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Abstract 

Functionalised amines are important targets for organic chemists. Various methods are used 

to functionalise amines, however often these reactions will involve the use of toxic or 

expensive reagents and therefore must be controlled, especially when used as active 

pharmaceutical ingredients (API). These reagents could potentially increase the cost 

associated with API and fine chemical synthesis. There has been an impetus to directly 

activate the C-H bonds adjacent to amine groups, thus increasing the reactivity of the group. 

Metal complexes have been used to stoichiometrically activate amines, however catalytic 

methods would be more favourable due to potential cost reduction. Metal complexes are 

used widely for hydrogen transfer reaction, which have provided a new methodology to 

activate non-electrophilic substrates by forming their electrophilic analogues. This 

methodology has been used extensively with alcohols, however there remains the 

opportunity to form imines by amine activation. 

The research disclosed in this thesis discusses efforts toward the formation of imines or 

iminium ions from their amine precursors. Analysis of the N-alkylation of several amines 

has been carried out, with discussion of methods to inhibit N-alkylation to form more of the 

desired imine. Mechanistic analysis of the various species in the reactions has given 

information including a potential pathway for N-alkylation, amine iridium binding and a 

potential inhibition product. 

The optimisation of an indole cyclisation reaction has been probed, with different a range of 

conditions investigated. A discussion of an attempted telescoped reaction has been given as 

well, together with a study on the expansion of the methodology to include diverse 

structural motifs. The attempted incorporation of different nucleophiles has also been 

disclosed with a discussion of the results and potential improvements to these reactions. 

Finally, an overview of the future for this research has been presented with potential new 

avenues for exploitation. 
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Chapter 1 Introduction 

1.1 Functionalised amines and the pharmaceutical and 

fine chemical industries 

1.1.1 The financial and medicinal importance of functionalised 

amines 

Functionalised amines are of great economic importance to drug companies; active 

pharmaceutical ingredients (APIs) 1.1-1.4 had combined revenues of greater than $21 

billion in 2011 (Figure 1.1).
1
  

 

Figure 1.1 Important amine containing APIs: (S)-1.1, Clopidogrel by 

Bristol Myers-Squibb; 1.2 Aripiprazole by Otsuka; 1.3, Salmeterol by 

GlaxoSmithKline; 1.4 Quetiapine by AstraZeneca and 1.5 Duloxetine by Eli Lilly. 

These drugs not only represent lucrative financial targets, but are also used in the treatment 

of debilitating diseases. Clopidogrel, 1.1, is a platelet-aggregate inhibitor, also used in the 

treatment of ischemic events in symptomatic atherosclerosis sufferers as well as in the 

treatment of acute coronary syndrome without ST-segment elevation; these diseases affect 
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80-90% of the population and cause the death of 1 in 5 men and 1 in 7 women, respectively. 

Aripiprazole, 1.2 and Quetiapine, 1.4, are antipsychotics which are used in the treatment of 

bipolar disorder, a disease that affects 1 in 100 people. Salmeterol, 1.3, is a corticoid used in 

the treatment of asthma a disease affecting 235 million people globally (2011).
2
 The 

importance of these and similar drugs medicinally and economically has required the design 

of cheap and efficient formation of functionalised amines on an industrial scale. 

1.1.2 Functionalization of amines and the pharmaceutical industry 

The functionalization of amines is a broadly researched subject, the scope and 

characterisation of which has been thoroughly examined. The synthesis of optically active 

functionalised amines in the pharmaceutical industry has been reviewed by Hauer and co-

workers.
3
 Whilst there are numerous methodologies for the formation of functionalised 

amines many of the well characterised techniques may not be suitable for use in 

pharmaceutical synthesis, due to regulatory restraints on the concentration of certain 

chemicals within these methods and these will now be described.  

1.1.2.1 N-Alkylations with alkyl halides 

APIs 1.1-1.5 contain N-alkylated amines. This type of functionalisation can happen in 

numerous ways. One conventional method for the N-alkylation of amines involves the use 

of toxic alkylating agents, such as haloalkanes to alkylate ammonia and other amines 

(Scheme 1.1).
4
  

 

Scheme 1.1 The N-alkylation of haloalkanes by ammonia, leading to a mixture of 

primary, secondary, tertiary or quaternary amines. 

One of the drawbacks of this reaction is the lack of selectivity, with the formation of side-

products 1.7-1.10 that can lead to difficult separations and add to the waste stream and give 

poor yields, reducing the economic efficacy of the reaction. It should be noted, however, 

that N-alkylation using halo-alkanes is still used to form APIs, the synthesis of prasugrel 

hydrochloride being one such example (Scheme 1.2).
5
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Scheme 1.2 Key step in Vummenthala’s synthesis of prasugrel hydrochloride, 1.14 

involving use of a halo alkane to make intermediate 1.12. 

Furthermore, haloalkanes like compound 1.6, must themselves be controlled in the final 

pharmaceutical product because, as alkylating agents, since they are potential genotoxic 

impurities (PGIs).
6, 7

 From a regulatory standpoint, there are specific levels of PGIs that are 

permissible within a drug, e.g. methyl iodide has a time weighted average exposure limit of 

12 mg m
-3

. Lipczynski and co-workers have evaluated the methyl iodide levels that are 

required in a range of pharmaceuticals.
6, 7

 They described how the testing method for the 

antiemtic azasetron hydrochloride, 1.15 (Figure 1.2), showed that methyl iodide levels were 

less than 41.3 ng. There is a major impetus within the pharmaceutical industry to move 

away from using these genotoxic reagents, as there is an increased cost associated with the 

testing required to prove that these impurities are not present at high concentrations. The 

drug industry has tried to avoid the use of PGIs, where possible, and has tried to develop 

numerous methodologies for the functionalization of amines that build-on developed 

N-alkylation, reductive amination and amide reduction reactions (Scheme 1.4 and Scheme 

1.6, vide infra).  

