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SUMMARY 

A study was made of the effects of adding a range of silicon compounds (of potential use 

as fertilizers) to a variety of different soils. In addition the solubilization of insoluble 

silicon compounds by bacteria and a species of Penicillium isolated from ferns growing in 

walls (as a likely silicon-rich environment) was determined. 

The results of the present study show that: 

1) Bacteria solubilize rock potash, releasing free silicon into the medium. 

2) Growth of a Penicillium Sp. in vitro increases the solubilization of sodium silicate, 

but concentrations of free silicon decrease when the fungus is grown in the presence 

of silicic acid and rock potash, presumably due to Si-immobilization by the fungus. 

3) Water-extractable silicon increased when either silicic acid or rock potash was 

added to all soils, under both aerobic and anaerobic (waterlogged) conditions. 

4) Liming increased the release of soluble silicon from sodium silicate, silicic acid and 

rock potash, the effect being seen in all soil types. 

5) Silicic acid generally decreased bacterial numbers in all soils, at least over the first 

14 days of the incubation period. 

6) Silicic acid and rock potash had no effect on nitrification, while the addition of 

sodium silicate stimulated nitrate production, this effect is assumed to be largely 

due to the resultant marked increase in soil pH. 

7) Addition of silicic acid and rock potash led to increased sulphur oxidation. 

8) The addition of silicic acid to the agricultural loam soil led to a decrease in 

arylsulphatase and dehydrogenase activity, as well as respiration and soil biomass. 
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9) Bacteria isolated for the wall-fern rhizosphere solubilized insoluble silicon 

compounds in vitro. Increases in soluble silicon did not however, occur in media 

when a species of Penicillium was grown under these conditions; probably as the 

result of marked silicon adsorption by this fungus. 



CHAPTER ONE 

SILICON IN NATURE 
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CHAPTER 1- SILICON IN NATURE 

1.1 GENERAL INTRODUCTION 

1.1.1 SILICON CHEMISTRY 

Silicon, after oxygen is the most largely available, non metal, relatively 

electropositive element in soils, comprising 27.7 wt %. In the universe silicon is seventh in 

importance, exceeded only by hydrogen (H), helium (He), carbon (C), nitrogen (N), 

oxygen (0) and neon (Ne). Silicon is present in the sun and stars and is a chief component 

of aerolites (a class of meteorites). The terms silica and silicon are derived from Latin and 

German words, silex, silicis, and silicium meaning flint (a very hard greyish-black stone). 

"Silica" is also used as a short convenient designation for " silicon dioxide" in all its 

crystalline, amorphous, and hydrated or hydroxylated forms (Table 1.1). 

Silicon does not occur in the free state in nature, but combines with oxygen to form 

tetrahedral (SiO4), the basic structure in silicon dioxide and in the silicates in which the 

tetrahedra are joined together to form complex chains, rings, ribbons, sheets or three 

dimensional frameworks. Silicon exists as oxides and as silicates-a compound of silicon, 

oxygen and some other element or group. It occurs both as amorphous and crystalline 

forms, as silicon oxides (e. g. sand (silica), flint, quartz, rock crystal, amethyst, agate, jasper 

and opal and, mineral silicates as a clay, granite, hornblende, asbestos, feldspar, mica etc). 

In terms of natural silicates, zircon (ZrSi04), olivine (9Mg2SiO4 . 
Fe2SiO4), and 

orthosilicates provide the best examples. Silicates are a large group of compounds of 
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metal ions and negative ions. Alpha-quartz, the most available form of Si02 is a major 

mineral constituent of many rocks, e. g. granite and sand stone. It also occurs alone as rock 

crystal and an impure form as rose quartz, smoky quartz (red brown), morion (dark brown) 

amethyst (violet) and citrine (yellow). Opals are very complex crystalline aggregates of 

partly hydrated silica. Silicon and carbon, the members of Group 1VA of the periodic table, 

have many similarities in terms of their structure and bonding. Silicon also resembles 

carbon in a number of closely related compounds. Carbon is the central element of organic 

chemistry and basis of life, and silicon dominates the inorganic domain of rocks 

(Pawlenko, 1986). 

In contrast to inorganic silicon compounds, there are no naturally occurring organic 

silicon compounds, all of which have been created in the chemical laboratory (Pawlenko, 

1986). Silicone for example, is a polymeric compound of alternate silicon and oxygen 

atoms in which hydrocarbon groups are linked directly to silicon. 
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TABLE (1.1) SOME PROPERTIES OF SILICON. 

Property Constant 

Symbol Si 

Atomic number 14 

Atomic weight 28.086 

Melting point (m. p) 1410° C 

Boiling point (b. p) 2355° C 

Critical temperature 4920° K 

Critical pressure 1450 atm 

Specific gravity ( sp. gr) 2.33 (25° C) 

Valence 4 

Crystal lattice Diamond 
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1.1.2 SILICON IN BIOLOGY AND MICROBIOLOGY 

Most microbiologists never come across the element silicon, probably because it is 

thought to be largely biologically unreactive, and is not transformed by micro-organisms 

(Wainwright, 1997). Scientific interest in the biological role of silicon dates from the early 

1900s when silicon was thought to be involved in the synthesis and structure of the 

connective tissue (Birchall, 1995). 

Silicon is essential for the growth of plants, animals, humans and also micro- 

organisms. Silicon occurs in the body of primitive organisms in large amounts; generally 

the higher the organism, the larger the ratio of C: Si in the body. Such ratios range from 1: 

1 in plankton to 5000: 1 in mammals, plants being intermediate, with ratios of 100 :1 to 

500 : 1. Silicon is present in biological systems as a silanate, an ether (or ester-like) 

derivative of silicic acid which may play a role in the structure of glycosaminoglycans and 

their protein complexes. 

Three types of silicon compounds are found in living organisms: 

1) Insoluble silicon polymers (quartz, crystalline and amorphous polysilicon acids). 

These compounds cause lung disease (silicosis) when inhaled in large quantities as 

dust. 

2) Water- soluble inorganic compounds 

These compounds can easily pass through the cell membrane (ortho- and oligo- 

silicic acids and their salts) and are rapidly be eliminated from the body. 
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3) Esters of ortho- and oligo- silicic acids 

These can combine with polysaccharides, phospholipids, cholestrol, choline, etc., 

which are soluble in organic solvents. Silicic acid esters of cholestrol have been isolated 

from feathers, and galactose silicates can be isolated from the blades of rye (Pawlenko, 

1986). 

1.1.2.1 Silicon in plants 

Silicon, as a mineral substrate, readily absorbed by plants in the form of soil 

solution or soil water contains, mainly silicic acid (HaSiO4). The roots of plants through 

their interplay with soil minerals play a major role in the solubilization of Si and, hence, 

its supply in the soil solution. 

Silicon in plants most commonly occur in the form of particles (phytoliths). 

Miyake and Takahashi (1990) have concluded on the basis of the responses of plants grown 

in nutrient solutions with and without the addition of Si that lack of Si causes deficiency 

symptoms in the tomato and cucumber, (Cucumber sativus), and marked adverse effects as 

well on the growth of the soyabean, (Glycine max), and strawberry, (Fragaria 

xananassa). These and other such findings have led to Si being regarded as an essential 

element for higher plants (Werner, and Roth, 1983; Takahashi, and Miyaki, 1990). Living 

plants, contain orthosilicic acid, (the only silicon form that is absorbed by the roots from 

the soil), (Epstein, 1994). 

Silicon is usually present in plants as opaline but a form of quartz has also been 

found in the leaves of lantana, sorghum leaf sheath epidermis, strawberries and black 

raspberries. Silicon occurs in the Pteridophyta, including the spikemosses, horsetail and 
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ferns, and extensively in the spermatophyta, gymnosperms (includin g` conifers) and 

angiosperms. These groups include a wide range of silicified herbaceous and arboreal 

series (Parry et al., 1985). 

It was reported that Mn in barley leaf tissues of 300-400 ppm on a dry weight basis 

was toxic when no Si was present in the nutrient solution, but harmless when the solution 

contained Si at 0.36 mM. A number of positive effects of the high Si treatment have been 

found on the growth of the plants: greater leaf thickness than that of the low - Si plants, 

greater dry weight per unit area of leaf, a small but significant added increment in root 

fresh and dry weight, and a lower resistance of the leaves to wilting. 

Silicon is useful to the young plants as a nutrient and is needed for normal growth. 

For some unexplained reasons, young barley plants appear to be protected from injury by 

cold water if colloidal silicic acid is present in the culture solution. Sun flowers can be 

included in the list of the plants, that appear to require silica, the yield of seed from this 

plant being increased in the presence of silica. Silicon, when distributed through the plant 

structure, especially in stem, plays a definite strengthening and stiffening role in the 

following plants: 

1- EE uisetum (horse tail), 

These silicon rich plants, were once used to clean teeth and in the kitchen as a 

"scouring rush" and were used as abrasives, for polishing wood and household utensils. 

Silicon in E. arvense is deposited as long fibers with in the epidermal membrane and is 

also exuded as worm like projections until the surface is covered with opaline silica. 
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2- Bamboo 

The hardness and stiffness of bamboo can partly be attributed to its fiber structure. 

Organic matter containing silica gel known as tabasheer, is also found in the hollow stems. 

This tabasheer was believed to be of value of treating patients, suffering from asthma and 

tuberculosis. The inorganic part of tabasheer comprises 99.9% Si02. 

3- Grasses 

Many grasses, reeds, and straws owe their weather resistance (e. g. thatching of 

roofs) to a heavy impregnation with silica. Rice hulls for example contain large amounts of 

silica. Both the straw and grain of wheat contain silica. A consequence of the silica content 

of grain, is that beer is essentially a saturated solution of silica. Grasses such as oats and 

wheat are also strengthened by deposition of silica in specialized epidermal cells. 

4- Spiny plants 

Some plants produce, pure silica, in spines or spicules. Two south American plants, 

Melinis minutgora and Pappophorum silicosum, form readily detachable spicules contain 

from 75-84% Si02, while the dried flowers contain 7.5 and 10% Si02 respectively. Nettles 

are also reported to have silica in their barbs. 

5- Job's Tears 

The seeds of this plant (Coix lacryma L. ), are hard, brilliant, and neatly spotted, 

and, as a result, are used for beads. The epidermis is so heavily impregnated with silica 

that opal can be scratched with it. 
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6- Palms 

Leaves of Palmyra palm of India, are used as writing paper. Coconut, coco fiber, 

bass fiber and manila hemp also contain siliceous concretions. 

7- Wood 

Siliceous concretions in the form of dense silica particles are found within the cells 

in tropical woods and can cause the blunting of saws and other tools. It has been reported 

that silica occur in the wood of the Australian turpentine (Syncarpia laurifolia) which has 

world wide reputation for resistance to the marine borer. It was shown that the resistance to 

the borer was related the high silica content (0.59 % Si02) (Iler, 1979). 

1.1.2.2 Silicon in Animals 

Silicon is known as an essential trace element for the normal metabolism of higher 

animals. Connective tissues such as aorta, trachea, tendon, bone and skin and its 

appendages of several animals, are rich in silicon (Carlisle, 1974). Silicon plays a major 

role in the formation of connective tissue, bone and cartilage and is also involved in many 

other important metabolic processes. Silicon is also involved in early stages of bone 

calcification. An adequate silicon diet is essential for the growth of hair, horn and hoofs in 

mammals, and bird feathers. Silicon deficiency is incompatible with normal growth and 

skeletal development in the chick such abnormalities being corrected by silicon 

supplements (Carlisle, 1972 ) (Fig: 1.1). Chickens maintained on silicon-free feed have 

malformed feathers, fragile bones, thin legs and smaller combs in proportion to their size. 

The deficient chicks also exhibit a significantly lower hexosamine content in their articular 
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cartilage. For normal growth, chickens require only 0.003% silicon in their food (Carlisle, 

1972). Silicon deficiency in the rat also results in depressed growth and deformed skull 

(Schwarz and Milne, 1972). 
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FIGURE (1.1) Four - week - old chicks on silicon - supplemented diet ( left) and a low - 

silicon diet ( right )( Carlisle, 1972 ). 
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1.1.2.3 Silicon in humans 

Nielsen (1988), indicated that the dietary silicon intake of humans varies greatly 

with the amount, and proportion of the food, of animal (silicon-low) and plant (silicon- 

high) origin consumed, as well as the amounts of refined and processed foods present in the 

diet. Normally, refining reduces the silicon content of foods. However, silicate additives 

are increasingly used (as anti-caking or antifoaming agents) in prepared food and 

confections. Although an increases in total dietary silicon, is occurring, most of it is not bio 

available. The human diet, contains around 0.5g of silicon, ingested per day, of which, only 

20-30 mg is absorbed through the intestine into the blood stream. The kidneys are 

responsible for the maintenance of a constant silicon concentration in the blood (Pawlenko, 

1986). Normal human serum has a narrow range of silicon concentration, averaging 50 

µg/dl (Carlisle, 1986a). The silica content of the pancreas varies with different types of 

disease. In the case of tuberculosis, the pancreas contains less silicic acid than normal, 

whereas cases of cancer show more silicic acid than normal. In human optic nerves the 

silica content increased with age, especially after 60 years, and the silicon content of the 

skin dermis has also been reported to diminish with age. 

The silicon content of drinking water, and beverages shows geographical variation; 

the concentration of silicon being highest in hard water and lowest in soft water areas. 

Silicates from foods such as grains or silica supplements (i. e. silicon dioxide or sodium 

metasilicate) are not directly absorbed by the body. Such silica and silicates must also first 

be hydrolysed in the stomach to form orthosilicic acid, which is the only form of silicon 

which is absorbed by the human body (Epstein, 1994). 



12 

1.1.2.4 Silicon in micro-organisms 

Whether or not micro-organisms contain silica internally or whether it is adsorbed 

on the exterior is difficult to determine by chemical analysis. Among the many organisms 

known to be able to utilise silicon (Si) are the silicoflagellida, diatoms and fungi 

(Honigberg, 1964; Lapo, 1979; Pelczar, 1977; Salle, 1961; Underwood, 1982). 

Viruses 

Silica is also an essential component of viruses. It has been reported that a 

crystalline virus consisting of polyhedral particles from lepidopterous larvae 

(e. gBombyx mori), contained silicon, (corresponding to 0.2-0.6% SiO2) as an integral part 

of the protein matrix (I1er, 1979). 

Bacteria 

In some soil bacteria, the uptake of silicon as soluble silica in a culture medium is 

followed by the excretion of phosphorus. Factors which accelerate and inhibit this 

exchange were studied by Heinen (1963). In the absence of glucose, silicon was lost in the 

presence of excess phosphate. Particulate fractions isolated from the bacterial membranes 

were also involved in the metabolism of silicon (Heinen, 1967). The essential role of silica 

in the metabolism of certain bacteria and the interaction of bacteria and silica gels and 

minerals have also been extensively investigated, especially in Russia, and have been 

summarized by Voronkov et al. (1975). Bacteria, able to depolymerise crystalline silicates 

have been reported by Webley et al. (1960). 
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Silicon compounds also increase bacterial growth and have been implicated in 

aggravating tubercular infection of the lung in patients suffering from silicosis (Price, 

1932). The potential importance of microbial silicon transformations in natural 

environments has been illustrated in a recent paper by Biddle and Azam (1999), who 

showed that an assemblage of marine bacteria play an important role in the cycling of 

silica-rich marine diatoms. 

Fun$i 

Certain fungi such as Aspergillus, Penicillium, Candida, Alternaria, Cladosporium 

spp. absorb silica when soluble silicates are added to the culture, a fact which may be due 

mainly to the adsorption of colloidal silica. However, the fact that in the absence of 

phosphorus, oxygen accelerates the uptake of silicon suggests that silicon may play a role 

in the metabolism (Voronkov et al., 1975). 

Fungi and bacteria can solubilise silicates, a process which may be important in 

biological weathering of rocks (Duff and Webley, 1963). 

Diatoms 

The diatoms constitute the class Diatomaceae or Bacillariophyceae. These absorb 

soluble silica from water, even at low concentrations, and both metabolise and deposit it as 

an external skeleton. Nearly all varieties are alike, in that their walls are impregnated with 

silica. A certain minimum concentration of silica in solution is essential to the growth of 

each kind of diatom. Increasing silica content from 3.5 to 8.3 ppm doubles the rate of 

growth of one type of diatom, the dry weight of the cells being between 4-22% Si02. When 

silicon is depleted, cells become coated with a gelatinous capsule of polyuronide or 
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glucuronic residues. Silica plays a fundamental role in the metabolism of these algae. In the 

absence of silica, the entire cell becomes disorganized and is unable to keep on dividing 

(I1er, 1979). 

Sponges (Porifera) 

Silica from sponges is the source of some silica minerals. The silica content of 

sponges varies widely from 1 to 90% (Voronkov et at., 1975). 

Despite the fact that certain micro-organisms accumulate or adsorb silicon (e. g. 

diatoms, bacteria, fungi), relatively little is known about its role in the metabolic processes. 

It seems that silicon is essentially, biological unreactive, but according to science fiction 

writers, silicon could act as an alternative to carbon, in the biology on other planets. It has 

occasionally been suggested that silicon may be an alternative energy source, to carbon for 

microbial life (Das et al., 1992). 
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1.1.3 USES OF SILICON COMPOUNDS 

Various clay minerals are used as raw materials for brick, pottery, earthenware and 

porcelain tiles. Silica as sand, is a principal ingredient of glass, a material with excellent 

mechanical, thermal, optical, and electrical properties (Robert and Samual, 1965-66). 

Hyperpure elementary silicon, when doped with traces of elements such as boron, gallium 

and phosphorus or arsenic is one of the best semiconductors and is used in transistors, 

power rectifiers, diodes and solar cells. Elementary silicon is also used in the preparation of 

silicones (e. g. Me2SiCI2) (i. e. organic-silicon compounds), various alloys of - iron, 

aluminium, copper and manganese ( e. g. ferrosilicon alloy) are used for de-oxidising' steel 

for castings, for introducing silicon into cast iron, for the manufacture of high-silicon 

corrosion-resistant iron (Duriron, Tantiron containing 14 to 15% Si) which is very resistant 

to corrosion and is used in acid-resistant pipes, tanks, for laboratory drains, and for 

electrical-grade silicon-steel laminations, for electric motors and transformers (Rochow, 

1973). Silicones are useful as lubricants, adhesives, fluids, antifoaming agents, elastomers, 

electrical products and for computer chips (BDH catalogue, 1997). Silicon carbide is one of 

the most important abrasives (Robert and Samual, 1965-66). Silicon is also used for 

silicon-based implants in medicine. Soluble silicon Si (OH)4 in drinking water is reported 

to have reduced the death rates in different communities; with high concentrations of 

dissolved solids decreasing the probability of cardiovascular-renal diseases. Silicon is a 

safe additive in foods and is permitted for use as an anti-caking agent. The gelatinous 

material (silica gel) containing some organic matter which is found inside the hollow stems 

of Bamboo, is known as tabasheer, which has been patented for use in making cracking 

catalysts and has also been used for treating asthma and tuberculosis. Silicon is 
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agronomically essential element for sustainable rice production (Savant et al., 1997) and 

reduce its diseases. Silicon is also used as a fertilizer for a variety of different crops such as 

rice (Datnoff et al., 1997) and barley. 
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1.1.4 BENEFICIAL. HAZARDOUS AND PROTECTIVE EFFECTS OF SILICON 

" Colloidal silica helps heal wounds by resorption of toxins and also promotes the 

development of connective tissues (Der, 1979). 

" Silicic acid favours the accumulation and better utilization of calcium, phosphorus, 

potassium, and magnesium in the plant. The beneficial effects of silica include mobilizing 

nutrients from soil and improving resistance to insect and fungal attack. The addition of 

soluble silicate to soil or culture solutions has a beneficial effect where there is a deficiency of 

plant available phosphorus. Soluble silica (or silicate ion) is adsorbed by certain components 

of the soil, particularly clays (Iler, 1979). 

" Soil can be fertilized with silica solubilized as a complex with ammonium humate, which is 

analogous to the catecholate complex (Iler, 1979). Availability of silica may be relatively high 

in soils which are high in humus. 

" Siliceous dust breathed in large amounts can cause serious lung disease called "silicosis". 

" Rice that has been treated with talc which is held to the surface of the rice grains by glucose 

to help preserve the flavour, is responsible for high incidence of stomach cancer in Japan (Iler, 

1979). 

" Silica can exert its toxic action at the site of protein synthesis. 

" All the silicogenic powders exert their specific cytotoxic effects by injuring biological 

membranes (Iler, 1979). 

" Silica is also involved in the aging process and causes senile dementia as well as the 

identical type of deterioration occurring in the brains of younger people as "Alzheimer's 

disease". 
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" By being present in the epidermis of certain plants, silicon increased resistance to fungal 

diseases such as rusts. 

" Cereals which are well supplied with silica are more resistant to mildew infections. 

