks to overcome this problem by creating
systems which are adaptable to new domains without the need of much human input.
This is achieved by exploiting the power of Machine Learning (ML) in order to learn
how to automatically tune the application to new domains. This field is still in its

infancy and the future will surely hold much more powerful tools than we have today.

53

In Adaptive IE a typical life-cycle is composed of scenario design, system adap-
tation, results validation and application delivery (23). The adaptation part which
is maybe the most problematic of all the elements in the life cycle can be further

subdivided into four main tasks. These are

e Adapting to the new domain information.

e Adapting to different sub-languages features.
e Adapting to different text genres.

e Adapting to different types.

The adaptation problem has been around for quite some time but was boosted in the
last couple of decades due to the fact that the IE movement has grown by exploiting
and joining the recent trend towards a more empirical and text based computational
linguistics (105). The proliferation of the Information super highway is also blowing
this problem to new heights since document content is evolving from old text based
documents to a richer document model full of multimedia elements where the sequen-
tial structure is being disrupted due to the use of hyperlinks. Therefore, the text
based methods alone, which were normally used, are not much capable of adapting
to this new model.

The first approaches in the territory of AIE all made use of shallow approaches.
The main reason being that it was not known how to train complex approaches
using only knowledge of domain and annotation. Since shallow approaches are less
complex, they are are also much simpler to port to new domains than deeper ones.
Also, deeper approaches rely heavily on domain dependent data therefore making the

task of adapting them to new domains much more difficult. Although the shallow

o4

approaches can extract a wide range of information, they are still not capable of
handling more complex tasks whereby different relations are involved. For these
tasks, deeper approaches which make use of semantics are a necessity. Due to the
fact that AIE can be easily ported to new domains, it can also be used to set up
dynamic scenarios automatically. This will be very useful when harvesting knowledge
from the web since domain information my not be known beforehand or might be
incomplete and therefore an AIE system must be set up on the fly. Research in this

area is still in its infancy and that is why we think there is the need for more work.

3.2 Previous Work in AIE

This section will give a brief overview of the different types of IE systems available. It
will give a flavour of what we believe are the most relevant systems to our work. Before
doing so, we will introduce some terminology highlighting the important differences

between the existing systems.

3.2.1 Information Extraction Terminology

Shallow vs Deep approaches

IE systems fall into one of two major categories, those that make use of shallow NLP
and those that use deep NLP techniques. Shallow approaches (See (77; 46; 32; 24;
102; 94; 19), etc.) are mainly concerned with the syntax of a document and make
use of very little semantic information. They typically include tokenisation, part-
of-speech tagging, parsing and produce a regularised form which may be anything
from a partially filled template to a full logical form. The deeper approaches (See
(53; 72; 54; 50), etc.) also makes use of the information obtained from the syntactic

analysis but they combine it with additional external knowledge of the domain such

59

as heuristics. They attempt to integrate the information from the individual sentence
representations with common world knowledge into a larger structure. Ultimately this
structure is either the final template or serves to provide, the information for that
template after it is analysed using deeper techniques. These techniques generally make
use of logic to validate the semantics of the sentence and to deduce new information.
The deeper approaches can be considered as being a continuum of the shallower

approaches.
Single vs Multi Slot

The different systems can learn either a single concept or multiple concepts. These
are normally refereed to as single and multi slot. The reason why this terminology is
used, is because traditionally, the task of IE was to fill slots in templates. A single slot
handles simple atomic concepts without any relations between the concepts. Normally
the relations are handled at a higher level mainly by using an ontology. Also the
concepts in this kind of domain are unique and can be identified fairly easily. This
task is normally tackled quite easily by the shallow NLP approaches. In multi slots,
concepts are complex entities. They are normally made up of several sub-concepts
and a document may contain several similar concepts which are irrelevant for the IE

task at hand.
Batch vs Incremental Learners

Learning systems either learn in batch or in incremental mode. Most systems operated
in batch mode. This means that the examples are collected and the system is trained
on all the training set. There are a number of reasons why this approach is preferred.

First of all, it is much simpler to invoke a training session on all the set rather than

o6

on individual examples. Secondly, the amount of processing power required for every
training phase is very expensive therefore, invoking such a phase often would result
in degrading the performance of the system. Third, in order to speed up the process
the examples are normally ordered in an efficient way so that whenever paths in the
search space are discarded, this would discard all the paths emerging from them. If
the other approach was used, this would be impossible to perform. The incremental
approach works by adding rules to the test set one by one and evaluating each time
the effect of that rule. This has some obvious benefits, basically rules are evaluated
according to individual merit and not as part of some collection. Therefore using
this approach, the learner can be able to evaluate the coverage of individual rules
learnt and using such evaluation it can decide when to stop the training session. This
obviously makes the task more complex and might take longer to converge since in
this approach, rules that produce local maxima are removed in order to find global

maxima.
Interactive vs Non-Interactive Learners

Interactive learners make use of an Oracle in order to verify and validate their results.
These Oracles are small programs created beforehand which say whether a concept is
part of the domain we are searching in or not. Interactive learners will be explained
further in Chapter 5. Non-interactive learners do not use such programs and nor-
mally, their only source of feedback is from the training provided by the user. Both
approaches have their strengths and weaknesses, but the non-interactive approach
is more oriented towards AIE since it requires no additional settings apart from the

information already supplied by the user.

57

Top-Down vs Bottom-Up learning

An issue to consider is whether the system starts learning from scratch or from a
hypotheses. The former is referred to as a top-down approach. What happens is
that the learner starts from a very generic rule and gradually adds cases to constrain
the rule. It then evaluates the validity of the new rule. The cycle continues until a
good rule is obtained. The latter (also referred to as theory revisers and bottom-up
approaches) begin from an initial hypotheses which is revised as the learning proceeds.
This hypotheses normally starts with all the features available and systematically
start dropping some of them (it relaxes the constraints of the rule). At every stage,

the new hypotheses is tested and the one that gives the best results is retained.
Text types

A positive outcome of the second World War was without doubt the rapid develop-
ment of computers. These huge machines were capable of processing large amounts
of text much quicker than any human could possibly do. During those days, text
types were not an issue because the only kind of text available was free text. Free
text contains no formatting or any other information. It is normally made up of
grammatical sentences and examples of free texts range from news articles, quotes,
stories etc. The text contains two types of features, syntactic and semantic features.
Syntactic features can be extracted from the document using tools like part-of-speech
taggers, chunkers, parsers etc. Semantic information can be extracted by using se-
mantic classes, named entity recognisers etc.

In the 60’s when computers were being used in businesses, and information was

being stored in data bases, structured data became very common. This is similar

98

to free text but the logical and formatting layout of the information is predefined
according to some template. This kind of text is quite limiting in itself. The layout
used is only understandable by the machine for which it was created (or other com-
patible ones). Other machines are not capable of making sense of it unless there is
some sort of translator program. Syntactic tools are not very good at handling such
texts. The reason being that most tools are trained on free texts. Apart from this,
the basic structures of free text (such as sentences, phrases etc.) do not necessary
exist in structured text. Structured text mainly has an entity of information as its
atomic element. The entity has some sort of semantics according to its position in the
structure. Humans on the other hand show an unprecedented skill of inducing the
meaning most of the time. Yet, they still preferred to write using free text. Therefore,
these two types co-exist in parallel.

With the creation of the internet another text type gained popularity, semi-
structured text. Unfortunately it did so for the wrong reasons. Before the semi-
structured text era, information and layout were generally two distinct objects. In
order to enable easy creation of rich document content on the internet, a new content
description language was created. The layout features which until recently were hid-
den by the applications became accessible to the users. The new document contained
both layout and content in the same layer. This made accessible to the user new
structure elements such as tables, lists etc. Now users could create documents having
all the flexibility of free text with the possibility of using structures to make clear
difficult concepts. Obviously this complexity made it more difficult for automated

systems to process such documents. NLP tools worked well on the free text part

99

but produced unreliable results whenever they reached the structured part. Stan-
dard templates did not exist for the structured part because the number of possible

combinations of the different structures is practically infinite.

Generalisation

Some other issues worth explaining at this stage have to do with the actual imple-
ment strategies of adaptive algorithms. First of all it is worth clarifying that these
algorithms although they are concerned with a traditional NLP task are a hybrid
between NLP and ML approaches. Therefore the problems which must be faced
when designing such algorithms are inherited from both fields. A critical issue in
developing a learning algorithm is generalization. Basically, it is the issue of how to
produce generic rules out of domain specific data. There are a number of ways to
do so, such as using regular expressions etc. In the systems below we will describe

several approaches which accomplishes this task.
Overfitting vs Underfitting

The issue of generalisation is quite important because if it is tackled badly, the system
may suffer from what is normally referred to as underfitting or overfitting. A learner
that is not sufficiently complex can fail to detect fully the model in a complicated
data set, leading to underfitting. On the other hand, a learner that is too complex
may fit the noise, not just the model, leading to overfitting. Overfitting is especially
dangerous because it can easily lead to predictions that are far beyond the range of the
training data and can also produce wild predictions even with noise-free data. Under-
fitting produces excessive bias in the outputs, whereas overfitting produces excessive

variance. But this phenomena does not only occur due to the generalization strategies

60

of the learner, it is also caused by Data sparseness. This problem is concerned mainly
with how representative the training data is of the concept we are trying to learn.
Most of the data normally available is incomplete or inconsistent, the effect of this
is that the model learnt by the learner is partial and does not represent adequately
the target concept. Therefore our algorithms must be capable of creating a model as
representative as possible of the target concept using the noisy information available.
A number of approaches tackle this issue such as the use of linguistic information in
order to perform generalization, the use of as much data as possible (which although
desirable not always possible) or the use of cross-validation in order to cross check

the expressibility of the rules, between subsets of the training data set.

3.2.2 Shallow Approaches
Wrapper Induction

With the rapid expansion of the Internet and before the advent of the Semantic Web,
data was being encapsulated in documents containing lots of fancy layouts in order
to make the data more appealing to the user. Although this made things easier from
the user’s point of view, it made it extremely difficult for the automated agents to
extract information from such documents since they did not know how to handle
the composition of layout and content. Since the layout information is normally
embedded in the document, the traditional Natural Language Processing tools like
Part of Speech taggers, parsers etc produce lots of erroneous results because the
documents are not just pure text but also contain the layout elements. Because of
this, IE was performed by manually constructing wrappers in order to define where the
data is located. The wrappers model the data and layout surrounding the information

which needs to be extracted, therefore providing enough cues for the software agent to

61

identify the information. Being a manual process meant that the system was tedious
to perform and error prone. Also, the human trainers managed to produce lots of
wrappers having high precision but low recall, therefore making the process in general
very time consuming.

To overcome this problem, (78) developed Wrapper Induction (WI). In WI a wrap-
per is defined as being a function from an information source to a tuple and induction
is the task of generalizing from labelled examples to a hypotheses. What happens
is that ”Oracles” are constructed whose task is to recognise instances of particular
attributes on a page. There are two types of Oracles, page and label Oracles. The
difference is that the former generate example pages specific to particular information
resources while the latter is composed from reusable domain independent heuristics.
These Oracles are rated according to whether they are perfect (accept all positive
instances and reject all negative instances), incomplete (reject all negative instances
but reject some positive instances), unsound (accept some positive instances but ac-
cept some negative instances) or unreliable (reject some positive instances and accept
some negative instances). According to their ratings they are then composed together.
The result is a set of labelled pages which is then given as input to the algorithm
that builds the wrappers. In this particular implementation, the items of information
which need to be extracted are bound using a wrapper made up of a head and tail el-
ement which delimits the start and end of the information. Inside these two elements,
there are several left and right elements that are used to locate the several instances of
the pattern inside the bounds. This wrapper is called a Head Left Right Tail (HLRT)
wrapper. The model is a very simple one and basically computes common prefixes

and suffixes of sets of strings, which are highly constrained after very few examples.

62

This can be seen further in (77). In this model, Probably Approximate Correct (PAC)
analysis is used in order to identify the number of examples required for a learner
to be confident that its hypotheses is good enough. Therefore, whenever this level
is reached, the algorithm stops learning. PAC analysis as described in (86; 75; 67)
basically states that the error of a hypotheses measures the closeness to the concept
being searched for. So, if we have a class of concepts C defined over a set of instances
X, our task is to find a learner L using hypotheses space H such that it manages to
cover the concepts given a minimum error (¢) and high confidence level (§). These
constraints must be met in polynomial time.

The WI algorithm, although quite robust managed to produce wrappers that
cover only 48% of the given data. Although this result is much better than producing
all the wrappers by hand, it is still low. Another disadvantage is that to train the
algorithm, Oracles must be created, which is not a very intuitive approach especially
with naive users. Also, wrappers are limited to structured data, but most of the web
is made up of semi-structured or free text therefore constraining wrappers to limited
domains. Finally in (78) it is stated that because the PAC model is too weak, the
number of examples needed for efficient learning is high. The consequence of this is

that wrapper construction is bound to be an off-line process.

Boosted Wrapper Induction

An enhancement to the WI algorithm is Boosted Wrapper Induction (BWI) as de-
scribed in (46). Since WI is restricted to highly structured domains, it is unsuitable
for most convention IE tasks. BWI uses a technique called boosting whose task is
to boost the performance of weak classifiers (in this case the wrappers). First weak

rules are learnt based on simple contextual patterns. Since the patterns are applied

63

on any kind of text, the amount of regularity is typically very low, making the rules
high in precision but very low in recall. Therefore to make effective IE several weak
rules combined together are used in order to identify a single element. In contrast
to WI, instead of having an HLRT wrapper we have a FAH (Fore After Histogram)
wrapper. The fore detector identifies the starting boundaries, the after identifies the
end boundaries and the histogram is a probability of the field’s length. At every stage,
the results obtained by these three classifiers are combined and if the combined result
surpasses a threshold, it is accepted as being positive. The three classifiers have equal
probability of occurring therefore making the result of their combination proportional
to a naive Bayesian estimate with uniform priori (as specified in (86)). From the ex-
periments, handling exact tokens was not generalising enough; therefore the classifiers
were further enhanced to handle wildcards. Since both the Fore and After are quite
weak detectors, their effectiveness is increased by using Boosting as described in (49).
This version of the algorithm is called AdaBoost which is short for Adaptive Boost-
ing. The boosting algorithm invokes the learner using a uniform distribution for all
training examples, generates weak hypotheses and then progressively adds the weight
of the misclassified examples and decreases the weight of correctly classified examples.
Thus the learning tends to focus on the harder examples. The final hypotheses is a
weighted majority vote of the weak hypotheses. The algorithm is fast and simple
without any need of tuning parameters and it can also be applied to any learning
algorithm. Its strength lies in the fact that it manages to identify examples which
are hard to categorize while its weakness is revealed when complex weak hypotheses
or very weak hypotheses are used. In BWI, Boosting improves enormously the result

obtained although the amount of cycles required to reach high performance was very

64

sensitive to the difficulty of the task at hand. BWI was tested on several domains
and in most tasks produced very good results. This algorithm is a living proof of how
weak classifiers such as wrappers can be boosted to obtain competitive results.

Another technique worth mentioning is Bagging (Bootstrap Aggregation) as de-
scribed in (69; 13). This technique has some similarities to Boosting in that they both
generate a number of classifiers and uses a voting system, but the similarities stop
here. Bagging does not modify the distribution of the training examples but rather
keeps on generating new hypotheses based on randomly chosen training examples.
In (8) it is estimated that whenever the number of training examples is large, there
is a 63% chance that the training set contains unique instances. This means that
there is a high probability of having duplicates in the training set and therefore the
different classifiers will be trained on a smaller sets resulting in destabilising stable
algorithms. The final results from the classifiers are obtained by aggregating in some
way the results of the different sub-classifiers normally by taking the average.

Both Bagging and Boosting offer substantial improvements to the learning al-
gorithms, although Boosting generally tends to produce better results. Boosting
however tends to be quite sensitive to noise. Both these techniques seem to have a
common shortfall, i.e. they both create complex classifiers which may become incom-

prehensible to users and which do not seem to cover the domain.

SLIPPER

SLIPPER is another algorithm that uses boosting to improve its performance. Its
origins can be traced back to the Reduced Error Pruning (REP) method, then In-
cremental REP (IREP) and eventually RIPPER (Repeated Incremental Pruning to

Produce Error Reduction) in (32). The original REP works similar to decision trees

65

learning systems by first overfitting the training data and then pruning the complex
tree. The pruning method chosen at each stage depends on which one reduces the
error on the training set. This was later on improved by IREP. The main difference
being that the pruning is not performed after all rules are generated but every rule
is immediately pruned when it is created. This avoids exploring parts of the search
space that are unreachable, therefore making the algorithm more efficient and obvi-
ously faster in general. Even though these improvements were noticed, the algorithm
still did not manage to get results better than the C4.5 algorithm (86). Because
of this, the algorithm was enhanced further and RIPPER was created. It imple-
ments three main improvements over its predecessor. First of all, the metric used
to guide pruning was altered because it was noticed that the original metric occa-
sionally stopped the algorithm from converging. Second, when IREP was generating
rules, it had a threshold heuristic which halted the rule production process if the
error exceeded 50%. This made the algorithm sensitive to small problems, because
of this, it used to stop generating rules much more earlier than it should have done.
To solve this problem, instead of binding the stopping condition with the error rate,
it was bound to a minimum description length (mdl) of rules. The threshold value
was chosen empirically from experiments. The final improvement was to introduce a
re-optimisation at the end of the process (in a similar way to REP) over the whole
rule set.

RIPPER finally managed to outperform C4.5 in the majority of tests performed.
Not only were the results obtained better, but due to its efficient algorithm, the
em in general converged faster than C4.5. A further improvement on RIPPER,

syst
which makes use of the same boosting technique that BWTI uses, is SLIPPER (Simple

66

Learner with Iterative Pruning to Produce Error Reduction). The algorithm works
by repeatedly boosting a simple, greedy, rule learning algorithm. At every stage,
examples are not removed from the training set but their weighing is reduced. A
voting mechanism is then used amongst the rules, in order to rate the coverage of
the elements in the training set. An interesting fact is that rules have the ability to
abstain from casting a vote if the example is not covered by the rule. The learner
generates the rules by splitting the training set into two, extracting a single rule using
one subset and then prunes the rule using the other subset.