 

Figure 1.2 Azasetron hydrochloride, 1.15. 
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When considering the synthesis of APIs 1.1-1.4, atom inefficient methodologies have often 

been employed.
8
 In the case of Clopidogrel 1.1, the literature suggests numerous routes 

towards its synthesis including the one reported in Scheme 1.3 as a representative example.  

 

Scheme 1.3 Literature methods for the synthesis of Clopidogrel, 1.1. 

This route to (+)-Clopidogrel, is wasteful as diastereomeric crystallisation, a chiral 

resolution, with camphor sulfonic acid, CSA, is used to remove the undesired enantiomer. 

The maximum theoretical yield during diastereomeric crystallisation is 50%, leading to the 

low yields observed; the waste associated with this process is expensive in terms of disposal 

and procurement of materials. Furthermore the use of DMF as a solvent is undesirable, as it 

is also a PGI.  
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1.1.2.2 N-Alkylation using reductive aminations 

Further to using alkyl halides to carry out N-alkylations, reductive aminations can also be 

used, reacting an amine with a carbonyl compound and reducing the subsequent imine 

(Scheme 1.4).  

 

Scheme 1.4 Other methods for the functionalisation of amines: a) reductive amination. 

These reactions can be used successfully, as has been shown recently by Li and co-workers 

at Janssen Pharmaceuticals in the multi-hundred gram synthesis of a potential type 2 

diabetes therapeutic currently in phase 2 clinical trials.
9
 As part of their synthesis they used 

a reductive amination to form the functionalised N-methyl piperidine in a good yield (88%) 

on a 1.56 mol scale (Scheme 1.5). One drawback associated with reductive aminations is the 

atom inefficiency of the process. Li’s reduction has greater than stoichiometric quantities of 

waste containing sodium, boron as well as unreacted reductant, all of which must be 

disposed of safely post reaction (Scheme 1.5).  

 

Scheme 1.5 Li and worker’s synthesis of type 2 diabetes therapeutic 1.25 via reductive 

amination of functionalised piperidine 1.23 and formaldehyde. 

1.1.2.3 N-Alklyations by the reduction of amides 

As well as using haloalkanes and reductive aminations, N-alkylated amines can be produced 

via the reduction of amides (Scheme 1.6). The reaction involves the formation of waste 

streams of the reductants required and also of the carbonyls required, which are an added 
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cost during synthesis. The reaction also requires anhydrous conditions (due to the reductants  

generally employed, typically lithium aluminium hydrides) and these conditions can be 

costly to achieve.  

 

Scheme 1.6 Amide reduction for the formation of a secondary amine. 

A review by Magano and Dunetz has discussed several examples of process scale reductions 

and the need for safety and economy during these processes.
10

 The review discussed the use 

of DIBAL in Shieh and Prasad’s formation of a bicyclic fused piperidine functionalised 

pyrrole ring system, 1.27 during the synthesis of bicyclic amine, 1.28, an important 

structural motif implicated in cancer therapy (Scheme 1.7).
11

 The reaction being carried out 

at cryogenic temperatures, will have an associated risk, as will the added fire hazard due to 

using a pyrophoric reagent, however the reaction was carried out on a 3 L scale. 

 

Scheme 1.7 Shieh and Prasad’s use of DIBAL in the formation of intermediate 1.27 in 

the synthesis of the potential cancer therapeutic 1.28. 

Magano and Dunetz’s review also highlighted work carried out at Glaxo-Smith Kline on a 

multi-hundred gram synthesis of compound 1.29. In this instance the use of borane as a 

reductant led to milder reaction conditions at room temperature (Scheme 1.8).
12
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Scheme 1.8 Glaxo-Smith Kline’s synthesis of GW597599 (1.31) via reduction of 

intermediate compound 1.29 by borane. 

1.1.2.4 The regulation of PGIs and toxic by-products in pharmaceuticals 

The control of certain chemicals that are used in API synthesis is important due to the risk 

of averse affects if they remain after final purification. Certain chemicals, for example halo-

alkanes, will readily alkylate DNA causing its mutation, leading to possible disease 

manifestation. Regulatory authorities seek to control the concentration of these species 

within the API from the clinical trial stage and maintain them below certain thresholds of 

toxicological concern, TTCs, depending on their exposure limits. Table 1.1 outlines the 

general TTCs for genotoxic impurities in medicines.
13

  

Table 1.1 ICH guidelines for acceptable genotoxic and carcinogenic concentration in 

APIs. 

Duration of 

Treatment 
≤ 1 month 

>1 month-

12 months 
>1 year-10 years >10 years 

Genotoxic and 

carcinogenic 

impurity threshold 

(µg/day) 

120 20 10 1.5 
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The levels of PGI impurities must be certified before a product is allowed onto the market 

by national/international regulatory bodies, which adds further cost to pharmaceutical 

development. There is currently an industrially driven impetus in academic research for the 

development of methodologies that are alternatives to the use of alkylhalides, reductive 

aminations and amide reductions that can functionalize amines in a more efficient way, 

reducing the amount of testing required; these methods will be discussed in the following 

sections. 