" Silicic acid has an importance in increasing the resistance of plants to powdery mildew 

fungi. In water cultures, a deficiency of silica produces growth depression in rice, oats, 

barley, maize, cucumbers, tobacco, bush beans, and tomatoes (Iler, 1979). 



CHAPTER TWO 

SOLUBILIZATION OF INSOLUBLE SILICON IN 

CULTURE AND SOIL 
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CHAPTER 2- SOLUBILIZATION AND UPTAKE OF SILICON 

BY BACTERIA AND FUNGI IN VITRO AND IN SOILS 

************************************************************************ 

2.1 INTRODUCTION 

A silicon cycle mediated by microorganisms, occurs in the environment, involving 

the transformations of silicon between insoluble and soluble states (Lauwera and Heinen, 

1974). Silica in its polymer form is almost insoluble, but according to present research, 

bacteria as well as plants are also able to solubilize polymer silica. Webley et al. (1960) 

reported that Pseudomonas and other soil bacteria can bring about the destruction of 

naturally occurring polymer-silica. These bacteria and fungi can solubilize insoluble 

silicates by producing mineral and organic acids (e. g. 2-ketogluconic acid) and chelating 

agents (Henderson and Duff, 1963). Most bacteria (e. g. Bacillus and Pseudomonas) and 

fungi (e. g. Aspergillus, Mucor and Penicillium), are able to decompose aluminosilicate 

minerals and release a portion of the potassium contained therein (Alexander, 1977). Most 

of these silicate solubilizers are common soil inhabitants, although Russian workers have 

described a specialized bacterium, Bacillus mucilaginous. These bacteria are useful in 

removing the silicon from low-grade mineral raw materials, like bauxite, and to extract 

valuable metals from silicate and aluminosilicate ores and minerals (Karavaiko et al., 

1988). 

Plants and microorganisms are also capable of degrading experimentally 

polymerized and natural silicon (quartz) into the monomeric form (Henderson and Duff, 

1963). Since the 1920s, monomeric silicon compounds are thought to increase the growth 
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of microorganisms, e. g. potassium silicate enhances the growth of Bacillus tuberculosis 

(Borell, 1922). Silicon, as silicic acid (0.1- 0.6 mM), is one of the main constituents of soil 

solution and can be regarded as a plant nutrient (Epstein, 1994; Birchall, 1995). Silicon is 

involved in plant growth, mineral nutrition and the resistance of plants to fungal disease 

and herbivores (Epstein, 1994). 

Soluble silica has a remarkable influence on soil fertility. Silicon fertilization has 

been reported to result in increased soil exchange capacity, the transformation 

of P-containing minerals, the formation of aluminosilicates and of heavy metal silicates. 

All these effects are caused by changes in soil mineral composition resulting from silicates 

addition (silicon fertilizers) and to the formation of new clay minerals 

(Matichenkove, 1999). The beneficial effects of silica on the growth of a variety of crops 

have been shown, including rice, wheat, barley cucumber and tomato. Silicon fertilizers are 

applied to crops, in several countries to increase productivity and sustainable production 

(Dian Feng, 1999). Gaspar (1999), mentions that the growth of rice and sugarcane in 

rotation on organic and sandy soils in south Florida responds positively to applications of 

calcium silicate slag. Addition of silicate may also have a nutritional effect because it 

displaces phosphate ions adsorbed in the soil, thus making phosphate more available to the 

plant (Iler, 1979). 

Silicon can control several important diseases of rice, including blast 

(Magnaportha grisea), brown spot (Cochliobolus miyabeanus), sheath blight 

(Thanatephorus cucumeris), and leaf scald (Monographella albescens) as well as 

preventing grain discoloration (species of Fusarium, Bipolaris, and others) (Datnoff, 

1997). It has long been known that silicon compounds can stimulate microbial growth. 

Allison (1968), suggested a possible role of silicon in the energy metabolism in microbial 
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growth. Reynolds (1909), suggested that silicon might replace carbon in some types of 

microbial metabolism. Das et al. (1992), however, notes that the exact role of silicon in 

bacterial metabolism and growth remain largely unknown, but silicon can possibly provide 

an alternative or additional energy source for several simpler forms of life, particularly 

members of the Mycobacteria and Nocardiae. These bacteria may scavenge silicon from 

the media and the environment and utilize it, even in the absence of a carbon source. 

Silicon can promote the growth of pathogenic bacteria (e. g. the growth of Staphylococcus 

aureus is stimulated when 100 pg silicon ml'' is added to the medium and high silicon 

concentration in mucous membrane can increase the number of Pseudomonas aeroginosa) 

(Yoshino, 1990). Price (1932), also mentioned that silicic acid and sodium silicate, even in 

small amounts, increase the growth of Mycobacterium tuberculosis and that the addition of 

sodium silicate also stimulated the growth ofAmoeba proteus. 

Bacillus licheniformis (bacterial spp. ) is capable of accumulating silicon from 

culture medium (Mohanty et al., 1990). Similarly, Mast and Pace (1937) found that 

Chilomonas paramecium will not grow in inorganic solution lacking silicon and also that 

silicon stimulated starch production, growth and respiration in this organism. Silicon is also 

useful for diatom growth, building the siliceous frustule surrounding the diatom cell wall. 
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The aim of the work presented in this chapter was: 

To investigate the microbial solubilization of insoluble silicon in culture and soils, 

under various conditions: 

(a) Microorganisms growing in soil and culture under aerobic conditions. 

(b) Microbial silicon solubilization in waterlogged soils. 

(c) The effect of lime on the aerobic microbial solubilization of silicon. 

(d) The effect of different temperatures on microbial silicon solubilization in soil. 

(e) The effect of silicon compounds on bacterial numbers in various soil samples. 



PLATE 2.1 

Wall-ferns (Dryopteris dilatata) growing in wall mortar of University of 

Sheffield, Firth Court, Western Bank U. K (Side view). 

PLATE 2.2 

Wall-ferns (Dryopleris dilatata) growing in wall mortar of University of Sheffield, Firth 

Court, Western Bank U. K. (Front view) 
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2.2 MATERIALS AND METHODS 

2.2.1 The effect of silicon compounds was investigated on the following materials: 

a) Wall-Fern rhizosphere: Fern plants (Dryopteris dilatata), growing in the walls of 

Sheffield University, were studied for the solubilization of insoluble silicon by microbial 

attack. (see Plates 2.1 and 2.2). 

b) Soil types : Four types of bulk soils, deciduous woodland soil (under beech 

Fagus), coniferous soil (under Pinus pine), fern soil (Bracken, Pleridium aquilinum) and 

agricultural loam soil were collected from different areas of Sheffield. 

2.2.2 Properties of the silicon compounds used in this study 

Potassium silicate - K2Si2O5 to KZSi3O7 , may also contain water. Translucent to 

transparent hygroscopic, glass-like pieces with a strong alkaline reaction. Usually 

insoluble, or very slowly soluble in cold water. 

Rock Potash- A natural, crushed rock product-rich in potassium and silicates. Insoluble in 

water 

Silicic acid-HZSi03. White, amorphous powder. Insoluble in water. 

Sodium silicate-Na2Si2O3, Na6Si2O7 and Na2Si3O7, containing variable amounts of 

water. Colourless, whitish-grey crystals. Largely insoluble in water. Strongly alkaline. 
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2.2.3 Determination of dry weight 

All the solutions (i. e. culture and soil) were filtered through pre-dried (at 60°C 

overnight) filter papers (Whatman No. 1) and the dry weight was determined after leaving 

the filter papers at 60 °C overnight. In all cases, triplicates were used. 

2.2.4 Determination of pH 

Bacteria and fungi which grew in Nutrient broth and Czapek Dox Liquid medium, 

and soil suspended in sterile deionised water were passed through filter papers (Whatman 

No. 1). The pH of the filtrates were determined, using glass electrode pH meter. 

2.2.5 Method used for the detection of free silicon 

Soluble silicon in the solution was analysed colorimetrically by adding, to I ml of 

filtrate: ammonium molybdate (2 ml, 10% w/v), ascorbic acid (2 ml, 5% w/v), oxalic 

acid (1 ml, 10% w/v), and concentrated hydrochloric acid (5 in], 1: 1 diluted with distilled 

water), and mixed thoroughly. The intensity of the blue colour was then measured at 600 

nm using a spectrophotometer. The concentration of soluble silicon (Si02) in the filtrate 

was then determined by reference to a standard curve (0-50 µg Si02 111-1), prepared using 

EIL silica (sodium fluorosilicate standard 1000 ppm). 
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2.2.6 In Vitro ability of bacteria (isolated from wall fern-rhizosphere) to release soluble 

silicon when growing in Nutrient Broth, containing rock potash 

Small pieces of the fern roots were directly placed on the Nutrient Agar (Oxoid) 

with forceps (sterile) and incubated at 37°C for 3 days. After incubation, some bacterial 

colonies were selected and sub-cultured on Nutrient Agar and incubated for three days at 

37°C. After incubation, 0.5 g of rock potash was added to the Nutrient Broth (Oxoid) 

(20 ml), in the test tubes and mixed thoroughly. All the tubes were plugged with cotton 

bungs and autoclaved at 121°C for 15 minutes. After autoclaving, bacterial cultures were 

inoculated with the help of wire loop (sterile), and incubated for 3 days at 37°C by shaking, 

using an orbital shaker at 150 rpm. Controls were set-up, by adding 0.5g rock potash to 

each tube, containing medium (without bacterial inoculation). On the day of analysis, 

culture was filtered through Whatman No. 1 filter paper and the amount of silicon in the 

filtrate was determined. 

The pH of the bacterial culture was determined as mentioned above. 

2.2.7 In Vitro ability of fungus (Penicillium sp., isolated from wall fern- 

rhizosphere), to solubilize, silicic acid, sodium silicate, and rock potash in Czapek 

Doi liquid medium 

Small pieces of the fern roots were placed on Czapek Dox Agar with forceps 

(sterile) and incubated for 14 days at 25°C. After incubation, some fungal colonies were 

sub-cultured on 0.5g rock potash amended Czapek Dox Agar Petri plates and incubated at 

25°C for further 14 days. 
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A colony of the fungus (Penicillium sp), was selected, which produced a clear zone 

of solubilized silicon, on rock potash amended Czapek Dox Agar petri plates. To Czapek 

Dox liquid medium (100 ml), in 250 ml Erlenmeyer flask (in triplicates), was added, 

0.5 g, each of silicon compounds (i. e. sodium silicate, silicic acid and rock potash 

(crushed in a Ball-mill), mixed and autoclaved at 121°C for 15 minutes. Each flask was 

inoculated with fungal disc (4mm). Controls were set-up by adding silicon compound 

(without mycelium), to the medium. All of the flasks were incubated for 7,14,21 and 28 

days at 25°C by shaking (150 rpm). The contents of the flasks were filtered every week 

using Whatman No. 1 dried (at 60°C overnight) filter papers. The filtrate was then analysed 

for free silicon. The dry weight was determined by weighing the filter papers on a 

sensitive scale after drying at 60°C overnight. The pH of the solution was also determined, 

immediately after filtration, using a glass electrode pH meter. 

2.2.8 Release of soluble silicon from deciduous, coniferous, fern and agricultural soils, 

amended with silicon compounds, under aerobic conditions 

Four soil types, (deciduous, coniferous, fern and agricultural loam) were collected 

from different areas of Sheffield (See page 24). 

To a fresh soil (in triplicates) (100 g, sieved, <4 mm), was added, lg each of silicic acid 

and rock potash plus 2 ml deionised water (sterile). The soils were in the polythene bags 

and mixed thoroughly. Controls were set-up, lacking added silicon compounds. All of the 

bags were closed with a rubber band, leaving a small hole for air, and incubated at 25°C. 

The soluble silicon content of the soils was analysed every week for 4 weeks. 
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To 100 ml of deionised water (sterile), 10 g of soil were added to 250 ml 

Erlenmeyer flask, shaken for 15 minutes at 70 rpm and filtered through Whatman No. 1 

filter paper. The filtrates were then analysed for free silicon as mentioned above. The pH 

was determined as for the soil solutions. 

2.2.9 Release of free silicon in deciduous, coniferous, fern and agricultural soils, 

amended with silicon compounds, under waterlogged conditions 

Each universal bottle (25 ml) was filled, to around full, half with soil (sieved 

< 4mm) and the soil was weighed and added with 0.5g of silicic acid and rock potash (each 

compound soil'') and mixed thoroughly. Deionised water (sterile) was then added, until it 

remained'/4 inch above the soil surface and the samples were incubated at 25°C. The bottle 

tops were left loose. Controls were set-up, lacking added silicon compounds. (All soil 

samples were set-up in triplicates). Analysis was conducted every week for 4 weeks. The 

universal bottles, containing soil mixture were filled with 20 ml of deionised water 

(sterile), shaken for 15 minutes at 70 rpm, and filtered through Whatman No. 1 filter paper. 

Filtrate (lml) was then diluted with distilled water in a 50 ml volumetric flask, and shaken 

thoroughly. Filtrate (lml, diluted), was then analysed for free silicon, produced under 

waterlogged conditions. Dry weight and pH were determined as mentioned above. 
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2.2.10 Effect of lime (calcium hydroxide, Ca(OH)2) on the release of soluble silicon in 

deciduous, coniferous, fern and agricultural soils, amended with sodium silicate, 

silicic acid and rock potash under aerobic conditions 

To fresh triplicate soil samples (100 g, sieved < 4mm), was added, lg each of 

sodium silicate, silicic acid and rock potash, lg calcium hydroxide and 2 ml of deionised 

water (sterile), mixed thoroughly, and incubated in polythene bags. Controls were included 

containing lg of calcium hydroxide plus 2ml of deionised water (sterile), without added 

silicon. All of the bags were then closed with rubber bands leaving a small hole for air and 

incubated at 25°C for 7,14,21 and 28 days, respectively. Filtrate was obtained by adding 

100 ml deionised water (sterile) in 250 ml Erlenmeyer flask. 10 g of the soil were added, 

shaken at 70 rpm for 15 minutes and filtered through Whatman No. 1 filter paper. The 

filtrate was then analysed and the amount of soluble silicon determined. Dry weight and pH 

were also determined. 

2.2.11 Effect of different temperatures on the release of soluble silicon in agricultural 

soil amended with silicon compounds 

To triplicate samples of agricultural soil (100 g, sieved < 4mm), was added, ig each 

of sodium silicate, silicic acid and rock potash and mixed thoroughly in polythene bags. A 

control was used, lacking added silicon and the bags were closed with rubber bands leaving 

a small hole for air. The bags were then incubated at 15°C, 25°C, 30°C and 37°C for 14 

days. After incubation, the solutions were filtered through a Whatman No. 1 filter paper as 

described above and the filtrate was analysed for soluble silicon. 
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Dry weight was determined and the pH of the fresh filtrate was measured by glass 

electrode. 

2.2.12 Effect of silicic acid addition on numbers of bacteria, isolated from deciduous, 

coniferous, fern and agricultural soils 

To fresh triplicate soil samples (100g, sieved < 4mm), in plastic bags, was added, 

lg, silicic acid and 2 ml deionised water (sterile) and mixed. A control was set-up, lacking 

added silicic acid. All the soil samples were then incubated at 25°C for 7,14,21, and 28 

days under aerobic conditions. 

2.2.12.1 Analysis 

To sterile '/a Ringer's solution (100 ml), in screw capped glass bottles (150 ml), was 

added lg of soil and shaken at 70 rpm for 15 minutes, using an orbital shaker. The soil 

mixture (10 ml) was then transferred to other glass bottles (150 ml), containing 90 ml 

sterile Ringer's solution, and mixture was shaken by hand for 3 minutes. From the above 

solution, 0.1 ml, was inoculated on Plate Count Agar, Petri dishes (6 replicates) using a 

sterilised glass spreader and incubated at 25°C for 48 hours. After incubation, bacterial 

counts were determined every week for 4 weeks. 

Statistics 

Paired two samples t-tests were performed to check whether means were 

significantly different. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 (A) In Vitro solubilization and uptake of silicon by bacteria and a Penicillium 

sp. isolated from the wall-fern rhizosphere 

Bacteria and fungi were isolated from the rhizosphere of ferns growing in the 

mortar of walls around the University (Firth Court) buildings. The ferns were well- 

established and their growth had caused localised deterioration of the surrounding mortar. 

The bacteria isolated were mainly Gram positive cocci while the fungi were almost 

exclusively species ofPenicillium. 

Table 2.1 shows that the all of the bacterial isolates were capable of solubilizing 

rock potash to release soluble Si02; in two out of the four cases, the amount of the free ion 

released was significantly different from the control value. This silica solubilization was 

associated with an increase in the pH of the medium (Table 2.2). 

The effect of a species of Penicillium on Si02 concentration in media containing 

silicic acid, sodium silicate and rock potash is shown in Fig 2.1. In the case of rock potash 

and silicic acid, fungal growth led to an decrease in the concentration of free Si02, while 

increases occurred when sodium silicate was added, particularly after 7 and 14 days 

incubation. Where decreased Si02 concentrations resulted, the free silicon ion was 

presumably take up by, or adsorbed on to the surface of, the fungal mycelium. It is not 

clear why such uptake did not take place when sodium silicate was the added silicon 

source. It is likely however, that this resulted from a pH effect, since medium containing 

sodium silicate was markedly alkaline, in contrast to the pH conditions prevailing in the 

media containing the two other silicon sources (Fig. 2.2). While the fungus acidified the 
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medium when growing with silicic acid and rock potash, growth in the presence of sodium 

silicate led to a further increase in the pH of the medium, to a value as high as pH 10.2. 

The ability of bacteria and fungi to solubilize insoluble phosphates and silicon 

compounds is well recognized (Henderson and Duff, 1963). Such solubilization is 

undoubtedly an important factor in the microbial erosion of rocks and plays an important 

role in making P and Si available to plants (Webley et at, 1963). It is usually assumed that 

such solubilization results from the production, by bacteria and fungi, of organic acids, 

such as citric acid and 2-keto gluconic acids (Webley and Scott, 1963). However, such a 

view is based on in vitro studies, such as the ones employed here, where large amounts of 

carbon are readily available. It is possible that in the natural environment insufficient 

carbon would be available to support such organic acid production. However, since rock 

weathering is often associated with the rhizosphere of plants such as the wall-ferns studied 

here, or associated with the growth of lichens, it is possible that in these, circumstances, 

sufficient carbon would be made available to support organic acid production and therefore 

acid-related P and Si solubilization. In addition, it is likely that chelating agents will 

mobilise both phosphates and silicon compounds during rock solubilization. For example 

complex chelating agents (e. g. lichenoic acids) have been implicated in rock solubilization 

under lichen and mosses growing on rocks. 

The solubilization of insoluble materials in brick mortar leads, as was observed 

here, to its breakdown and to an obvious reduction in its usefulness as a masonry-bonding 

material. As a result the growth of plants in walls is obviously deleterious, and presents a 

biodegradative problem. 
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2.3.2 (B) Solubilization of silicic acid and rock potash in soils under aerobic and 

anaerobic incubation conditions 

The solubilization of silicic acid and rock potash under both aerobic and anaerobic 

incubation conditions was determined using samples of deciduous, coniferous, fern 

rhizosphere and agricultural soils. 

(a) Aerobic incubation 

The general trend seen for all soils was an increase in soluble silicon with 

increasing length of incubation over the 35 days incubation period, peaking at 28 

days and then declining (Fig. 2.3, a-d). The most marked increases in soluble 

silicon occurred in soils amended with silicic acid. The release of Si02 was most 

marked in the fern soil (Fig. 2.3 c), essentially equal in the coniferous and 

deciduous soils (Fig. 2.3 a, b) and less marked in the agricultural loam (Fig. 2.3 d). 

These changes in Si02 concentration in the soil were associated with a 

general, small increase in soil pH over the incubation period (Fig. 2.4, a-d). 

(b) Anaerobic incubation 

Under anaerobic conditions, the general trend was a marked increase in 

soluble silicon release following both amendments after 7 days followed by a 

decrease and then a further increase after 21 days. This pattern was amazingly 

uniform for all four soils (Figs. 2.5 a-d). Rates of Si02 release were of the order of 

10-15 times less in soils incubated aerobically than in anaerobically incubated soils 

(Figs. 2.3 a-d). Under anaerobic conditions, solubilization was equally great in 
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coniferous (Fig. 2.5 b) and fern-rhizosphere soils (Fig. 2.5 c), and relatively less in 

deciduous (Fig. 2.5 a) and agricultural soils (Fig. 2.5 d). 

Rock potash increases the pH (between 6-7) of deciduous, coniferous and fern soils 

(Figs. 2.6 a-c) but in agricultural soil, rock potash and silicic acid show slight 

increase than the control (Fig. 2.6 d). 