SLIPPER manages to achieve good results. Most of them must be attributed to
the benefits obtained from boosting. Also SLIPPER manages to scale well to large

noisy data sets even though it is less efficient than RIPPER.
(LP)?

Another algorithm which works on similar lines as W1 is (LP)?(Learning Patterns by
Language Processing) which is described in (24; 23). This algorithm is an Adaptive IE
algorithm; by adaptive it is meant that the algorithm is capable of being ported to new
scenarios without the need of an IE expert to configure it. In fact, for the algorithm to
work, all that is required is a simple scenario which describes the particular domain.
It performs information extraction using linguistic analysis. This information is then
used to generalise over the flat sequence of words, but the algorithm goes further and
tries to utilise the structure of the document (E.g HTML, XML, etc) depending on
the task at hand.

The (LP)?* algorithm induces symbolic rules learned from a tagged corpus and
depending on the implementation version it could use either top-down or bottom-up

generalisation. It mainly induces two types of rules: tagging and correction rules.

67

Tagging rules are made up of a sequence of words followed by an action to insert a
tag. The word sequence is a window of w words to the left and right of the tag. For
each positive example, the algorithm builds an initial rule. This rule is generalised
by dropping some of the constraints (in bottom-up generalisation), introducing some
wildcards and introducing some of the results obtained from shallow NLP tools (such
as a morphological analyser, Part Of Speech [POS] tagger or user defined dictionaries).
The different possible combinations of rules are generated, pruning is used to remove
unreliable rules or rules that cover instances covered by existing rules and a search is
performed in order to determine which rule is the best. The best rule is determined by
checking the error rate against a maximum threshold. Finally, the algorithm keeps the
k best generalisations of the initial rule. The instances covered by the k best rules will
not be available any more for rule induction and the cycle continues until there are no
more instances to cover. The rules obtained at this stage are high in precision but low
in recall. (LP)? tries to increase recall without effecting precision by recovering less
good rules and it tries to make them reliable by constraining them. These rules may
not be good enough to identify a specific instance of a concept but may be enough to
define the boundary of a particular instance. They are called contextual rules. Once
rules are learnt, additional rules are induced in order to correct mistakes. These rules
do not insert new tags but rather correct any misplacement of tags. Finally, the tags
produced are validated; this means that a check is performed to make sure that basic
conventions are adhered to (such as every opening tag should have a corresponding
closing tag). This algorithm has the benefit of reducing training time, reducing corpus
size and limiting, both the data sparseness and overfitting in the training phase. These

properties are achieved due to the use of linguistic information. In fact morphology

68

allows overcoming of data sparseness due to number/gender word realisation while
POS tagging allows generalisation over lexical categories. Since more powerful and
generic rules are created easily, the algorithm converges much more rapidly. (LP)?
implements a number of innovative and successful ideas which make it compare well

with the best IE algorithms available today.

CRYSTAL

CRYSTAL as mentioned in (102) took a different approach than the algorithms al-
ready seen. Instead of working towards extracting information, its main task was
to produce a conceptual dictionary. A conceptual dictionary is made up of a list of
contextual nodes and each node is basically a description of the local syntactic and
semantic information in which relevant information is likely to be found. It tries to
achieve inductive concept learning which is similar to Inductive Logic Programming
(40) by using a specific-to-general data driven approach in order to find the most
specific generalisations that cover all positive examples and no negative instances.
The system starts by using a set of tagged documents having the concepts related
to a particular semantic class annotated. For all the available instances CRYSTAL
starts by inducing a contextual node from the information available in the background.
It then goes through all the definitions and compares highly similar examples. Since
there may be many rules especially in large corpora, the system makes use of indexes
in order to locate quickly similar contextual nodes. The similarity metric used, counts
the number of relaxations necessary in order to unify the two structures. The rule
which produces the best unification is kept and tested in order to check that it does
not cover wrong instances. If the new generalisation is valid, all the rules that are

covered by these new rules are deleted from the database and only the new rule is

69

kept.

CRYSTAL is one of the first systems that tries to achieve the sub-task of infor-
mation extraction automatically. The system also supplies some tradeoff parameters
which can be adjusted in order to tune the precision and recall required. A limitation
of this approach is that the examples generated are not generic enough and most
probably, will only match the sentence they were learnt on or very similar ones. The
major contribution of this system was that it was one of the first systems whereby
the user was not required to know anything new apart from information about the

domain in which he was an expert.
AUTOSLOG-TS

AutoSlog-TS (94) was a major research contribution toward making information ex-
traction systems more easily portable to new domains. It is the first system that
can generate extraction patterns automatically using only raw text as input; other
systems require annotated training texts or other forms of specialised training data.
Tests showed that its extraction patterns achieved performance comparable to the
hand crafted patterns of its predecessor AutoSlog (93).

AutoSlog was a dictionary construction system that created extraction patterns
using heuristics. In the system the phrases to be extracted had to be tagged in some
way. The rules which were generated were divided into three categories, based on the
syntactic class of the noun phrase being examined. Also, after a rule was created, it
had to be reviewed by human experts in order to remove any errors introduced by
the part of speech tagger.

AutoSlog-TS is basically an extension to AutoSlog. It operates by creating an ex-

traction pattern for every noun phrase in the training set. The patterns are extracted

70

by using some domain independent heuristics. The extracted pattern is then evalu-
ated by going through the training set a second time and collecting statistics about
that pattern. The statistics are used to calculate a probability based on whether
the text is relevant and on which rules are fired. This measure is referred to as a
pattern relevance rate. The patterns are then automatically ranked using a formula
that promotes high relevance or high frequency.

In this system, the extraction patterns managed to produce significantly fewer spu-
rious extractions and better text categorisation results than those generated from the
hand-crafted patterns on one of the categories. Using AutoSlog-TS, the extraction-
based text categorisation algorithms can be trained for new categories much more
easily than before. This is the first algorithm aimed at building semantic lexicons
from raw text without using any additional domain knowledge. A user only needs
to supply a representative text corpus and a small set of seed words for each target
category. The experiments showed that a core semantic lexicon can be built for each
category with only 10 to 15 minutes of human interaction. The experiments showed
that extraction-based categorisation can perform well on fine-grained categories and

can be used effectively to classify texts with respect to subclasses within the context

of a single domain.

Inductive Logic Programming

A different approach adopted in Information Extraction makes use of a technique
known as Inductive Logic Programming (ILP). This technique as defined in (86; 35)
and has its foundations as a cross between logic programming and machine learning.
It concerns with the development of methods and tools for the automation of reasoning

and makes use of a set of algorithms in domains which have a rich relational structure.

In these domains instance attributes are not isolated, but are related to each other
logically. Relational learners are basically rule learners which derive features on-the-
fly and which can in theory logically derive new features from existing ones.

One of the first such systems and whose basis lies at the heart of many modern ILP
systems is FOIL as described in (92). FOIL learns how to construct a logic program
that defines relations in terms of it and other background relations. Since it works
with first order logic, it uses tuples that belong (or not) to the target relation. It
starts with a general clause and progressively adds literals until all negative examples
are excluded. The algorithm makes use of a divide and conquer approach, whereby
the covered examples in the target space are separated and the algorithm directs
its attention to the remaining concepts. At every stage, one or several clauses are
created made up of literals. The literals can be either gainful or determinate. The
former literals are evaluated using an information gain heuristic that helps to reduce
the search space by eliminating unreliable information. The latter on the other hand
does not help to reduce the search but rather, adds new variables required for the final
clause. During the search, a greedy approach is taken; but this has the potential to
explode the size of the search space. In order to avoid this, checkpoints are established
along the paths being searched, and if the current path does not lead to an improved
condition, the search is halted and does not continue from the last node in the search
tree but rather from the last checkpoint, therefore reducing the amount of searches
required in less valuable paths.

There are a number of systems related to FOIL. One such system worth mentioning
is mFoil (40). This particular implementation improves over FOIL by implementing

several techniques to handle noisy data. It also replaces the existing greedy search

72

found in FOIL with a more efficient beam search, therefore increasing the chances of

finding a good clause. This system and may others similar ones form the backbone

of modern ILP approaches.

RAPIER

The Robust Automated Production of Information Extraction Rules (RAPIER) is
one of the modern ILP systems used for IE. It was built around 1997 (19) and it
incorporate techniques from several ILP methods. RAPIER was designed mainly to
cater for semi-structured text and it expects as input a pair of documents at a time.
One document contains the data while the other contains filled templates. The filled
templates hold a list of information to be extracted from the document. The learner’s
task was then to find in the data the elements specified by the filled templates and
learn them using its algorithm. The user was not involved in the process apart from
supplying the pair of documents for training.

The algorithm uses a bottom-up approach starting from a specific rule that matches
a target concept in the training set. The rule is made up of an unbound pattern made
up of constraints on words and part-of-speech tags surrounding the filler. Once the
rules are collected, a cycle begins where pairs of rules are randomly chosen and a
beam search is performed to identify the best least general generalisation that covers
both of them. At this stage, constraints are systematically added and the rule is
evaluated. This iteration continues until no progress is recorded.

The rules of RAPIER are based on both content and delimiting information. The
patterns exploit syntactic and semantic information in order to have better gener-
alisations. For syntactic information, a tagger is used to obtain the Part of Speech

found in the document while for semantic information, a lexicon of semantic classes

73

is used. The pattern is nothing more than a sequence of items which match either
one word or a list of words. Every rule is indexed by a template and slot name, and
consists of a pre-filler, filler and post-filler. The current approach handles only single
slots although Soderland in (101) proposes possible alternative strategies in order to
extend the current paradigm to perform multi-slot extractions. The idea is to divide

the text into more than just three fields.

SRV

Sequence Rules with Validation (SRV) as described in (45) is a general-purpose top-
down relational learner for IE. The system works by taking as input a document
containing markup information around the data to extract. It makes no assumption
about the information available for use and the document is treated as a token-
oriented feature set. The features range from token length, type, orthography, POS,
lexical meanings and other relational structures. These can be divided into two
classes, simple and relational. A simple feature is a function that matches one token
to some discrete value. A relational feature provides a mapping between a token and
another token such as adjacency. The information is extracted from the token level
because multi-term text fragments are difficult to describe in terms of simple features.
The output of this process is a set of rules which are used to extract other similar
concepts.

This algorithm looks at IE from a classification point of view and considers the
document as being made up of several mini-documents where every candidate instance
is presented to a classifier and rated according to its relevance which is a confidence
level that shows how probable the phrase is part of the target concept. The search

is performed in a similar way to how FOIL does it in [QUI95]. It basically goes

74

through a test space made up of all the textual fragments from the test document.
The extraction is performed by examining the fragments of appropriate size in order
to match them with the available rules. The learning process is once again similar to
FOIL, i.e. the data space is divided into two pools containing negative and positive
examples. The positive examples are those elements tagged beforehand while the
negative examples are the remaining elements. Induction is performed and only stops
whenever a rule does not manage to cover more elements than the previous rule. At
this stage, the rule is considered to be good and all the examples covered by the
rule are removed from the training set and the process goes on until all examples are
covered.

This algorithm has quite a number of potentials. First of all no prior syntactic
analysis is required for it to work. It also makes use of a very expressive representation
using orthographic features and linguistic information when available. A limitation

of this algorithm is that it was designed to extract single-slots.
WHISK

The WHISK system presented in (101) is a covering algorithm which performs top-
down induction of rules. It is based upon ILP principles but with a difference from
other systems mentioned so far, in that it is capable of handling any kind of text. It
can extract information from structured pages, from semi-structured texts like web
pages and free text. When 1t comes to free text, WHISK can also make use of a
syntactic analyser and semantic tagger to increase its performance.

The WHISK learner works in a supervised mode with phases that alternate be-
tween tagging and training. The learner starts from a set of untagged instances and an

empty training set. In each iteration, the system selects and presents to the user a set

79

of instances for annotation. The definition of an instance is variable in this context.
It depends mainly on the kind of text being analysed. If the text is semi/structured
having some sort of tags, heuristics (mainly based on HTML tags) are used in order
to divide the text according to the position of specific tags, while if the program is
handling free text a sentence splitter is used to divide the document into sentences.

The user’s task is then simply to mark the region of text where the information
for extraction is situated. When the user is ready, the batch is sent to the learner in
order to induce a set of rules from the new expanded training set. Since WHISK is a
top-down learning algorithm, it starts the induction by finding the most generic rule
that covers a seed concept. Terms are then gradually added until the error is reduced
to zero or until a pre-pruning criteria is satisfied. The iteration finishes when the
generated rules manage to cover all the positive examples in the training set. Some
post-pruning is also performed in order to remove some of the rules that overfit the
data.

The main limitation of WHISK is that its feature set is not very expressive and
therefore its generalisations are less effective than other learners. The main advan-
tage which it clearly has over the others is that it can manage to extract multi-slot
information, but this comes with the added costs of requiring more examples than

other learners.

SNoW-1E

SNoW-IE is the last ILP based system this subsection will look at. It is describe in
(97) and is based on a new paradigm for relational learning which promises to be more

flexible and allows the use of any propositional algorithms including the probabilistic

ones.

76

The problems with such systems has always been to learn definitions of relations or
concepts of interests in terms of given relations. Although there were systems capable
of doing this, they were not scalable enough to large domains and consequently might
not generalise well. Research in ILP suggests that, unless the rule representation is
severely restricted, the learning problem is intractable. The main problem with such
systems is that most of them have problem specific functions therefore restricting
such systems to specific domains. The SNoW-IE system makes use of efficient general
purpose propositional algorithms. At the heart of the system, there is a knowledge
representation language that allows an efficient representation and evaluation or rich
relational structures. The language is a subset of First Order Logic and works as a
collection of graphs defined over elements in the domain. Restrictions are imposed
by limiting the expressibility of the language to a collection of formulae that can
be evaluated efficiently. Objects are also given types in order to classify objects in
the language according to their properties. The language to do this creates Relation
Generation Functions (RGF) as described in (33). These functions generate more
expressive formulae that model the structures in a domain. In this proposed calculus
a formula is only formed when all its parameters are available and therefore needs
not be tested in order to see if it can fire.

The main difference with respect to previous ILP approaches is that the search
space is structured in a different way, instead of generating the features as part of a
search procedure, they are obtained in a data driven way using the RGFs. Knowledge
is incorporated in the system by using sensors. These programs have the ability to
treat information from input, external sources or previous information in a uniform

way. The data at the back of the system is expressible enough to be used by any

7

system therefore making the paradigm not bound to any specific learning algorithm.
To test the paradigm SNoW (Sparse Network of Winnows) (96) was used. The
learning architecture is a multi-class classifier that is specifically tailored for large
scale learning tasks and for domains in which the potential number of features taking
part in decisions is very large, but may be unknown a priori. It learns a sparse network
of linear functions in which the targets concepts (class labels) are represented as linear
functions over a common feature space. The system offers a feature efficient learning
algorithm, in that it scales linearly with the number of relevant features, and linearly
with the number of features active in the domain.

The improved system called SNoW-IE first starts by filtering the negative exam-
ples. This part can be seen as a classifier designed to obtain high recall. The examples
are removed if they do not contain a feature which should be active in a positive ex-
ample or if a confidence level is below some threshold. The second part is aimed
towards increasing precision and is called the classification stage. For this stage, the
candidate fragments are enhanced using a new collection of RGFs, then a classifier
for each concept is trained. Training results show that the system outperformed most
rule based systems. The system works in a similar way to existing ILP techniques
but instead of representing the rules as a conjunction, they are represented as a linear

function.
Maximum Entropy Classifier

An application of Maximum Entropy Classifier to IE is described in (22). This ap-
proach is similar to SRV in that it too looks at the problem as being a classification
problem. The Maximum Entropy (ME) principle is very old and simple. Basically

it models all that is known and assumes nothing about that what is unknown. In

78

other words, given a collection of facts, choose a model which is consistent with all
the facts, but otherwise as uniform as possible (9). Also, the ME principle takes into
account features that are not independent therefore making it suitable for multi-slot
extraction.

Every candidate for a slot filler can be one of five types i.e. a begin slot, a continue
slot, an end slot, a unique slot, and a not-a-slot. To perform extraction, several group
of features were defined. These groups include unigrams, bigrams, zones (delimited by
tags found in the document), capital letter words, headings, time, names (according
to a gazetteer) and new words (not found in a dictionary). The features are associated
to the words in the document and a probability is associated to every feature using the
ME classifier. The Viterbi algorithm is then used to select the sequence of word classes
with the highest probability. This approach is typically used to perform single-slot
extraction.

For multi-slot extraction, some enhancements were added. First of all, the texts
were passed to a text-filtering module whose task was to remove irrelevant documents.
The documents were then semantically tagged so that information such as people’s
name, organisations etc are found and tagged in the document. This phase was called
candidate selection. The third step is to produce relation classification. Basically, it is
the task of finding relations between entities. Finally, a template building procedure
is used. It takes a graph of relations between entities as input and fills a template
using the relations in the graph.

This approach is capable of handling both single and multi slots for both semi-
structured and free text. The results obtained were superior in most cases to any

algorithm available. The limitations with this approach has mainly to do with how

79

the features were selected. Some features defined were dependent of the domain
being analysed, yet this does not diminish in any way the potential of this algorithm
because domain independent features can still be produced even though the success

of the algorithm will probably be less.

HMM

A Hidden Markov Model (HMM) is not the name of an IE algorithm. It is a mathe-
matical model used in various areas of computer science. In (48) a HMM was used to
locate textual sub-segments in a document that answer a particular information need.
To build these models, a statistical technique called shrinkage was used to improve
the estimation of the parameters of the model.