1.1.3 Stoichiometric methods for CH bond activation of amines 

for amino functionalization 

Attempts have been made in the literature to overcome the problems associated with multi-

step functionalization of amines. Many of the methods suffer from the need for 

stoichiometric quantities of toxic oxidants. For example, Barton and co-workers developed a 

modification of the Strecker reaction, which is an effective method for synthesising 

protected imines and amino acids directly from amines.
14

 The group were able to 

demonstrate that phenylselenic anhydride or the acid derivative in mild conditions could be 

used to oxidise 1.30, to an imine via transfer dehydrogenation. Subsequent reaction of the 

imine in situ with sodium cyanide or its safer derivative trimethylsilyl cyanide, TMSCN, 

(forming cyanide in situ) would produce α-cyanopyrrolidine, 1.31, (Scheme 1.9) in 

excellent yield. The reaction proved to be applicable to various cyclic secondary amines; 

where the use of TMSCN was also shown to be more efficient with yields ranging from 49-

95%. 

  

Scheme 1.9 Phenylselenic anhydride activation of pyrrolidine 1.30 to a Strecker 

reaction with TMSCN to form α-cyanopyrrolidine 1.31. 

Barton and co-workers were unable to completely determine the mechanism and the role of 

the oxidant during the dehydrogenation of pyrroles using phenylselenic anhydride, which 

may not have been the only oxidant. The reaction required expanding to incorporate primary 

or tertiary amines as well as shorter reaction times to increase its value as a synthetic tool.
14
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Similarly, Uskokovic and co-workers’ synthesis of the heteroyohimbine alkaloids
15

 used 

stoichiometric quantities of 1:1 mercuric acetateEDTA to synthesise racemic ajmalicine, 

1.33, from functionalised tryptamine amine 1.32, via iminium ion formation (Scheme 1.10).  

 

Scheme 1.10 Uskokovic and co-workers CH activation of amine 1.32 during the 

synthesis of racemic heteroyohimbine alkaloid, ajmalicine, 1.33.
15

 

A low yield was observed in this reaction, presumably due to the reaction having to proceed 

through the strained 5-membered spiro-cyclic intermediate, 1.34 and facile over-oxidation of 

the product to iminium by-product 1.35 requiring a reductive work-up (Figure 1.3). The 

expense and toxicity associated with this oxidant, coupled with the poor yield and formation 

of the over-oxidation product, preclude this method’s use on an industrial scale.  

 

Figure 1.3 Spiro-cyclic intermediate 1.34 and over-oxidation product 1.35 formed 

during heteroyohmibine alkaloid synthesis. 

Murahashi and co-workers have developed a method for the cyclisation of tertiary amine 

1.36 and amides that proceeds via a ruthenium catalysed dehydrogenation to the 

corresponding iminium ion intermediate.
16

 Whilst the method has a moderate to high yield, 

it employs tert-butylhydroperoxide as a stoichiometric oxidant, which has undesirable toxic 

and suspected genotoxic properties (Scheme 1.11). 
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Scheme 1.11 Murahashi and co-worker’s oxidation of tertiary amines with alkyl 

hydroperoxides.
16

 

Li
17

 has also developed a dehydrogenation reaction with amine 1.38 using tert-butyl 

peroxide as a stoichiometric oxidant and copper as a catalyst, where the imines formed were 

trapped in situ with malonate to afford functionalised amine 1.39 (Scheme 1.12). Whilst this 

group had developed one pot reactions which proceeded from the amine to the α-substituted 

or cyclisation product directly, the stoichiometric quantities of toxic and sometimes 

hazardous oxidant required was not desirable. 

 

Scheme 1.12 Li’s copper catalysed oxidation of N-phenyl-tetrahydroisoquinoline, 1.38, 

with in situ trapping by dimethylmalonate. 

The majority of the stoichiometric methods that have been developed for the 

dehydrogenation of amines are not suitable for industrial scale-up. The oxidants employed 

tert-butyl hydrogen peroxide, phenylselenic anhydride and mercuric acetate: EDTA, are all 

potentially hazardous to use. Furthermore, when these oxidants are used in stoichiometric 

quantities they are expensive and, with the drive toward sustainable processes, are wasteful. 

The development of catalytic dehydrogenation methodologies that do not require expensive 

or highly hazardous oxidants has become a point of increasing interest within both academia 

and industry. 
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1.2 Hydrogenations, Transfer-Hydrogenations and 

Hydrogen-Borrowing 

Transfer-hydrogenation and hydrogen-borrowing methodologies are a logical development 

from metal-catalysed hydrogenations in organic chemistry (Scheme 1.13 a, b and c, 

respectively). Hydrogenation reactions have a wide scope within the realm of organic 

chemistry. There are three main branches of hydrogenation reactions: biological, 

heterogeneous and homogeneous reactions.
18

 There are a number of recent reviews that 

highlight current work in the field of heterogeneous catalytic hydrogenation, with a current 

focus being on the immobilisation of homogeneous catalysts.
19-21

 Within these three 

branches, homogeneous catalytic hydrogenation is the most relevant to this work. The field 

of homogeneous hydrogenation is continually growing and expanding and new methods are 

constantly being developed by chemists. This section will give a brief outline of 

homogeneous hydrogenations providing examples of historical and more recent work in the 

field. 