2.3.3 The effect of lime on the soluble silicon content of soils 

The effect of lime on the concentration of soluble silicon in the four soils is shown 

in Fig. 2.7. In all soils and for all added silicon compounds the general trend was an 

increase in SiO2, following the addition of lime, with increasing length of incubation up to 

14 days, followed by a slight decline. In all soils, sodium silicate addition led to the largest 

increase in free, water extractable silicon, followed by silicic acid and rock potash. The 

agricultural loam showed the least increase in soluble silicon following the addition of 

silicic acid and rock potash, while the largest increase in soluble silicon was seen following 

the addition of sodium silicate (Fig. 2.7 d). The pH of the limed soils was between pH 7- 8, 

with the addition of the silicon compounds generally leading to slight decreases in soil pH 

(Figs. 2.8 a-d). Liming of the agricultural soil led to higher pH values of around pH 12 (Fig 

2.8 d). 
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2.3.4 Effect of temperature on the soluble silicon content of silicon amended soils 

The highest concentration of soluble silicon in all soils, and following amendment 

with all silicon compounds occurred at 15°C. The concentration of water-soluble silicon 

then decreased with increasing temperature up to 37°C (Figs. 2.9 a-c). 

Rock potash and silicic acid show remarkable increase in the pH of agricultural soil 

at 30°C (Figs. 2.10 a, c) but sodium silicate increases pH at 15°C (Fig. 2.10 b). 

2.3.5 Effect of silicic acid addition on numbers of bacteria in the four soils. 

The addition of silicic acid (lg 100''g soil"') reduced the number of heterotrophic 

bacteria in the deciduous soil (Fig. 2.11 a) and to a lesser extent in the coniferous soils 

(Fig. 2.11 b), but increased numbers in the fern rhizosphere and agricultural soils. 

(Figs. 2.11 c, d). 

The general conclusion from these results is that the addition of silicic acid, sodium 

silicate, and rock potash to the four soils leads to increases in soluble silicon over the 

incubation periods used. In many cases, the graphs of soluble silicon show a remarkable 

degree of uniformity over the four soil types, despite the fact that they exhibit different 

microbial and physico-chemical characteristics. The concentration of free silicon in the 

four soils following the addition of silicic acid and rock potash will relate to either 

chemical or microbiological solubilization or a combination of both. In contrast, the 

concentration of free silicon resulting from the addition of sodium silicate (since it is 

soluble) will depend on chemical solubility. 
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Overall, the results give the strong impression that the concentration of free silicon 

in soils which results from the addition of all of the silicon compounds is more dependent 

upon chemical than microbial factors. Liming for example, by increasing the pH of the four 

soils is likely to particularly influence chemical solubilization and the rate of fixation, if 

any, of silicon to soils. The fact that the soil solution silicon concentration reached a peak 

at 15°C following the addition of silicon compounds, in particular is indicative that 

chemical factors are taking precedent over microbial interactions. If microbial process were 

the main factor influencing silicon solubility one would expect to see the "normal" 

biological response (i. e. an increase in solubility with increasing temperature to around 

25°C) followed by a decrease with increasing temperature; the process being denatured at 

temperatures above 37°C. 

Additives such as lime will have an impact on physico-chemical process in a soil 

which will also affect microbiological processes. Such considerations emphasize two 

problems in research of this nature which are also often associated with studying soils. 

Both relate to the complexity of the environment under study. Thus while aim here was 

primarily to investigate the influence of microbial process on the solubility of silicon in 

soils, it is impossible to exclude physico-chemical reactions from this equation. Soil 

microbiologists are sometimes not equipped to fully understand the chemical physical 

reactions influencing the availability of silicon in soils. Of course, soils chemists come 

across the same problem in reverse and so will tend to under-emphasize the impact of soil 

microbial processes. Such limitations emphasize the desirability of collaboration between 

scientists possessing a variety of different expert knowledge of soils. 
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TABLE (2.1) ABILITY OF BACTERIA ISOLATED FROM FERN RHIZO- 

SPHERE TO RELEASE SILICA FROM ROCK POTASH. 

Bacteria Si02 mg (20 mi') 

(Isolates) 

1- 1.67 t 0.26 

2- 2.27 ± 0.9 

3_ 1.73 ± 0.1 7 

4_ 1.98: t 0.023 * 

Control 1.51 ± 0.01 

Means of three replicates (t ), * Significant difference from control 

P<0.05. 
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TABLE (2.2) pH OF MEDIUM IN WHICH BACTERIA GREW IN THE 

PRESENCE OF ROCK POTASH. 

Bacteria (isolates) pH 

1- 8.7 

2- 8.7 

3- 8.2 

4- 8.7 

Control 7.6 



FIG: 2.1 

Effect of a Penicillium sp. on SiO2 concentration in Czapek Dox medium containing silica 

compounds. 

-o- Control, containing silicic acid (without mycelial inoculant) 

(a)---m- Czapek Dox medium, silicic acid and fungus. 

(b) -u- Czapek Dox medium, sodium silicate and fungus. 

(c )-. - Czapek Dox medium, rock potash and fungus. 

Means of triplicate, ± standard error. *Significant difference from control value, 

P<0.05. 
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FIG: 2.1 
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FIG: 2.2 

Determination of pH of the medium (Penicillium) culture, growing in Czapek Dox medium 

containing silicon. 

--a- Control, containing silicic acid (without mycelial inoculation) 

(a ) -. - pH of the mycelial culture, added with silicic acid. 

(b ) -R- pH of the mycelial culture, added with sodium silicate.. 

(c)-m- p11 of the mycelial culture, added with rock potash. 
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FIG: 2.3 

Concentration of soluble silicon in deciduous and coniferous soils, amended with silicic 

acid and rock potash, under aerobic incubation at 25°C. 

(a) Deciduous soil 

(b ) Coniferous soil 

1" Control (soil lacking added silicon) 

2- Soil amended with silicic acid. 

3. Soil amended with rock potash 

Means of triplicate, :t standard error. *Significant difference from control value, 

P<0.05. 
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FIG: 2.3 

Cocentration of soluble silicon in fern and agricultural soils, amended with silicic acid and 

rock potash, incubated at 25°C, under aerobic conditions. 

(c)Fern soil 

(d ) Agricultural soil 

1- Control (soil lacking added silicon) 

2- Soil amended with silicic acid. 

3- Soil amended with rock potash 

Means of triplicate, ± standard error. *Significant difference from control value, 

P<0.05. 
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FIG: 2.4 

Effect of added silicic acid and rock potash on the pH of deciduous and coniferous soils. 

under aerobic conditions. 

(a) Deciduous soil 

(b) Coniferous soil 

-o-- Control (soil lacking added silicon) 

-A- Soil amended with silicic acid. 

-a- Soil amended with rock potash 
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FIG: 2.4 

Effect of added silicic acid and rock potash on the pH of fern and agricultural soils, under 

aerobic conditions. 

(c) Fem soil 

(d) Agricultural soil 

--o- Control (soil lacking added silicon) 

-A- Soil amended with silicic acid. 

- - Soil amended with rock potash 



44 

FIG: 2.4 
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FIG: 2.5 

Concentration of free silicon in deciduous and coniferous soils, amended with silicon 

compounds, under waterlogged conditions at 25°C. 

(a) Deciduous soil 

(b) Coniferous soil 

-o- Control (soil lacking added silicon) 

-A- Soil amended with silicic acid. 

-a-- Soil amended with rock potash 

Means of triplicate, ± standard error. *Significant difference from control value, 

P<0.05. 
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FIG: 2.5 

Concentration of free silicon in fern and agricultural soils, amended with silicon 

compounds, under waterlogged conditions and incubated at 25°C. 

(c)Fern soil 

(d ) Agricultural soil 

-o- Control (soil lacking added silicon) 

-A- Soil amended with silicic acid. 

-a- Soil amended with rock potash 

Means of triplicate, ;k standard error. *Significant difference from control value, 

P<0.05 
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FIG: 2.6 

Effect of silicic acid and rock potash on the pH of deciduous and coniferous soils, under 

waterlogged conditions. 

(a) Deciduous soil 

(b ) Coniferous soil 

-o- Control (soil lacking added silicon) 

-A- Soil amended with silicic acid. 

-u- Soil amended with rock potash 
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FIG: 2.6 

Effect of silicic acid and rock potash on the pH of fern and agricultural soils, under 

waterlogged conditions. 

(c) Fern soil 

(d) Agricultural soil 

-o-- Control (soil lacking added silicon) 

-A- Soil amended with silicic acid. 

-. -- Soil amended with rock potash 
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FIG: 2.7 

Effect of added lime on the release of soluble silicon from deciduous and coniferous soils. 

(amended with silicic acid, sodium silicate and rock potash), under aerobic conditions. 

(a) Deciduous woodland soil (under beech bulk Fagus) 

(b) Coniferous soil (under Pinus pine) 

-o- Control containing lime (soil lacking added silicon) 

-A- Soil amended with silicic acid and lime 

-"- Soil amended with sodium silicate and lime. 

-u-Soil amended with rock potash and lime. 

Means of triplicate, ± standard error. *Significant difference from control value, P<0.05. 
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FIG: 2.7 

Effect of added lime on the release of soluble silicon from fern and agricultural soils 

(amended with silicic acid, sodium silicate and rock potash), under aerobic conditions. 

(c) Fem soil (Pteridium aquilinum) 

(d ) Agricultural loam soil 

-o- Control containing lime (soil lacking added silicon) 

-A- Soil amended with silicic acid and lime 

-"- Soil amended with sodium silicate and lime. 

-u- Soil amended with rock potash and lime. 

Means of triplicate, ± standard error. *Significant difference from control value, 

P<0.05 
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FIG: 2. s 

Effect of added sodium silicate, silicic acid and rock potash on soil pH 

(a) Deciduous soil 

(b) Coniferous soil 
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FIG: 2.8 

Effect of added sodium silicate, silicic acid and rock potash on soil pH. 

(c) Fern soil 

(d) Agricultural soil. 
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FIG: 2.8 
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FIG: 2.9 

Effect of temperature on the concentration of soluble silicon in agricultural soil, amended 

with silicic acid, sodium silicate and rock potash. 

(a) Silicic acid. 

(b) Sodium silicate 

(c) Rock potash. 

-o- Control (soil lacking added silicon) 

-. - Treatment (soil amended with silicon) 

Means of triplicate, ± standard error. *Significant difference from control value, 

P< 0.05. 
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FIG: 2.9 
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FIG: 2.10 

Effect of added silicon compounds on the pH of agricultural soil, at different temperatures. 

(a) sodium silicate 

(b) silicic acid 

(c) rock potash 

Control (lacking added silicon) 

Treatment (soil amended with silicon) 
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FIG: 2.11 

Effect of added silicic acid on numbers of bacteria, isolated from deciduous and coniferous 

soils. 

(a) Deciduous soil 

(b) Coniferous soil 

-o- Control (soil lacking added silicon) 

-a- Treatment (soil amended with silicon) 

Means of triplicate, ± standard error. 
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FIG: 2.11 

Effect of added silicic acid on numbers of bacteria, isolated from fern and agricultural soils. 

(c) Fern soil. 

(d) Agricultural soil. 

-o- Control (soil lacking added silicic acid) 

-m- Treatment (silicic acid amended soil) 

Means of triplicate, :t standard error. 

IhL 
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(c) 

14 

12 

10 

ono 
ö8 

ee 6 

pq 4 

(d) 

2 

0 

40 

35 

30 

25 

20 

C 
V 15 
f. % 

10 

5 

0 

Fern soil 

Agricultural soil 

-a-- Control 

-U-- Treatment 

Days 

7 14 21 28 

7 14 21 28 



CHAPTER THREE 

EFFECTS OF SILICON ON NITRIFICATION IN 

AGRICULTURE SOIL 



57 

CHAPTER 3- EFFECTS OF SILICON ON NITRIFICATION IN 

AGRICULTURE SOIL 

************************************************************************ 

3.1 INTRODUCTION 

3.1.1 Nitrogen cycle 

Nitrogen (N) is an essential mineral nutrient for the growth of plants, animals, and 

microbes. The element is more susceptible to microbial transformations than phosphorus 

and potassium in soil. Nitrogen is a major building block for the synthesis of cell peptides 

and protein molecules, which are the basic components of life. Nitrogen occurs in 

microbial cell walls particularly chitin and peptidoglycans, enzymes and the nucleic acids. 

Almost all of the nitrogen found in surface soil horizons is organic, in the form of 

proteins, chitin, urea, amino sugars etc. Viets, (1965) mentions that plants contain more 

nitrogen than any other element with the exception of hydrogen. Roots take up most of the 

plant's nitrogen requirements in the form of mineral nitrogen, largely ammonium and 

nitrate. Nitrate most often reaches the root by mass flow and ammonium by diffusion 

(Killham, 1994). Although the feature of mycorrhizal roots is that they are able to also take 

up a wide range of organic nitrogen compounds, particularly amino acids. 

Most soils are deficient in nitrogen supply due mainly to insufficient mineralisation, 

for example N03' is soluble in water, therefore unavailable by leaching and water transport 

and NH4+-NH3 by volatilisation and via fixation, both by negative charged clay particles 
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and by soil organic matter. A shortage of nitrogen supply, badly affects soil fertility and 

crop-yield, resulting in yellow leaves and retarded growth. 

Black, (1968) reported that it is not surprising that the growth of agricultural plants is 

limited more often by a deficiency of nitrogen than by other element. On the other hand 

excess nitrogen in soil may lead to a weakening of stems and to subsequent lodging of 

grains as well as to a reduction in fruit quality. Brady (1974) mentioned that excess 

nitrogen may reduce resistance to some plant diseases. 

Löhnis (1913), formulated the concept of the nitrogen cycle, following 

identification of the forms of N in soil and the role of micro-organisms in moving N2 from 

one form to another. He represented N as central to the cycle and recognized the 

involvement of protein, amide, NH3, N02-, and N03- forms (Paul, 1996). 

Nitrogen undergoes a number of transformations. The majority of those result from 

microbial activities, most often by bacteria, involving organic, inorganic and volatile 

compounds. This sequence of reactions results in the nitrogen cycle (Fig. 3.1). Cambell 

and Lees (1967), however, mentioned that there is "neither in the soil nor anywhere else, a 

nitrogen cycle; " but for the sake of simplicity a cycle in which the form of the element is 

constantly altered by the activities of micro-organisms can be assumed. 
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THE SOIL NITROGEN CYCLE 
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FIGURE 3.1 Abbreviations: d, denitrification, dan, dissimilatory and assimilatory nitrate 

reduction to ammonium, i, immobilization; m, mineralization; n, nitrification and 

subsequent leaching (1); p, plant uptake; r, root exudation and turnover. 

(from Killham, 1994). 
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3.1.2 Atmospheric Nitrogen deposition into soil 

Nitrogen, particularly from pollution sources, deposits from the atmosphere into the 

soil, often in bulk amounts in the form of nitric oxide (NO) and ammonia (NH3), is known 

as "dry deposition" and in the form of nitrate (NO3) and ammonium (NH4) is called "wet 

deposition" (Killham, 1994). 

The nitrogen cycle can be described briefly as follows: 

a. Nitrogen fixation: The conversion of molecular nitrogen into nitrogenous compounds is 

termed nitrogen fixation, which is largely achieved by six main types of micro-organisms 

in the soil (a) free-living bacteria such as Bacillus, Klebsiella (facultative anaerobes), 

Clostridium (obligate anaerobe), (b) bacteria of the genus Rhizobium, (these fix N2 in the 

root nodules of leguminous plants (c) actinomycetes of the genus Frankia, (these fix N2 in 

the root nodules of non-leguminous plants), (d) free living cyanobacteria on the surface of 

soil (e. g. Nosloc and Anabaena); (e) symbiotic cyanobacteria (found in the lichen 

symbiosis) and (t) rhizocoenoses, N2-bacteria loosely associated with the roots of some 

plants (the bacteria Azotobacter, Beijerinckia and Azospirillum) (Killham, 1994). These 

organisms convert a small amount of the large reservoir of atmospheric N2 to the organic 

form. The non-biological fixation of ammonium by soils can also have a major influence 

on the availability of nitrogen. 

b. Organic nitrogen formation: Nitrogen is then taken up by plants to synthesize proteins 

or nucleic acids. In turn, plants are consumed by animals and the N is converted to other 

simple and complex compounds. 
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c. Soil organic nitrogen: Animal excretion products, tissues of the dead animals and plants 

and dead micro-organisms are deposited in the soil. Micro-organisms use the resultant 

ammonia as aN source and to synthesize proteins. 

d. Organic nitrogen degradation: The complete breakdown of proteins, nucleic acids 

and other compounds, by various micro-organisms yields a variety of amino acids. 

e. Ammonification: The conversion of organic nitrogen to ammonium is termed as 

"ammonification". In this process, amino acids are deaminated by many non-specific 

micro-organisms (e. g. bacteria, actinomycetes and fungi), resulting in ammonia (NH3) 

release, which is volatile, and if solubilized, ammonium (NH4) is formed. 

f. Nitrification: Ammonium (NH4) ions are oxidised to nitrate (NO3) through nitrite 

(NO2) by nitrifying micro-organisms (particularly by Nitrosonionas and Nitrobacter). 

Three types of nitrification are involved: chemoautotrophic, heterotrophic, and 

methylotrophic nitrification. 

g. Denitrification: This is the reduction of nitrate (N03") via intermediates to gaseous 

nitric oxide (NO), nitrous oxide (N20) and free nitrogen (N2) gas, which can be lost to the 

atmosphere. This process is carried out by denitrifying micro-organisms particularly by 

species of Pseudonoms, Bacillus and Paracoccus. Denitrification is usually regarded as an 

anaerobic process (Tiedje et al., 1981), although aerobic denitrification can occur 

(Robertson and Kuenen, I985, b). Microbial reduction of nitrate takes place by two 

processes, one assimilatory, where the ion is reduced to nitrite and ammonium, this 

involves nitrate and nitrite reductases. The products of nitrate assimilation are incorporated 

into cell material. In nitrate assimilation, nitrogen therefore remains in the soil and remains 

potentially available as a plant nutrient. The second reduction process is known as 

dissimilatory, where nitrate acts as an alternative electron acceptor to oxygen in electron 
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transport chain. Dissimilatory nitrate reduction leads to the formation of either ammonium 

or dinitrogen; where dinitrogen is formed, the process is termed denitrification. 

Denitrification, by depleting part of the soil's reserve of an essential nutrients, has 

deleterious effects on crop production. 

N03- - N02 -º NO - N20 - N2 

3.1.3 Nitrogen mineralization 

A process by which organic N2 through the sequence of degradation of proteins, 

amino sugars, and nucleic acids, converts to a more mobile mineral form of nitrogen 

ammonium (NH4`). 

3.1.4 Nitrogen immobilization 

This is the reverse of mineralization, being the conversion of mineral nitrogen, back 

to the organic form of nitrogen in soil. 

Mineralization 

Organic nitrogen Mineral nitrogen 

Immobilization 
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3.1.5 Proteolysis 

Plants cannot utilize the nitrogen as a nutrient, where it is trapped in the form of 

proteins. In order to set free this organically bound nitrogen the first essential process by 

which the microbial enzymes "proteinases", hydrolyse the proteins is known as proteolysis. 

Here, proteins are converted to smaller units "peptides". Examples of some enzymes 

include serine proteinases, sulfliydryl proteinase of plant origin (e. g. papain) and an acid 

proteinase (pepsin). Peptides, are further divided into amino acids by the attack of 

"peptidases", elaborated by micro-organisms. Amino acids, thus liberated serve as both 

carbon and nitrogen sources for heterotrophs and higher plants. Further decomposition of 

amino acids to release carboxyl groups occurs by decarboxylation. Proteolytic enzymes are 

largely produced by some bacteria e. g. Clostridium histolyticum, Cl. sporogenes, and less 

actively by species of the genera Proteus, Pseudomonas, and Bacillus. Several fungi 

including Alternaria, Aspergillus, Mucor, Penicillinrn, and Rhizopus, and soil 

actinomycetes are also extremely proteolytic. 

Protein Proteinsees 
peptides 

Peptidases 
P. amino acids 
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3.1.6 Nitrification 

Nitrification is the biological formation of nitrate or nitrite from compounds 

containing reduced nitrogen (Alexander, 1977). Here the term "reduced" refers to the 

ammonium ion, which is oxidised to nitrite and nitrate, respectively. More recently, the 

nitrification has been defined as " the biological oxidation of any reduced form of nitrogen 

to a more oxidised form" (Killham, 1994). Nitrification is carried out in most of the soils, 

largely by some specific species of chemoautotrophic Gram-negative bacterial genera 

Nitrosomonras and Nitrobacter. 

In the past, nitrification was believed to be beneficial to soil fertility and any limit 

to the process was thought as being detrimental to plant growth. Now, however, it is often 

regarded as undesirable because of the conversion of positively charged ammonium ions, 

which tend to be attracted and bound by negatively charged clay particles and organic 

matter in soil, to the readily leached nitrate state (Alexander, 1965). Nitrification occurs 

throughout the soil. It may not occur, however, in the rhizosphere due to allelopathy. 