In this implementation HMMs are used as a probabilistic generative model of the
entire document. The documents were not fragmented due to the fact that it could
cause a huge space of fragments. To find the most probable sequence of elements, the
Viterbi algorithm was used to learn the model transitions and emission probabilities
from the training data. Separate HMMs were built to extract different fields with

each HMM having two states:
e Target state containing the tokens to extract
e Background state containing the remaining elements

The HMM is not fully connected (In a fully-connected graph, each cell is just one
step away from every other cell), the reason being to capture textual context therefore
improving efficiency. The state transition topologies are set manually and not learnt.
Two topological parameters which were tested are the window size (Number of prefix

and suffix states) and the target path count (Number of parallel, different length

80

and target paths). In the model only target states can emit target tokens and vice-
versa for non-target states and only a single unambiguous path is possible through
any topology. In order to improve the parameter estimation Laplace smoothing and
Absolute discounting were tested. Both techniques make use of only the training data
available.

Shrinkage is a statistical techniques used in speech recognition systems. It makes
use of weighted averages and learns using the Expectation Maximisation algorithm.
Basically, it shrinks parameter estimates from data sparse states of complex models
towards estimates in related data-rich states of simpler models. In some conditions,
this algorithm was shown to produce optimal results.

To perform IE, the system was defined in terms of a hierarchy, i.e. subsets of
states were identified with similar distribution (Eg: all prefixes are expected to have
the same distribution). This was done to represent a similarity between parameter
estimates. At the top of every hierarchy is the uniform distribution (which gives
all words equal probability). States were further divided into four classes, these are

Non-target, Target, Prefix and Suffix. There were also four shrinkage configurations:

e None (use only absolute discounting)
e Uniform distribution

e Global (shrinkage is performed towards a common parent and eventually the

uniform distribution)

e Hierarchical (the target class are shrunk in a similar way to the Global configu-

ration, while the other classes are shrunk towards a separate parent. Prefix and

81

Suffix are shrunk towards a ”context” grandparent. In turn every state is even-

tually shrunk towards a common ancestor and eventually uniform distribution)

EM Technique is finally used to re-estimate the parameters and the cycle continues.

Experiments using this system showed that as the size of the window increases
precision decreases. The more complex model fractures the training data making
it difficult to obtain parameter estimates. Shrinkage improved the model over large
window size. It managed to reduce the error of parameter estimation by 40% and
allowed the learner to learn more robust HMM emission probabilities using limited
training data. It was also shown that the most consistent patterns were the closest to
the target concept because the local weight of states declined with increasing distance

and when related to field difficulty.

ESSENCE

ESSENCE (20; 21) is one of a different breed of IE systems that promise to build IE
patterns automatically based on an un-tagged corpus of relevant documents. This
task is achieved by using a generalisation algorithm which delays as much as possible
the involvement of the user in the system. This delay occurs because the system will
gather as many patterns as possible and the user is then asked to go through the
potential patterns and not through the whole corpus.

The ESSENCE methodology makes use of a general purpose lexicon. In the cur-
rent implementation WordNet (84) is used to provide lexical, syntactical and semanti-
cal information. Since WordNet is not an exhaustive list of world concepts, additional
gazetteers and domain specific word lists are used to complement WordNet. The first
step in the methodology is the Task Definition module. The user is asked to enter

a number of keywords that commonly appear next to the target concept. For each

82

keyword, the user is also asked to select the synset number as defined in WordNet.
With this information, the system calls the Selection of Relevant Texts module
whose task is to select from the corpus a set of text based on the user’s previous input.
Noun phrases, verb phrases and prepositional phrases are then identified because they
will form the basis of the generated patterns.

The sentences obtained will then be filtered according to a relevance judgement
based on the number of keywords found in them. Out of the relevant sentences a
window is selected which will be used for analysis. The nouns and verbs are then
semantically tagged using WordNet. At this stage, the patterns are learnt by the
ESSENCE Learning Algorithm (ELA) and the resulting patterns are filtered in or-
der to remove very specific patterns. The ELA works similarly to other covering
algorithms. The main difference is that the granularity of elements is much bigger,
working at the noun, verb and preposition group level. Also the generalisation is
performed by relaxing the semantic tags associated to groups of patterns.

Although the results obtained by this system were quite respectable, the true
achievements are twofold. First of all the system manages to obtain such results
using a higher granularity than the one used by other similar systems. Secondly, it
does so without requiring lots of human intervention. Basically annotation is not

required, only a number of seed words are needed to start the IE process.

LIEP

The LIEP (Learning Information Extraction Patterns) system (71) is an IE system
which aims primarily towards the effective acquisition of patterns. It learns the
extraction patterns using an On Demand Information Extractor (ODIE).

The ODIE first tokenises the text given as input. It then goes through all the

83

sentences, a sentence at a time and checks whether some of the keywords (which
indicate the possibility of an event of interest) appear in the current sentence. Those
sentences which have no keywords are discarded while the others are kept for further
analysis. The retained sentences are tagged with a part of speech tagger and a pattern
matcher is run over the sentences in order to identify entities and other information
(like prepositions, noun groups and verb groups). The system then tries to identify
events by using IE patterns that match syntactic constituents and other properties.
At no stage does the system attempts to perform a full parse but simple syntactic
relations are checked by using simple rules to verify the validity of sub-constructs
found in a sentence. This technique is called on-demand parsing. The advantage of
such an approach is that the burdens associated with a full parse are not required
but this obviously means that the text is not adequately constrained as in a full parse
and this may lead to over-generalising some of the rules.

The actual patterns are learnt by going through the different elements found in
the system and trying to identify relations between them. In the case that several
paths exist between the elements, all the paths are generated. The patterns are then
tested and the one with the highest F-measure is selected. The selected patterns
although high in precession would have a low recall since they are too specific to the
text in the given document. Because of these, the patterns are generalised further.

LIEP in general compared fairly well with IE tools developed during the same
time. Its generalisation was not optimised and its main source of input was only from
positive examples. Negative examples were only used for testing purposes and no

additional use was made out of them.

84

CICERO

The CICERO system (66) is an IE engine based upon the effective utilisation of
WordNet (84). The idea is to mine WordNet in order to discover concepts and
lexico-semantic relations relevant to the current domain. To check the validity of
these relations, tests are performed using the domain dependent documents that are
available.

The methodology implemented in CICERQO first involves creating a semantic space
that model the specific domain via WordNet. The semantic space is in the form of
a triplet made up of concepts, connections and contexts. A concept list is made up
of words or group of words all referring to the same concept. Connections can be
of three types, i.e. thematic, subsumption and contextual. Thematic connections
refer to elements related by lexico-semantic or morphological relations. Subsumption
connections refer mainly to Is-A relations found in WordNet. Contextual connections
define possible relations between elements in the same context. The final element in
the triplet is a context element. The context element models the different ways and
restrictions in which different words and objects can be arranged, in order to express
a concept. This is done due to the nature of natural language whereby a concept can
be expressed in a multitude of different ways.

This space restricts enormously the searches required in WordNet when modelling
the domain. The documents being analysed are then scanned to identify and link the
domain concepts which are defined in the semantic space. The patterns obtained are
finally classified against the WordNet hierarchy and only the most general linguistic
domain patterns are retained.

For CICERO to work, several algorithms and a number of heuristics were devised

85

Speaker | Location | Start Time | End Time || All Slots

(LP)? 77.6 75.0 99.0 95.5 86.0
BWI 67.7 76.7 99.6 93.9 83.9
HMM 76.6 78.6 98.5 62.1 82.0
SRV 56.3 72.3 98.5 77.9 77.1
Rapier 53.0 72.7 93.4 96.2 77.3
Whisk 18.3 66.4 92.6 86.0 64.9
SNoW 73.8 75.2 99.6 96.3 85.3
Max

Entropy 72.6 82.6 99.6 94.2 86.9

Table 3.1: F-measure on CMU seminar announcements.

in order to make effective use of WordNet. WordNet can be seen as the strength and
weakness of this system. Whilst it provides that syntactic and semantic knowledge
which is so difficult to obtain, its topology makes it difficult for users to retrieve such

information.
Discussion

It is difficult to compare the different algorithms together without examining how
they perform when confronted with a common task. Luckily, experiments on the
CMU seminar announcements collection! were performed by most of the algorithms
mentioned in Subsection 3.2.2 and they were reported in (24) and (22). The CMU
collection consists of 485 seminar announcements and the task involves identifying
the speaker, location of the seminar, the start time and end time. The documents
have 485 instances of start time, 464 locations, 409 speakers and 228 end time. The
results of the different algorithms can be seen in Table 3.1.

The outcome from these experiments is very interesting. We will mainly compare

the algorithms which produced the most promising results. First of all it can be

1Downloadable from http://www-2.cs.cmu.edu/ dayne/SeminarAnnouncements/

86

noted that (LP)* and BWI produce comparable results even though in the final score
(LP)? outperforms BWI. The reason for this is that both algorithms are based upon
the same concept of creating wrappers. (LP)? results are better in two particular
instances, speaker and end time. The reason being that a speaker can have a very
variable context. Therefore, the linguistic features used by (LP)? are capable of
modelling this variable context in a better way than BWI. When it comes to the
end time concept, from the distribution of the concepts in the documents, it can be
noticed that it is the concept with the least instances. In (LP)? it was noted that a
positive side effect which linguistic features add to the learning of the algorithm is that
they tend to reduce spurious data and this is the reason why the algorithm manages
to get a higher score for end time. BWI would require more examples in order to
improve its score. The results of BWI are better when it comes to start time since
the collection contains many examples of that concept and therefore the algorithm is
capable of boosting the wrappers in order to model the data more effectively.

The two other algorithms that performed well in the tests were SNoW and Maxi-
mum Entropy (ME). Both of them are based on different genre of algorithms. SNoW
is based on a new form of ILP which is much more generic than common approaches.
This form of relational learning produced good results when it comes to start time and
end time. These two concepts are very regular but an interesting fact is that SNoW
manages to get the best result in end time. This means that this form of relational
learning is capable of learning regular patterns using very few examples and therefore
overcoming the problem of spurious data. The ME method too performs well on the
start time but the most surprising result is that it manages to get the best result for

the location concept. It manages to outperform the next best algorithm by about

87

4%. This can be attributed to how ME works. Basically it models the domain using
the positive examples only and makes no assumptions on the remaining parts of the
document. This domain model is more representative than any model produced by
the other algorithms and in fact, the best result for this concept after ME is produced

by the HMM algorithm which is based on a similar idea of domain modelling.

3.2.3 Deeper Approaches
LaSIE

The LaSIE (Large Scale Information Extraction) system is one of the few systems
that make use of deeper approaches to perform IE. The initial version of the system
called LaSIE-I (53) is an integrated system that performs lexical, syntactical and
semantical analysis to build a single, rich representation of the text which is then
used to perform several IE tasks.

The lexical analysis is very similar to the analysis performed in shallower ap-
proaches. The text file given as input, is passed through a tokenizer, sentence-splitter,
part-of-speech tagging, morphological analyser and a pattern matcher. The pattern
matching works by checking the input against a number of lexicons that contain lists
of organisations, company designators, people titles, human names, currency units,
locations and time expressions. If an element in the document matches one of the
elements in lists, a category is assigned to that element equivalent to the name of
the list in which it was found. Apart from these lists there is also a hand crafted list
of trigger words used to give an indication of the possible class of the surrounding
tokens.

The syntactical analysis takes as input the data obtained from the previous stage

and parses it using a simple Prolog parser. The parsing occurs in two passes. In the

88

first pass a Named Entity Grammar is used in order to locate domain specific named
entities. In the second parse Sentence Grammar Rules (extracted from the Penn
TreeBank-II (83)) are used to extract a semantic representation from the sentences.

The semantic analysis first starts by passing the output from previous stages to
a discourse interpretation module that builds an ontology using the XI knowledge
representation language (51). The ontology also has associated with its nodes at-
tributes therefore making the final result a world model. Apart from attributes, the
ontology may also have inference rules associated with its nodes. When the ontology
is being constructed, a co-reference resolution module tries to resolves any references
in the text. This module has a number of heuristics which try to resolve the several
instances found in the text.

The results are gathered from the system by simply going through the world
model and gathering the required information. Since the MUC-6 results of LaSIE-I
were quite promising, the team behind it created an improved version called LaSIE-II
(72) and submitted it for MUC-7. The main difference between the earlier version
is that all the modules are organised and executed as a pipeline inside the GATE

architecture?. Other minor differences include

e enlarging the lexicons available with new data.

e sentences are represented in Quasi-Logical Form (QLF) (52; 5). This meaning

that they are expressed as conjunctions of first order logical terms.

e adding presuppositions to the data such as additional inferences, additional
hypotheses, word sense disambiguation, person role classification and partial

parse extension.

nttp://gate.ac.uk/

89

e adding object co-reference with extra features like long distance co-reference,

copular constructions, cataphora, coordinated NPs, header co-reference and

generic nouns.

e adding consequence rules used mainly to fill slots in the results.

e performing event co-reference in order to merge events with additional informa-

tion found elsewhere in the text.

LaSIE-II does not really differ much from its predecessor in terms of the approach
adopted. Even so, the small refinements in the system managed to produce improved

results on a much harder test.
LOLITA

The LOLITA (Large-scale, Object-based, Linguistic Interactor, Translator and Anal-
yser) system (88; 54) is in reality a general purpose NLP system although for the
MUC competitions it was used as an IE system. It is mainly composed of two parts,
the first part converts the text to a logical representation of its meaning while the
second part generates the results.

At the heart of the whole system lies a semantic network. All the analysis tasks
are organised in a pipeline and the several output results obtained from the different
stages are used to update the information in the semantic network. The network
is used to hold different kind of information such as conceptual hierarchies, lexical
information, prototypical events (that define restrictions on objects) and other general

events. The rest of the information found in the network is obtained directly from

WordNet (84).

90

The main process first passes an SGML module to a Text Pre-processing module.
The module locates structural information in the document such as reported speech,
paragraphs, sentences and words. The output is then passed over to a Morphology
module whose first task is to normalise the input such as expanding abbreviations,
removing hyphens, expanding monetary and numeric contractions. Only the root of
a word is retained and to avoid that information such as number, case, person, etc
would be lost, this information is stored in a feature structure. After this module,

the information is passed to a parser made up of the following five submodules:

Pre-parser used to identify and provide structure for monetary expressions.

Parser used to parse whole sentences. The result of this is a parse forest (made up

of all possible parses).

Decoding of the parse forest utilising the previously generated forest and making

use of a number of heuristics to select the best trees.

Best parse tree selection takes as input the decoded forest selects the lowest cost-

ing tree.

Normalisation of the syntax tree done to reduce the number of different cases possi-

ble. This normalisation does not alter in any way the semantics of the sentence.

Once the syntactic analysis is completed the system performs semantic and prag-
matic analysis. The semantic analysis is performed by going through the trees and
building up meaning based upon the tree’s subtrees. It makes use of the composition
principle that the meaning of a sentence is made up from the meanings of the words

contained inside it. The pragmatic stage is used to disambiguate and type check the

91

data. Once an event is disambiguated, the system attempts to create connections
between it and the previous events. While the document is being processed, in the
case that the system identifies an anaphoric expression, it looks for possible referents.
If it manages to find such references it unifies with them the information it possess.
In the case that no references were found, a new instance is created in a reference
database called a Context buffer.

The results obtained by the LOLITA system were not great and this was due
to a number of limitations of the system. The system requires a successful parse in
order to analyse the text. Such a parse was not always possible even though error
recovery routines were implemented. Another limitation is that the data required by
the system is much larger than the amount provided for testing purposes. Because
of this, the results obtained were much lower than the ones expected by the LOLITA

team.
Machine Learning Based Text Understanding System

The Machine Learning Based Text Understanding System (103) is a system designed
for very deep textual understanding. The domain for which it was developed is the
medical domain in which it is vital to have full understanding since a patient’s life
may be at stake.

The system accepts as input a textual description. This is passed to a structural
analyser whose task is to make use of a maximum entropy classifier to determine the
sentence boundaries. The sentences are then passed to a lexical analyser. It makes use
of a handcrafted domain specific lexicon to assign syntactic and semantic features to
specific words. A syntactic parser is then used to create a dependency graph linking

each word to the word it modifies. The probability of every arc is obtained from a

92

statistical parser trained upon hand-tagged training sentences. After this stage, a
semantic interpreter (trained upon handcrafted rules) is used to go through the data
and search for semantic relations. These relations are then grouped into a frame. In
this context, a frame is basically a factual entity with a list of properties associated to
it. The final step is a co-reference resolution module that tracks references amongst
frames in sentences. Co-reference is performed using hand-coded probabilistic rules
and lexical cues.

Although such systems in reality are far from full text understanding, the method-
ology developed here is a step forward. The system has a serious limitation when it
comes to porting to new domains. Some domain specific lexicons must be created
and a system developer must create a precise definition of the target concepts for the

domain.
PENSEE

With difference to the systems seen so far, PEN SEE (50) is a commercial system
developed by Oki®. The original modules used in this system were constructed for
Machine Translation (MT) purposes. In fact, one of the reasons Oki designed this
IE system was to find out how effective the core modules are when used in other
applications. The system is made up mainly of two modules. A surface pattern
recognition module and a structural pattern recognition module.

The surface recognition module detects named entities and co-references without
any lexical or syntactical analysis. This module searches for capitalised areas and
merges groups of words whenever there is a high probability of having a compound

word (based on some handcrafted heuristics). Types of named entities are recognised

3http://www.oki.co.jp/

93

using other rules by making use of cue words found before or after words of specific
types. The remaining capitalised words which are still ambiguous are checked against
a handcrafted dictionary.

The structural pattern recognition module traces parse trees and uses them to
find named entities, co-references, etc. All these are expressed using the Grammar
Description Language (GDL). The GDL system allows the user to describe extraction
rules used during the IE process. These rules are then translated and interpreted.
The rules are basically divided into two parts, a matching part and an action part.
The matching part describes a condition to match a part of a tree representing the
document and the action part describes what changes need to be done to the tree.
Also, to help the user create such rules a powerful debugging system is supplied with
the tool.