 

Scheme 1.13 Generic schemes for a) transfer hydrogenation; b) hydrogen-borrowing 

and c) hydrogenation reactions. 
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1.2.1 The reduction of imines by homogeneous hydrogenation 

catalysts  

One of the first homogeneous hydrogenation catalysts developed was the 

tris-triphenylphosphinylrhodium(I) chloride complex, known as Wilkinson’s catalyst, 1.50 

(Figure 1.4), developed by the Nobel Laureate Sir Geoffrey Wilkinson and co-workers.
22

  

 

Figure 1.4 Wilkinson’s catalyst 1.50 and with coordinated dihydrogen 1.51. 

In the catalytic process, the catalyst loses a triphenylphosphine ligand and reacts with 

hydrogen gas to form the active catalyst, rhodium(III) complex 1.51 (Figure 1.4), which 

then goes onto hydrogenate unsaturated olefinic bonds.
5
 Noyori and co-workers 

demonstrated that modification of complex 1.51 with the chiral, bidentate, C2 symmetric 

2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) ligand, 1.52, could lead to 

enantioselective hydrogenations. High enantiomeric excesses, ee, for the hydrogenation of 

α-(acylamino) acrylic acids were possible (79->99% ee) in high yields (93-99%).
23

 BINAP 

is atropisomeric due to the steric interactions of hydrogens and biphenylphosphines on the 

napthyl rings (Figure 1.5),
4
 this fact ensures that there is restricted rotation about the 

arylaryl axis, leading to the ligand being chiral.
24

 The axial chirality of the BINAP ligand 

influences the spatial environment around the metal centre and its coordination sites, which 

lead to the stereoselectivity of the reaction.
25

 A recent review of the use of chiral phosphorus 

ligands in enantioselective synthesis by Tang and Zhang provides a comprehensive review 

of chiral phosphorus ligands in synthesis, as well as their use in asymmetric imine 

hydrogenations.
26

 

 

Figure 1.5 Steric interaction in BINAP, 1.52, that induce atropisomerism in the 

compound.
4
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A different system for the homogeneous asymmetric hydrogenation of enamides was 

developed by Kagan and Dang. Using the (R, R)- 1,4-bis-diphenylphosphinobutane 

[(R, R)-DIOP] ligand, (R, R)-1.54, they were able to form chiral (R)-N-acetylphenylalanine, 

1.55, from the corresponding α-acetamidocinnamic acid, 1.53, in 95% yield with an ee of 

72% (Scheme 1.14). This early example paved the way for the incorporation of further 

imines into homogeneous asymmetric hydrogenation.
27

 

 

Scheme 1.14 Kagan and Dang’s rhodium catalysed asymmetric hydrogenation of 

α-acetamidocinnamic acid 1.53, using chiral (R,R)-DIOP, (R,R)-1.54. 

The incorporation of enamides into hydrogenation reactions paved the way for imines to be 

used. In the field of homogeneous imine hydrogenation Spindler and Blaser have noted the 

preferred use of only a few noble metals, namely iridium, rhodium and ruthenium as well as 

group IV titanium species as catalysts.
28

 Further work by these authors has noted that 

diphosphinoiridium complexes used as catalysts give low activities, even at hydrogen 

pressures greater than 70 bar.
29

 These processes are therefore inefficient and uneconomic 

with low catalyst activity requiring high loadings of expensive precious metal catalysts. 

High pressures of hydrogen are required that necessitate the use of specialised robust 

equipment and extra safety measures that are costly to implement and maintain. These low 

activities must be improved upon to reduce the economic expenditure of process scale 

synthesis. 

One of the first industrially important uses of imine hydrogenation was discovered by Blaser 

and co-workers for the synthesis of the active stereoisomers, (αR,1’S)-1.56 and 

(αS,1’S)-1.56, of the herbicide (S)-Metolachlor (Figure 1.6).
30, 31
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Figure 1.6 Active stereoisomers, (αR,1’S)-1.56 and (αS,1’S)-1.56, of (S)-Metolachlor. 

(S)-Metolachlor was released into the market in the USA as the 90% (1’S)-diastereomer in 

1997, but was sold previously as the racemate (from 1976). The key step in the synthesis of 

(S)-Metolachlor was the hydrogenation of imine intermediate 1.57 to amine 1.59 

(Scheme 1.15), here the use of the xyliphos ligand, 1.58, led to a good ee of 80%. The 

turnover number, TON, and initial turnover frequency, TOF, however, were high at 10
6
 and 

>1.8x10
6  

per hour, respectively.
32

 The synthesis also requires high hydrogen pressures of 80 

bar, which are potentially hazardous, however the large TON and TOF coupled with the 

good ee has led to the synthesis being carried out on a >10
5
 tonnes per year scale, thus 

exemplifying the industrial relevance of the process. 

 

Scheme 1.15 The key step in the asymmetric synthesis of (S)-Metalochlor, 1.56, the 

hydrogenation of imine 1.57 to amine 1.59 by iridium catalyst 1.58. 

Han and co-workers reported a bi-dentate chelate, spiro compound with phosphine and 

pyridine coordinating sites that can be used in the reduction of N-phenyl-acetophenone 

imine, 1.60. The method used a chiral iridium catalyst (S)-1.61 to reduce imine 1.60 with 

hydrogen, 50 atm, in dimethyether for 24 hours at rt to its amine analogue, (S)-1.62 

(Scheme 1.16).
33

 The method was encouraging as the iridium catalyst gave the product in 

almost quantitative yield; however the ee of 58% was modest. The synthesis of the spiro 

ligand involved 6 steps with overall yield being 42%. The low yield made the catalyst 

expensive to produce and was compounded by a high catalyst loading of 1 mol%.
33
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Scheme 1.16 Han and co-workers’ hydrogenation of N-phenyl acetophenone imine, 

1.60.
33

 

Baeza and Pfaltz attempted to modify the iridium centre in a similar fashion to Han and co-

workers using phosphorus or nitrogen bidentate ligands. Their research aimed to improve 

selectivity of imine hydrogenation using Ir-PHOX complexes, 1.64-1.66 (Scheme 1.17), 

with the BArF, 1.63, counterion that proved critical in giving high activity.  