Although allelopathy may occur, nitrifiers can be isolated from rhizosphere soil. Net 

nitrification may also often not occur because of uptake and immobilization of nitrate by 

both the plant root and rhizosphere heterotrophic micro-organisms. (Killham, 1994). 

Nitrification in soil is also affected by various environmental factors e. g. pH, oxygen 

supply, temperature, moisture regime, organic matter levels or supply, carbon dioxide 

content and cation exchange capacity of a soil (Mahendrappa et al., 1966). 
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3.1.7 Effects of nitrification 

Nitrification can create undesirable conditions. 

a. Ammonium (cation) can be adsorbed to soil particles, and become relatively immobile. 

b. Nitrate, (anion) is mobile in soil solution which can be leached away from the root zone 

particularly in sandy soils, under heavy rainfall, or where excess irrigation is practiced. 

Nitrate is also susceptible to losses through denitrification. Excess NO, " leached from soil 

often accumulates in ground water, streams and lakes, thereby producing excess plant and 

algal growth, (i. e. "eutrophication"). Nitrate also causes infant and animal 

methemoglobinaemia and form carcinogenic nitrosamines by reaction with other 

nitrogenous compounds. 

3.1.8 The biological aspect of nitrification 

The biological nature of nitrification was first illustrated by Schloesing and Muntz 

in 1877 (Russell, 1973), but the nitrifying bacteria were not isolated until 1889, when 

Winogradsky demonstrated their ability to grow autotrophically on a medium lacking 

organic carbon (Waksman, 1946). In recent years, our understanding of the ecology of soil 

nitrification has changed. The first development has been the realisation that nitrification is 

not as restricted by soil pH as was traditionally thought. The second aspect of this change 

in our understanding about nitrifier ecology is that two types of nitrification are now 

recognised:, chemoautotrophic and heterotrophic nitrification (Killham, 1994). It appears 

that chemoautotrophic nitrification dominates in agricultural soils, whereas a role for 

heterotrophs has been implicated in nitrification in acidic soils (Schmidt, 1982). 
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3.1.9 Chemoautotronhic nitrification 

Chemoautotrophic nitrification is assumed to have carried out in most of the soils, 

by species of two predominant genera, Nitrosomonas and Nitrobacter. 

Chemoautotrophic bacteria are classified into two groups, 

1) The bacteria which derive energy for cell synthesis by the oxidation of ammonium. 

2) The bacteria which derive energy from the oxidation of nitrite. 

The nitrifying bacteria are gram negative, without endospores, aerobic, chemoautotrophs 

and exhibit a variety of shapes including rods, ellipsoids, cocci and spirilla (Alexander, 

1977). These bacteria are typically obligate chemolithoautotrophs and hence rely upon the 

oxidation of reduced nitrogen for their energy, while synthesizing all of their cell 

constituents from carbon dioxide (Schmidt, 1982) 

Meiklejohn, (1953; 1954) mentions that species of the genus Nilrosomonas are 

generally considered to be the most important group involved in the first oxidation; while 

species of Nitrobacter are important in the second. However, according to Belser and 

Schmidt (1978), a number of different genera of ammonium oxidising bacteria could be 

isolated from soils. The number of NH4+ oxidisers found to vary from zero to one million 

or more g-1 of soil. (Alexander, 1977); the highest counts being found at soil pH more than 

6.0. 

Ammonia oxidisers are classified on the basis of shape, membrane constituents, and 

G+C contents (Table 3.1). Nitrosomonas and Nitrososppira, have been identified as the most 

common NHS' oxidisers in soil. (Paul, 1996). The ammonium oxidizers appear incapable 

of using organic compounds, even as partial energy sources, where as certain strains of 

nitrite oxidisers (Nitrohacter) can grow heterotrophically and are facultative rather than 
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obligate autotrophs (Smith and Hoare, 1968: Bock, 1976). They are, however capable of 

assimilating organic compounds such as yeast extract and amino acids which may prove 

growth stimulatory (Delwich, 1965; Clark, 1967). 

Many scientists, in the past, thought that the nitrifying bacteria are obligate 

autotrophs, which obtain energy from the oxidation reactions occuring in nitrification. 

Carbon was considered to be derived from CO2 (for cell synthesis), carbonates and 

bicarbonates, using the energy derived from oxidative reactions. Until recently these 

bacteria were thought to be incapable of utilizing organic nutrients. 

Recently, Smith and Hoare (1968) found that Nitrobacier agilis could grow on 

acetate without nitrite or CO2. This suggests that this bacterium can grow as a facultative 

autotroph. The ability to switch from CO2 and inorganic N to acetate could confer 

advantages when growing in the environment, if the former were rate limiting, i. e. 

nitrifying bacteria can now be considered to be mixotrophs. 

Schimidt (1982) indicated, these organisms are typically obligate 

chemolithoautotrophs, oxidising reduced nitrogen for their energy whilst synthesizing all of 

their cell constituents from carbon dioxide. In the ammonium oxidizing bacteria, ammonia 

rather than ammonium crosses the cytoplasmic membrane and is oxidised to 

hydroxylamine (Suzuki et al., 1974). 

The chemical reactions carried out thus, 

NH4' + 1/202 +H -* NH2OH + H+ 

The oxidation of hydroxylamine resulting in the production of nitrite and energy. 
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NH2OH + 02 -3 HNO2 + H2O 

The oxidation of nitrite to nitrate occurs by the addition of oxygen atom from 

water and not molecular oxygen. 

N02 + 1/202 - NO3 
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TABLE (3.1) CHEMOAUTOTROPHIC NITROGEN OXIDISERS 
(from Paul, 1996) 

Genus Species Characteristics and habitats 

Nitrosomonas europeae Oxidize NH4' to N02" 
Rod to ellipsoidal, intracytoplasmic 
membranes as flattened vesicles, G+C 
51%. Soil, water, sewage. 

Nitrosospira briensis Acid soils 

Nitrosococcus nitrosiis Spherical to ellipsoidal. Soil, marine. 
oceanus Flattened membrane vesicles. Marine. 
mobiles Spheres, additional cell wall layer. Marine. 

Nitrosovibrio lenuis Slender curved rods, G+C 54%. Soil 

Nitrosolobus multiformus Pleomorphic, lobate cells, central 
compartments surrounded by peripheral, 
G+C 56.4%. Soil. 

Nitrobacter winogradskyi Rod to pear shaped, no separate peptido- 
glycon cell wall. Soil 

hamburgensis 
vulgaris Cytoplasmic inclusions, G+C 60-62%, 

grow heterotrophically, soil 

Nitrococcus mobilus Marine isolate, spheres, tibular, 
cytomembrances, halophilic, G+C 61.2%. 
Marine. 

Nitrospina gracilus Marine non-motile, rods, G+C 58% 

Nitrospira marina Non-motile spirals, no intracytoplasmic 
membrane, G+C 50.5% 
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3.1.10 Heterotrophic nitrification 

The involvement of heterotrophs in nitrification was first suggested in 1894. Only 

recently however, has heterotrophic nitrification been seriously considered as a soil process. 

A large number of heterotrophic nitrifiers have been found to be responsible for carrying out 

the oxidation of reduced forms of nitrogen. These micro-organisms include Gram negative, 

Gram-positive bacteria, spore and non-spore formers, anaerobes (Alexander, 1965), fungi 

(Eylar and Schmidt, 1959) and species of actinomycetes (e. g. N ccirdia corallina) (Hirsch 

el al., 1961). The heterotrophic bacteria include Arthrobacler globiformis, Aerohacter 

aerogenes, Mycobacterium phlei, Streptomyces griseus, 7hiosphaera, and Pseudomonas 

spp. and the major organisms involved appear to be fungi as Aspergillus. flavus, (first 

isolated as a nitrifier in 1954) and spp. of Penicillium and C'ephalosporium (Paul, 1996). 

Heterotrophic nitrification by fungi is well documented (Schmidt, 1982, Killham, 1986). 

Fungi have also been reported to be able to produce substantial amounts of nitrate by 

nitrification. and are considered to be the most numerous and efficient of the heterotrophic 

nitrifiers (Odu and Adeoye, 1970). 

Fungal nitrification is likely to be less limited by acidic conditions and should be 

more resistant to drought stress and alleleopathic chemicals than would autotrophic bacteria. 

(Paul, 1996). Aleem (1975) mentioned that the biochemistry of fungal nitrification has not 

been fully elucidated and that it is unclear whether fungi nitrify using an inorganic pathway, 

with hydroxylamine and nitrite as intermediates, or else use an organic pathway involving 

the oxidation of an amino or amide to a substituted hydroxylamine followed by oxidation to 

a nitrose and then to a nitro-compound (Doxtader, 1965). Heterotrophic nitrifiers are now 
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known to be capable of producing N03- from both inorganic and organic sources (Paul, 

1996). (Table 3.2) 
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TABLE (3.2) NITROGENOUS SUBSTRATES AND PRODUCTS OF SOME 

HETEROTROPHIC NITRIFYING MICRO-ORGANISMS. 

(from Alexander, 1965). 

Micro-organisms Substrate Product 

Bacteria 
Agrohacterinm spp. Pyruvic oxime nitrite 
Azotobacter chroococcum NH4 bound NHZOH 
Bacilhis sp. NH4 nitrite 
Clostridium hiityricum N2 nitrate 
Corynehacterium simplex nitrophenols nitrite 
Alycohacterium rubrum NH2 nitrite 
Pseudomonas , spp. NH20H nitrite 
Pseudomonas methanica NIH4 nitrite 

Actinomyicetes 

Micromonospora sSJ) NH4 nitrite 
Nocardia spp. NH4 nitrite 
Nocardia corallijra pyruvic oxime nitrite 
Nocardia sf). P-nitrobenzoate nitrite 
Streptomyces spp. NH4 nitrite 

Fun 2i 

Aspergillrus flcrvrus NH4 bound NHZOH, 
nitrite 
ß-nitropro- 
ionate, nitrate. 

Aspergillus flubs amino aspergiI us acid 
A spergilhis niger NH4 NH2OH 
Aspergillus wentii nitrite nitrate 
Cephalosporirnn s/). NH4 nitrate 
Penicillium alrrovenehim NH4 
ß-nitropropionate 
Penicillirunr spp. nitrite nitrate 
Penicillium sppp. amino N-formyl 
hydroxy- 

aminoacetate 
Sterigmalocystis nigra NH4 NH2OH 
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3.1.11 Methylotrophic nitrification 

Methylotrophic nitrification, is a well established process which is carried out by 

methane oxidizing bacteria, capable of oxidising ammonium to nitrite and at a rate 

comparable to other heterotrophic nitrifiers (Whittenbury et al., 1970; Verstraete, 1981). 

Methylotrophic nitrification is of recent interest since, like Nitrosomonas but in contrast to 

other nitrifying heterotrophs, the methylotrophs appear to be able to generate NADH from 

the oxidation of NHZOH (Dalton, 1977). This suggests that their nitrification capacity 

might be directly linked to their energy metabolism. Methylotrophs have a low tolerance to 

ammonium i. e. only 200 mg NH4-N 1"1 compared to levels of 3000 mg NH4+-N 1"1 

tolerated by autotrophic nitrifiers (Verstraete, 1981). It is therefore unlikely that they will 

compete successfully with the autotrophic nitrifiers for ammonium oxidation. However, 

reports on methylotrophic nitrification in acidic soils have also appeared where autotrophic 

nitrification is inhibited (Verstraete, 1981; Kreitinger et al., 1985). 

The aim of the work presented in this Chapter was to determine the effects of 

silicon compounds added to different soils and to study these effects on ammonification 

and nitrification processes. 
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3.2 MATERIALS AND METHODS 

3.2.1 Effect of sodium silicate, silicic acid and rock potash on nitrification in 

agricultural soil 

To triplicate samples of agriculture soil (100 g; sieved <4mm and dried overnight at 

room temperature), in polythene bags, was added 10 ml (100 µg ml-' NH4+-N), plus 1g of 

the silicon compound, were added and mixed thoroughly. Controls were set-up lacking added 

silicon. All the samples were incubated at 25°C. After incubation, lg soil was added to 20 ml 

KCl (1.5 M), for ammonium-N and 20 ml deionised water (autoclaved), for the extraction of 

nitrite-N and nitrate-N ions, in screw capped glass bottle (150 ml). The contents were shaken 

for 15 minutes at 70 rpm using orbital shaker and filtered through Whatman No. I filter 

paper. Fresh extracts were analysed every week, for the determination of ammonium-N, 

nitrite-N and nitrate-N by spectrophotometer. (see section 3.2.3) 

3.2.2 Effect of different amounts of sodium silicate, silicic acid and rock potash on 

nitrification in agricultural soil 

To agricultural soil (100 g; sieved <4mm and dried overnight at room temperature), in 

polythene bags, were added 10 ml (100 pg ml"' NH4+-N), plus Ig, 5g, log and 20g, each 

silicon compound per soil bag in triplicates, were added and mixed thoroughly. Controls 

were set-up lacking added silicon. All samples were incubated at 25°C. 

The N-ions were determined as described in section 3.2.3. 
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3.2.3 Analysis of inorganic N ions 

(A) Indophenol blue method for the determination of ammonium-N (NH4+-N) 

(Wainwright & Pugh 1973) 

To filtrate (2 ml) was added, distilled water (7 ml), *phenolate reagent (5 ml), and 

sodium hypochlorite (5 ml) solution (0.9% v/v active chlorine), mixed and incubated at 25°C 

for 20 minutes in the dark. The intensity of indophenol-blue-ammonium-complex was 

measured at 630 nm using a spectrophotometer. The concentration of NH4-N was 

determined by reference to a standard curve (0-50 µg NH4+-N ml"') prepared from a standard 

solution of ammonium sulphate (NH4)2SO4. 

(a) Standard ammonium solution: was prepared by dissolving 0.4717 g ammonium 

sulphate (NH4)2SO4 in I litre distilled water for (100 µg NH4+-N ml-') 

(b) Phenol solution: was prepared by dissolving phenol (62.5 g) in ethanol (25 ml) and 

adding acetone (18.5 ml) to give a total of 100 ml. The phenol solution was stored in the dark 

at 4°C. 

(c) *Phenolate reagent: was prepared by mixing 20 ml of phenol solution with 20 ml 

caustic solution (27% NaOH w/v) and diluting to 100 ml. The reagent was prepared fresh 

daily. 
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(B) Analysis of nitrite-N ( N02--N ) (Hesse, 1971) 

Filtrate (2 ml) was added to a 50 ml volumetric flask, diluted with distilled water 

(40 ml) and *diazotising reagent (1 ml) was added and incubated at room temperature for 5 

minutes. **Coupling reagent (lml) was added and the volume was made up to mark with 

distilled water. After 20 minutes incubation at room temperature, the intensity of the pink 

colour formed was measured at 520 nm using a spectrophotometer and the amount of nitrite 

was determined by reference to a calibration curve (0-10 µg NO2 `-N ml-) prepared from a 

standard solution of NaNO2. 

(a) Standard nitrite solution: was prepared by dissolving 0.4929 g sodium nitrite NaNO2 

(100 µg NOz" -N ml") in I litre distilled water volumetrically. 

( b) * Diazotising reagent: 0.5g of sulphanilamide was added to 2.5 N HCl (100 ml) and 

dissolved. The reagent was stored in an amber bottle in a refrigerator at 4°C. 

(c )**Counling reagent: 0.3 g of N-(1-naphthyl)-ethylenediamine hydrochloride was 

dissolved in 0.1 N HCI (100 ml). The reagent was stored in an amber bottle in a refrigerator 

at 4°C. 

(C) Chromotropic acid method for nitrate-N determination (Sims and Jackson, 1971) 

To filtrate (3 ml), *chromotropic acid reagent (7 ml) was added, mixed, cooled in cold 

water and incubated at 40°C for 45 minutes. The intensity of the yellow CTA-N03 complex 
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was measured at 430 nm using a spectrophotometer. The N03 -N concentration was 

determined by reference to a standard curve (0-5 pg N03- -N m1-1), prepared from a standard 

solution of KNO3. 

(a) Standard Nitrate Solution: 0.722 g Potassium nitrate (KNO3) were dissolved in 

distilled water and made up to I litre volumetrically, for 100 µg N03" -N m1". 

(b) Chromotropic acid reagent (C19 H608S2 Na2): 

A 0.1% (v/v) stock solution of chromotropic acid in concentrated sulphuric acid 

(H2SO4) was prepared by dissolving 1.84g chromotropic acid in litre H2SO4. This solution 

was stored in an amber bottle in a refrigerator at 4°C for several months. 

(c) *A working chromotropic acid solution (CTA): 

A working CTA-solution (0.01% v/v) was prepared by diluting 100 ml of stock 

solution to 990 ml with concentrated sulphuric acid (H2SO4) then added 10 ml concentrated 

HCl using fume cupboard. This solution was stored at 4°C for several weeks only. 

3.2.4 Determination of dry weight 

Soil (in triplicate) was dried at 60°C overnight and the dry weight of the soil was 

determined. 
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3.2.5 Determination of pH 

The pH of the soil solutions were determined by glass electrode pH meter. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Effect of silicon compounds on nitrification in the agriculture loam soil 

The effect of sodium silicate , silicic acid and rock potash on nitrification in the 

agricultural loam soil is shown in Fig 3.2 (a-c). Sodium silicate was the only silicon 

compound to have an pronounced, consistent effect on soil nitrate concentrations over the 

28 day incubation period, the effect being to increase nitrate concentrations, by a factor of 

around 2.0-2.5. None of the added silicon compounds had a pronounced effect on soil 

nitrite concentrations (Fig. 3.2 b), but in addition to increasing nitrate concentrations, 

sodium silicate also increased ammonium concentrations at day 14 (Fig. 3.2 a). 

As was seen in the Chapter 2, the addition of sodium silicate generally leads to an 

increase in soil pH, a finding confirmed by the results shown in Fig. 3.3. Since nitrification 

in agricultural loam soils generally increases with increase soil pH 

(Wainwright, 1974), the increases in nitrate concentrations seen following the addition of 

sodium silicate can be explained on the basis of a pH effect, rather than to a direct 

stimulatory effect of silicon on the process. 

The above conclusion is given further credence by the data shown in Figs. 3.4 and 

3.5. The data given in Figure 3.4 show that soil nitrate concentrations increase with 

increasing amounts of added sodium silicate, but not silicic acid and rock potash. Soil 

ammonium concentrations again increase with increasing amounts of added sodium 

silicate, but not following addition of the other two silicon compounds. An additional 

finding is that nitrite concentrations increase to, what are unusually high levels, for this ion 

in soil. Fig 3.5 again shows that the effects of sodium silicate on the concentrations of N- 

ions results from a resultant increase in soil pH. 
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It used to be assumed that soil nitrification was always a beneficial soil process. 

However, nitrification is now commonly regarded as being detrimental to both the 

environment and the N-economy of agricultural soils. This is because it leads to an increase 

in nitrate which can (a) be readily leached from the soil, (b) be lost via denitrification, (c) 

cause eutrophication in water courses and (d) cause pollution of water, leading to blue baby 

disease and possibly gastric cancers. As a result of these detrimental effects, nitrification is 

now often regarded as a somewhat detrimental process. Indeed, particularly in the USA, 

nitrification inhibitors (e. g. N-serve) are added to certain agricultural soils to inhibit this 

process. Rock potash and silicic acid did not stimulate nitrification in the agricultural loam 

studied here, and so could be added without any detrimental effect on soil fertility or 

the environment (at least in relation to this part of the N-cycle). Addition of sodium 

silicate, in contrast, increased the concentration of soil nitrate, ammonium and nitrite. The 

fact that nitrate formation is regarded as detrimental to soil fertility has already been 

commented upon. Although ammonium can be used as aN source by many plants, when 

produced in high concentrations, particularly at high soil pH (as seen following sodium 

silicate addition) this ion (NH4+) can be lost to the atmosphere by the process of 

ammonium volatilisation, thereby constituting a third 

(the other two being nitrate leaching and denitrification) means by which sodium silicate 

addition could cause N to be lost from soils. The formation of the high concentrations of 

nitrite seen following sodium silicate amendment (especially at high application rates) 

could also be regarded as detrimental to soil fertility, since nitrite, even at lower 

concentrations than produced here, can be toxic to plants. As a result of these effects on 

nitrification, while the addition of rock potash and silicic acid to soils would appear not to 

be detrimental, the addition of sodium silicate to agricultural loam soils would appear to be 
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potentially detrimental, because of its ability to increase concentrations of soil ammonium, 

nitrate and nitrite. 



FIG: 3.2 

Effect of added silicon on nitrification (adding 100 µg N11 -N m1') in agricultural loam 

soil. Means of triplicates, ± Standard error. 

(a) µgNH4+-Ng'1 dry weight soil. 

(b) µg NO2 -N g" dry weight soil. 

(c) µg NO3 -N g'1 dry weight soil. 