The system in general did not obtain good results in the evaluation even though
to be fair, the developers emphasised that this system was developed in a very short
time. Most of the rules used to identify the several concepts were handcrafted and
the amount of automation found in the system is very scarce. Even though it has
all these faults, in itself it is a simple and interesting system that shows how pattern
matching can be effectively used in order to extract more information without the

need to make use of deeper approaches in some cases.

94

3.3 Motivation for using II

The vast amount of data available on the Internet unleashes an unimaginable number
of ways in which the information can be combined and utilised in new applications
and tools. Even though this may sound simple, when an automated agent tries to
exploit the available data, it is faced with many obstacles. Imagine you are driving
in a city without well defined roads, where the roads and buildings are changing
as you move around. The road signs, even though they mean the same things are
represented differently in different districts of the city. It sounds like an extract from
the 1998 science fiction film Dark City but this is the current situations automated
agents must face when they surf on the internet. One of the main reasons is the lack
of structured representation available in the information found in web pages. This
irregularity makes the data too complicated to navigate. The problem gets more
complex when we consider that part of the data which is online, is not static, many
web pages are dynamically generated on the fly from scripts or databases which change
frequently. What is referred to as static data changes as well every so often. Links
which existed a second ago go suddenly dead and others which were not there appear
as if from nowhere. Another complication is that there is no uniform vocabulary to
describe the same concepts amongst different domains or even the same domain.
Apart from this, the II technologies available are not mature enough since they
normally require the construction of specialised applications in order to extract in-

formation from the different sources. This obviously makes the whole process

time-consuming since it is a very repetitive task performed by a human. Also, the

side effect of having a human do the job is that a human is also error prone and

costly.

95

difficult to maintain since the structure of a page can change from time to time.

Every time this happens, these programs are broken since they were trained

upon a particular structure which does not exist any more.

Therefore, the following sections will focus on the basic foundations and techniques

in Information Integration as it applies to the Web.

3.4 Previous Work in II

This section will give a brief overview of the different types of Information Integration
systems available. It will give a flavour of what we believe are the most relevant

systems to our work.

3.4.1 Ariadne

Ariadne(6)(76) is an Information Integration system that makes it fast and cheap to
build automated agents used to access, query and integrate existing web sources. It
uses several approaches borrowed from knowledge representation, machine learning
and automated planning. The system also provides tools for maintaining these agents
by making it easy to customise them as new resources are available. Ariadne is made

up of the following components:

Application Domain Model is an Ontology of the application domain. It is used
as a basis to integrate all the information gathered in one single view, by pro-

viding a unique and standardised terminology for the concepts of the domain.

Wrappers are important because Ariadne needs to know what information can be
extracted from the web page. This information is normally stored in semi-

structured web pages. In order to do this the system uses both a syntactic

96

and a semantic model of the information found on the page. This information
is extracted by making use of a simple annotation interface, whereby the user
is asked to mark examples of the concepts to extract in the source document.
Once the annotations are inserted, a learning algorithm is used to induce the

grammar rules for that particular page.

Information Sources descriptions are used to model how the system should nav-
igate through the internet in order to extract the information found distributed
across different web pages. The system makes use of the same wrapping tech-
niques described before but the information is not just labelled as atomic data
and left there. Associations found in the ontology are used to build a plan of

how one item of information can lead to another item in a different page.

Query planner handles the different queries possible together with their decompo-
sition into sub queries. It is all based upon the Application Domain Model since
it contains a reference to all the data available. The first step before the ac-
tual plan is constructed, is to build the actual integration axioms. This is done
off-line so that the costs of creating them during query execution is eliminated.
Ariadne manages to extract the different rules by analysing the domain model
together with the source descriptions and by calculating the different ways in
which these two are related. Once this process is finished, it is time to get a
query from the user and process it. The query is first of all parsed, simplified
and rewritten so that it matches with the different concepts found in the do-
main model. It is then passed to an optimising module in order to remove any

inefficient queries and finally it is executed over the domain model.

97

Ariadne works fine for most domains but it has a number of major limitations.
Currently the system cannot create Wrapﬁers for unrestricted natural language texts.
It is bound to structured or semi-structured texts therefore restricting the information
which it can obtain. Apart from that, the wrapper construction techniques they use

requires a lot of examples, making the whole process quite tedious for the user setting

up the system.

3.4.2 KIND

KIND(81)(62) stands for Knowledge-based Integration of Neuroscience Data and it
focuses mainly on integrating information from large databases. It is described by the
authors as being a Mediator system whereby it acts as a common interface between
the several data sources available. This has the benefit of providing a unified view
for the several databases, therefore allowing an easier and more effective interface for
the users. At the heart of the system, there lies a semantic model of the information
sources used to tie together the data obtained from the different sources. The mapping
between the different data (called semantic integration) cannot be done automatically
and a mediation engineer must construct the integration views for the system to work.
The problems faced in this system are different from the traditional ones. Normally
systems work in domains with similar concepts and attributes, but in the Neuroscience
domain (which is the main domain on which the system is based), this is not necessary
the case and different sections of the field have very few concepts and attributes in
common. The integration is performed using a logic language therefore increasing
the complexity of the system since only a person with experience in logic languages
can create these integration rules. Once again the complexity of this system increases

since the end users queries are expressed using an XML based query language. The

98

system manages to perform its task but the setting up of the different sources and its

use is not straight forward and requires a certain degree of expertise.
3.4.3 PROM

PROM(37) stands for Profiler Based Object Matching and is a system that actually
takes care of matching concepts and attributes in order to find out how the data should
be integrated together. The problem is called object matching and seeks to find out
if two given objects refer to the same entity in the real world. There are two main
novelties in the system. First of all, it makes use of profilers. These profiles contain
within them a sort of ontology which is very specific to a particular domain with rules
and relationships. The data which is extracted is validated before it is integrated,
thus making it possible for the system to reduce the errors. This is important in
cases where the data does not make sense in the real world, e.g. imagine finding
some information about Mr X which says that his age is 10 and he holds a driving
license. For an automated system, there is nothing wrong with that, but for humans
who know how things work out in the real word, the above statement does not make
sense since it is obvious that no 10 year old can hold a driving license. In these cases
profilers come to the rescue by providing real world rules in order to validate the date
being integrated. The profiles can be added, removed and reused therefore making
the whole architecture very flexible and easily extensible. Secondly, it does not only
seek full attribute matching. In some cases, the attributes in a site do not exist in a
similar site. Therefore a strength of the system is that it handles partial matches of
attributes. This is achieved by using once again the profilers. The system has two
sets of profilers, the profilers in the first set are called hard profilers and the others are

called soft profilers. The difference is the following, hard profilers contain heuristics

99

that must evaluate to true whenever they are confronted with matching of attributes
or concepts, otherwise the match is rejected. Soft profiles on the other hand express
a confidence score and the system works by using a sort of voting mechanism. When
all the soft profilers express their view about the matching process, if the confidence
level is greater than a predefined threshold, then the match is accepted, otherwise
it is rejected. The approach described works fine when the profilers are defined by
domain experts, but normally it is infeasible to make use of domain experts to build
these profilers. This technology is promising since the results they obtained were
quite good, but research into automated methods to create these profilers must still

be conducted before these profilers become usable.

3.4.4 Name-Matching

An important task in II is the filtering out of duplicate values from the main database
where all the information is stored. Due to the redundancy of the web the same data
can be found in different sites around the internet, therefore it is justifiable for the
different II and IE strategies to return the same data. In (31) several approaches are
explored in order to find out which technique manages to filter out the data while
keeping the error rate to the minimum. Finally they propose a technique which is
ideal for domains where the data is not structured and little information regarding
the particular domain is known a priori.

These functions normally calculate a distance between two strings based upon
the number of insertions, deletions and substitutions required to be performed on
the first string in order to become like the second string. There have been several
distance functions, one of the most popular being the Levenstein distance. These

functions normally use characters but there are others such as the Jaccard similarity

100

that makes use of tokens. A string is considered as being a bag of words in this case
called tokens. These techniques work fine for the majority of cases but obviously

they are not perfect since there are no semantics or real world heuristics to verify the

match.

3.4.5 StatMiner

StatMiner(91)(90) is a system based around a set of connected techniques that es-
timate the coverage and overlap of statistics while keeping the amount of statistics
needed under control. To do so, the system computes statistics for classes of queries
rather than for individual ones based upon the attributes being selected to execute
the query. In order to do so, the system makes use of hierarchies which classify the
attributes and queries. These hierarchies are either designed by a knowledge engi-
neers or induced by machine learning algorithms. Since the classes of queries and
attributes can be incredibly huge, the system prunes away the queries which are
rarely used therefore reducing the general complexity of the system.

The system was tested on a Computer Science scenario related application called
BibFinder. It integrates several sources that provide information regarding the Com-
puter Science domain such as CSB', DBLP?, Network Bibliography?®, ACM Digital
Library?, ScienceDirect® and CiteSeer®. BibFinder acts as a mediator between all
these sources in order to provide a unified view. Each source does not provide the

same information, the information extracted from different sources can be missing,

lhttp://liinwww.ira.uka.de/ bibliography/
2http://dblp.uni-trier.de/
3http://www.cs.columbia.edu/ hgs/netbib/
4http://portal.acm.org/

5http: //www.sciencedirect.com/

Shttp: //citeseer.nj.nec.com/cs

101

new or overlapping. Basically, different information sources provides a different view
for the the same data.

The system presented in this paper provides a neat unified view of the data. It
tackles the problem of unification of same data from multiple sources. Unfortunately
this poses the problem of having to rely on these sources for valid data. If they contain
some wrong entries with missing information the system cannot do anything about

it since it does not seek to gather information directly from the horse’s mouth!

3.5 Conclusion

This chapter showed that both AIE and II are two vital technologies for the success of
our research. AIE techniques provide the adequate capabilities necessary for learning
new concepts while IT allows our system to glue the learnt and harvested information
together.

The different AIE technologies mentioned are a good representative of the most
successful IE techniques available. They cover a wide range of methodologies and in
Chapter 4 we will select one of these tools and utilise it in our methodology. With
our approach we will show how such tools can be used in a more effective way.

With respect to II we decided to list only those systems which we believe are most
relevant to our research. By doing so, we only gave an overview of II mainly because
II is a very vast field, fragmented into several subfields and a complete review of the
whole field would be beyond the scope of this thesis. For a more complete review of
IT technologies please refer to (2)(73).

In the coming chapters, we will see how both IE and II were used in our work.

The usage of these technologies will not only produce better systems which are more

102

effective and efficient, but they will also add more value to the general user experience.

Chapter 4

Melita: A Semi-automatic
Annotation Methodology

4.1 Introduction

The main goal behind the Semantic Web (SW) is to add meaning to the current
web, therefore making it understandable by both humans and machines. Humans are
already equipped for such a task, the knowledge they gathered throughout their lives,
makes it possible for them to understand the content of different web pages without
requiring any external help. When it comes to machines, it is a totally different story.
They do not possess any background knowledge, therefore they cannot understand
the information found on the web, since they cannot place it in any appropriate
context. This poses a big constraint on the SW, this new web must somehow supply
enough meanings (or semantics) to the data so that the machines can understand it
while making sure it remains understandable by humans. If we manage to achieve
this goal, we will have made it possible for knowledge to be managed automatically
by the machines themselves, therefore reducing the need of human intervention.
There are several stages required before this goal is achieved. The first stages

involve defining the infrastructure for the semantic web. New standards were defined

103

104

for representing knowledge starting from the very atomic levels where data is defined
using the XML language and moving towards more elaborate and powerful represen-
tations, such as RDF. At this stage, the need was felt to abstract even further from
the atomic elements and represent higher level concepts and relationships. To define
these higher level structures for knowledge organisation (like ontologies, etc.), further
standards were created such as OIL, DAML, DAML+OIL and finally OWL.

This is only half of the story. Having the adequate structures without the data
is useless. Therefore, the next step in the SW is the population of these knowledge
structures. There are several ways of populating these ontologies. The most basic
way is to manually fill these knowledge structures with instances. But this is not
very useful since we live in a dynamic world where things constantly change around
us and probably those instances would have to change with time. Another way is to
insert in the ontologies a reference to an instances rather than the actual instances.
The process of associating parts of a document to parts of an ontology is normally
referred to as annotation. In this way, if the instance changes slightly, there is no need
of modifying all the ontologies where this instance appears. This also makes sense
because in our world and even on the Internet, there exists no Oracle of Delphi that
has the answers to all the possible questions thus we can never be sure of the validity
of our data. Knowledge is by nature distributed and dynamic, and the most plausible
scenario in the future (60) seems to be made up of several distributed ontologies which
share concepts between them. The annotation task may seem trivial but in actual
fact it is repetitive, time consuming and tedious to perform by humans. If we think
about the current size and growth of the web (30), it is already an unmanageable

process. If we re-dimension our expectations and try to annotate just the newly

105

created documents, it is still a slow time-consuming process that involves high costs.

Due to these problems, it is vital for the SW to produce methodologies that ei-
ther help users during the annotation of these documents in a semi-automatic way or
actually produce the annotations automatically. One of the most promising technolo-
gies in the Human Language Technologies (HLT) area, is without doubt Information
Extraction (IE). IE is a technology used to identify important facts in a document
automatically. The extracted facts can then be used to insert annotations in the
document or to populate a knowledge base. The job performed by IE techniques fits
perfect into the whole SW picture. IE can be used to support in a semi/automatic
way knowledge identification and extraction from web documents (E.g. by high-
lighting the information in the documents). Also, when IE is combined with other
techniques such as Machine Learning (ML), it can be used to port systems to new
applications/domains without requiring any complex settings. This combination of
IE and ML is normally called Adaptive IE (18)(7)(27).

There are already a number of tools that exploit AIE in order to support users
while annotating documents. These include the MnM annotation tool (38) developed
at the Open University (which uses both the UMass IE tools (1) and Sheffield’s
Amilcare (24)), as well as the Ontomat annotiser (64) developed at the University of
Karlsruhe which is an implementation of the CREAM environment mentioned before.

The approach which both MnM and Ontomat use to train the AIE algorithms is called

active learning and works as follows:

1. the user annotates the document and the IE system learns how to reproduce

those annotations.

9 when similar examples are encountered, the IE system automatically inserts

106

annotations based upon the previous cases.
3. the user finally checks the annotations.

4. the cycle starts all over again so that the algorithm is retrained with new cor-

rected data.

It has been proven in (104) that this approach reduces the burden of manual
annotation up to 80% in some cases. The advantages are quite obvious but unfortu-
nately the interaction model between the users and the system which is implemented
in both MnM and Ontomat is rather simplistic. Generally, the annotation process
happens in a batch, i.e. the user annotates a batch of documents, when the batch is
manually annotated, the IE algorithm is launched over that batch for training. Once
trained, the IE system can be used over a new unseen batch of documents and the
IE engine manages to recognise examples which are similar to the ones already seen
in the training set.

Although we do not deny that these systems minimise the burdens of annotating
documents, they are not effective enough and they do not exploit the full benefits of
adaptive IE. In this chapter we propose a methodology! developed during the same
period that MnM and Ontomat were being created, which implements an improved
interaction model between the users and the system. It was originally designed to
maximise effectiveness and reduce the burdens introduced by the annotation process.

In so doing we would be moving from a system which interacts with the user to a

system that collaborates with the user.

1This methodology was developed and refined by myself together with Professor Yorick Wilks,
Professor Fabio Ciravegna and Dr Daniela Petrelli. The design and implementation of the system

are exclusively mine.

107

The methodology to realise this interaction model is based around the Melita sys-
tem. Melita is an ontology-based demonstrator for text annotation. As the basis for
this system, we propose two user-centered criteria as measures of the appropriate-
ness of this collaboration: timeliness and intrusiveness of the IE process. The first
refers to the time lag between the moment in which annotations are inserted by the
user and the moment in which they are learnt by the IE system. Basically Melita
automatically calculates how timely is the system to learn from user annotations. In
systems like MnM and Ontomat this happens sequentially in a batch. The Melita sys-
tem implements an intelligent scheduling in order to keep timeliness to the minimum
without increasing intrusiveness. The latter represents the level to which the system
bothers the user, because for example it requires CPU (and therefore stops the user
annotation activity) or because it suggests wrong annotations. It also refers to the
several ways in which the IE system gives suggestions to the user to help reduce the

burden of annotating tags.

4.2 Melita:
A Semi-Automatic
Annotation Methodology

In Melita, the annotation process is split into two main phases from the IES? point
of view: (1) training and (2) active annotation with revision. In user terms the first
corresponds to unassisted annotation, while the latter mainly requires correction of
annotations proposed by the IES.

While the system is in training mode, the system behaves in a similar way to
anotation tools. In fact, at this stage, the IES is not contributing in any way

other a
2The IES used in Melita is Amilcare (http://nlp.shef.ac.uk/amilcare/).

108

. e - G
2 Learning in
background
from missing
tags, mistakes

Figure 4.1: Training with verification.

to the annotation process. If we take a closer look to what is actually happening in
the background, we find that the system is not dormant. The IES uses the examples
supplied by the user to silently learn and induce new rules (See Figure 4.1). This
phase can be referred to as the bootstrapping phase whereby the user supplies some
seed examples for an arbitrary document. The system learns new rules that cover
those examples. As soon as the user annotates a new document, the system also
annotates the document using the rules it learnt previously, and compares its results
with those of the user. In this way, the system is capable of evaluating itself (when
compared with the user). Missing annotations or mistakes are used by the learning
algorithm to learn new rules and adjust existing ones. The cycle continues like that
until the system reaches a sufficient level of accuracy (Refer to Section 4.3.1 for an
explanation of how the sufficient level of accuracy is calculated).