 

Scheme 1.17 Ir-PHOX complexes 1.64-1.66, used by Baeza and Pfaltz to induce 

asymmetry during imine dehydrogenation. 

The authors altered the alkyl to aryl substituents of the phosphine ligand, as they believed 

this would increase the selectivity by changing the electronic properties of the iridium when 

changing from a more σ-donating ligand to a more π-accepting ligand.
34

 The researchers 

found that catalysts 1.64-1.66 (Scheme 1.17) successfully converted a number of different 

aryl substituted imines to amines with generally high conversions (85-99%) and modest to 

good ee of (74-96%) at moderate hydrogen pressures (Scheme 1.18). The system accepted a 
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variety of N-alkyl-aryl substituted secondary imines, 1.66, with little effect from the 

substituents on the conversion or ee. A poor conversion of 20% was observed for 

benzyl-substituted imine, 1.69, with catalyst 1.64; and 56% for N-(4-methoxyphenyl) 

substituted imine, 1.70, with catalyst 1.65 (Figure 1.7). 

 

Scheme 1.18 Baeza and Pfaltz’s Ir-PHOX complex catalysed imine hydrogenation. 

 

Figure 1.7 Imines 1.69 and 1.70 which had poor conversions of 20% and 56%, 

respectively, during hydrogenation. 

1.2.2 Transfer hydrogenation of imines 

The development of transfer hydrogenation or hydrogen transfer reactions was a logical 

development from the methodologies described previously (Scheme 1.19). In this reaction, 

instead of hydrogen gas being used as the reductant an organic molecule is oxidised, which 

then reduces the desired substrate.
35

 The use of organic molecules as the reductant negates 

the need to deal with hazardous hydrogen atmospheres, i.e. flammable etc., as in the 

previous examples.
11-26

 A number of reviews have been published which highlight the work 

in this area. A review of the early work in this field by Brieger and Nestrick gives an insight 

into the early heterogeneous and homogeneous catalyst systems,
35

 whilst Zassinovich and 

co-workers provide a thorough analysis of work with asymmetric rare-earth metal 

homogeneous catalysts until 1992. Their review gave examples of the most commonly used 

organic molecules as reductants.
36

 Williams and co-workers have provided two excellent 

reviews giving an insight into CN, CO and CC bond forming reactions possible via 

hydrogen transfer reactions of alcohols.
37, 38

 Crabtree
39

 and Guillena, Ramón and Yus
40

 and 
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others
40-45

 have reviewed recent work on hydrogen transfer reactions and Crabtree’s review 

placed particular emphasis on its role industrially via dehydrogenation for substrate 

activation. In the following section early examples of hydrogen transfer reactions, as well as 

reactions that utilise the methodology shall be discussed. 

 

Scheme 1.19 A generic transfer hydrogenation reaction.
46

 

1.2.2.1 The MeerweinPonndorfVerley reaction, metal centred hydrogen 

transfer 

The MeerweinPonndorfVerley reaction was an important early use of transfer 

hydrogenation. Huskens and co-workers have written a comprehensive review on the 

MeerweinPonndorfVerley reaction.
47

 The reaction involves the reduction of carbonyl 

1.76 to alcohol 1.77 by the alkoxy-aluminium intermediate, 1.78, generated in situ via 

coordination of isopropanol, 1.77, to aluminium(III), with concomitant oxidation of alcohol 

1.77 to acetone, 1.81 (Scheme 1.20).
48-50

 The reaction is often stoichiometric in aluminium, 

as the aluminium forms a tight complex with the aldehyde or ketone formed, 1.81, which 

deactivates the catalyst and also due to slow ligand exchange. Since this early reaction, 

catalytic metal mediated transfer hydrogenations have been developed; these methodologies 

will be discussed during the rest of this section. 

 

Scheme 1.20 MeerweinPonndorfVerley transfer hydrogenation of carbonyls using 

in situ generated aluminium alkoxy species, 1.79. 
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Noyori and co-workers discovered a novel asymmetric transfer hydrogenation of secondary 

imines using ruthenium-η-aryl complexes, 1.84, and TEAF as the reductant (Scheme 

1.21).
51

 The use of various chiral N-tosylated-1,2-diamine ligands led to asymmetric 

reduction of the imine in moderate to high ee with moderate to quantitative yields, 77-96% 

and 72-99%, respectively. As well as the model dihydroisoquinoline substrate 1.83 the 

system was tolerant of other cyclic imines as well as acyclic imines. Carbon dioxide 

formation led to higher yields as the reverse reaction, for the formation of formic acid and 

1.83 from 1.85, was not possible. 

 

Scheme 1.21 Noyori and co-workers’ ruthenium catalysed asymmetric transfer 

hydrogenation of secondary imines. 