-a control (soil lacking added silicon) 

soil containing silicic acid 

-0- soil containing sodium silicate 

m- soil containing rock potash 
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FIG: 3.3 

Effect of added silicic acid, sodium silicate, and rock potash on the pH of agricultural soil, 

used for the determination of nitrification. 

---o- control (soil lacking added silicon) 

A soil solution containing silicic acid 

" soil solution containing sodium silicate 

soil solution containing rock potash 
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FIG: 3.3 
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FIG: 3.4 

Effect of 1,5,10 and 20 g of silicon compounds on nitrification (adding 100 pg NIa+-N 

m11) in agricultural loam soil. (Means of triplicates, ± Standard error). 

(a)µg Ni -Ng'1dry soil 

(b) µg NO2 -N g'l dry soil 

(c) µg N03'. N g'' dry soil 

A soil containing added silicic acid 

-0- soil containing added sodium silicate 

E- soil containing added rock potash 



84 

(a) 

80 

70 

60 

50 

40 

30 

20 

10 

0 

(b) 

30 - 

25 

20 

15 
en 

10 

ö 
z5 

0 

(c) 

600 

"ý 500 

400 

300 

ZL 
z 200 

ioo z0 

FIG: 3.4 

control 15 10 

Zý 

20 

/ 

/ 

/ 

/ 

control 15 10 20 

silicon concentration (g ) 

a silicic acid 

sodium silicate 
f rock potash 

control 15 10 20 



FIG: 3.5 

Effect of different amounts of silicic acid, sodium silicate, and rock potash on the pH of 

agricultural soil, used for the determination of nitrification. 

soil containing added silicic acid 

" soil containing added sodium silicate 

m- soil containing added rock potash 
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CHAPTER 4- EFFECT OF SILICON ON SULPHUR OXIDATION IN 

SOIL 

******x******************************************************************* 

4.1 INTRODUCTION 

4.1.1 Sulphur cycle 

Sulphur (S) is an essential nutrient required by plants, animals, humans and 

microorganisms. This element is widely distributed in nature. It is found in the sun, stars, 

meteorites, the ocean, the earth, and in all life forms. It is estimated that sulphur is the ninth 

most abundant element in the universe. Despite its availability in large amounts in the earth's 

crust, sulphur supply in the soil is insufficient for the growth of plants. Sulphur deficiencies 

are found to occur in soils throughout the world (Bixby and Beaton, 1970). Sulphur may be 

obtained from the weathering of soil minerals, from the atmosphere, and from organically 

bound sulphur. on the earth's surface it is available as elemental sulphur, sulphides 

(reduced), and sulphates (oxidised). The most important sulphides are iron pyrite, FeS2; 

chalcopyrite, CuFeS2; sphalerite, ZnS; and galena, PbS and the naturally occurring sulphates 

are anhydrite, CaSO4; gypsum, CaSO4.2H20 and kieserite, MgSO4. H20. Plants contain as 

much sulphur as phosphorus, and sulphur is as important as nitrogen in the formation of 

proteins (Killham, 1994). Sulphur and nitrogen, both are constituents of protoplasm. Plants 

obtain their sulphur containing amino acids (e. g. cystine and methionine) by reducing 

dissolved sulphate. Sulphur is also an important component of several organic compounds 

that form enzyme systems and B vitamins, thiamine, biotin, and lipoic acid. It is also 
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available in the tissues and excretory products of animals as free sulphates, taurine, and 

rarely thiosulphate and thiocyanate. Sulphur occurs in the soil in both organic and inorganic 

states and is readily metabolised in soil. The inorganic fraction is comparatively smaller than 

the organic. It is assumed that over 90% of the sulphur in most non-calcareous, non-tropical, 

surface soils is in organic forms, about half in the form of sulphate esters and esters with 

C-O-S linkage (Tisdale et al., 1985), about 20% in the form of sulphur directly bonded to 

carbon such as sulphur containing amino acids (Biederbeck, 1978). Sulphur ranges from 20- 

2000 µg g' in most of the agricultural soils and organic, volcanic ash and tidal-marsh soils 

contain more than 3000 µg g' and some, the desert soils contain 10,000 µg g"' (Paul, 1996). 

Sulphur inputs in the soil can occur through the deposition in rain and snow, in dry 

particulates and by direct absorption of the gases. Sulphur input varies from up to 100 kg S 

ha' y' in areas close to industrial pollution sources to less than 5 kg S ha-' y"' in rural areas 

distant from these sources (UNEP, 1991). By far the dominant form of sulphur taken up by 

plants and soil microbes is sulphate (S042"). Sulphur like nitrogen, undergoes several 

transformations in soil which together form the sulphur cycle (Fig. 4.1). The reactions that 

occur in sulphur cycle, are largely mediated by micro-organisms (Brown, 1982). Sulphur 

transformations in the soil are briefly given as (a) sulphur oxidation (b) sulphur reduction, (c) 

protein synthesis (d) decomposition of protein and its sulphur containing derivatives. 
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Killham, 1994) 
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4.1.2 Mineralisation 

Sulphur mineralisation is the conversion of sulphur from organic to inorganic forms 

by biological and chemical processes. It also plays a major role in the metabolism of macro- 

organisms. Sulphur mineralisation is therefore an important means by which sulphate is 

mobilised in soils as well as acting as a source of H+ ions (Tabatabai, 1985). The 

mechanisms, responsible for sulphur mineralisation are not fully known but it has been 

suggested that two mechanisms (1) biological and (2) biochemical are involved in sulphur 

mineralisation (McGill and Cole, 1981). 

(1) Biological mineralisation 

Sulphur, is present in amino acids in the proteins of plants, animals, and microbes and 

act as substrate, that can be utilized by microorganisms. Carbon-bonded sulphur (e. g. amino 

acids) is mineralised by micro-organisms during the oxidation of carbon for energy 

requirement (Killham, 1994). Some of the inorganic products are utilized by soil micro- 

organisms for cell synthesis and the remainder is released into the environment. Under 

aerobic conditions, the end product of inorganic sulphur oxidation is sulphate whereas, 

decomposition of proteinaceous matter, under anaerobic conditions results in the formation 

of hydrogen sulphide (H2S) and odoriferous mercaptans in soil (Alexander, 1977). 
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(2) Biochemical mineralisation 

This process occurs when non-carbon-bonded organic sulphur (ester sulphates) is 

mineralised through the enzymatic catalysis (sulphatases, formed by micro-organisms) 

external to the cell membrane (Killham, 1994). Mineralisation increases in the presence 

of oxygen, temperature in the mesophilic range, (Tabatabai and A1-Khafaji, 1980); 

moisture level and the addition of lime to acid soils (Williams, 1967). 

4.1.3 Sulphur oxidation 

The oxidation of reduced sulphur in soil is usually regarded as a microbial process 

(Wainwright, 1978a), although some non biological oxidation of the element has been 

demonstrated in sterile soils (Nor and Tabatabai, 1977; Wainwright and Killham, 1980). In 

the presence of available electron acceptors, sulfide, elemental sulphur, thiosulphate, 

tetrathionate, trithionate and sulphite are oxidised by both chemical and biological pathways: 

4 SH -b So - 52032 - 54062 --" 
S3062 

--º S032 -+ SO2 

Sulphide elemental thiosulphate tetrathionate trithionate sulphite sulphate 
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4.1.3.1 The role of microorganisms in sulphur oxidation 

A variety of micro-organisms are capable of oxidising sulphur in the environment 

including members of the genus Thiobacillus, a number of heterotrophs, the photosynthetic 

sulphur bacteria, and the colourless, filamentous sulphur bacteria (Burke et al. 1974). 

Colourless S-oxidising bacteria and their characteristics are presented in the tables 4.1 and 

4.2. Wainwright, (1978b) has commented, that in most soils only the thiobacilli, and 

heterotrophs play an important role in sulphur oxidation, the exceptions being flooded soils 

where the aquatic bacteria predominate. These microorganisms are divided into three groups, 

(1) The chemotrophic sulphur bacteria (2) heterotrophic sulphur bacteria and (3) 

phototrophic sulphur bacteria. 

(1) The chemotrophic sulphur bacteria 

This group of bacteria is variable in both morphology and physiology ranging from 

specialist obligate chemolithotrophs via facultative chemolithotrophs which can grow 

mixotrophically, to specialist heterotrophs, some of which may not benefit directly from the 

oxidation of reduced sulphur compounds (Kuenen and Beudeker, 1982). It is the most 

studied group of soil sulphur oxidisers. Out of the nine species of thiobacilli, five have been 

studied in detail. In most soils, oxidation is dominated by the thiobacilli. These bacteria are 

generally gram negative, nonsporulating rods, deriving their energy from the oxidation of 

sulfides, elemental sulphur, thiosulphate, tetrathionate and thiocyanate, while CO2 or 

bicarbonate supplies the carbon for chemoautotrophic growth. (London and Rittenberg, 

1967). In addition they can be subdivided into those growing on neutral pH and those 
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which live at acidic pH. They can also grow both at acidic and alkaline pH values but 

Vitolins and Swaby (1969) reported that thiobacilli are important sulphur oxidisers 

only at pH values below 7, while heterotrophs are the primary sulphur oxidisers in 

neutral to alkaline soils (pH 6.0-7.5). The reduction in pH resulting from sulphuric 

acid formation by thiobacilli may also control some diseases of plants such as potato 

scab (Brown, 1982). Thiobacilli have been found in all soils in great numbers, 

particularly in soils receiving applications of sulphur as a fertilizer, either in organic 

(sewage, etc. ) or inorganic forms. Finely-powdered elemental sulphur is a useful 

source of fertilizer sulphur, being readily oxidisable in soil to plant-available sulphate 

yet possessing some slow release characteristics (Chapman, 1997). Thiobacilli are 

generally regarded as the major sulphur oxidisers in agricultural soils. Incorporation 

of elemental sulphur or reduced forms of sulphur compounds in soil, increases 

dramatically the numbers of thiobacilli. (Burns, 1967; Alexander, 1977; Adamczyk- 

Winiarka et al., 1975). Wainwright, (1984a) mentions that there are reports of soils 

which are deficient in thiobacilli but which are still able to oxidise sulphur. 

LopezAguirre, (1999) demonstrates that sulphur application and/or leaching had an 

increasing effect on the populations of putative nitrogen-fixers, 7hiobacillus 

thioparus-like, 7: ihiooxidans-like and total bacterial population also increased when 

sulphur was added, however, populations of fungi and actinomycetes decreased in 

soils amended with sulphur while putative nitrogen-fixing organisms were unaffected. 

Despite these, however, there have been few studies on the species composition, 

distribution and autecology of sulphur oxidising micro-organisms (Wainwright, 

1984a). 
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TABLE (4.1) COLOURLESS SULPHUR OXIDISERS. 

(Modified after Kuenen and Beudeker, 1982) 

Obligate chemolithotrophic S-bacteria Facultative chemolithotrophic S-bacteria 

(a) Aerobic bacteria 

Thiobacillus thiooxidans T. flovellus 
T neapolitanus T intermedius 
T. ferrooxidans T. acidophilus 
T. kabobis T organoparus 
T tepidarius * Sulfolobus acidocaldarius 
Thiomicrospira pelophila Sulfolobus brierleyi 

(b) Facultative anaerobic bacteria 

T. denitrificans 
T thioparus 
Thiomicrospira denilrificans 

Chem ofithoheterotrophs Heterotrophs 

Thiohacillus A2 
Thermothrix thiopara 
Paracoccus denilrificans 
Thiosphaera pantotropha 

Unclassified 

T. peromelaholis Beggialoa spp. Thiovulum 
Pseudomonas sp. Pseudomonas spp. Thiophysa 

Thiothrix 
Thiospira 
Thioploca 

(* From: Wood and Kelly, 1985; ** From: Robertson and Kuenen, 1983 ) 
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TABLE (4.2) CHARACTERJSTCS OF SOME CHEMOTROPHIC 

SULPHUR - BACTERIA. (Modified from Paul, 1996) 

Bacterial characteristics 

Eubacteria 

Family Thiobacillaceae: All gain energy from S oxidation, and reduce CO2 by the Calvin 
cycle. 

Thiobacillus: Motile, nonspore forming rods (0.3x1-to3- µm) 
Thiomicrospira. Motile spirilloid cells 
Thiosphaera. Nonmotile spherical cells sometimes in chains. 

Thiobacillus thiooxidans. Strictly aerobic, motile, gram negative, has a pH growth range 2 
to 5. 
Thiobacillus thioparus. Grows best at 25-30°C; optimum pH 5 to 8. Some strains grow on 
thiocyanate. 
Thiobacillus denitrificans. Similar to T. thioparus, can substitute NO3- for 02 as an electron 
acceptor with the loss only to the atmosphere. 
Thiobacillus ferrooxidans. A strict aerobic bacterium, pH ranging from 1.5 to 5, oxidizes 
ferrous iron (Fe2+) as a source of energy and is of major significance in the production of 
acid mine water and the commercial leaching of ores. 
Thiobacillus iniermedius. A facultative chemolithotroph, pH 3 to 7, capable of using S203 
2- as an electron donor. Growth is stimulated by the presence of organic matter. 

Family Beggiatoaceae: Multicellular, gram negative filamentous, gliding motility and S 
inclusions. 
Beggiatoa. Single filaments. 
Thioploca. Filaments in bundles enclosed in sheath. 
Thiothrix. Attached rigid filaments, produce gonidia. 

Archaebacteria 

Family Sulfolobaceae: Extremely thermoacidophilic with no peptidoglycan in cell wall, 
contain isoprenyl ether membrane lipids. 
Sulfolobus. Irregular nonmotile coccoids. 
Acidianus. Irregular nonmotile coccoids which also reduce S to HS" 
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(2) Heterotrophic sulphur-oxidizers 

Sulphur oxidation by heterotrophic bacteria was demonstrated by Guittoneau (1927), 

and later, Starkey (1934) confirmed that heterotrophic bacteria isolated from soil could 

oxidise thiosulphate to sulphate via tetrathionate. The involvement of heterotrophic 

microorganisms in sulphur-oxidation in soil, however, has become increasingly recognised, 

(Killham, 1994). A wide range of hetrotrophic bacteria (Friedrich and Mitrenga, 198 1), fungi 

(Killham et al., 1981) and actinomycetes (Yagi et al., 1971) can oxidise various forms of 

reduced sulphur in vitro. The bacterial species of the genera Arthrobacter, Achromobacter, 

Bacillus, Beggialoa Flavobacterium, Micrococcus, Mycobacterium, Pseudomonas, 

Sphaerolihus are capable of oxidizing the sulphur. Unlike the S-oxidising autotrophs, 

heterotrophic bacteria do not appear to gain energy from the oxidation of sulphur (Trudinger, 

1967; Schook and Berk, 1978). Various common heterotrophic soil bacteria (Bacillus 

mycoides, B. fluorescens) are capable of oxidising small amounts of elemental sulphur, in 

nutrient solutions containing organic nitrogen and sources of energy (Alexander, 1977). 

Heterotrophs are believed to be the primary S-oxidisers in neutral and alkaline soils, (Paul, 

1996). Heterotrophic S-oxidation seems to be exactly the same as heterotrophic 

nitrification for the following reasons, as mentioned by Killham (1994), 

1- Neither process has been shown to be energy linked. 

2- S-oxidising and N-oxidising heterotrophs can utilise both inorganic and organic forms of 

sulphur and nitrogen, unlike their autotrophic counterparts. 
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3- Although their exact role and significance in soil is uncertain, it seems that heterotrophic 

S-oxidisers and nitrifiers only dominate certain specific soil environments that favour their 

growth/activity at the expense of the autotrophs. 

The ability of fungi to oxidise S has long been studied by Armstrong (1921); and 

Abbot, (1923), but has only recently been emphasized (Wainwright and Killham, 1980; 

Germida, 1985; Grayston et al., 1986). Some heterotrophic S-oxidising fungi are given in the 

Table 4.3. Fungi such as Aspergilliis niger, Penicillium cyclopium and Botrytis cülerea which 

were shown to oxidise thiosulphate to sulphate, in vitro, occasionally forming tetrathionate as 

intermediate. Wainwright, (1984b, 1984a) reported that the soil fungi have mainly appeared 

to be capable of sulphur oxidation, but thermophilic marine fungi like Asteriomyces 

cruciatus are also involved. Killham et al. (1981) reported that sulphur oxidation carried out 

by Aureobasidium pullulans is an enzymatic process, and it is therefore unlikely that the 

process is fortuitous and incidental to normal metabolism. However fungi are regarded as 

strict heterotrophs and unlikely to gain energy from sulphur oxidation. Armstrong (1921) 

also reported biomass increases when fungi are grown in thiosulphate. The growth of hyphae 

of vesicular arbuscular mycorrhizal fungus Glomus calledonium is also stimulated by 

thiosulphate, metabisulphate, and sulphate (Hepper, 1984). 

Filamentous fungi and yeasts oxidise powdered sulphur, and several heterotrophic 

bacteria convert thiosulphate to tetrathionate in the presence of organic nutrients (Alexander, 

1977). Wainwright (1984a) summarized the advantages which could be gained by fungi from 

sulphur oxidation. 

a) Fungi oxidise sulphur to sulphate to meet their nutritional requirements for S. However 

large quantities of free sulphates are formed as the result of chemical and microbial oxidation 
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of sulphur, which is present in the environment. In this case fungi have no need to oxidise 

sulphur for nutrition. 

b) The formation of thiosulphate and tetrathionate during sulphur oxidation, can protect fungi 

from the toxic effects of heavy metals when growing in vitro (Wainwright and Grayston, 

1983). These ions function as ligands, complexing metals or reducing to thiols and making 

them unavailable. 

c) Many fungi accumulate elemental sulphur which acts as a self-inhibitor of spore 

germination (Pezet and Pont, 1977). Fungal sulphur-oxidation would remove such 

germinaton inhibitors. 

d) Fungi may avoid sulphur toxicity by oxidising the elemental sulphur to sulphate (Tweedy, 

1969). Fungi can reduce the elemental sulphur to H2S, which is toxic in nature, therefore 

these powerful toxins can be removed by the oxidation of elemental sulphur and H2S. 

Skerman et al. (1957) suggested a similar mechanism for toxic-protection to explain the 

ability of the heterotrophic bacteria Sphaeroiilus ratans and Beggiatoa sp, to oxidise H2S. 

Pepper and Miller (1978) reported that the rate and magnitude of heterotrophic oxidation was 

similar to that of 7hiobacillus Ihiooxidanrs under optimum conditions. 
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TABLE (4.3) HETEROTROPHIC SULPHUR OXIDISING FUNGI. 

Fungi References 

Aspergillus niger Armstrong (1921) 
Penicillium cyclopium 
P. glaucum 
Botrytis cinerea 

Fusarium solani Wainwright and KiIIham (1980) 

Aureobasidium pullulans Killham et al. (1981) 

Alternaria tennis Wainwright (1984a) 
Cephalosporium sp. 
Penicillium decumbens 
Sporotrichiunt thermophile 
Asteriomyces crucicalus 

Geosmithia argillacea Wainwright (1984b) 
G. emersonii 
Myceliophthora thermophila 
Absidia glauca 
Aspergillus fumigatus 
Fusarium episphaeria 

F. tricinctum Germida (1985) 
Mortierella isabellina 
Penicillium pinetorum 
Trichoderma hamantum 
T. viride 
Zygorhynchus moelleri 
Z. vuilmanii 

Trichoderma harziaiium Grayston el al. (1986) 
Mucor flavus 
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(3) The phototrophic sulphur bacteria 

The phototrophic sulphur bacteria have been found under anaerobic environments, 

e. g. in H2S containing mud and stagnant waters, which remain exposed to light. They are also 

present under extreme conditions of salinity and high temperatures living in sulphur springs 

and saline lakes as a coloured layer under salt deposits (Paul, 1996). They occur in larger 

numbers in shallow waters than in soils. However Wainwright (1984a), mentioned that the 

phototrophic bacteria have a major role in the oxidation of reduced sulphur in rice paddy 

soils. These bacteria are classified into two groups on the basis of their pigmentation and 

photosynthetic pathways. (a) The green sulphur bacteria (Chlorobiaceae) and (b) the purple 

sulphur bacteria (Chromatiaceae). Both groups, include cocci, vibrios, rods, spirals, budding 

and gliding gram negative bacteria. The green sulphur bacteria possess green colour due to 

bacteriochlorophyll or brown colour due to presence of carotenoids. The members of the 

family Chlorobiaceae, oxidise H2S to sulphate, forming extra cellular sulphur granules in the 

presence of high H2S concentrations. The purple sulphur bacteria vary in colour ranging from 

bluish violet, purple, deep red, and orange due to carotenoid pigments which dominate the 

bacteriochlorophylls in colour. The bacterial genera (Particularly Chromatium, 7hiosprilhim, 

and Thiocapsa), of the family Chromatiaceae, oxidise H2S, thereby store sulphur globules 

intracellularly, which can be oxidised to sulphate (Zinder and Brock, 1978; Paul, 1996). 
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4.1.3.2 Environmental influence on S-oxidation 

A number of environmental factors are responsible for affecting sulphur-oxidation in 

soils such as temperature, pH, moisture, by fertilizer, and soil-microbial factors e. g. 

populations of S-oxidisers and the effect of sulphur additions on the population 

(Janzen et al., 1982). 