Once this level is reached, the system moves over to the phase of active annotation

with revision. In this phase Melita presents to the user a previously unseen document

109

Figure 4.2: Active annotation with revision.

with annotations suggested by the system itself. At this stage, the user’s task shifts
from one of annotator to one of supervisor. In fact, the user is only expected to correct
and integrate the suggested annotations (i.e. removing and adding annotations).
When the document is corrected, these are sent back to the IES for retraining.
Figure 4.2 shows the phase where the system-user cooperation takes place. The
system is annotating the documents for the user, while the user corrects any mistakes
introduced by the system. In so doing the user would be implicitly giving back to
the system important feedback regarding its annotation capabilities. These are then
used by the system to learn new accurate rules and therefore improve its performance.
The task of the user is also much lighter than before. Supervising and correcting the
system is much easier and less error prone than looking for instances of a concept in
a document. It is also less time consuming since the attention of the user is mainly
focused towards the suggestions given by the system and the need of new manual

annotations decreases when the accuracy of the IES increases.

110

4.2.1 Dealing with timeliness

In the Melita methodology mentioned above, timeliness?® is only partially guaranteed,
because the IES annotation capability always refers to rules learned by using the
entire annotated corpus, less the last two documents. This means that the IES is not
able to help when three similar documents are annotated in sequence. This is the price
paid for learning in the background. From the user point of view the methodology is
equivalent to training on batches of three texts, with all the disadvantages of batch
training mentioned above (even if a batch of size three is quite small). Timeliness is a
matter of perception from the user’s side, not an absolute feature, therefore the only
important matter - we believe - is that the users do not perceive it, rather than trying
to avoid it at all costs. In this respect we start from the consideration that in many
applications the order in which documents are annotated is random. Generally users
adopt criteria such as date of creation or file name order in directories. In such cases
it is possible to organise the annotation order so to avoid the possibility of presenting
similar documents in sequence and therefore to hide the lack of timeliness. In order to
implement such a feature we need a measure of similarity of texts from the annotation
point of view. (41) tries to address this problem by proposing a committee-based
sample selection approach. This involves examining the available corpus and selecting
the most informative using some probabilistic classifiers. It avoids redundancy since
the user is only annotating examples which convey new information to the IE engine.

In our approach, we use the IES to calculate such a measure. The user is initially
asked to select the corpus of documents to annotate. These documents are then

presented to the user for tagging one by one. As far as the user is concerned, they are

3Timeliness is the time lag between the moment in which annotations are inserted by the user
and the moment in which they are learnt by the IE system.

111

presented in no particular order but in reality they have a smart ordering. Iterating
through the selected corpus is not simply a matter of parsing the documents one by
one. The point is that in reality, there is no need of examining all the training corpus.
An IE engine can stop parsing the documents once all the concepts required are learnt.
If we consider the training documents to be part of a document space in which all the
training documents are represented, then the documents can be virtually clustered
according to the number of patterns found by Amilcare during a test run. Melita
then begins suggesting documents for tagging starting from those, which contain the
least patterns. The reason being that these documents are more likely to have new
patterns relevant to Amilcare, which were not yet learnt.

This process of smart ordering of documents cannot be initialised immediately
and in fact it is started after two documents are tagged. To start immediately several
other issues must be addressed such as how to select documents with the most relevant
examples, and most important how can one denote relevance in new unseen domains?
Since at the start of the training, no pattern is known by the training algorithm,
therefore all the documents are arranged in no particular order. When a pattern is
learnt by the IE algorithm, it is normally the case that other documents have similar
patterns. Therefore if the other documents are tested with the IE engine, we can rate
them according to the number of tags identified by the IE algorithm. These relevance
ratings can be calculated only after the first document is tested and this is the reason
why the process cannot be started immediately.

Since a rating of documents now exists, the next step is to choose the best docu-
ment. The documents can be divided into 3 subcategories, in terms of whether they

match any of the patterns so far proposed by the rule induction algorithm:

112

Documents without annotations Since we could be working in an open domain
we cannot be sure why these documents were not annotated. It might be the
case that these documents are irrelevant and therefore there are no patterns
to learn from them or the document is relevant but the learning algorithm did
not encounter any similar patterns in the already covered documents. Because
of the fact that we cannot know for sure which documents are relevant or not,

these documents are stored and will be used at a later stage.

Documents with partial annotations These documents are those, which have
new patterns not yet covered by the algorithm. To find out these documents,
the application must keep statistics of the average number of instances per
annotation suggested by the IE algorithm for an average document. These
statistics will help the application choose a document that has a high probabil-
ity of having examples containing new instances. A typical example is when the
learning algorithm returns from a document partial information covering only
few of the concepts. Since the document in question already contains some of
the patterns, there is a higher probability that it will contain other unknown
but relevant patterns. Therefore these documents must be sent for training in

order to allow the algorithm to learn all the missing concepts.

Documents having complete annotations These are documents which were an-
notated by the IE algorithm but were never verified by the user. The reason to
train the algorithm on these documents is to reinforce the IE algorithm. These
documents can be selected when the program enters Active Supervision (AS).
In AS the user is required to supervise or correct the output of the learning

algorithm rather than introduce new tags from scratch.

113

Once the documents are categorised, the best one can be chosen depending on
the status of the application. In our model we always select in turn for annotation
a completely uncovered document (i.e. a document from category 1) followed by
a fairly covered document (document from category 2). In this way, the difference
between successive documents is very likely and therefore the probability that similar
documents are presented in turn within the batch of three (i.e. the blindness window
of the system) is very low. Incidentally this strategy also tackles another major
problem in annotation, i.e. user boredom. This is the major reason why the level
of user productivity and effectiveness falls proportional to time. Presenting users
with radically different documents should avoid the boredom that comes from coping
with very similar documents in sequence. When the documents from the first two
categories are annotated, those in category 3 are proposed for annotation (provided
the learning algorithm did not already learn all the different patterns!). This makes
sure that the documents which require most effort for the user are presented at the
beginning of the session and those with least effort are presented towards the end of

the session.

4.3 The methodology at work

Melita is an ontology-based demonstrator for text annotation. The goal of Melita is to
demonstrator how it is possible to actively interact with the Information Extraction
System (IES) in order to meet the requirements of timeliness and tunable pro-activity
mentioned above. Melita’s main control panel is shown in Figure 4.3. It is composed

of two main areas:

1. The ontology (left) representing the annotations that can be inserted;

Settings Help

= & Concept

¢ [speaker
- Do
@»@Time
¢ EEste
¢ Demm

O Dol

5@ Relation

- At time

... In location

Type: cmu. andrewv, academic. sds. seminars
Topic: SKVORETZ Seminar

Dates: 4-May-95

Time: 4:00 - -

PostedBy: Carole Deaunovich on 2-May-95 at 11:00 from andrew.cmu.edu
Abstract:

Professor John Skvoretz, U. of South Carolina, Columbia, will present
a seminar entitled "Embedded Commitment,” on Thursday, May 4th from

+ B 1

{00

<] |

Reject All

Figure 4.3: The Melita annotation interface

e Annotations are associated to concepts and relations.

114

e A specific color is associated to each node in the ontology (e.g. ”speaker”

is depicted in grey).

2. The document to be annotated (DOC panel) (center-right).

e Selecting the portion of text with the mouse and then clicking on the node

in the ontology insert annotations.

e Inserted annotations are shown by turning the background of the anno-

tated text portion to the color associated to the node in the hierarchy

(e.g. the background of the portion of text representing a speaker becomes

grey).

Melita does not differ in appearance from other annotation interfaces such as MnM

or Ontomat. It differs in that it is possible to tune the IES so to provide the desired

115

level of pro-activity and in the possibility of selecting texts so as to provide timeliness
in annotation learning.

The typical annotation cycle in Melita follows the two-phase cycle based on train-
ing and active supervision. Users may not be aware of the difference between the
two phases. They will just notice that at some point the annotation system will
start suggesting annotations directly in the DOC panel. In the initial phase, simple
techniques that help the user identify instances in the document are used. Eg. If
the user tagged a name in the top part of the document, a search is performed to
identify other words, which match exactly that name in the rest of the document.
These matches are than presented to the user so that he can decide weather they are
correct or not.

Since Melita is ontology based, the different tags are defined in an ontology (See
Figure 4.3). The component shows a hierarchical display of tags together with a small
box on the left of every concept indicating the current level of accuracy reached by
the learning algorithm for every tag. When the box is clicked, a level metre pops up
showing the confidence of the IE algorithm to discover individual concepts. Internally,
the system makes use of precision and recall* to calculate this level but in Melita, we
just show one combined measure because a naive user may not be acquainted with
the meaning of precision and recall. Therefore considering the fact that it is normal
to have high precision and low recall or vice-versa at the start of the training, this
may disorient the user.

The user is also given the power to set at which level of accuracy the IES should

start showing suggestions to the user. Different concepts can also have different levels

4The calculation which makes use of precision and recall is most commonly referred to as the
F-measure.

116

of accuracy because particular tags may be more important than others therefore,
a higher accuracy would be required. When the confidence level surpasses the level
indicated by the user, the program utilises the feedback obtained from the IE engine
on the given corpus to suggest occurrences of tags in the document. At this stage the
role of the user changes from one of training the learning algorithm to one of actually
supervising the algorithm. In fact the user will reach a point where he does not need
to assist the IES any longer with new annotations but just correct the tags suggested
by the learning algorithm. This is the concept of Active Supervision. The user is
actively involved in supervising the work of the IE engine.

In Ontomat and MnM, the Learning stage is normally done in batches. In Melita,
the system needs to constantly monitor the accuracy level of the algorithm so that it
suggests annotations immediately when the accuracy goes beyond a user defined level.
Because of this, the system does not train in batches but documents are processed
almost immediately. The smart approach which Melita takes allow results to be
obtained just in time when we need them and since all these evaluations are done in

the background, the user does not even notice that the algorithm was being trained.

4.3.1 Intrusiveness

The fact that Melita manages to anticipate the user by highlighting suggestions im-
mediately when the document is loaded is a very powerful feature. But this feature
can also be very risky. By doing so, we would be taking away control from the user
and placing it in the hands of the system. This is also referred to as intrusiveness,
or rather the act of interfering without permission to do so. These interferences can
be various, when the accuracy is high enough, any suggestion would be welcomed

by users since it would save them a lot of work. But what about when the system

117

Minimum accuracy for Stime tag, ...

(00

Suggestion Level ®

l — 1 #certainty Level

Figure 4.4: Intervention Level Setup

suggests annotations (during the active annotation with revision phase) when its sug-
gestions are still unreliable? The system would be a nuisance for the users and would
hinder them rather than help them.

To cater for this problem, Melita adopts a number of strategies. In a typical
Melita session, once the first few iterations are complete, the program starts obtaining
suggestions from the learning algorithm. These suggestions are stored and only shown
to the user when and if the user decides to see them. This is done so that the
program never interferes into the user’s work without the user’s explicit consent.
Therefore with this system, we are empowering the user to calibrate the intrusiveness
of the system in a very simple way. First of all the system has a suggestion button.
Whenever a user disables it, no matter how many suggestions the system obtains,

they are never shown to the user. If the user decides to view the suggestions all that

118

is needed is to enable this button and the suggestions are displayed immediately. In
order to make things simpler for the user, the system calculates the level of expected
accuracy® of the extraction process and uses that measure to either suggest to the
user (if the accuracy level is low) or insert a tag in the document (if the accuracy is
very high). This measure is possible because the rules in the IE system return an
error score based on the training corpus.

The interface which allows the user to decide which rules should be used or not
can be seen in Figure 4.4. It is made up of two knobs which the user can drag up or
down along a percentage bar that lies in between the bars. The two knobs represent
the suggestion level and the certainty level respectively. The value in the percentage
bar is calculated using the accuracy measure returned by the algorithm. Basically,
a low percentage in the bar indicate less accurate rules and a high percentage high

accuracy rules. The two knobs, give an indication of which rules will be enabled.

e Annotations produced from rules below the suggestion level are never shown.

e Annotations produced from rules between the suggestion and certainty are en-
abled but are shown in the document as a colour bordered box. The fact that
the box is just made up of a border and does not have a filling colour means that
the program is not certain about its validity. If the suggestions are not validated
by the user (by clicking on them), they are discarded before the document is

saved!

e Annotations produced from rules above the suggestion level are enabled and
showed using a coloured box. The fact that the box is fully coloured means

that the program is fairly sure about the validity of the annotation. These

SExpected accuracy is calculated by finding the f-measure of the learning algorithm.

119

annotations don’t require much validation from the user and they are inserted

immediately in the document.

The purpose of this component is to allow the user to tune the level of precision
and recall without actually knowing anything about them. The user is unaware that
by moving the two knobs, he is calibrating the application. What he sees is tags
appearing, disappearing or changing certainty level whenever a knob is moved. The
reason for the creation of this component is to simplify the tuning of the precision
and recall values individually for specific concepts.

This fine grained control per concept was created because the learner might need
few examples in order to cover simple concepts and more examples for complex con-
cepts. This allows the system to suggest annotations for simple concepts and let the
user annotate the more complex ones. The advantage of this is that the user’s atten-
tion is focused on the difficult tasks and the easy annotations are left to the system.
The annotation interface must bridge the qualitative vision of users (e.g. a request
to be more/less active or accurate) with the specific IES settings (e.g. change error
thresholds) (28).

Another important aspect for intrusivity is processor time. Any IES is quite heavy
on CPU usage when it comes to training. The IES can be so demanding at times
that it could stop the user’s activity. To solve this problem systems (MnM, Ontomat,
etc.) often work in batch mode for training. Therefore the user annotates and then
waits while the system is being trained. Normally this training time is delayed and
scheduled for periods when the CPU is not used by the user such as during breaks,
at night, etc. This approach unfortunately poses a problem of timeliness. The IES

working in batch does not propose suggestions when required but instead does so

120

only after the system goes through a training session. This means that the user has
to annotate a number of similar texts before the IES starts learning and a number
of suggestions are proposed. Melita proposes a methodology to partially solve this
problem by scheduling the learning phase in such a way that allows timeliness in the
learning and limits to an absolute minimum the total amount of idle time imposed
on the user.

The annotation process is normally made up of three phases, i.e. loading the
document, annotating the document and saving the document with the annotations.
If we examine these phases from the user’s point of view we find that time wise,
loading and saving are the less time consuming since they only take a negligible
amount of time. Most of the user’s time is spent annotating the documents. If we
change our perspective and examine CPU time and effort, we find out that some of
the computer’s resources are used during the loading and saving phase while during
the annotation phase, the load on the cpu is negligible. For this reason we believe
that this is the right moment to train the IES in the background without the user
noticing it. ©

Therefore, we propose an interaction model made up of two parallel and asyn-
chronous processes. The first process handles all the interaction between the user

and the machine. It provides an annotation interface for the user and gives the user

6In theory, the system could start learning from the annotations as soon as they are inserted
in the document even before they are saved to disk. This would make the process quicker but lets
not forget that humans are prone to commit errors, so if an annotation is marked wrongly and the
system starts learning immediately, it would be learning wrong annotations before the user has the
time to correct it. If it is corrected by the user, the IES would have to modify the new rules back
to how they were before the wrong example was learnt. Obviously this makes the whole interaction
model between the user and machine much more complex.

121

the impression that he is using all the machine’s processing power. The second pro-
cess, works in the background and is used to train the learner as soon as new examples
are supplied. This process uses a limited amount of processing power so that the user
is not influenced due to lack of computing resources. What happens is the following,
when the user loads a new document (lets call it document IN), the IES applies the
rules induced in the previous learning sessions’ in order to extract information (ei-
ther for suggesting annotations during active annotation or in order to silently test
its accuracy during unassisted learning). Performing IE on one document is very fast
and the user does not notice any delays. While the user is annotating document N
the IES is learning from document N-1. This methodology reduces timeliness to an
absolute minimum since the user is never idle. The time taken to train an IE system
with new examples is normally faster than the time required to manually annotate a
document. Therefore as soon as a document is annotated, the IES is ready, waiting

to suggest new annotations for the next document.

4.3.2 Timeliness

The interface which gives information to the user regarding timeliness (See Figure 4.5)
consists of the list of the documents in the corpus, rated according to the percentage of
possible new patterns in every document. The document with the highest rating is the
one that has some of the patterns but which also contains other patterns not covered
by the learning algorithm and therefore it is the document suggested for training.
The list of documents can also be sorted either by ratings or by name. To switch
between orderings the user must select the title of either the column containing the file

names or the other column. A user can also ignore the suggestions of the algorithm

7i.e. from document 1 to document N-2 since document N-1 is still waiting to be processed

. v .

File Name

o Suggestion Levels i

C:\University\Melitavr2\Demo\Demo\Dataldoc14. txt

_ =

C:\University\Melita¥r2\Demo\Demo\Dataldoc7.txt

C:\University\Melitavr2\Demo\Demo\Dataldoc15.txt |7

C:\University\Melita¥r2\Demo\Demo\Dataldoc6. txt

C:\University\MelitaVr2\Demo\Demo\Datatdoc1 1.txt |7

C:\University\Melitavr2\Demo\Demo\Data\doc!.txt

C:\University\MelitaVr2\Demo\Demo\Dataldoc9.txt

C:\University\Melita¥r2\Demo\Demo\Data\doc8.txt

C:\University\Melitavr2\Demo\Demo\Data\doc2. txt

C:\University\Melita¥r2\Demo\Demo\Data\doc4.txt

C:\University\Melitavr2\Demo\DemolDataldoc3. txt

C:\University\Melita¥r2\Demo\Demo\Dataidoc10.txt

C:\University\Melitavr2\Demo\DemoData\docS. txt

C:\University\Melitavr2\Demo\Demo\Data\doc16.txt

Figure 4.5: Documents rankings in Melita

pressing the ”Ok” button.

122

and simply jump to a specific document by selecting the document from the list and

123

4.4 Melita Evaluation

We performed a number of experiments both to demonstrate how effective the IE
system is in learning concepts and to quantify its contribution to the annotation
task. In the following sections we will highlight two specific tasks, the first is the
CMU Seminar Announcements Task and the second is the PASTA Task. After these
two experiments we will discuss alternative user oriented evaluations of the system.
Finally we will peek into what we believe are the features which future annotation

systems will have, followed by a general conclusion.