Bäckvall and Chowdhury demonstrated that other reductants are tolerated in transfer 

hydrogention, using cheap and water soluble sodium hydroxide as a co-catalyst to reduce 

ketone 1.86 with isopropanol, 1.77, as the reductant (Scheme 1.22).
52

 The reaction used low 

catalyst loadings (0.1 mol%) and achieved a maximum reported TON of 890 turnovers and 

TOF of up to 900 turnovers per hour, at significantly lower temperatures than previously 

reported. Using tris-(triphenylphosphinyl)-bis-chloro-ruthenium(II), they were able to 

convert cyclic or aromatic ketones to the corresponding alcohols, 1.87, in 39-89% yield. The 

ability to boil off the acetone, 1.81, that was formed, made the reaction desirable compared 

to using a hydrogen atmosphere; however the protocol required expansion to incorporate 

further ketones.  
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Scheme 1.22 Bäckvall and Chowdhury’s protocol for the ruthenium catalysed 

hydrogenation of ketones. 

The same authors have also disclosed mechanistic aspects of the hydrogenation of imines, 

showing experimentally that the hydrogen transfer occurs after the imine binds to 

ruthenium.
53

 The authors examined the hydrogenation of a model imine compound (1.89) 

with Shvo’s catalyst (1.91) and either H2 or D2 as a reductant. NMR analysis of the 

hydrogen transfers at both room and low temperatures established that the nitrogen of the 

imine must bind directly to the ruthenium centre, with the hydroxyl group being involved in 

hydrogen transfer to form the amine. An inner sphere mechanism for the reduction was 

established and the authors were able to discern the effect of deuterium on the rate of 

reaction and showed that the rate determining step was the cleavage of the C-H bond, alpha 

to the nitrogen. The authors also showed that the transfer of hydrogen from the amine to the 

complex was not a concerted process and that, unlike aldehydes, hydrogen transfer is not 

rate limiting. 

 

Scheme 1.23 Mechanistic study of hydrogen transfer carried out by Backvall and 

Chowdury, showing that the reaction occurs via an inner-sphere mechanism. 

Blacker and Mellor have also developed an asymmetric route for the hydrogenation of 

imines to their amine analogues using potassium hydroxide-isopropanol as the reductant 

(Scheme 1.24).
54

 In this instance rhodium, rather than ruthenium was used, the authors 
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found that by using (1S,2R)-2-amino-1,2-diphenylethanol as an asymmetric ligand they 

could induce the rhodium complex to carry out asymmetric reduction of imine 1.93, via 

formation of complex 1.94.  

 

Scheme 1.24 Blacker and Mellor’s asymmetric transfer hydrogenation of imines. 

Baker and Mao have developed an asymmetric protocol for the rhodium-catalysed transfer 

hydrogenation of imine 1.96 using TEAF as a reductant at room temperature (Scheme 

1.25).
55

 Similarly to Noyori and co-workers, they employed the 1, 2-diamine ligand, 

(S,S)-N-para-toluenesulfonyl-1,2-diphenylethylenediamine [(S,S)-TsDPEN, (S,S)-1.97), and 

its enantiomer, (R,R)-TsDPEN, to convert imine 1.96 in high yields (85-96%) to the 

corresponding amine, 1.98, with generally moderate to excellent ee (67-99%). The reaction 

did not achieve good selectivity for the phenyl- and 3,4-dimethoxyphenyl- substituted 

dihydroisoquinolines, 1.99 and 1.100 (4.4% and 3.2%, respectively) or for the N-benzyl-

substituted imines, 1.101 and 1.102 (both 8.4%). This poor selectivity can be rationalised 

due to acidic, benzylic proton of the desired product allowing for rapid reformation of the 

imine (and possible non-selective dehydrogenation). The reaction used low catalyst loadings 

of 0.5-0.1 mol% and would be completed in 10-180 min. Whilst the lower loading reduced 

reactivity and enantioselectivity, the conversions were still high, 94% at 0.1 mol% and 96% 

at 0.5 mol%, as were ee, 93% compared to 99% for imine 1.103 (Figure 1.8). 
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Scheme 1.25 Baker and Mao’s rhodium catalysed asymmetric reduction of imine 1.96 

using chiral TsDPEN ligand, 1.97. 

 

Figure 1.8 Imines 1.99-1.102 that achieved poor selectivity during asymmetric 

hydrogenation and imine 1.103 which achieved excellent yield and ee at 0.1 or 

0.5 mol% catalyst loading. 

1.2.3 Enzymatic hydrogen transfer reactions  

Before examining the utility of chemo-catalytic hydrogen transfer reactions, a brief aside 

will describe the academic community’s development of a variety of enzymatic tools to 

carry out hydrogen transfer reactions. Numerous biologically based, enzymatic systems, 

have been detailed and reviewed comprehensively by Turner
56

 and further by Fleury
57

 for 

the activation of amines and alcohols. Of particular note was work carried out using 

monoamine oxidases (MAO) that have been used for amine activation, which included work 

by Singer and co-workers that described the Aspergillus niger derived MAO (MAO-N) 

oxidation of amines (Scheme 1.26).
58

 The work was important from both a chemical and 
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biological standpoint as the precursors to mammalian MAO used to oxidise specific amines 

gave an insight into the chemical origins of life.  

 

Scheme 1.26 Oxidation of amine 1.104 to imine 1.105 via enzymatic catalysis with 

monoamine oxidase derived Aspergillus niger (MAO-N) with molecular oxygen as an 

oxidant. 

 

Scheme 1.27 Deracemisation of a) primary and secondary amines, 1.107, and b) 

tertiary amines, 1.109, via chemo-enzymatic methods using MAO-N mutants, via imine 

1.108 and iminium ion 1.110 formation, respectively. 