(1) Temperature: It often affects the rate of sulphur oxidation, the process which occurs 

best at optimum temperatures ranging between 25 - 40°C (Burns, 1967; Nor and 

Tabatabai, 1977; Skiba and Wainwright, 1984a). However some thermophilic 

bacteria (e. g. Sulfolobus acidocaldarius ) and fungi can grow at temperatures above 

40°C. (Marsh and Norris, 1983; Wood and Kelly, 1985; Fliermans and Brock, 1972; 

Wainwright, 1984b). 

(2) PH: Sulphur oxidation takes place at the range of pH 2-9 but can be enhanced with 

rising pH and consequently it tends to be stimulated by liming (Adamczyk-Winiarka 

et al., 1975; Lettl et al., 1981b). Vitolins and Swaby (1969), suggested that pH can 

control the distribution of S-oxidisers, with thiobacilli activated below pH 7 and 

heterotrophs by neutral to alkaline soils. 

(3) Moisture: Plays an important role in S-oxidation. It has been shown that rates of 

sulphur oxidation are found to be maximum at soil-moisture content close to field 

capacity (Burns, 1967; Moser and Olson, 1953). 

(4) Fertilizer: As studies on sulphur-fertilizer have revealed that the rate of sulphur- 

oxidation increases as the particle size is decreased (Wainwright, 1978a; Janzen et 

al., 1982). The oxidation rate of fertilizer-S can also be affected by placement 
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(Janzen and Bettany, 1986) and increases with the rate of its application (Lettl et 

al., 1981 a). 

(5) Organic matter: Stimulates, suppresses, or has no effect on S-oxidation (Swaby and 

Vitolins, 1969). Pepper and Miller (1978) mentioned that the addition of glucose to 

autoclaved soils containing thiosulphate, stimulate S-oxidation by heterotrophs but 

inhibit chemoautotrophic oxidation because of the formation of pyruvate. 

(6) Soil-microbial influence: Sulphur oxidation being a primarily biological reaction in 

soil, is largely affected by the size and composition of the soil-microbial population. 

4.1.4 Dissimilatory (respiratory) sulphate reduction 

This process is largely carried out by some heterotrophs, which use sulphate as an 

electron acceptor in their anaerobic respiration. Sulphate reduction is increased by organic 

matter. Organic compounds such as choline, formate lactate, maleate, pyruvate and alcohols, 

serve as hydrogen donors in sulphate reduction (Killham, 1994). Obligate anaerobic bacteria 

of the genera Desulfotomacuhim, Desulfovihrio and Desulfohacter achieve sulphur-reduction 

in the soil. Certain other micro-organisms are also capable of reducing sulphate to sulphide. 

Actinomycetes and fungi can further reduce partially reduced inorganic sulphur compounds 

(e. g. thiosulphate, tetrathionate and sulphite to sulphide) (Alexander, 1977). An interesting 

ecological niche for sulphate reduction is in the outer rhizosphere of paddy rice plants. 
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4.2 MATERIALS AND METHODS 

4.2.1 Effect of different amounts of silicic acid and rock potash on sulphur-oxidation in 

agricultural soil in 14 days 

Agriculture soil was collected (10 cm deep) from Sheffield. 

To triplicate samples of soil (100 g, sieved <4mm), added, lg elemental sulphur, 1,5,10 and 

20g each of silicic acid and rock potash, plus 2 ml deionized water (sterile) mixed thoroughly 

in polythene bags. Control was set-up lacking added silicon compounds. All the soil samples 

were then incubated aerobically, at 25°C for 14 days. Analysis was made by adding Ig soil to 

20 ml deionized water (sterile) and shaken at 70 rpm for 15 minutes using orbital shaker. Soil 

solution was then filtered by Whatman No. 1 filter paper. Clear filtrate was analysed for 

sulphate-S by using turbidimetric analysis. (section 4.2.4) 

4.2.2 Effect of different amounts of silicic acid, sodium silicate and potassium silicate on 

sulphur-oxidation in agricultural soil in 14 days 

To 100g triplicate set of fresh soil (Sieved <4mm), lg elemental sulphur, 1,5,10 and 

20g each of silicic acid, sodium silicate and potassium silicate, plus 2 ml deionized water 

(sterile) were added and mixed thoroughly in polythene bags. Control was set-up without 

silicon compounds added. All the soil samples were then incubated aerobically, at 25°C for 

14 days. Analysis was made by diluting lg soil to 20 ml lithium chloride (0.1M) solution in 

screw capped glass bottles (150 ml) and shaken at 70 rpm by using orbital shaker for 15 
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minutes. The soil solution was then filtered by Whatman no: l filter paper. Clear soil extract 

was analysed for sulphate-S by using turbidimetric analysis. (section 4.2.4) 

4.2.3 Effect of different amounts of silicic acid, sodium silicate and potassium silicate on 

sulphur-oxidation in agricultural soil for four weeks 

To 100g triplicate samples of agricultural soil (Sieved <4mm), lg elemental sulphur, 1, 

5,10 and 20 g each of silicic acid, sodium silicate and potassium silicate, plus 2 ml deionized 

water (sterile) were added into polythene bags and mixed thoroughly. Control was set-up 

lacking added silicon compounds. All the soil samples were then incubated aerobically, at 

25°C for 7,14,21 and 28 days. Analysis was made by diluting lg soil to 20 ml lithium 

chloride (0.5M) solution in screw capped glass bottles (150 ml) and shaken at 70 rpm by 

using orbital shaker for 15 minutes. The soil solution was then filtered by Whatman no: l 

filter paper. Clear soil extracts were analysed for sulphate-S by using turbidimetric analysis. 

(section 4.2.4) 
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4.2.4 Analysis of inorganic sulphur ions 

(a) Turbidimetric analysis of sulphate-S (Hesse, 1971) 

To 5ml filtrate in 25m1 volumetric flask, Ig BaCI2 
. 2H20 and 2m1 of gurn-acacia 

(0.25%w/v), were added and mixed, and the volume was made up-to 25 ml with distilled 

water. The white suspension resulting from precipitation of barium sulphate, was measured 

at 470 nm by spectrophotometer. The concentration of S042-- S was determined by reference 

to a standard curve (0 -100 µg 5042" -S m1"1) prepared from a standard solution of 

Na2SO4.10H20. 

(b) Standard sulphate-s solution: 0.443 grams of sodium sulphate (Na2SO4.10H20), were 

dissolved in distilled water I litre, which gives the concentration 100 tg S042 -S ml-`. 

4.2.5 Determination of dry weight: 

Soil samples were dried overnight at 60°C and the dry weight was determined by 

weighing, using the sensitive electrical balance. 

4.2.6 Determination of pH: 

The pH of the soil solutions were determined by using a glass electrode pH meter. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Effect of silicon compounds on sulphur oxidation in agricultural loam soil 

The effect of increasing amounts of silicic acid and rock potash on concentrations 

of water-soluble sulphate in the agricultural loam soil, over a 14 day incubation period, is 

shown in Fig 4.2. 

Sulphate concentrations, reflecting sulphur oxidation, generally increased with 

increasing amounts of both silicon compounds, with silicic acid having the most 

pronounced stimulatory effect. 

Essentially the same trend was observed when (LiC12, O. 1M) was used as the 

extracting agent. In this case, sodium silicate was also added; this proved to have the most 

marked stimulatory effect of the three silicon compounds used (Fig. 4.3). 

Changes in sulphate concentration (LiC12, O. 5M) in the agricultural loam soil 

following amendment with silicic acid and sodium and potassium silicate over a 28 day 

incubation period are shown in Fig. 4.4. In the case of silicic acid the previously observed 

trend of increasing sulphate concentration following amendment is generally seen over the 

entire 28 day incubation; and with the exception of the 21 day sample, this observed 

increase in sulphate concentration correlates with increasing amount of added silicon. 

(Fig. 4.4 a). Increased sulphate concentrations were seen following amendment at all 

concentrations of added sodium silicate for the first 14 days, after which time there is a 

tendency for the reverse to occur, and sulphate concentrations lower than the control result 

(Fig. 4.4 b). The same trend is broadly seen following sulphur amendment with sodium and 

potassium silicates (Fig. 4.4 b, c). 
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The results show that the silicon compounds used here stimulate sulphur oxidation 

in soils, leading to increased sulphate concentrations, at least during the first 14 days of the 

incubation, period, with sulphate concentrations increasing with increasing amount of 

added silicon compound. After 14 days, with the exception of silicic acid, sulphate 

concentrations fall below the control value. The reasons for the initial stimulation in 

sulphur oxidation are unclear, although since they occur with all three compounds used, 

and not just sodium silicate, the effect is unlikely to be due solely to increases in soil pH. 

An interesting subsidiary point arises from these results, namely how long should 

arbitrary based soil incubation studies be conducted. 

Clearly, had the above experiment been terminated at day 14 of the incubation 

period, the reported effect would be that silicon compound stimulate sulphur oxidation in 

this soil. However, the reverse is true if we consider results obtained from days 14-28 of 

the incubation period. These observations beg the question, what would the trend have 

been over the following 28 days had the incubation experiment been continued. Clearly the 

length of the incubation used in such experiments is a matter of accepted practice, rather 

than being a particularly meaningful period. 



FIG: 4.2 

Effect of different amounts (1,5,10, and 20 g ), of silicic acid and rock potash on sulphur 

oxidation in agricultural loam soil 14-day incubation (Water extracted). 

( Means of triplicate, f standard error ). 

S042 -S tg (g' dry soil ) 

soil containing added silicic acid 

-  soil containing added rock potash 
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FIG: 4.2 
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FIG: 4.3 

Effect of different amounts (1,5,10, and 20 g ), of added silicic acid, sodium silicate and 

potassium silicate on sulphur oxidation in agricultural loam soil, 14-day incubation. (LiC12, 

o. im) 

silicic acid 

" sodium silicate 

f potassium silicate 

Means of triplicate, ± standard error. * Significant difference from control, 

P<0.05. 
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FIG: 4.3 
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FIG: 4.4 

Effect of different amounts (1,5,10, and 20 g ), of added silicic acid, sodium silicate and 

potassium silicate on sulphur oxidation in agriculture soil. The experiment was carried out 

on 7,14,21 and 28th day using 0.5 M LiCI2 extract 

SO42'- S µg (g" dry soil ) 

(a) soil containing silicic acid 

(b ) soil containing sodium silicate 

(c) soil containing potassium silicate. 

Means of triplicate, f standard error. * Significant difference from control, P<0.05. 
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FIG: 4.4 
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CHAPTER FIVE 

EFFECT OF SILICON ON SOIL- ENZYMES, SOIL - 

MICROBIAL RESPIRATION AND BIOMASS 
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CHAPTER 5- (a) ENZYME ACTIVITY IN SOIL FOLLOWING 

AMENDMENT WITH SILICIC ACID 

********************a**a***a*aaa***a***a*a*****************ý************** 

5.1 INTRODUCTION. 

As plant roots and soil organisms grow, multiply, and then proceed through the 

process of cell destruction, they release many biologically important substances such as 

enzymes, vitamins, amino acids, sugars, antibiotics etc. into the soil medium. Enzymes are 

proteinic substances (catalysts), which, without undergoing permanent changes, accelerate 

chemical reactions from 106 to 1012 times those of uncatalysed reactions. Soil enzymes and 

micro-organisms play a major role in altering the constituents of soil organic matter to 

other simpler organic and inorganic molecules, and bring the nutrient cycle in soil. . 

The availability of extracellular enzymes in soil was, reported for the first time by 

Wood (1899). Since then, the main problem in studying the soil enzymes was to separate 

the activities of microorganisms from the activities of extacellular enzymes (Burns, 1978). 

After 1950, studies on soil enzymes really progressed with the improved understanding of 

the enzymatic reactions and application of various methods which became available from 

plant, animal and microbial biochemistry (Burns, 1978). Soil enzymes are primarily 

produced from microbial biomass, but they can also be originated from plants and animal 

residues (Burns, 1978). Enzyme activities are related to soil properties and they can be 

used as criterion of soil properties and fertility. In soil, enzyme activity could be result of 

both accumulated enzymes and those released by micro-organisms. Burns (1978) has 

suggested the function of accumulated enzymes in the soil and concluded that they have a 
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role in (a) the first phase of decomposition of organic residues and in (b) the transformation 

of some mineral substances even under conditions unsuitable for microbial proliferation. 

The accumulated enzymes are active soil enzymes which are not formed by micro- 

organisms. Enzyme activities in soil are largely due to free enzymes, such as exoenzymes 

released from living cells, endoenzymes released from disintegrating cells, and enzymes 

bound to cell constituents. Proliferating microorganisms produce enzymes that are released 

to the soil, or that remain within the multiplying cells. Different enzymes are specific for 

different types of chemical reactions in which they are involved. The activity of the soil 

enzymes (e. g. alkaline phosphatase, acid phosphatase, arylsulphatase, amidase, 

dehydrogenase, invertase, urease etc). involved in carbon, nitrogen, phosphorus, and 

sulphur cycling increased in a soil containing organic matter by an average of two to four 

fold by incorporation of the four organic amendments when compared with the unamended 

soil during the thirty one month study and the straw amendment was the most effective 

means of elevating the soil enzyme activity (Martens et al., 1992). 

Enzymes being proteinic in nature, can be denatured by increased temperatures and 

higher pH. Physical and chemical states of enzymes and their effects on chemical reactions, 

largely depend on ionic strength, temperature and pH. The changes in environmental, 

agronomic and climatic conditions, influence the microbial activities and magnitude of 

several enzymatic reactions. Conrad (1942) mentioned that cropping and cultural practices 

that added organic matter to the soil resulted in higher urease activities. Practices which 

cause organic matter depletion, result in a lower enzymatic activity. Rogers el al. (1941), 

attributed the hydrolysis of glycerophosphate, nucleic acid, and nucleotides to the action of 

exoenzymes produced by growing corn roots. These enzymes were found in a gel-like 

material adhering to root surfaces. 
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Mortland and Gieseking (1952) concluded that clays (e. g. montmorillonite, illite, 

kaolinite etc. ) inhibit the enzymatic hydrolysis of organic phosphorus compounds. The 

amount of inhibition was proportional to the cation-exchange capacity of the clay. They 

suggested that the inhibition was probably caused by adsorption of the enzyme by the clay. 

Enzymes released into the soil medium, microorganisms, and substrate molecules probably 

exist in an adsorbed form on the surfaces of minerals. 

I was interested to determine the effects of the silicic acid on the microbial and 

enzyme (arylsulphatase and dehydrogenase) activity of an agricultural loamy soil. 
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5.1.1 Arvlsulphatase 

Sulphur, particularly in the form of sulphate (S042-) is an essential nutrient for most 

of the organisms. Almost all sulphur available in soils is in organic combinations, with two 

fractions accounting for most of the organic sulphur present (Freney, 1967). As studies 

have shown that up to 90% of soil sulphur is in the form of organic sulphate esters (R-C-0- 

S03-), mineralisation of ester sulphates by the enzyme (sulphatase), in soil is an important 

process. In sulphur deficient soils, sulphatases, play an important role by releasing the 

sulphur from the organic compounds and thereby making sulphate available to plants 

which in turn make the soil more fertile from the agricultural point of view. 

Sulphatases hydrolyse sulphuric acid esters and catalyse the reaction as: 

R-C-O-S03'+H20 R-C-OH+H++SO42' 

Sulphatases are classified, on the basis of organic sulphate esters type, which is hydrolysed 

by the action of these enzymes. The main recognized groups included arylsulphatases, 

alkylsulphatases, steroid sulphatases, chondrosulphatases glucosulphatases, and 

mycosulphatases (Roy, 1960). Arylsulphohydrolases, that are also termed as 

"phenolsulphatases" or "arylsulphatases"; aryl-sulphate sulphohydrolase). The enzymes 

that fit this category were initially observed by reason of their arylsulphatase activity, they 

have had and are now receiving different designations. In man, the purified arylsulphatase 

A is also a cerebroside sulphatase , and arylsulphatase B is involved with 

desulphation of N-acetylgalactosamine 4-sulphate residues in the metabolism of 

glycosaminoglycan. Sulphatase C, a membrane-bound protein, is now considered as the 
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enzyme physiologically responsible for the hydrolysis of sterols esterified to sulphate 

(steryl sulphatase). 

Arysulphatases are ubiquitous in distribution. These enzymes are present in plants 

animals, humans and micro-organisms and are often released into soil, by plants and 

microbes. Tabatabai and Bremner (1970) first reported that the availability of 

arylsulphatases in soil and they mentioned that the organic soil sulphur mineralisation to 

S042 
, 

is the result of arylsulphatases and other sulphatases that have a major role in soil 

processes. Since then, several studies have been made on arylsulphatases in different soils 

(Cooper, 1972; Speir and Ross, 1975). These enzymes were also found in marine, lake 

sediment (Chandramohan et al., 1974; King and Klug, 1980), in salt marsh soils (Oshrain 

and Wiebe, 1979; Wainwright, 1981) and in intertidal sands (Wainwright, 1981). 
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5.1.2 Dehydrogenase 

Dehydrogenases are enzymes that remove electrons and hydrogen ions from 

reduced substrates have NAD+ or NADP+ as their coenzyme. NAD+ can exist in a reduced 

form, NADH + H+, to form an O/R system. 

The microbial oxidation of organic substances under aerobic conditions is linked to 

a membrane-bound electron transfer chain with 02 as a final electron acceptor. The 

electron transport system is coupled with the synthesis of ATP, which is called "oxidative 

phosphorylation". Electrons are collected in NADH, from different substrates through the 

action of NAD-linked dehydrogenases. These electrons funnel into the chain via the 

flavoprotein NADH dehydrogenase. Other respiratory substrates are dehydrogenated by 

flavin-linked dehydrogenases, such as succinate dehydrogenase and acyl-CoA 

dehydrogenase, which funnel electrons into the chain via ubiquinone. 

NAD+ and ubiquinone, thus work to collect reducing equivalents from respiratory 

substrates oxidised by pyridine-linked and flavin-linked dehydrogenases. The electrons are 

further transferred to the cytochrome system, where they are oxidised by 02. 

Skujins, (1976) mentioned the activity of dehydrogenase in soil which gives 

correlative information on the biological activity and microbial populations in soil and the 

biochemical properties of these enzymes suggest that the availability of free 

dehydrogenases are unlikely in soil. Dehydrogenase activity is considered to reflect the 

total range of oxidative activities of the soil micro-organisms (Ladd, 1978). Stevenson, 

(1959) and Skujins, (1973) have reported that dehydrogenase activity in soil does not 

appear to correlate with the numbers of soil micro-organisms, but does correlate well with 

02 uptake and CO2 release from soil. However in contrast, many scientists have failed to 
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find a correlation between dehydrogenase activity and respiration (Ross and Roberte, 1970; 

Skujins, 1976). Dehydrogenase activities can be increased with increasing microbial 

populations in soil amended with nutrients (Ladd and Paul, 1973). It is suggested that soil 

water content and temperature influence the dehydrogenase activity by affecting the soil 

oxidation - reduction status (Brzezinska et al., 1998). 
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5. (b) EFFECT OF SILICON ON MICROBIAL-RESPIRATION AND 

BIOMASS IN AGRICULTURAL SOIL 

******ý***************************s**********************************x*** 

5.2 INTRODUCTION 

Microbial respiration in soil, was one of the most used indexes of the microbial 

activity of soil in the past and is still today. Wollny (1881) discussed the production of CO2 

as a measure of microbial activity of soils. Since then the measurements of microbial 

respiration in soil has been studied by Russell (1905), Neller (1922), Waksman and Starkey 

(1924) and Stotzky and Norman, (1961a). Measurements of respiration are known to be 

well correlated with factors other than microbial activity, such as organic matter content, 

nitrogen or phosphorus transformations, metabolic intermediates, pH, average microbial 

numbers, and changes in soil weight (Stotzky, 1960). Macfadyen, (1973), has reported that 

many ecological studies involve estimations of biological activity through measurements of 

02 uptake or CO2 release from mineral soil. 

The soil microflora play an important role in capturing energy and carbon for their 

cell synthesis. The dry weight of plant and animal tissues contains approximately 45 to 

50% of carbon. After microbial metabolization of animal and plant tissues, 02 is consumed 

and CO2 is released. The combined metabolism of mixed populations of microorganisms in 

complex substrates such as soils, natural surface waters, or decaying organic materials can 

be quantitatively determined by measurement of total respiration. Fungi and actinomycetes 

can convert substrate carbon to cell carbon more efficiently than the aerobic bacteria and 
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anaerobic bacteria can utilize carbohydrates inefficiently. (Alexander, 1977), However 

heterotrophs are regarded as being involved in organic matter degradation. 