4.4.1 CMU Seminar Announcements Task

The first set of tests were performed on the CMU seminar announcements corpus’.
This corpus is widely used in the IE field ((43), (17), (17), (47), (23) and (98)) to
evaluate adaptive algorithms. In these experiments, we show how fast the IE system
is able to converge to a status where it can really and effectively suggest. We also
try to figure out its ability to suggest correctly and quantify its contribution to the
annotation task.

The CMU seminar announcements corpus, consists of 485 documents? which were
posted to an electronic bulletin board. Each document announces an upcoming semi-
nar organised in the Department of Computer Science at Carnegie Mellon University.
The documents contain semi-structured texts consisting of meta information (like
sender, time, etc) which is quite structured and the announcement which is generally
written using free text. The idea behind this domain is to train an intelligent agent

capable of reading the announcements, extract the information from them and if it

10riginally prepared in (44)
2This corpus can be downloaded from http://www.isi.edu/ muslea/RISE/

124

Tags in Corpus \

End Time 15%

Location 23%

o 7

Figure 4.6: Distribution of the different tags found in the documents.

thinks they are interesting (based on some criteria predefined by the user) insert them
directly in the user’s electronic diary. In these documents, the following fields were

manually annotated:

Speaker The full name (including any title) of the person giving the seminar.
Location The name of the room where the seminar is going to be held.
Start Time The starting time of the seminar.

End Time The finishing time of the seminar.

To better understand the task at hand, Figure 4.6 takes a look at the number of
tags found in this corpus. It seems like the corpus is very rich in Start Time tags

and less rich in End Time tags. It is generally the case that the more examples

125

we have the better (since we have more possibility to learn), but its not always the
case. It is important to analyse another statistic related to the corpus. The graph
in Figure 4.7 shows the number of distinct phrases containing a tag such as ”Start

time: 12:00pm”, ”"Seminar starting at 12:007, etc; From this we can predict

that:

Speaker will be quite difficult to learn. Intuitively, we know that a Speaker can be
any sequence of words. A named entity recogniser can help spot names using
linguistic cues (such as the titles Mr, Mrs, Dr, etc before a word) but this is not
enough. Lets not forget that this task is not just a matter of spotting names
but the system must identify the person who is going to give the seminar. From
the graph we can see that there are around 491 distinct phrases containing
names meaning that there is more than 1 new phrase (containing a name) per
document. Even though there are 757 examples (around 27% of all tags) in the
documents containing the Speaker tag, the fact that many of these examples

are new and not repeated elsewhere, makes the whole task much harder.

Location too will be difficult to learn but definitely easier than the Speaker tag.
This is very visible from the two graphs. First of all, the total number of
examples in the corpus amounts to 643 or 23% of all the tags which is quite a
reasonable representation. Secondly, the total number of distinct phrases is 243

which means that slightly more than %rd of the tags are new.

Start Time is a completely different story. The documents contain a total of 982
tags (or 35% of the total number of tags) and there are only around 151 distinct

phrases. This means that training on 15% of all the documents (almost 75

126

Distinct Phrases

500 +

450 -

400 -

R0

350

300 -

250 4

200 1

1504

100 1

0 -
k End Time Start Time Location Speaker j

Figure 4.7: Number of distinct phrases (containing a tag) found in the corpus.

documents) is enough to learn this concept.

End Time is slightly more complex. The number of distinct phrases is very little,
around 93 instances, but so is the representation of this concept in the corpus.
In fact, this concept appears only around 433 times (i.e. 15% of all the tags).
This means that there is a substantial number of documents where the End

Time concept is not represented?.

In the following experiments, the annotations in the corpus were used to simulate

human annotation. The experiments were conducted as follows:

1. The corpus was randomly divided into two, a test corpus and a training corpus.

3Considering that the total number of tags amounts to less than the number of documents and
there there are cases where more than one tag appears in a document

127

2. A cycle begins where we evaluate the contribution of the IE system at regular
intervals during the tagging of the corpus. At every cycle, 5 new annotated
documents from the training corpus (together with previously selected docu-
ments) are used to train the IE system. Therefore, we train the system by
gradually adding 5 documents to the training corpus (i.e. 5, 10, 15, 20, 25, ..,
150 documents).

3. As soon as the training finishes, we test on the test corpus. The ability to
suggest on the test corpus was measured in terms of precision and recall. Recall
represents here an approximation of the probability that the user receives a
suggestion in tagging a new document. Precision represents the probability

that such suggestion is correct.

4. The cycle continues like that until all the training documents are learnt.

The results are shown in Figure 4.8. The X-axis represents the number of docu-
ments provided for training while the Y-axis shows a percentage used to plot precision,
recall and f-measure are presented. Although these results are similar to the experi-
ments we published in (42), they have a number of important differences. The curves
are more gradual yet they are smoother and manage to achieve higher precision and
recall. This is due to a slight modification in the final version of the system than the
one presented in that paper. Since the system always selected the best document for
learning it was noticed that some concepts were being learned quicker than others.
The reasons is that the ”best” document for learning is the one with the most uncov-
ered cases. If we take a look once again at Figure 4.6 and examine the distribution

of the tags, we realise that since some concepts are represented more than others,

128

we would be discriminating against concepts which are not represented as much. Be-
cause of this, we modified slightly the selection algorithm so that we learn from the
"best” document but we also keep into consideration the distribution of the tags.
In our approach, every time we select a document, we do so by selecting the ”best”
document which represents a particular tag. Eg: The first document is the best docu-
ment which represents the concept Speaker, the second one is the best document that
represents the concept Location, etc. In this way all the tags are learnt at a steady
pace. The annotations suggested by the system are more helpful for the user since
they do not discriminate between concepts which are represented in the corpus more
than others. The downside of this approach is that learning individual concepts is
slightly slower because the system is trying to learn collectively all the concepts in the
domain. Also, since the algorithm is learning from the ”best” documents per concept,
it is covering more unseen examples in the training phase therefore resulting in much
higher levels of precision and recall. In fact, when the system is trained on just 50
documents the average F-measure for all concepts is beyond 75% (See Figure 4.9).
The rise is constant and when 80 documents are trained, the system reaches almost
84% (See Figure 4.9) F-measure for all concepts. After that, the system reaches a
sort of plateau where the improvement is very gradual.

As was predicted earlier, the maximum gain comes in annotating Start Time and
End Time since they present quite regular fillers. Table 4.1 shows that after training
on only 10 texts, the system is potentially able to propose 433 start times (out of 485),
373 are correct, 60 are wrong or partially wrong, leading to Precision=86 Recall=77.
With 25 texts the recognition reaches P=94, R=68, with 50 P=97, R=80. The

situation is quite similar for end time (although it takes more examples than start

129

Tag || Amount of Texts | Precision | Recall | F-measure
needed for train-
ing
speaker 70 98 50 62
location 30 96 50 61
start time 10 86 77 80
end time 25 95 54 66

Table 4.1: Experimental results showing the number of training texts needed for
reaching at least 75% precisions and 50% recall
time to converge), while it is more complex for speaker and location, where 70% and
80% f-measure respectively is reached only after about 80 texts. This is due to the
fact that locations and speakers are much more difficult to learn than time expressions
because they are much less regular.

The experiments show that the contribution of the IE system can be quite high.
If we take a look at Table 4.1 we realise that with just limited training, reliable
annotations can be achieved. This shows that the IE system contributes quite heavily
to reduce the burden of manual annotation and that such reduction is particularly
relevant. In the case of very regular concepts the benefits are immediate since the
system starts suggesting from a very early phase. This allows the user to focus on
annotation tasks which are more complex (e.g. speaker and location) while trivial and
repetitive instances are handled by the algorithm. For complex tasks the system also
contributes towards annotating the complex cases but some additional help is required
from the user’s side (Eg: in the case of speaker, twice the amount of documents
required by the other concepts are needed by the system to reach 75% precision and
50% recall).

From these experiments, a number of issues arise. It is clear that the order in which

documents are presented to the learner is important. Figure 4.9 shows the effect of

130

Joyeads

100

uoneoso

swil] yels

swiy pu3

‘ 0
K1 26 - 52 8)

Figure 4.8: Experimental results for the CMU Seminar Announcements Task

131

100 -

0 26 52 80
Training Examples

" —Z%— Original Order —e— Selected Order p

Figure 4.9: Experimental results showing a faster convergence when presenting or-
dered documents to the learning algorithm (The lines show the average F-measure
for all the concepts)

selecting different document sets for training. When the IE system is presented with
a random order of documents, its ability to converge to optimal results is limited for
a number of reasons. First of all, the corpus contains similar texts therefore, even
though the system is examining new documents, it is not examining new examples
but examples which were already seen elsewhere. Secondly, the smart ordering of
the documents presented to the learning algorithm allows the system to learn only
from documents which contain new examples and therefore the coverage of the IE
system increases drastically. This occurs because the value of the information found
in the training corpus is much bigger and it allows a better convergence of the learner
towards an optimal status. For example when 70 documents are annotated, the
random order reaches a plateau (with very slow increases) having an F-measure of

71%, while the similarity-based selection provides the same F-measure with around

132

40 texts only. This means that users receive a much bigger help using a non-random
order of document for training. This is consistent with the Active Learning theory,
(104), and will require more investigation in the future for a better selection of the
training corpus.

Another issues to consider is the way the user reacts to such help from the IE
system. Since the system is capable of suggesting quite quickly, especially with con-
cepts which are regular and therefore easy to learn, users could be tempted to rely on
the IE system’s suggestions only, avoiding any further action apart from correction.
This could be dangerous for two reasons, both the quality of the annotations and the
effectiveness of the system would decrease. Immediately from the start of the process,
every newly annotated document is utilised for further training. The annotations are
used to induce new rules and these rules are tested on the whole corpus in order to
identify any false positives. If the user just corrects the learner without providing any

new examples, the IE system will never learn any uncovered cases.

4.4.2 The PASTA task

The aim of the PASTA (Protein Active Site Template Acquisition)* project was to
develop Natural Language Processing (NLP) techniques for the area of molecular biol-
ogy. The main task was to extracting information on 3-dimensional protein structures
from on-line scientific articles. As a result of this project, several PASTA corpora®
were produced. To perform the PASTA experiments mentioned in this section, we
downloaded two sets of abstracts made up of around 50 documents each. These doc-

uments are annotated with biological terminology information and were used in the

4http://www.dcs.shef.ac.uk/research/groups/nlp/pasta/
5The PASTA corpora can be downloaded from
http://www.dcs.shef.ac.uk/research/groups/nlp/pasta/results.html

133

PASTA project specifically for evaluation purposes.
The task we selected was to recognise in a set of 113 molecular biology related

documents the following concepts:
e Species
e Residue
e Protein
e Site
e Region
e SecStruct
e SuperSecStruct
e Base
o Atom
e Non Protein
e Interaction
e QuaternStruct

We believe that this task can be considered a representative task for the Semantic
Web especially since the molecular biology domain has attracted lots of attention in
recent years. In our experiment the annotation in the corpus was used to simulate

human annotation exactly as we did in the previous task. The documents in the two

134

corpora were grouped together and then randomly divided into two, a training corpora
and a test corpora. A cycle begins where we evaluate the contribution of the IE system
at regular intervals during the tagging of the corpus. At every cycle, 5 new annotated
documents from the training corpus (together with previously selected documents)
are used to train the IE system. Therefore, we train the system by gradually adding
5 documents to the training corpus (i.e. 5, 10, 15, 20, 25, .., 55 documents). As soon
as the training finishes, we test on the test corpus. The ability to suggest on the
test corpus was measured in terms of precision and recall. The cycle continues like
that until all the training documents are learnt. Results are shown in Figures 4.10,
4.11, 4.12 and 4.13. On the X-axis the number of documents provided for training is
shown. On the Y-axis precision, recall and f-measure are presented.

The IE task in the molecular biology domain is much more complex than in normal
domains. If we take a look at the information to extract, we find elements like CheY
and Thr87. These are typical names given to the structures we are trying to extract
from the documents. It is immediately apparent that these names are very irregular
therefore, the few cues we might use to identify these names must come from the
context surrounding them. Even though the task is quite complex, the system is
capable of proposing a significant amount of instances. After training on only 15
texts, the system is potentially able to propose more than half the instances for 3
out of the 12 concepts having an average precision of over 80% for the three of them.
This is possible because of Amilcare’s ability to generalize over both the text context
and the filler where possible. Since most of these concepts are names of biological
structures, some of them follow the typical format of names i.e. they start with a

capital letter followed by lowercase letters. In this case we might be able to exploit

135

Tag || Amount of Texts | Precision | Recall | F-measure
needed for train-
ing
Species 25 100 50 62
Residue 20 95 55 66
Protein 25 95 50 62
Site 40 100 50 62
Region 35 100 58 70
SecStruct 25 100 50 62
SuperSecStruct 20 100 60 71
Base 15 100 61 73
Atom 15 90 50 61
Non Protein 35 98 53 65
Interaction 15 83 55 64
QuaternStruct 25 100 50 62

Table 4.2: Experimental results showing the amount of training texts needed for
reaching at least 75% precisions and 50% recall
a Named Entity Recogniser such as Annie (www.gate.ac.uk). Even if the algorithm
does that, please note that the recognition of proteins, residues, secstruct, etc is not
a simple Named Entity Recognition task. The system must not only recognise the
names, but it must also assign it to the correct type. There are many names in the
documents, therefore this implies the ability to recognise the context in which the
names appear. The situation is more complex for other fields such as site, where 80%
F-measure is reached after 50 texts. These annotations are much more difficult to
learn than expressions whose filler are either very regular (e.g. interaction) or can be
listed in a gazetteer (e.g. base), because their regularity is much less direct.

In the case of the PASTA task, our experiments show that it is possible to move
from bootstrapping to active annotation after annotating a very limited amount of
texts. In Table 4.2 we show the amount of training needed for moving to active

annotation for each type of information, given a minimum user requirement of 75%

—o— Precision —&—Recall F-Measure

6000

000

000

Species

Dacumentec

80.00 4

oo

Residue

Cooumentc

Protein

o000

Documente

Figure 4.10: Experimental results for the Pasta Task (1/4)

136

-

F-Measure
Site
0000 - o o o & 'y
8000
e
8000 e
ol
X i —
A
w00 i /
s /,l-"‘_"
20
000
3 “w
Dooumente
Region
0000 - - - o - =
8000 __,_.c/
N x P
4000 - ,./
i) 4
o
L /
2000 4 g
’412“”
‘_,.—/
00 — -
31 “
Deoumente
SecStruct
P ° Py . Py - i o
o000 v : 4
8000 4 & - i
o == —a
60.00
X
4000 {
2000 4
000 44— -

Dooumentc

_/

Figure 4.11: Experimental results for the Pasta Task (2/4)

137

138

—a— Precision —&—Recall F-Measure

SuperSecStruc
0000 *> ri B 8- 2——n
7
8000 y
7
A
o Fuf
y /’
X 7
£
000 Y //
/
2000
000 4
3 “®
Dooumente
Base
oo S & & 9 - Py
S r -
A - '_P_j——l————-.
— . e
i es———————r -
i
] -~
/ 4 ,/
6000 / r——.
X '
00 {
200
000 4
31 “%
Dooumentc
Atom
- - ° %
0000 * g
A
8000 o /
B3 - e o
J o
6000 2 /
N
4000 4
200
000 . - v 4))
" A *
\ Documente /

Figure 4.12: Experimental results for the Pasta Task (3/4)

—a— Precision —8— Recall F-Measuwre

000

000

Non Protein

Dooumentec

6000

4000

Interaction

L 2

»

3 “

Dooumentc

0000

6000

000

QuaternStruct

[+7:]

Dooumente

Figure 4.13: Experimental results for the Pasta Task (4/4)

139

140

precision. This shows that the IES contribution heavily reduces the burden of manual
annotation and that such reduction is particularly relevant and immediate in case of
quite regular information (e.g., base). In user terms this means that it is possible
to focus the activity on annotating more complex pieces of information (e.g. site),
avoiding being bothered with easy and repetitive ones. With some more training

cases the IES is also able to contribute in annotating the complex cases.

4.4.3 User Oriented Evaluation

During these past years, Melita was distributed to several research groups, to some
commercial companies and it was also used by students in several summer schools.
The main reason for doing this was because we wanted the users to evaluate our
system not only on test domains, but also on real life applications. The result from
the Melita distribution was that we managed to obtain a lot of feedback which we
then used to adjust and enhance our system.

To make life simple for the users, the first thing we did was to create a user manual.
Secondly, whenever we were requested to send a copy of the system, if possible we
used to go and give a demonstration of how the system works, if not, we used to
send an animated video clip instructing the users how to utilise Melita. There were
never any problems with regards to usability of the system since it was designed to
be simple to use.

The general comment we got back from the users was that the system indeed
manages to offer them a better annotation experience. The learning curve was very
shallow and a typical user manages to master the system very quickly. The interface is
quite straightforward, no complex numbers which bother the user with IE statistics

are shown (in fact these measures are masked using graphical components which

141

everyone can understand), there are very few buttons and they all have a well defined
purpose. Thus, the user immediately feels comfortable with the system. When the
annotations become complex, and the different annotations are cluttered on top of
each other, the system is capable of hiding the annotations which are not being used
so that the user’s attention is focused only on the task at hand. This feature was
appreciated a lot by the users since it makes complex tasks manageable. Melita’s
compliance with well established standards also helped new users to configure the
system to use new domains without much difficulty. In fact, since Melita already
accepts ontologies in DAML format, the only configuration necessary to set up a
domain was to load the ontology.

With regards to functionality, Melita also offered a number of simple yet powerful
features. The annotation process only involves, selecting a concept and highlighting
the instances of that concept in the document. Whenever an instance already high-
lighted by the user is encountered somewhere else in the document, it is automatically

highlighted for the user. The users reported three main benefits of this feature:

Missing/Wrong annotations. It was noticed that throughout the annotation ses-
sion, the performance of the user starts declining and the time taken to annotate
a document becomes inversely proportional to the amount of annotation errors.
In simple terms, the more time the user spends annotating a group of docu-
ments, the more he is error prone. Thus, using this feature, the system takes
care of annotating instances already encountered and the user’s attention is only

focused on discovering new ones.