Work by Turner has shown that via a combination of chemical and enzymatic methods 

primary and secondary, 1.107, and tertiary amines, 1.109, can all be deracemised using 

different mutants of wild-type MAO-N, and a chemical reductive method (Scheme 1.27a 

and b, respectively).
59-62

 Whilst only a small sample of amines has been shown to work with 

this methodology, there is scope for expansion to a wider range of amines using this 

methodology. A similar system which further exploits the dehydrogenation to carry out 

other transformations, would be an ideal method to selectively functionalize amines. 



Chapter 1:Introduction 

23 

 

  

Scheme 1.28 a) Enzymatic Strecker reaction via amine dehydrogenation; b) Enzymatic 

Dynamic Kinetic Resolution (DKR) or 2-methyl-tetrahydroisoquinoline. 

Further developments in the Turner group have shown that the MAO-N pathway can be 

used for the addition of other nucleophilic substrates to imines formed in situ (Scheme 

1.28.a).
63

 The Strecker reaction used to produce fused cyclopentane-α-cyanopyrrolidine, 

1.112, is less hazardous than Barton’s
14

 protocol (Scheme 1.9 vide supra) as phenylselenic 

anhydride is not required and the reaction is catalytic. Recently, the group has reported the 

use of biological-chemical cascade reactions utilising an iridium biotin catalyst, 1.116, 

anchored within a streptavidin isoform to produce an ATHase and biological co-factors to 

carry out amine dehydrogenations (Scheme 1.28b).
64

 The incorporation of iridium catalysts, 

used widely in hydrogen transfer reactions, within an enzyme environment, was an 

interesting development. 

1.2.3.1 Reactions utilising chemical hydrogen transfer reactions 

Grigg and co-workers demonstrated that tetrakis-triphenylphosphine rhodium(I) hydride 

complex, RhH(PPh3)4, was the most active catalyst in the N-alkylation of primary and 

secondary amines using methanol. The catalyst system was favourable compared to a 

palladium on carbon catalyst, with a higher yield (97% compared to 6%) and shorter 
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reaction time (4 hours compared to 46 hours) for the conversion of pyrrolidine, 1.22, to 

N-methylpyrrolidine, 1.118 (Scheme 1.29). Both systems had a catalyst loading of 5 mol%, 

which would need to be reduced to be made industrially viable; however the promising 

yield and quicker reaction time meant that the protocol could be of interest to industry.
65

 

 

Scheme 1.29 Grigg and co-workers’ protocol for the N-alkylation of pyrrolidine, 1.22, 

to N-methylpyrrolidine, 1.118. 

Homogeneous platinum group metal catalysts also improve the efficiency of the 

LeuckartWallach reaction. The LeuckartWallach reaction, a reductive amination of 

carbonyls using formic acid as the reductant, is not very attractive as a route for the 

synthesis of primary and secondary amines from aldehydes and ketones, respectively.
66

 The 

uncatalysed reaction requires high temperatures (180 °C) for the reaction to proceed and a 

high number of equivalents (3 equiv. of TEAF for the reaction with benzophenone) of 

reagents to achieve acceptable yields (80%, at 200 °C after 30 min.).
66

 The high 

temperatures and large equivalents of reagents required have led to the reaction being 

avoided. Kitamura and co-workers have demonstrated that rhodium could be used as an 

effective catalyst in the reaction. Cp*-bis-µ-chloro-rhodium(II) dimer ([RhCp*Cl2]2) proved 

to be a good catalyst providing a selective route from acetophenone, 1.119, to 

bis-α-methylbenzylamine, 1.120, (Scheme 1.30). The reaction can now be carried out at a 

much milder temperature of 70 °C in a relatively short reaction time of two hours. The 

reaction also benefits from a high yield of 98%.
67

 

 

Scheme 1.30 Kitamura and co-workers catalytic LeuckartWallach reaction. 
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Further utility of transfer hydrogenation reactions has been demonstrated by Berke and co-

workers, using the methodology as a form of hydrogen storage.
68

 They demonstrated that at 

mild temperatures (20-60 °C) using ammoniaborane, 1.122 they could transfer 

hydrogenate imine 1.121 to amine 1.123, via oxidation of ammoniaborane to the 

unsaturated compound 1.124 (Scheme 1.31).  

 

Scheme 1.31 Yang and co-workers transfer hydrogenation of imines using 

ammoniaborane. 

The rate of the transfer hydrogenation was slower at room temperature (5 days c.f. 7 hours 

at 60 °C). Ammoniaborane decomposes at temperatures greater than 60 °C, therefore 

further heating to increase the rate of reaction was not possible. The reaction did have a 

moderately broad scope, as a large number of alkyl amines could be formed in addition to 

aromatic amines, however rates were slower and in the case of the extremely hindered 

N-tertiary butyl benzylamine the reaction was extremely slow. The reaction was subject to 

side reactions of the ammoniaborane with the production of cyclic and polymeric adducts. 

They surmised that ammoniaborane could thus be used during this process as a form of 

hydrogen storage as small amounts of hydrogen gas were released during the process.  

Fujita and co-workers have asserted that oxidant-free reactions to oxidise alcohols would be 

an ideal protocol for the highly atom efficient synthesis of carbonyl compounds. The critical 

step in alcohol oxidation is the catalytic dehydrogenative oxidation of alcohol 1.126 where 

the dehydrogenation forms the metalhydride intermediate 1.129 via β-elimination of 

ketone 1.128 (Scheme 1.32).
69
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Scheme 1.32 Fujita and co-workers proposed mechanism for the dehydrogenation of 

alcohols by metal catalysts. 