The decomposition of native organic matter (humus) reflects the biological 

availability of soil carbon while the release of CO2 following the addition of relatively 

simple substrates is an estimation of the biodegradability of the test compound (Alexander, 

1977). Carbon production increases on the additions of organic materials to the soil. Soil 

respiration has also been studied in various soils amendment experiments, in which the 

most common additive being glucose. Anderson and Domsch (1974,1975) observed that 

bacterial and fungal respiration was stimulated within minutes into maximal activity in 

short-term (1-6 h) experiments by the addition of saturating quantities of a readily-available 

substrate such as glucose. The increased rate of respiration remains stable for up to 6-8 h, 

after which time it began to increase. The further increase after 6-8 h was attributed to cell 

division and population growth. Various environmental factors are involved in humus 

decomposition including organic matter level of the soil, cultivation, temperature moisture, 

pH, depth, and aeration (Alexander, 1977). 

Non-biological CO2 formation or consumption of 02 can interfere with respiration 

measurements. CO2 may be produced by chemical decarboxylation (Bunt and Rovira, 

1955), by cell-free, heat-stable enzymes (Bunt and Rovira, 1955), or by the action on free 

soil carbonates of added chemicals or organic acids produced during metabolism (Chase 

and Gray, 1957). 

Microbial biomass is defined as the part of the organic matter in soil that constitutes 

living micro-organisms smaller than 5-10 µm3. In recent years great interest has developed 

concerning the size of the soil microbial biomass. This is because the biomass represents 

the "eye of the needle" through which all soil organic matter must eventually pass. Soil 
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microbial biomass plays a major role in soil fertility and the processes of soil formation. 

Biomass carbon is expressed in milligrams of carbon kg-1 soil or micrograms of carbon g-1 

dry weight, it ranges from I to 5% of soil organic matter (Jenkinson and Ladd 1981; 

Sparling 1985; Smith and Paul 1990). Measurements of soil microbial biomass have been 

used in studies of the flow of carbon, cycling of nutrients, and plant productivity in a 

variety of terrestrial ecosystems. They provide a measure of the quantity of living microbial 

biomass present in the soil at a particular point in time, i. e., the "standing crop". The data 

can be used for assessing changes in soil organic matter caused by soil management 

(Powlson et al., 1987) and tillage practices (Carter 1986), for assessing the impact of 

management on soil strength, and porosity, soil structure and aggregate stability, for 

estimating seasonal fluctuations in microbial biomass (Ross 1990), and for serving as an 

indicator of the presence of toxins, e. g., metal toxicity (Brookes et al. 1986). In addition 

measurements of the carbon and nutrients contained in the microbial biomass provide a 

basis for studies of the formation and turnover of soil organic matter, as the microbial 

biomass is one of the key definable fractions. 

Several methods have been used to determine microbial biomass in soil. Currently 

available methods include: 

(a) Direct counting of variously stained organisms (Nicholas and Parkinson, 1967; 

Ingham and Klein, 1984). 

(b) Analysis of soil extracts for enzymes (Skujins, 1967; Kiss ei al., 1975), cell wall 

components (Millar, 1970; West, 1986) or living cell components (Verstraeten et al., 

1983). 

(c) Measurements of substrate-induced respiration (SIR; Anderson and Domsch, 1975, 

1978; West et al., 1986) or ammonification (Alef et al., 1988). 



120 

(d Determinations of CHCI3-labile (microbially bound) elements (Jenkinson, 1966; 

Jenkinson and Powlson, 1976; Brookes et al., 1985; Vance ei al., 1987). 

Each of the procedures listed above have particular advantages and limitations 

which depend on the nature of the research questions and the microbial habitats 

investigated (Anderson and Domsch, 1978). Of these substrate-induced respiration (SIR) 

and fumation-incubation (Fl) are two basic methods of biomass determination. 

The chloroform fumigation-incubation method (CFIM) is generally thought to be 

the most useful for soil studies. In the CFIM, microorganisms are made susceptible to 

mineralization by fumigation with CHC13 vapour. This disrupts the microbial cell 

membranes and releases internal constituents to the microorganisms surviving CHC13 

treatments or added inoculum. Jenkinson and Ladd, (1981), have argued that sufficient 

organisms survive fumigation to make the use of an inoculum unnecessary. The proportion 

of biomass C mineralised during the 10 days after CHC13 fumigation (kc) has been derived 

experimentally determining the mineralization rate of known quantities of microbial C in 

fumigated soil. Jenkinson (1966) proposed a value of 0.30 for kc that was later revised to 

0.5 (=50% mineralization) based on a greater number and wider variety of organisms 

(Jenkinson, 1976). Adams and Laughlin (1981) reported a value of 0.55 for kc based on 10 

different organisms including both bacteria and fungi. Anderson and Domsch (1978), used 

an incubation temperature of 22°C and used 12 (radio-labelled) species of bacteria and 15 

(radio-labelled) species of fungi added to 4 different soils suggested a k-factor of 

0.411(=41.1% mineralization). 

The chloroform fumigation-incubation technique (Jenkinson and Powlson, 1976; 

Anderson and Domsch, 1978) has been used extensively but there are problems using it for 

acid soil or soil which have recently had organic amendments. 
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The aim of the following experiments was to determine the effects of silicon 

compounds, on soil-microbial respiration following glucose amendment and on biomass 

treated with alcohol free-chloroform fumigation. 
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5.3 MATERIALS AND METHODS 

5.3.1 Effect of various amounts of silicic acid on the activity of "arylsulphatase" in 

Agricultural soil 

Agricultural loam soil was collected (10 cm depth) from Sheffield, and divided into 

two groups 

(a) Soil amended with silicic acid. 

(b) Soil lacking added silicic acid. 

To triplicate fresh agricultural loam soil samples (100 g, sieved 2mm, roots and 

animals free soil) containing in polythene plastic bags were added, 1,5,10, and 20 grams 

silicic acid and mixed. The other soil set was lacking added silicic acid. 5 mis deionized 

(sterile) water were sprinkled, mixed thoroughly and the samples were incubated at 250 C 

for 14 days. 

Measurement of enzyme-activity was made on 0,7,14,21, and 28th day. Control, 

was set-up without adding p-nitrophenyl sulphate solution and was compared with each 

sample of treatment. 

5.3.1.1 Measurement of arvlsulphatase activity in soil 

To soil (lg), contained in universal vials (25 ml), 4 ml acetate buffer, 0.25 ml 

toluene and I ml p-nitrophenyl sulphate solution were pipetted, swirled for few seconds to 

mix the contents, screwed on top and placed in a water bath at 250 C. After 1 hr vials were 

removed from the water bath, and I ml CaC12 (0.5 M), 4 ml NaOH (0.5 M) were added, 
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vials were swirled for few seconds, and the soil suspension was filtered through Whatman 

No: I folded filter paper into a test tube. 

Control was performed with each soil sample analyzed to allow for colour not derived from 

p-nitrophenol released by arylsulphatase activity. For control, above procedure was 

followed except 1 ml of p-nitrophenyl sulphate solution. After incubation at 25° C for 1 

hr, I ml of CaC12 (0.5 M) and 4 ml of NaOH (0.5 M) were added and then 1 ml of p- 

nitrophenyl sulphate solution was added immediately before filtration of the soil 

suspension into a test tube. Filtrate was transferred to a4 ml cuvette and intensity of the 

yellow colour was measured at 400 nm in the spectrophotometer against a reagent blank. 

5.3.2 Effect of various amounts of silicic acid on the activity of "dehydrogenase" in 

Agricultural soil. 

Fresh agricultural soil was divided into two groups as mentioned before. 

To triplicate soil samples (100 g, sieved 2 mm, roots and animals free soil), were 

added 1,5,10 and 20 grams of silicic acid and mixed in polythene bags plus 5 ml deionised 

water (autoclaved) was added and mixed thoroughly. Control was set-up lacking added 

silicic acid in soil. All plastic bags were closed with rubber bands, leaving small holes for 

air, and incubated at 250 C for two weeks. Dehydrogenase activity was determined every 

week by using the following method: 



124 

5.3.2.1 Preparation of chemicals 

(a) Tris-HCI buffer (100 mM) 

12.1 gram of Tris (hydroxy methyl) aminomethane were dissolved in 700 ml 

distilled water, pH was adjusted to 7.6 (pH of the soil was 7.3, between the pH range of 6 

to 7.5) and added more distilled water up to 1000 ml. 

(b) Triphenyltetrazolium chloride (TTC) solution 

Ig of triphenyltetrazolium chloride (TTC) was dissolved in 80 ml tris-buffer and 

volume was made up with the same buffer to 100 ml. 

(c) Extractant 

Acetone (analytical grade) 

TPF standard solution 

50 mg of Triphenyl formazan (TPF) were dissolved in 80 ml of acetone (500µg 

TPF ml-1) and the volume was made up to 100 ml with acetone. Field-moist agricultural 

soil (5 g) was weighed into 60 ml glass bottles and mixed with 5 ml triphenyltetrazolium 

chloride (TTC) solution. All the bottles were sealed with solvent resistant-rubber stoppers 

and incubated for 24 hours at 300 C. The control contains only 5 ml tris-buffer (without 

TTC). After the incubation, 40 ml acetone was added to each bottle and the bottles were 

shaken thoroughly and further incubated at room temperature for 2 hours in the dark 

(shaking the tubes at intervals). The soil suspension (15 ml) was then filtered through 

Whatman No. 1 folded filter paper and the optical density of the clear supernatant was 

measured against the blank at 546 nm. 
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5.3.2.2 Calibration curve 

TPF standard solution, was pipetted as 0,0.5,1.0,2.0,3.0 and 4.0 ml in a 

volumetric flask (50 ml), 8.3 ml Tris buffer (pH 7.6) was then added and the volume was 

brought up with acetone to 50 ml mark to obtain the concentrations of 0,5,10,20,30, and 

40 µg TPF ml"'. 

5.3.3 Effect of various amounts of silicic acid and sodium silicate on the production 

of carbon dioxide (CO2), from agricultural soil 

Agricultural soil was collected by digging 10 cm deep from the soil surface. 

Anderson and Domsch's glucose-amendment technique was used with some 

modifications. 

To triplicate samples of fresh agricultural soil (100g, sieved 2mm, roots free soil) 

in Kilner's jars, were added, 0.1,0.5,1.0,5.0 and 10 g silicic acid and sodium silicate (each 

silicon compound per triplicate set of soil), plus, 8 ml of 1% glucose solution were 

sprinkled and mixed thoroughly. Controls were set-up lacking added silicon compounds. 

All the samples were incubated overnight at 25°C. After incubation, potassium hydroxide 

(60 ml, 0.1M KOH) in 100 ml glass beakers were placed in the Kilner jars, and the jars 

were then sealed and incubated at 250 C for 4,6,8 and 10 days. CO2 released, was 

measured by applying the acid-base titration method. 
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5.3.3.1 Titration-method 

After incubation, KOH (10 ml, O. IM) solution were transferred to 100 ml 

Erlenmeyer flask. Into the Erlenmeyer flask 2 ml BaC12 solution (0.5 M) were added. This 

is used to precipitate the potassium carbonate to prevent over-estimation of the titration 

end-point. Phenolphthalein indicator (3 drops) were added and the solution was titrated 

with 0.1 M HCl to end-point by using 25 ml burette. Blanks were also titrated of 10 ml 

fresh KOH. 

The data were calculated thus: 

5.3.3.2 Calculations 

Where vol: of KOH neutralized x 0.022 = wt of CO2 absorbed and converted to K2 CO3. 

OR 1 ml of 0.1 M HCL = 2.2 mg CO2 

5.3.4 Determination of soil microbial biomass by chloroform-fumigation (CF) 

technique in agricultural soil, following amendment with silicic acid and sodium 

silicate. 

To triplicate fresh agricultural soil samples (100 g, sieved 2 mm, roots and animals 

free) in polythene bags, were added, 1.0 and 5.0 g silicic acid and sodium silicate (each 

silicon compound per soil set) plus 8 ml deionised (sterile) water was sprinkled over the 

soil sample and mixed thoroughly. All the polythene bags were closed with rubber band, 

leaving a small hole for air and incubated at 25° C for 14 days. 
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After incubation, the soil was placed in Kilner jars. Control was set-up as, soil 

(fumigated) lacking added silicon compounds. 

The Kilner jars containing soil samples, were labeled and placed at the center of the 

fumigator along with a beaker containing chloroform (ethanol-free) (100 ml) and the 

fumigator was evacuated for 2 minutes and then sealed, using silicone grease and parafilm. 

Vacuum was created with vacuum pump at 760 mm/ Hg. 

Maintaining the vacuum, left for 3 hours (in this time, the chloroform, was boiled which 

diffused into the soil). After removing the lid, the fumigator was evacuated (5 times) for 10 

minutes period, opening between evacuations. After removing the chloroform from soil 

containing in Kilner jars, a beaker containing (60 ml, KOH 0.1M) was placed and sealed 

tightly. All the jars were incubated at 25° C for 1 week. 

5.3.4.1 Chloroform (ethanol-free CHC13) 

Commercial chloroform was washed with about 5% by volume H2SO4 (conc: ) by 

shaking in a separating funnel to separate off the acid, and re-washed with 10 rinses of 

distilled water. (ethanol-free CHC13 was stored in the dark to prevent photochemical build- 

up of explosive-by products). Ethanol-free CHC13 is recommended because ethanol cannot 

be completely removed from soil after fumigation (Jenikinson 1988) and it is used as a 

substrate, mineralized to C02, and thus is incorrectly measured as biomass C. 

The CO2 evolved during the incubation was measured by the Titration method, as 

described above. 
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5.3.4.2 Calculations 

Where vol: of KOH neutralized x 0.022 = wt of CO2 absorbed and converted to K2 CO3. 

OR 1 m1 of 0.1 M HCL = 2.2 mg CO2 

The CO2 evolved during the incubation results from mineralization of the dead microbial 

biomass was measured by the following formula: 

B= F/Kc 

Where B= Biomass carbon 

F= C02-C evolved from fumigated soil over 10 days 

Kc= portion of biomass carbon mineralized to CO2 (0.411 = 41.1% 

mineralization). 
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5.4 RESULTS AND DISCUSSION 

5.4.1 Effect of silicic acid addition on soil arylsulphatase activity 

The effect of silicic acid on the activity of this soil enzyme can be quickly 

summarized: 

Silicic acid had an inhibitory effect on soil arylsulphatase activity in the agricultural 

loam soil over the full 28 day incubation period, with inhibition increasing with increasing 

concentration of added silicic acid (Fig. 5.1). 

The effect of silicic acid on this enzyme was studied because it is considered to be 

an essential enzyme in relation to the release of the sulphate ion from soil organic 

sulphates, and is therefore an important factor in relation to soil fertility. Soil enzymes can 

be measured in relation to enzyme activity at any one point (i. e. in the presence of an 

inhibitor, like toluene) or enzyme synthesis over a time period, without an inhibitor of 

microbial activity being added. The results presented here refer to the former, i. e. they 

show that silicic acid inhibits arylsulphatase in the soil derived from a number of sources, 

including microorganisms, plants and a soil micro-fauna. 

The results suggest that in this respect at least, silicic acid addition would have a 

negative impact on soil fertility. 
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5.4.2 Effect of silicic acid on dehydrogenase activity in the agricultural loam soil 

Essentially the same result was seen above when the effect of silicic acid on 

dehydrogenase activity was measured, i. e. silicic acid inhibited the activity of this enzyme 

(over a 14 day incubation period) with inhibition increasing with increasing concentration 

of added silicic acid (Fig 5.2). Since dehydrogenase activity is usually considered to be a 

measure of microbial activity in soil, these results suggest that silicic acid has a detrimental 

impact on the soil microflora. It is noteworthy however, that while dehydrogenase activity 

was inhibited, the addition of silicic acid to the soil stimulated the numbers of total, aerobic 

heterotrophic bacteria, as measured by the dilution plate count (Fig 2.11 d). This suggests 

that two parameters are not directly comparable. Indeed there is considerable debate as to 

whether a good correlation exists between dehydrogenase activity and soil bacterial 

numbers, as determined by plate counting. 

5.4.3 Effect of silicic acid and sodium silicate on soil respiration in the agricultural 

loam soil. 

Silicic acid had only a marginal effect on respiration, with a tendency to cause 

slight decreases in CO2 release over the 10 day incubation period (Fig 5.3 a). Such a 

decrease in respiration, correlates approximately to the above observed inhibition in 

dehydrogenase activity. 

In contrast to silicic acid, the addition of sodium silicate led to a marked stimulation 

in the release of CO2 from the agricultural loam, at the concentration of 5g of added 
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sodium silicate (Fig. 5.3 b). This marked effect is again associated with an increase in soil 

pH (data deduced from other experiments). 

5.4.4 Effect of silicic acid and sodium silicate on biomass in the agricultural loam soil. 

The above pattern seen with respiration was again repeated with soil biomass, i. e., 

while silicic acid addition led to reduction in soil biomass, sodium silicate addition resulted 

in a marked stimulation (Fig 5.4). Again, this effect can be attributed to an increase in soil 

pH following the addition of sodium silicate stimulating numbers of soil microorganisms 

and, as a result, biomass. 



FIG" 5.1 

Effect of different amounts of added silicic acid on the activity of "arylsulphatase" in 

agricultural soil. (Means of triplicate, ± standard error). 

pg ofp-nitrophenol (g' dry weight soil"') 
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FIG: 5.2 

Effect of different amounts of added silicic acid on dehydrogenase activity in agricultural 

soil. (Means of triplicate, t standard error). 
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FIG: 5.3 

Effect of different amounts of added silicic acid and sodium silicate on carbon dioxide 

(CO2), releases from agricultural soil (mg CO2 -C 100'1 g soil). 

(a) silicic acid amended soil 

(b ) sodium silicate amended soil. 

Means of triplicate, ± standard error. *Significant difference between control and 

treatment values, P<0.5. 
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FIG: 5.4 

Determination of soil microbial biomass by chloroform-fumigation-technique in 

agricultural soil, amended with silicic acid and sodium silicate. (mg carbon 100'1 g soil). 

(a) silicic acid amended soil. 

(b ) sodium silicate amended soil 

Means of triplicate, t standard error. *Significant difference between control and 

treatment values, P<0.5. 
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6- GENERAL DISCUSSION 
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6- GENERAL DISCUSSION 

The following overview of the role of silicon in agriculture was synthesized from 

the Program and Abstracts of the Conference on Silicon in Agr"icuilture, Fort Lauderdale, 

USA, (1999). 

Most terrestrial plants grow in media dominated by silicates and the soil solution 

bathing roots contains Si at concentrations exceeding those of P by approximately a factor 

of 100. Plant adsorb silicon at rates approximately the same as when they adsorb micro- 

nutrients. Despite these facts, the plant physiological literature is remarkably devoid of 

mention of silicon as a plant nutrient. This is largely because silicon is not regarded as an 

essential nutrient because plants grow in the absence of silicon in nutrient solutions. 

Silicon-depleted plants however, often differ from those receiving sufficient silicon in the 

following ways: 

(a) chemical composition, (b) mechanical strength (c) yield, (d) disease resistance, 

(e) pest resistance, (f) metal toxicity resistance, (g) salt tolerance, and (h) cold hardness. 

Although silicon has not been demonstrated to be essential for crop growth it has 

beneficial effects on the growth of rice, wheat barely, tomato and cucumbers. As a result, 

Si is applied to crops in several countries to help increase productivity and sustainable 

production. Plants take up silicon in the form of silicic acid. Silicon becomes particularly 

important in plants that are stressed e. g., due to: aluminum toxicity, P-deficiency and 

excess, climatic stress and stresses caused by diseases. 

Silicon can control several important diseases of rice, including rice blast, brown 

spot, sheath blight and leaf scald, but this may be a nutrient effect. 
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The main agricultural silicon sources are potassium silicate, sodium silicate, 

calcium silicate. Of particular importance is the use of wollasonite, CaSiO3, which is 

supplied as a slag by-product from the high temperature production of elemental P. 

Thermo-phosphate, a Brazilian commercial fertilizer, also supplies large quantities of Si to 

soils. 

Plant-available silicon in soils has been measured in terms of water extractable and 

phosphate buffer (0.02M, pH 6.95) extractable Si. The critical water-soluble concentration 

for plant growth is often quoted at 19 µg g 1. 

The first experiments using Si as a fertilizer were reported by Liebig in 1840, while 

Russian soil chemists suggested that Si02 and CaSiO2 might be used as fertilizers in 1870. 

Since silicon is generally not regarded as an essential nutrient for crop growth it is 

not surprising that relatively little attention has been given to the chemistry and 

microbiology of soil silicon. A silicon cycle does not exist, in the environment, instead the 

only biological involvement in silicon mobilization-immobilization is represented by the 

solubilization of insoluble silicon, the release of the element from organic-silicon 

compounds and the immobilization of silicon by bacteria and fungi. In this respect, silicon 

is similar to phosphorus, P however, is universally regarded as a major plant nutrient. 