Avoid duplication. Since duplicate instances which were already encountered by

the system will be highlighted automatically, the user is relieved from the tedious

142

task of re-annotating the same instances.

Consistency. This feature avoids the problem of inconsistent annotations whereby
same elements are annotated differently in different documents. E.g. should we

annotate Mr Thomas Smith or just Thomas Smith 7

The highlights introduced automatically by using the learning algorithm, were
warmly welcomed by most users. Unfortunately, this feature raised a hot intrusiveness
issue. Even though the system allows the user to tune the intrusiveness, some user
felt that the system was suggesting annotations too soon and thus disrupt their work
since their focus is shifted towards verifying the system’s suggestions. Because of
this, the system was enhanced to meet the user’s requirements and a new button was
added which gives the users the power to hide or show the suggested annotations
when they want. Thus, the system does not present to the user the new suggestions
immediately but only when the user requests them.

The smart ordering in Melita was also very useful during the annotation phase
since the users were not bothered with highlighting similar documents. This meant
that each document, presented to the users for annotation, was different from the pre-
vious one. The result was that the annotation task was more intellectually challenging
for the user and therefore reduced the boredom associated with the annotation task.

Finally, since Melita was used in many group activities (such as summer schools,
etc.), its collaborative annotation features became very useful. In such cases, the
Melita server was installed somewhere centrally and users collaborated in annotating
the same domain. Whenever a user annotated a document, the annotations found in
that document were learnt by the IE engine and utilised to annotate the documents

of the other users as well. This obviously led to a much faster successful completion

143

of the annotation task at hand.

Our focus was on the users from the times when we were still designing Melita.

Overall, the feedback we got back from them was very positive and could be used in

the future to do some more formal and quantitative analysis. Through this feedback,

we identified two kind of analysis which can be performed:

Features comparison refers to the different features offered by the tool such as

Tool

smart ordering, simple suggestions, IE suggestions, etc. In such an experiment,
a group of users (who must all be confident with the annotation process but
preferably not confident with Melita) are seated in a lab. Each one will be asked
to annotate several test sets and to do so, they have a specified time limit. The
configuration of the tool on each machine will be different i.e. having some of
the features switched off. Melita writes all the events happening to a log file
together with a time stamp, thus, at the end of the session, this log file can
be fed to an automated process which would analyse the different users and
configurations, and produce an analysis of how much the different features (or a
mixture of them) contributed to the annotation process in terms of speed, error

avoidance, etc.

comparison refers to the different annotation tools freely available on the
market such as MnM, S-CREAM, etc. This comparison would be a little bit
more tricky than the one before, since all these tools do not provide a log file
which can be analysed by an automated process, thus, all the evaluation must
be conducted manually. In this case, we could organise a lab having several
users all using different annotation tools. They would be given a common task,

basically to annotate a collection of documents, together with a time limit. At

144

the end of the session, we can analyse how many documents were annotated
using each tool and also we could compare the annotated documents in order
to identify which tool produced more qualitative annotations (i.e. those which

are less error prone and consistent).

In both experiments, more than one user will be given the same configuration for
the experiment and then, an average of their performance will be taken. This would
avoid the possibility of having misleading evaluation results.

Although we don’t deny that such an evaluation would be very useful, we had
many one-to-one contacts with different users and the feedback we got encouraged
us to move our research forward by developing new tools which reduce further the
burden on the user when it comes to annotate new documents. This was our main
motivation when we decided to develop Armadillo, the system which will be described

in the next chapter.

4.5 Future Development: Adapting to different user
groups

The methodology as a whole is quite generic and with it, we have targeted the most
common users, but the reality is that there are several categories of users all with
different backgrounds and needs. Because of this, we divided the users into three
distinct categories and a potential future tool could be designed to cater for their
individual needs. We also acknowledge the fact that users may not fall in exactly
these categories but somewhere in between. Therefore the system should make sure
that a user from one category can use tools designed for other categories. The main

categories are Naive Users, Application Experts and IE Experts.

145

W ChniversityUheritavi2DemoemoDatatdoc 1 3.0t i =x]

)5 @) @)

- @ Concapt ;0.06.4.92.23. 10.54.vrg+0K3.SP.CS.CAV, 2DV (Thomas Grosas] .0>
eI YT ype: CIM2.CS. SCY
l ﬁmy«: Topic: CS Seminar 4/10: lLeiserson of MIT/THC @ 4:00 p.m., ¥el 5403
‘ -(-" @_ Daces: ,m..—.ﬁ:.—,.s&a
} 2-8Tme PostedBy: trg+ on Of-Apr-92 at 23
i - = "H g+ on O6-Apr-92 at 110 from N3.3P.CS.CHU,
! ; @ @50’00 Soneni ZDV (Thomas
* v l_p- Aoatrace:
H - E‘]@- C% Semznar
5@ Relation
I At time The Necwork hrchicecture of the Conneccion Hachine CE-5
L I bxcelion

Charles F. Leizcraon

HMIT Lsboratory for Compucer Science
and
Thinking Xachinea Corporation
Canbyidge, Nassachusetcs

Triday, AppssiOn

Figure 4.14: Naive users Interface

4.5.1 Naive Users

These users are familiar with their domain but have limited knowledge when it comes
to computing. In order to set up the system they only need to specify an ontology
and a corpus of documents. Apart from this, all that is required from the user to use
the system is the ability to highlight concepts in the document according to concepts
in the ontology. The system will also offer advanced features disguised as simple
widgets like the component that tunes precision and recall (See Figure 4.4). By using
this component the user will see tags being updated in real time according to the
movement of the knob and the calibration of the component stops when the results
are satisfactory.

A potential contribution of this kind of user is domain knowledge. In order to
exploit this, the system will highlight words found around the concept that are part

of the rules induced by the IE engine. These words will be highlighted using a slightly

146

lighter colour than the highlight of the main concept (See Figure 4.14), to show they
are used to help identify the concept. The user will be able to remove or add such
highlights. By doing so the user will be unconsciously guiding the algorithm to use
certain cue words which are good at identifying the current concept. Therefore the
algorithm will induce rules faster because it can use heuristics indirectly provided

by the user. It will also converge faster because it is being guided by the domain

knowledge of the user.

4.5.2 Application Experts

The people in this category are at a level between naive and expert users. They
are capable of tuning the application but do not have the expertise of an IE expert.
Our tool will allow them to have access to advanced features such as adjusting IE
parameters, setting the precision and recall levels explicitly, using the IE system
interface and accessing other internal settings.

Due to the fact that this kind of user will have limited knowledge about the nature
of information but also considering that their role is to maximise the potential of the
IE engine, it is imperative that they are allowed to tweak rules in the simplest way
possible. The system provides an abstraction for rules in the document being edited.
It highlights the words which form part of a rule using a slightly lighter colour than
the highlight of the concept they are associated with. When a word is selected by the
user, a percentage is shown indicating the level of generalisation of that word used
by the rule. 0% indicate that a very specific level is used (i.e. the word is explicitly
part of the rule) and 100% indicate the most generic level. By sliding the percentage
bar the user will be able to see the effect of those changes in real time through

components which graphically show precision, recall, f-measure and error levels of

147

Gazetteer Editor @

Expression to edit

Post-filler
from G GP

-~
rted from , to5onM 1
Apr-92 st 15:06 fromSTIC | !
Apr-92 at 13:47 from CARY 1’
IMay-92 et 11:30 from CARY l
May 11, < 10:30 am-11:0 T
Apr-92 at 08:22 from PROO ‘
“‘""{“f‘“ 420 PNA ot m §
B e et el e e |

Figure 4.15: A rule editor for regular expressions based rules

the new rule. The highlights are not fixed and the user can add or remove any of
them. This tweaking of rules will allow the user to change rules without the need
of understanding linguistic properties. Current rule editors for IE like the Amilcare
Rule Editor, allow users to change rules but an implicit linguistic knowledge is an

absolute requirement, therefore restricting the use of the tool to IE experts.

4.5.3 IE Experts

Our final user is the IE expert who knows how to control an IE engine and wishes
to extract the maximum power from the AIE system. All the benefits offered to the
other type of users will be available but this user will require more sophisticated tools.
Therefore, the system has a fully fledged rule editing environment.

Using this environment a user can view a list of rules together with statistics
about every rule. In this view rules can be compared simultaneously. This is done in
order to help the user restructure groups of rules. For example, it may be the case

that a group of similar rules can be compressed together in one rule. This view will

148

also enable easy browsing and selection of individual rules. Once a rule is identified
as requiring change or even if the user would like to create a new rule, the rule is
opened in the rule editor (See Figure 4.15). This program presents to the user several
facilities in order to allow him to develop the best rule possible. He has the faculty to
change individual properties of a rule and also insert new ones. The changes on the
rule can be tested immediately in real time and all the examples in the text where the
rule applies are presented to the user. Based on previously annotated documents the
system displays positive and negative examples covered by the rules. The system will
also display examples of where the rule fires in the test corpus (which is untagged).
At this stage the user can separate the positive from the negative results and using
this new knowledge the system induces a new rule which is presented to the user for
verification. The cycle continues until the user is satisfied with the new rule.

What is actually happening in the rule editing environment is that we are again
using our methodology but this time at a deeper level in order to help the user
create handmade rules quickly. The system will be guiding the user towards creating
effective rules both by suggesting new rules and by providing important statistical

results.

4.6 Conclusion

IES can strongly support users in the annotation task, alleviating users from a big
deal of the annotation burden. Our experiments show that such help is particular
strong and immediate for repetitive or regular cases, allowing the focusing of the
expensive and time-consuming user activity on more complex cases. Despite these

positive results, we claim that the simple quantitative support is not enough. An

149

interaction methodology between annotation interface, user and IES is necessary in
order to reduce intrusivity and maintain timeliness of support. The methodology

implemented in the Melita tool addresses the following concerns:

1. It operates in the usual user environment without imposing particular require-

ments on the annotation interface used to train the IES (reduced intrusiveness).

2. It maximises the cooperation between user and IES: users insert annotations in
texts as part of their normal work and at the same time they train the IES. The
IES in turn simplifies the user work by inserting annotations similar to those
inserted by the user in other documents; this collaboration is made timely and

effective by the fact that the IES is retrained after each document annotation.

3. The modality in which the IES system suggests new annotations is fully tuneable
and therefore easily adaptable to the specific user needs/preferences (intrusive-

ness is taken under control).

4. Tt allows timely training of the IES without disrupting the user pace with learn-
ing sessions consuming a large amount of CPU time (and therefore either stop-

ping or slowing down the annotation process).

Unfortunately, there are still a number of open issues in our methodology such
as the effect on the user, of excellent IES performances after a small amount of
annotation. For example when P=86, R=77 is reached after only 10 texts (as for
Start Time in the CMU seminar announcements task), users could be tempted to
rely on the IES suggestions only, avoiding any further action apart from correction.
This would be bad not only for the quality of document annotation, but also for

the IES effectiveness. As a matter of fact, each new annotated document is used for

150

further training. Rules are developed using existing annotations. They are tested
on the whole corpus to check against false positives (e.g. the rest of the corpus is
considered a set of negative examples). A corpus with a relevant number of missing
annotations provides a relevant number of (false) negative examples that disorients the
learner, degrading its effectiveness and therefore producing worse future annotation.
The entire dimension of the problem is still to be analysed.

Even though there are these issues, Melita is still a huge improvement over the
existing systems. In the coming chapter, we will show how we can build further on
top of the methodology presented in Melita by making a small modification to the
system. The resultant effect will be, a generic and fully automated approach which

can be used over the Web to insert sematic annotations in web documents.

Chapter 5

Armadillo: An Automated
Annotation Methodology

5.1 Introduction

The Semantic Web (SW) needs semantically-based document annotation! to both
enable better document retrieval and empower semantically-aware agents. Unfortu-
nately, although the Melita methodology presented in Chapter 4 can be applied to a
wide number of domains, it is not suitable for the generic Semantic Web task.

Even though Melita changes the annotation task from a completely manual (such
as (65)) to a semi-automatic task (26), it is still based on human centered annotation.
Whenever a user is involved in the annotation process, although the methodology
relieves some of the annotation burdens from the user, the process is still difficult,
time consuming and expensive. Apart from this, considering that the SW is such a
huge domain, convincing millions of users to annotate documents is almost impossible
since it would require an ongoing world-wide effort of gigantic proportions. If for a

second we assume that this task can be achieved, we are still faced with a number of

1Semantic annotation is the process of inserting tags in the document, whose purpose is to assign
semantics to the text between the opening and closing tags.

151

152

open issues.

In this methodology, annotation is meant mainly to be statically associated to

(and saved within) the documents. Static annotation associated to a document can:
1. be incomplete or incorrect when the creator is not skilled enough;
2. become obsolete, i.e. not be aligned with page updates;

3. be irrelevant for some use(r)s: a page in a florist web site can be annotated with
shop-related annotations, but some users would rather prefer to find annotations

related to flowers.

Different annotation can be imposed on a document using different ontologies.
An ontology is required because it describes concepts and relationships that occur in
a very restricted view of the real world, basically it describes the domain in which
we are working. In the future, most of the annotation is likely to be associated
by Web actors other than the page’s owner, exactly like nowadays’ search engines
produce indexes without modifying the code of the page. Producing methodologies for
automatic annotation of pages with no or minimal user intervention becomes therefore
important: the initial annotation associated to the document loses its importance
because at any time it is possible to automatically (re)annotate the document and
to store the annotation in a separate database or ontology. In the future Semantic
Web, automatic annotation systems might become as important as indexing systems
are nowadays for search engines.

Therefore, we propose a methodology that learns how to annotate semantically-
consistent portions of the Web by, extracting and integrating information from differ-

ent sources. All the annotation is produced automatically with no user intervention,

153

apart some corrections the users might want to perform. The methodology has been
fully designed and implemented by myself in Armadillo?, a system for unsupervised
information extraction and integration from large collections of documents.

The natural application of such methodology is the Web, but large companies’
information systems are also an option. In this chapter we will focus on the Web, and
in particular we will take a look at the task of mining Computer Science Departments
websites. All the process is based on integrating information from different sources
in order to provide some seed annotations. This will then bootstrap learning which
in turn will provide more annotations and so on. In synthesis we start with a simple
methodology which requires limited annotation, and move on to produce further
annotation to train more complex modules.

In the next section we will present the generic architecture that we have used to
build the application. Then we will describe the CS Department task. It will be
shown how the information from different sources is integrated in order to learn to

annotate the desired information.

5.2 Armadillo:
A Generic Architecture for
Automatic Annotation

The Armadillo methodology is centred around the idea of exploiting the redundancy
of the web to bootstrap IE learning. This idea is not new since it was proposed by
Brin (15) and Mitchell (87). The difference with our approach is the way in which
learning is bootstrapped. Brin uses user-defined examples, while Mitchell uses generic

patterns that work independently of the site or the page being analysed. We use both

Zhttp://www.aktors.org/technologies/ Armadillo/

154

[/ Strategies \

Strategy 1

Strategy N Ontologies

88) e =4S
%
= N

Agent N

Nommecnm

Figure 5.1: The Armadillo Methodology.

<&
-

the above, but in addition, we exploit the redundancy of information and integrate
information extracted from different sources with different levels of complexity.
Since there can be many potential applications of the proposed technology, we
decided to make the Architecture as generic as possible. In order to do so, the
Architecture had to be portable and scalable. This was achieved by making use of a
simple methodology that requires no special configurations built around a distributed
web service architecture. The methodology is made up of four main items, these
include a set of Strategies, a group of Oracles, a set of Ontologies and a Database

(See Figure 5.1).

155

5.2.1 Set of Strategies

Strategies are modules capable of extracting information from a given document using
very simple techniques. Each strategy takes as input a document, performs a simple
extraction function over that document and returns a typed output.

The input document is not restricted to any particular text type and can range
from free text to structured text. The limitation is only imposed by the processor
involved in pre-analysing the particular document. In fact, there is nothing stopping
the input document from being a picture or a piece of music. The module itself is
responsible for implementing or accessing these preprocessors. Since the system is
built around a distributed architecture, the preprocessor (if needed) could be either
a process within the module or even a process running somewhere over the network
like a web service.

The extraction functions found in the strategies do not use any complex Artifi-
cial Intelligence (A.1.) techniques but rather weak strategies such as simple pattern
matching routines. The idea is that whenever weak strategies are combined together,
they manage to produce stronger strategies. The process does not have to be some-
thing perfect, an error rate is tolerated at this stage since the validity of the data will
be further confirmed by the Oracles.

The output from every module is a set of instances belonging to a particular con-
cept which is described in one of the ontologies used by the system. These instances
are stored in the central database and are typed according to the name of the concept
which they belong to.

To better illustrate the role of a strategy, imagine we need to extract the potential

names of people found in a particular document. For this task, we do not need any

156

particular preprocessor. We just need a good heuristic to extract the names. A very
simple yet highly effective heuristic would be to extract all the bigrams® containing
words starting with a capital letter. This works pretty well and manages to return
bigrams like ” Alexiei Dingli”, ” Yorick Wilks”, etc. One can argue that this approach
would probably return some garbage as well like the words " The System”. This is
true, but this problem is solvable in two ways. First of all, there is nothing stopping a
module from having a postprocessing procedure inside it used to filter away garbage
obtained by the simple approaches. In fact, the module used as example in this
paragraph is part of the current implementation of the Armadillo system and it does
have a post processing procedure which filters out bigrams that contain stopwords®
inside them. This would filter out wrong instances such as "The System” since the
word "The” is a stopword. Secondly, we should keep in mind that any instance
returned by this module must be verified by an Oracle before being inserted in the
main database.

In synthesis a strategy is a module that allows us to implement very simple yet
extremely fast strategies in order to extract information. They do not have to be
highly sophisticated tasks and not necessary with high precision. The most important
thing is that these strategies provide some seed examples which are used by the

Oracles to discovery of other instances.