The literature on the potential role of microbial processes in making silicon 

available to plants is almost non-existent. The exception being silicate solubilization. This 

dearth of literature has two implications for work of the nature described in this thesis. 

Firstly the lack of literature on silicon microbiology means that the field is wide open for 

study, essentially everything that is done is likely to be novel. On the downside however, 

the lack of literature means that it is often impossible to extend observations, or explain 

why phenomena occur. As is evident from the conclusions arrived at here, this means that 
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the results can often only be speculated upon. The same problem was faced by Al Wajeeh 

(1999), and commented upon in a thesis, preceding this one from this Laboratory, which 

detailed an investigation into the in vitro microbiology of silicon. This thesis can therefore 

be seen as an extension of that of Al-Wajeeh-here, studies on the microbiology of silicon is 

taken from culture into soils. 

The essential aims of the work described in this thesis to study a) the microbial 

solubilization of silicon in vitro and in soils, b) the effect of silicon compounds on 

nitrification, sulphur oxidation, respiration and soil biomass. The silicon compounds used 

are all potentially useful as sources of fertilizer silicon. A wide range of soils were studied, 

including the agricultural soils. The variety of soils was included to provide comparisons 

with the results found when the agricultural loam was studied. It was this soil that was 

considered in most detail, particularly in relation to silicon and those factors, such as 

nitrification and S-oxidation, which are important to soil fertility. 

Al-Wajeeh (1999) found that silicic acid increased the growth of fungi under 

oligotrophic and nutrient rich conditions. Under the latter conditions, it also stimulated the 

growth of a Streptomyces species, but decreased the growth of bacteria and yeasts as well 

as reducing the chlorophyll content of the alga, Dunnaliella parva. Silicic acid also 

stimulated the production of silicon by Aspergillus riiger, but decreased nitrification and 

sulphur oxidation by this fungus. Silicic acid also reduced antibiotic production by a 

species of Streptomyces. 

Based on these results, one might expect an increase in fungal growth in soils, a reduction 

in bacterial numbers and resultant inhibition of any associated processes, such as 

nitrification and sulphur oxidation. 



139 

The results of the present study show that: 

1) Bacteria solubilize rock potash, releasing free silicon into the medium. 

2) Growth of a Pernici//ium Spin vitro increases the solubilization of sodium silicate, but 

concentrations of free silicon decrease when the fungus is grown in the presence of silicic 

acid and rock potash, presumably due to Si-immobilization by the fungus. 

3) Water-extractable silicon increased when either silicic acid or rock potash was added to 

all soils, under both aerobic and anaerobic conditions. 

4) Liming increased the release of soluble silicon from sodium silicate, silicic acid and rock 

potash, the effect being seen in all soil types. 

5) Silicic acid generally decreased bacterial numbers in all soils, at least over the first 14 

days of the incubation period. 

6) Silicic acid and rock potash had no effect on nitrification, while the addition of sodium 

silicate stimulated nitrate production, this effect is assumed to be largely due to the 

resultant marked increase in soil pH. 

7) Addition of silicic acid and rock potash led to increased sulphur oxidation. 

8) The addition of silicic acid to the agricultural loam soil led to a decrease in 

arylsulphatase and dehydrogenase activity, as well as respiration and soil biomass. 
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Since silicon compounds are added to soils as fertilizers, the obvious question that 

arises from this study is-To what extent is silicon addition likely to improve, or adversely 

affect soil fertility? 

Firstly, it is clear that water-soluble silicon is released from insoluble silicon 

compounds following their addition to soil, and that such release is a combination of 

microbial and chemical-physical processes. The observed decrease in bacterial numbers, 

arylsulphatase activity, dehydrogenase activity and respiration can be regarded as being 

detrimental to soil fertility, while increases in sulphur oxidation can be seen as positive 

responses. The lack of effect of silicon compounds on nitrification can also be seen as 

being overall desirable; while increased nitrate following the addition of sodium silicate 

can be regarded a damaging because it leads to the, above-mentioned loss, of N from soils. 

It is probable that many of the observed effects on soils fertility of the silicon compounds 

used here relate more to their marked alkaline nature, than to any direct effect of silicon 

itself. 

In conclusion, the view that silicon compounds, and the silicon ion itself, is inert 

and unlikely to influence soil processes is not verified by the results presented here. As a 

result, it is recommended that as much consideration should be given to the potential 

negative effects on soil of silicon fertilization as is given, for example, to when pesticides 

are applied to soils. 
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SUGGESTIONS FOR FUTURE WORK 

Since the principle aim of the research described here was to determine what effect silicon 

compounds have on soil fertility the obvious next step would be to extend this work to 

processes such as asymbiotic and symbiotic N-fixation, denitrification, the breakdown of 

leaf liter or crop residues and finally aspects of the mineralization and solubilization of 

phosphorus. Such effects could be determined in the laboratory and /or the field. 

It would be desirable to determine what factors influence the microbial 

solubilization of silicon compounds (and rocks) to determine if (a) such solubilization 

occurs under low nutrient conditions likely to be met with in natural environments and (b) 

to determine if organic acids or chelators are actually involved in this process, particularly 

under such oligotrophic conditions. 

The fact that silicon is not a major plant nutrient means that the involvement of 

microorganisms in influencing its availability to plants, and the effects of fertilizer silicon 

on soil properties is likely to continued to be neglected by funding agencies as being of no 

great importance. However, the fact that US companies such as Albright Wilson, the PQ 

Corporation and the Calcium Silicate Corporation fund meetings organized by the "US 

Silicon in Agriculture Organizing Committee" suggests that commercial and academic 

interest in silicon may increase in the future. 
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7- APPENDIX (A) 

7.1 Solid and liquid media and chemicals used, for culturing and soil 

analysis. 

A) MEDIA 

(a) Czapek Dox Agar (modified) (Oxoid) 

Typical formula (g/L) 

1. Sodium nitrate 2.0 

2. Potassium chloride 0.5 

3. Magnesium glycerophosphate 0.5 

4. Ferrous sulphate 0.01 

5. Potassium sulphate 0.35 

6. Sucrose 30.0 

7. Agar 12.0 

pH to 6.8 ± 0.2 

A proprietary formulation (Oxoid) of Czapek Dox Agar was used specially for 

fungal growth. It prepared by suspending 45.4 g of the powder in a litre of distilled 

water. The medium was dissolved and sterilized by autoclaving at 12 1°C for 15 min. 

(b) Czapek Dox liquid medium (modified) (Oxoid) 

Typical formula (g/L) 

1. Sodium nitrate 2.0 
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2. Potassium chloride 

3. Magnesium glycerophosphate 

4. Ferrous sulphate 

5. Potassium sulphate 

6. Sucrose 

pH 6.8 ± 0.2 

0.5 

0.5 

0.01 

0.35 

30.0 

This liquid medium was prepared by suspending 33.4 g of the powder in one 

litre of distilled water. The medium was then dissolved and sterilized by autoclaving at 

121°C for 15 min. 

(c) Nutrient Agar (Oxoid) 

1. `Lab-lemco' powder 1.0 

2. Yeast extract 2.0 

3. Peptone 5.0 

4. Sodium chloride 5.0 

5. Agar 15.0 

pH 7.4 ± 0.2 

Nutrient Agar is a basic medium used to subculture organisms for maintenance 

purposes or to check the purity of subcultures from isolation plates prior to biochemical 

or serological tests. This medium can be used for the cultivation of organisms. The 
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medium was prepared by suspending 28g in litre of distilled water, boiled to dissolve 

completely and sterilized by autoclaving at 121°C for 15 minutes. 

(d ) Nutrient broth (Oxoid) 

1. `Lab-lemco' powder 1.0 

2. Yeast extract 2.0 

3. Peptone 5.0 

4. Sodium chloride 5.0 

pH 7.4 ± 0.2 

A general purpose liquid medium for the cultivation of micro-organisms not 

exacting in their nutritional requirements. Medium was prepared adding 13g to I litre of 

distilled water, mixed well and distributed into final containers It was then sterilized by 

autoclaving at 121°C for 15 minutes. 

(e) Plate count Agar 

(Oxoid) 

1. Tryptone 5.0 

2. Yeast extract 2.5 

3. Glucose 1.0 

4. Agar 9.0 

pH 7.0 ± 0.2 
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A medium used for the enumeration of viable organisms particularly in milk and 

dairy products. This medium was prepared by adding 17.5g to I litre of distilled water 

and dissolved by boiling with frequent stirring, and distributed into final containers. 

Medium was then sterilized by autoclaving at 121°C for 15 minutes. 

B) CHEMICALS 

(1) Ammonium molybdate (BDH) 

(2) Ammonium sulphate (NH4)2 SO4 (BDH) 

(3) Ascorbic acid (BDH) 

(4) Acetone (BDH) 

(5) Acetone (analytical reagent) (Fisher) 

(6) Acetic acid glacial (BDH) 

(7) Barium chloride, 2 hydrate (BaCI2.2H20) (BDH) 

(8) Calcium chloride (BDH) 

(9) Chromotropic acid (C10 H6 Og S2 Na2) (BDH) 

(10) Chloroform (CHCI3) (BDH) 

(11) Elemental sulphur (Fisons) 

(12) Ethanol (absolute) (--------) 

(13) Gum acacia (BDH) 

(14) Glucose (BDH) 

(15) Hydrochloric acid (cone) (BDH) 

(16) Lithium chloride (BDH) 

(17) N-(1-naphthyl)-ethylene diamine dihydrochloride (BDH) 

(18) Oxalic acid (sigma) 

(19) Phenolphthalein (Indicator) (sigma) 
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(20) Phenol (BDH) 

(21) p-nitrophenyl sulphate (sigma) 

(22) Potassium chloride (KCI) (BDH) 

(23) Potassium hydroxide (BDH) 

(24) Potassium nitrate (KNO3) (Fisons) 

(25) Potassium silicate (Pro labo) 

(26) Ringer's solution 1/4 strength (BDH) 

(27) Rock potash (--------) 

(28) Silicic acid (sigma) 

(29) Sodium acetate trihydrate (sigma) 

(30) Sodium fluorosilicate (EIL SILICA Standard 1000 ppm) (BDH) 

(31) Sodium hydroxide (BDH) 

(32) Sodium hypochloride (Fisons) 

(33) Sodium silicate (Riedel-de Haen) 

(34) Sodium nitrite (NaNO2) (sigma) 

(35) Standard p-nitrophenol (sigma) 

(36) Sodium sulphate anhydrous (NaSO4) (BDH) 

(37) Sulphuric acid (H2SO4 conc: (Fisher) 

(38) Sulphanilamide (sigma) 

(39) Tris (hydroxy methyl)-aminomethane (BDH) 

(40) Triphenyltetrazolium chloride (TTC) (sigma) 

(41) Triphenylformazan (TPF) (TPF) 

(42) Toluene (BDH) 
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STANDARD CURVE FOR SILICON 
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APPENDIX (B) 

7.2 ANALYTICAL METHODS 

(A) Method used for the detection of free silicon 

Soluble silicon in the solution was analysed by spectrophotometer, adding, to I 

ml of filtrate: ammonium molybdate (2 ml, 10% w/v), ascorbic acid (2 ml, 5% w/v), 1 

ml oxalic acid (1 ml, 10% w/v), and concentrated hydrochloric acid (5 ml, 1: 1 diluted 

with distilled water), and mixed thoroughly. The intensity of the blue colour was 

measured at 600 nm using a spectrophotometer. 

Analysis of inorganic N-ions. 

(B) Indophenol blue method for the determination of ammonium-N (NH4+-N) 

(Wainwright & Pugh 1973). 

To filtrate (2 ml) was added, distilled water (7 ml), *phenolate reagent (5 ml), 

and sodium hypochlorite (5 ml) solution (0.9% v/v active chlorine), mixed and 

incubated at 25°C for 20 minutes in the dark. The intensity of indophenol-blue- 

ammonium-complex was measured at 630 nm using a spectrophotometer. The 

concentration of NH4-N was determined by reference to a standard curve (0-50 pg 

NHL+-N ml"') prepared from a standard solution of ammonium sulphate (NH4)2 SOa. 
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(a ) Standard ammonium solution: was prepared by dissolving 0.4717 g ammonium 

sulphate (NI-La)2S04 in I litre distilled water for (100 pg NH 4'-N ml"') 

(b) Phenol solution: was prepared by dissolving phenol (62.5 g) in ethanol (25 ml) and 

adding acetone (18.5 ml) to give a total of 100 ml. The phenol solution was stored in the 

dark at 4°C. 

(c ) *Phenolate reagent: was prepared by mixing 20 ml of phenol solution with 20 ml 

caustic solution (27% NaOH w/v) and diluting to 100 ml. The reagent was prepared fresh 

daily 

(C ) Analysis of nitrite-N ( N02--N ). (Hesse, 1971) 

Filtrate (2 ml) was added to a 50 ml volumetric flask, diluted with distilled water 

(40 ml) and *diazotising reagent (I ml) was added and incubated at room temperature for 

5 minutes. **Coupling reagent (I ml) was added and the volume was made up to mark 

with distilled water. After 20 minutes incubation at room temperature, the intensity of the 

pink colour formed was measured at 520 nm using a spectrophotometer and the amount of 

nitrite was determined by reference to a calibration curve (0-10 µg NO2 --N ml') prepared 

from a standard solution of NaNO2. 

(a) Standard nitrite solution: was prepared by dissolving 0.4929 g sodium nitrite 

NaNO2 000 µg N02- -N ml-1) in I litre distilled water volumetrically. 
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(b) * Diazotising reagent: 0.5g of sulphanilamide was added to 2.5 N HCI (100 ml) 

and dissolved. The reagent was stored in an amber bottle in refrigerator at 4°C. 

(c) **Coupling reagent: 0.3 g of N-(1-naphthyl)-ethylenediamine hydrochloride was 

dissolved in 0.1 N HCl (100 ml). The reagent was stored in an amber bottle in 

refrigerator at 4°C. 

(D) Chromotropic acid method for nitrate-N determination (Sims and Jackson, 

1971). 

To filtrate (3 ml), *chromotropic acid reagent (7 ml) were added, mixed, cooled 

in cold water and incubated at 40°C for 45 minutes. The intensity of the yellow CTA- 

NO3 complex was measured at 430 nm using a spectrophotometer. The N03 -N 

concentration was determined by reference to a standard curve (0-5 µg N03- -N mF'), 

prepared from a standard solution of KNO3. 

(a) Standard Nitrate Solution: 0.722 g Potassium nitrate (KNO3) were dissolved in 

distilled water and made up to I litre volumetrically, for 100 µg N03- -N ml-1. 

(b) Chromotronic acid reagent (Clo H608S2 Na2): 

A 0.1% (v/v) stock solution of chromotropic acid in concentrated sulphuric acid 

(H2SO4) was prepared by dissolving 1.84g chromotropic acid in litre H2SO4 (1: 1). This 

solution was stored in an amber bottle in refrigerator at 4°C for several months. 
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(c) *A working chromotropic acid solution (CTA): 

A working CTA-solution (0.0 1% v/v) was prepared by diluting 100 ml of stock solution to 

990 ml with concentrated sulphuric acid (H2SO4) then added 10 ml concentrated HCI using 

fume cupboard. This solution was stored at 4°C for several weeks only. 

Analysis of inorganic S-ions 

(E ) Turbidimetric analysis of sulphate-S (Hesse, 1971). 

To 5ml filtrate in 25ml volumetric flask, Ig BaC12.2H20 and 2m1 of gum-acacia 

(0.25%w/v), were added and mixed, and the volume was up-to mark with distilled water. 

The white suspension resulting from precipitation of barium sulphate, was measured at 470 

nm by spectrophotometer. The concentration of S042- -S was determined by reference to a 

standard curve (0 -100 pg S042- -S ml-') prepared from a standard solution of 

Na2SO4. I 0H20. 

(b) Standard sulphate-S solution: 0.443 grams of sodium sulphate (Na2SO4. l 0H20), were 

dissolved in distilled water I litre, which gives the concentration 100 99 S042- -S ml-'. 
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STANDARD CURVE FOR ARYLSULPHATASE 
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(F) Arylsulphatase assay. 

To soil (1g), containing in universal vials (25 ml), 4 ml acetate buffer, 0.25 ml 

toluene and 1 ml p-nitrophenyl sulphate solution were pipette, swirled for few seconds 

to mix the contents, screwed on top and placed in a water bath at 25°C. After 1 hr vials 

were removed from the water bath, and Iml CaC12 (0.5 M), 4 ml NaOH (0.5 M) were 

added, vials were swirled for few seconds, and the soil suspension was filtered through 

Whatman No. I folded filter paper into a test tube. 

Controls were performed with each soil sample analyzed to allow for colour not 

derived from p-nitrophenol released by arylsulphatase activity. For the control, above 

procedure was followed except I ml of p-nitrophenyl sulphate solution. After 

incubation at 25° C for 1 hr, I ml of CaCl2 (0.5 M) and 4 ml of NaOH (0.5 M) were 

added and then I ml of p-nitrophenyl sulphate solution was added immediately before 

filtration of the soil suspension into a test tube. Filtrate was transferred to a4 ml cuvette 

and intensity of the yellow colour was measured at 400 nm in the spectrophotometer 

against a reagent blank. 

Preparation of chemicals 

(a) Tris-HCI buffer (100 mM) 

12.1 gram of Tris (hydroxy methyl) aminomethane were dissolved in 700 ml 

distilled water, pH was adjusted at 7.6 (pH of the soil was 7.3, between the range of 6 to 

7.5) and added more distilled water up to 1000 ml. 
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(b) Triphenyltetrazolium chloride (TTC) solution 

lg of triphenyltetrazolium chloride (TTC) was dissolved in 80 ml tris-buffer and 

volume was made up with the same buffer to 100 ml. 

(c) Extractant 

Acetone (analytical grade) 

TPF standard solution 

50 mg of Triphenyl formazan (TPF) were dissolved in 80 ml of acetone (500µg 

TPF ml-') and the volume was made up to 100 ml with acetone. Field-moist agriculture 

soil (5 g) was weighed into 60 ml glass bottles and mixed with 5 ml 

triphenyltetrazolium chloride (TTC) solution. All the bottles were sealed with solvent 

resistant-rubber stoppers and incubated for 24 hours at 300 C. The control contains only 

5 ml tris-buffer (without TTC). After the incubation, 40 ml acetone was added to each 

bottle and the bottles were shaken thoroughly and further incubated at room 

temperature for 2 hours in the dark (shaking the tubes at intervals). The soil suspension 

(15 ml) was then filtered through Whatman No.! folded filter paper and the optical 

density of the clear supernatant was measured against the blank (8.3 ml tris buffer pH 

7.3 in 50 ml volumetric flask and the volume was made with acetone up to 50 ml mark). 

Titration-method 

After incubation, KOH (10 ml, 0. IM) solution were transferred to 100 ml 

Erlenmeyer flask. Into the Erlenmeyer flask, BaCl2 
. 12H20 (2 ml, 0.5 M) were added. 

This is used to precipitate the potassium carbonate to prevent over-estimation of the 

titration end-point. 
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Phenolphthalein indicator (3 drops) were added and the solution was titrated with 0.1 M 

HCl to end-point by using 25 ml burette. Blanks were also titrated of 10 ml fresh KOH. 

Preparation of Barium chloride solution (0.5 M) 

122.14 g of BaClz 
. 

2H20 were dissolved in distilled water and volume was 

made up with distilled water to 1 litre. 

Preparation of phenolphthalein (0.1%) indicator. 

Phenolphthalein powder (0.1 g) was dissolved in ethanol (80 ml 60% v/v) and 

the volume of ethanol was increased up to 100 ml. 

Chloroform (ethanol-free CHCI3) 

Commercial chloroform was washed with about 5% by volume H2SO4 (conc: ) 

by shaking in a separating funnel to separate off the acid, and re-washed with 10 rinses 

of distilled water. (Ethanol-free CHCI3 was stored in the dark to prevent photochemical 

build-up of explosive-by products). Ethanol-free CHCl3 is recommended because 

ethanol cannot be completely removed from soil after fumigation (Jenikinson 1988) and 

it is used as a substrate, mineralized to CO2, and thus is incorrectly measured as 

biomass C. 

The CO2 evolved during the incubation was measured by the Titration method. 

as described above. 
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TABLE (7.1) SOIL CHARACTERISTICS 

Content DAFC 

Total organic matter (% w/w) 16.2 8.9 16.0 20.4 

Total organic carbon (% w/w) 12.0 3.8 13.0 20.0 

Total organic nitrogen (% w/w) 1.06 0.4 0.6 2.0 

pH 5.2 6.5 6.2 4.9 

Abbreviations: D. Deciduous, A. Agricultural, F. Fern, and C. Coniferous. 

All soil samples were collected by digging about 10 cm deep from soil surface. 
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