5.2.2 Group of Oracles

An Oracle is an entity which can be real or artificial, that possesses some knowledge

about the current domain. To better understand what Oracles do, it might be useful

3A bigram is a pair of adjacent words.
4A stopword is a word that is very common inside a textual document (e.g. prepositions and

articles).

157

to think about them as filters. These filters accept as input some data of a particular
type found in the ontology and return data of the same type, but the data they return
is validated. The validity of this data is guaranteed by the Oracle. This adds a certain
degree of accountability to the system since an Oracle is responsible for the data it
validates. Therefore, if an item of data is wrong and it was validated by a particular
Oracle, we could pinpoint exactly which Oracle validated the data and take appropri-
ate corrective actions. These actions include adjusting the validation mechanism of
the Oracle or even excluding it from future validations. The exclusion of one Oracle
is normally not a big loss since a system has different Oracles performing the same
validation using different methods. Having redundant Oracles is very important if we
want to exploit the redundancy of the web to the full. Since the same information is
available from different reliable sources, it is vital for the system to have an Oracle
for each and every source. The combination of these sources will thus produce very
reliable data since it is not up to one Oracle to decide if an instance is valid or not
but rather to a committee of Oracles (similar to having a panel of experts to evaluate
the data).

An Oracle performs another task apart from the filtering, if the Oracle posses
some additional information on the subject being analysed which is not part of the
central database, it adds it to the database. This information is reliable since it is
supplied by the Oracle.

To summarise, an Oracle filters away information that is marked as being an
instance of a particular domain but which in reality is not (according to the Oracle)
and adds any additional reliable data it posses. There can be different types of Oracles

such as humans, gazetteers, web resources and learning algorithms. The list is not

158

an exhaustive one but highlights the most commonly used Oracles.

Humans are the best kind of Oracles we can use. They contain a huge amount
of information and they are excellent information processing systems. The
problem with humans is that the whole scope of this system is exactly to spare
them from doing the tedious job of finding instances in documents. Our strategy
is to make use of humans only if we cannot find any other Oracle to do the job
and use them only for the starting phase in order to initialise the whole process
with a small set of high precision data. Then, the remaining tasks should be
preformed by the other kinds of Oracles. This does not mean that the role of
the user stops there, at any stage the user can see what the different strategies

and Oracles are producing, and review their data if necessary.

Gazetteers are lists of elements which belong to the same class. These lists can
contain anything like lists of names, countries, currencies, etc. Each list is
associated with a concept found in one or more ontologies. If the output ob-
tained from one of the strategies is found in one of the lists, then that element
is confirmed as being an instance of the particular concept represented by the
list. The element would have both a time stamp and a signature signifying
that the information was confirmed by this particular Oracle. Lets assume
for a second that one of the strategies returns the words ” United Kingdom”. A
search is performed through the lists to identify whether this word is an instance
that occurs in any of the available lists. In this example the phrase " United
Kingdom” was found in the gazetteer called countries. This gazetteer is itself
attached to a concept in one of the ontologies used called country. Therefore,

the system assumes that ”United Kingdom” is equivalent to the instance found

Web

159

in the countries gazetteer and thus, it is semantically typed as being a country.
Once we have semantically typed data which is verified by an Oracle, we can
insert it in the database. Apart from Gazetteers, an Oracle could also exploit
a Knowledge base containing a store of knowledge about a domain represented
in machine-processable form. The data may include rules (in which case the

knowledge base may be considered a rule base), facts, or other representations.

resources include any reliable list or database found over the web which can
be used to verify wether an instance is part of a particular class or not. The
information must be very reliable and up to date since at this stage, a minor
error rate is not allowed if we want the data to be reliable. The task of querying
these web resources, it is not always straightforward. First of all, if the web
resource is accessible through a web service, the system can easily access the
web service by making use of standard techniques. If no web service is available,
a strategy must be defined by the user in order to instruct the system which
information to extract from the web page. Luckily for us, these pages are
normally front ends to databases. Therefore, since their content is generated
on the fly using some program, the layout of the page would be very regular.
In this case, the user is asked to mark a couple of examples in the documents
and the system learns how to extract these instances by using an underlying IE
engine. The learning algorithm used is based on simple wrapping techniques
and manages to achieve very good results since the web pages are very regular.
These resources are not very different from a gazetteer, the main difference being
that while a gazetteer is generally a static list, a web resource has dynamic data

which is continuously being updated by a third party.

160

Learning algorithms include technologies such as ML and IE tools, basically any
classifier available which can identify whether an element is part of a particular
class or not. These algorithms are much more sophisticated than what we
have seen so far. They specialise on extracting information from individual
documents which are not regular and therefore, learning a common wrapper
as we have seen before is impossible. These algorithms do not even need any
training by humans. They typically get a page, partially annotate it with the
instances which are available in the database, they learn from those instances
and extract information from the same page. The cycle continues like that until
no more instances can be learnt from the page. The main difference from these
classifiers and the ones mentioned before in the strategies is that they must
have high precision since at this stage, we are verifying the data and no longer

harvesting the information.

5.2.3 Ontologies

An ontology is a formal, explicit specification of a shared conceptualisation of a do-
main of interest (60). In simpler terms, the ontology specifies the concepts found in
a domain® together with some existing relations between those concepts. Ontologies
are important for the system to work correct because they are the glue that makes
it possible for the data produced by the system to be related together. Apart from
this, the different modules are semantically typed meaning that whatever they return
must always be an instance of one of the concepts in the ontologies. To understand
better the role of the ontology, imagine we have a module which returns the title

of a book called ” Animal Farm” and an author called ”George Orwell” from a web

5A domain is a subset of the real world

161

page found in an online book store. Although for us it is quite easy to figure out
that the two pieces of data are related i.e. an author writes a book and that book
has a title. For the system, there is no way in which this can be achieved unless
it is explicitly stated somewhere. Ontologies are the places where these associations
between concepts are expressed. Using the ontology and the data gathered from the
other modules, the system would infer that the title of the book is ” Animal Farm”
and every book has an author. The author for the book ” Animal Farm” is " George
Orwell”. These relations are all stored inside the database and can be used by other

modules to discover further information.

5.2.4 Database

The database is the central repository where all the information gathered is stored. A
database is typically made up of a set of tables, which define the structure of the data
and relationships between the data. Inside the tables, one finds the actual data in-
stances which were discovered by combining the strategies and the Oracles mentioned
before. The relationships are discovered when the data is integrated together. The
information gathered from each source consists of a group of data which is semanti-
cally typed (therefore being an instance of one of the concepts found in one of the
ontologies). The data found in this group, although obtained from a source without
a formal structure can be easily structured by using the relational information found
in one of the ontologies. Eg: if we find a book author in the same context as a book
title and we have an ontology containing rules related to books, we would probably
find a rule which states that an author writes a book and a book has a title. The
problem here is how to find a good context. The simplest way to solve this problem

is to use proximity. If the name of a person appears somewhere in the text not far

162

from the title of a book, then the person is considered a potential author. Obviously,
this is not good enough for our needs since this heuristic does not guarantee that
the person is actually the author of the book, but because we have several Oracles
all validating the same data, then we can check if the person is the actual author of
the book or not (Eg: in this case, we could have an Oracle that checks authors and
book titles using the Amazon web service). This example is not only relevant for data
found in the same context, the same approach is also used for data found in different
contexts or even documents. Eg: Imagine that in a particular page we find the name
of a person in the proximity of a book title and in a different page we find the book
title in the proximity of an ISBN number. A search in one of the ontologies reveals
that a book has an author and an ISBN number. Using this rule, the three items of
data are integrated together. In this case, the integrating element was the book title
since it was common in both contexts. Once again, the validity of the data and their
relationships is checked by the various oracles. There is a tight coupling between the
ontologies and the database because the information extracted from the documents
are just instances of the concepts found in the ontologies. Therefore it makes much

more sense to store the ontological relationships inside such a database as well.

5.2.5 The Armadillo methodology

The Armadillo methodology annotates large repositories with domain-specific anno-
tations. It performs this task by harvesting and extracting information from different
sources which is then integrated into a common repository. The methodology is
largely unsupervised meaning that the user’s intervention is very limited.

The approach adopted in this methodology is the following; the user provides:

163

1. an Ontology (or a set of Ontologies) which define the domain being processed.

2. a set of possible instances (each of which is associated with a concept in the

ontology).

3. a reference to a set of documents that need to be annotated (can vary from a

small set of documents to the whole Internet).

The set of possible instances (referred to previously as strategies) can be expressed
using either a list of instances or using generic patterns capable of spotting a whole
set of potential instances. There is no need for the instances discovered to be highly
reliable since they will be confirmed at a later stage using other strategies (E.g.
multiple occurrences in other documents, etc.).

The cycle begins by going through a subset of documents available for processing
and discovering possible instances using the partial set of instances already available.

When new instances are discovered, they are;

1. confirmed by the Oracles by using a number of methodologies such as using
multiple evidence from different sources (E.g. a new piece of information is

confirmed if it is found in different linguistic or semantic contexts).
2. if they are valid instances they are;

(a) integrated with the existing data found in the central database (E.g. some
entities are merged, updated, etc.).

(b) used by the Strategies to discover new seeds.

(c) used by the Oracles to validate new data.

164

3. otherwise, they are discarded.

This cycle continues until there is no more information to discover. The result of
this whole process is a database containing structured data which can be subsequently
used for several tasks (such as semantically annotating documents, etc).

The Armadillo methodology can be applied to any domain. In fact, to port it to
new applications does not require knowledge of IE. All the methods used are domain
independent and based on generic strategies. The only domain specific parts are the
initial settings. The next section will take a look at how the implementation of the

methodology works.

5.2.6 The methodology at work

The internal workings of the Armadillo methodology (See Figure 5.2) are quite
straightforward too. To make use of the system, one has to go through two phases,
the first phase is the domain setup aimed at the Domain Architects and the second

one is the actual system usage aimed at the normal user.
Domain Setup

In the Domain Setup phase, a Domain Architect is required to plug together the
different strategies, Oracles and ontologies. The database is hidden from the user since
it is part of the ontology handling mechanism. Whenever a new instance is inserted
in the ontology, the system automatically inserts it in the underlying database. The
insertion process is transparent and does not impose any additional overhead on the
system or on the user. The Domain Architect must perform two main tasks, the first

task is to define the various modules and the second task is to attach them together.

165

Domain Setup ‘System Usage
Strategies
System Selup |(@— — — — 9
Define Strategy 1
Strategies ’
-
Strategy N
L— | Strategy Selection

______g;_______.

ystem
e S . itoring
P bl /" Oracles \ ;
User
Strategles
> Executions [@ ===
Agent 1
Define
Oracles o« — — .
Agent N Oracles N
> Verification

— y,

Figure 5.2: The nuts and bolts of the methodology.

e

166

To facilitate this task, Armadillo provides a Domain Setup interface designed to
ease the life of the Domain Architect (See Figure 5.3). In this interface, the user is

not expected to do any programming (although it does not limit the user from doing

s0). The first steps in creating a domain include:

Loading an Ontology A user can add one or more ontologies to the system. The
ontologies are used to type all the data in the system and glue the different

modules together. The interface loads ontologies written in DAML+OIL.

Loading a Reusable Component A reusable software component (such as a Java
Bean) is a self-contained object that can be controlled dynamically and as-
sembled to form applications. Component software environments, along with
object-oriented techniques, allow applications to be built using a building-block
approach. For such an approach to work, components must interoperate accord-
ing to a set of rules and guidelines, and must behave in ways that are expected.
The system provides a common interface capable of discovering the several
methods found inside the component. It also allows the user to simply add new
components. The inputs and outputs of these methods are then typed using the
ontologies loaded in the system. If the user does not find adequate components

to include in the system, they can always be created programmatically.

Creating or Loading a Gazetteer A user can load existing lists and gazetteers
to the system. When a gazetteer is loaded, its contents can be modified using
the interface. Once again, the elements found in these lists must be typed to
a concept in the ontology. E.g. a gazetteer containing the elements ”China,

France, Italy, United Kingdom, etc.” is typed with the concept in the ontology

167

called ”World Countries”.

Creating a Heuristic A heuristic is similar to a gazetteer in the sense that it rep-
resents a class of objects. The main difference is that whilst a gazetteer lists
the instances belonging to that class, the heuristic allows a user to define a rule
using regular expressions® to define all those instances. As an example, lets take
a look at a heuristic that discovers names of people. Using regular expressions
we could easily write a pattern that retrieves all the bigrams whose first letter

is a capital letter.

Binding to a Web Service Web services are software components containing a set
of functions that can be accessed remotely using TCP/IP as the transportation
medium. They are quite similar to the Java Beans we saw earlier. The main
difference is that they are accessed remotely and run on another machine some-
where over the internet while a Java Bean is executed locally. The system
provides a common interface capable of discovering the several methods found
inside the web services. The inputs and outputs of these methods are then
typed using the ontologies loaded in the system. If the user does not find ade-
quate web services to include in the system, they can always be created using

standard web service techniques in any computer language available.

Creating a Wrapper A wrapper is a template of the data and layout surrounding
information which needs to be extracted in a set of documents. It is normally
used by software agents who need to locate and extract data from a set of similar

documents. Lets take as an example a corpus of documents made up of seminar

6 A regular expression is a formula for matching strings that follow some pattern.

168

announcements. In these documents it is quite common to find a starting time
for a seminar in the following format ”Time: 12:30”. The main difference
between documents is that the time changes depending on the seminar. A
typical wrapper would use the word " Time: ” as the data surrounding the time
which needs to be extracted and anything that follows it as being the actual

information that needs to be extracted.

The system presents to the user a very simple interface to create wrappers,
by using positive examples provided by the user himself. The user is asked
to mark a couple of examples in the documents and the system learns how
to extract these instances. The learning algorithm used is based on simple
wrapping techniques and manages to achieve very good results since the web

pages are very regular.

Downloading Web Pages This download module was inserted in the system for
convenience’s sake. Since the basic raw material of the system is a collection
of web pages, it makes sense to provide a module that facilitates the task of

retrieving them.

Once the creation of these modules is completed, they are stored inside the appli-
cation for later use. In fact, these modules are not bound to a specific domain and
can be reused over and over again even in different applications. Since standard tech-
niques are being used, they can also be easily exported and used in different systems.
Although we now have all the tools necessary to create the strategies and Oracles,
there exist no connection what so ever between these modules. This takes us to the

second task of the Domain Architect.

169

Armadillo
File Options
e TEBEY S
A Resources 4
@ CyProfileiMywork”

@ CMyProfileiMyork

|
j Sites
|
!
|

URL List
Extract URL's
@ Site Grabber

Site Grabber

[

40T i]]

Ontology Loaded!

Figure 5.3: The Armadillo Domain Setup.

170

As can be seen in Figure 5.3, the user must select the components which were
created previously, create instances of them and compose them together. In the
example shown in Figure 5.3, the diagram in the right panel represent a crawler

created in this way. It is made up of four components:

URL List is a module that takes as input a URL or a list of them and return as

output the first URL in the list when a request is made.

Site Grabber is a module that consumes a URL and returns as output an object
which represents a Web Page (Basically it downloads the web page specified in
the URL and returns it).

Extract URL’s is a module that given a web page as input, looks for a pattern inside
the page that represents a URL. The URL is then extracted and returned as

output. The pattern is expressed using regular expressions.

Sites is a module that takes as input a web page and adds it to a list. When a
request is made, it returns as output the first web page in the list. It works in

a similar way as the URL List but the type of the data is different.

There are a number of things to notice at this stage. First of all, the inputs and
outputs are typed using the concepts found in the ontologies. The concepts used are a
URL and a Web Page. Secondly, the composition was performed by simply selecting
a module and dragging a line to the connecting module. Since all the inputs and
outputs are typed, the system can check for semantic type mismatch. Finally, there
does not seem to be any entry point for the crawler. The reason is that all modules

work using a data driven approach. Therefore, to start operating the crawler, it is

171

simply a matter of inserting a URL in the URL List module. This can be inserted
either programmatically or manually. Immediately, the Site Grabber is called using
the newly inserted URL. The module downloads the web page and sends a copy to
the Extract URL’s module and to the Sites module. The Extract URL’s module
applies the pattern to extract URLs over the newly downloaded site and sends the
resulting URLs to the URL List. The Site module is just a store which can be used
for further processing. The cycle continues like this until either there are no more
sites to download or until the user decides to stop the crawler.

Although this was a very simple example, there is nothing stopping the Domain
Architect from creating much more complex modules. Whenever a module is created,
it can be stored as a bean or executed as a web service and used by other modules.
As can be seen, the Domain Architect can model the whole domain using these basic

yet powerful tools.
System Usage

Since most of the work is performed by the Domain Architect, the role of the user
is quite simple. It only involves setting up the initial system and monitoring its
execution. The system generally starts from a set of generic strategies defining where
to search for information and what to look for. If some initial data is required, it
is supplied by the user. Since the whole system is data driven, in order to use the
system for a different application of the same domain, it is just a matter of altering
the initial settings. In the example of the crawler found in Section 5.2.6, to crawl web
site X rather than web site Y, it just involves supplying web site X as the start URL.

When data is harvested using the strategies defined in the domain, it is passed to

an Oracle to verify whether the information is valid or not. The task of the Oracle

172

is to identify which items returned by the strategies are instances of concepts found
in one of the preloaded ontologies. Strategies and Oracles are created in exactly the
same way using the Domain Setup tool. The major difference is the validity rating
which they assign to the data they discover. An item of data verified by an Oracle has
a higher rating than one verified by a strategy. Once the data is verified it is stored
inside the main database. The system then checks which strategies can be used to
process the new information available by matching the type of the new data with the
type of the inputs which the modules require. When these modules are identified,
they are then executed using the newly added information. This is done to try to
discover further information. The results are then given to other more specialised
Oracles and the system keeps on looping until either the system manages to discover
all the information which can be discovered or the user decides to interrupt the cycle.
At any stage, the user can interrupt the execution and inspect the data. He can
make any changes required to the data and then resume the system from where it
was interrupted. For example if a person name i