In the same paper Fujita and co-workers established a protocol for oxidant free oxidation of 

secondary alcohols. The authors developed a class of Cp*Ir(III) catalysts; 

2-hydroxypyridine containing 1.131 and 2-pyridonate containing 1.132 were used in the 

dehydrogenation of secondary alcohol 1.133 to carbonyl 1.134 (Scheme 1.33). Their method 

allowed dehydrogenation of secondary alcohols containing various aromatic and alkyl 

substituents even with low catalyst loadings of 0.2 mol% in refluxing toluene (PhMe). 

Deactivated aromatic systems required longer reaction times and higher loadings; 

cyclohexanol required 1.0 mol% catalyst loading as did 1-tetralol, with an increased 

reaction time of 50 hours. This new reaction showed promise, with its ability to oxidise 

benzylic alcohols using low catalyst loadings, however an optimisation of the reaction to 

reduce the temperature and increasing the substrate scope, to include more alkyl substituted 

alcohols, was required.
69

 

 

Scheme 1.33 Fujita and co-workers iridium catalysed alcohol dehydrogenation. 
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The hydrogen-transfer technology is not only applicable to alcohols, but also for amines. 

Bäckvall and co-workers have demonstrated that using a ruthenium catalyst, 1.136, a 

cobalt-salen co-catalyst, 1.137, and 2,4-dimethoxybenzoquinone (DMBQ) that they could 

dehydrogenate a range of secondary amines to their imine derivatives (Scheme 1.34). 
70

 

 

Scheme 1.34 Bäckvall’s biomimetic ruthenium catalysed dehydrogenation of amines. 

The biomimetic system was able to use oxygen from air, as the oxidant, to reform the 

catalytic species, with no observed catalyst deactivation. The reaction tolerated various 

N-aryl amines, with yields varying from 30-95%, which, coupled with a short reaction time 

of 1 hour, makes this an attractive protocol. The authors noted one serious drawback 

however, when air and toluene are mixed at 100 °C in the gas phase, explosive mixtures 

form and such a situation is not desirable on scale. Further investigation was required to 

prevent this potentially dangerous situation from occurring. The authors also carried out a 

Mannich reaction with the isolated product, using L-proline, propionaldehyde (1.141) and 

N-methyl pyrrolidine (NMP) as solvent, to form amine (1.142), proving the efficacy of the 

protocol (Scheme 1.35).
71
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Scheme 1.35 Incorporation of hydrogen transfer to activate an amine to its imine 

analogue to carry out a Mannich reaction. 

Fujita and co-workers established the first iridium catalysed homogenous reversible 

dehydrogenationhydrogenation of nitrogen heterocycles, 1.158, to their unsaturated 

analogues 1.159, via hydrogen transfer from the system  (Scheme 1.36a).
72

 

 

Scheme 1.36 a) Fujita and co-workers b) Xiao and co-workers iridium catalysed 

dehydrogenation of substituted tetrahydroquinolines. 

The group found that incorporation of catalyst 1.132b, proved incompatible with 

tetrahydroquinoline giving only a 7% yield. However catalyst 1.132a was effective in the 
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reaction when the 2-pyridonate ring was substituted (73% yield). Furthermore, Fujita was 

able to hydrogenate 1-decene with catalyst 1.50 and the hydrogen gas evolved from the 

dehydrogenation in a separate reaction vessel. The reaction was tolerant of different methyl 

substitution patterns on the tetrahydroquinoline substrate; however the reaction required the 

use of refluxing p-xylene (138 °C), high catalyst loadings (2.0 mol%) and was applicable to 

a narrow substrate range. The costs associated with the catalysts in these reactions precludes 

their use at a process scale. Recently, work by Xiao and co-workers has further improved 

upon Fujita’s work by use of iridium-imine complex, 1.145, for the dehydrogenation 

reaction (Scheme 1.36b). Complex 1.145 could be used at far lower catalyst loadings (0.1 

mol%) and at much lower temperatures to give moderate to excellent yields of the 

dehydrogenated product (72-97%).
73

 

 

Figure 1.9 Iridium chloride dimer catalyst, 1.146a, and SCRAM catalyst 1.146b, 

employed by Blacker and co-workers for the racemisation of chiral secondary and 

tertiary amines. 

Blacker and co-workers have further shown the applicability of transfer hydrogenation via 

the use of pentamethylcyclopentadienyliridium(III) halide dimer ([IrCp*X2]2) catalysts, 

1.146 (Figure 1.9).
74

 Their system used the equilibrium that can be formed between two 

stereoisomers, due to reversible hydrogenationdehydrogenation reactions (known as 

‘hydrogenborrowing’; Scheme 1.37), to racemise a stereocentre. This racemisation, or 

scrambling, of the stereocentre has led to [IrCp*I2]2 being known as SCRAM catalyst. The 

original work demonstrated that a model 2-methyltetrahydroisoquinoline structure, 

(S)-1.147, containing a conformationally rigid secondary amine, could be racemised from 

the single enantiomer under mild conditions and at low catalyst loadings [40 °C, 0.2 mol% 

([IrCp*I2]2)] (Scheme 1.37).  
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Scheme 1.37 Iridium catalysed racemisation of amine (S)-1.147, by reversible 

dehydrogenation-hydrogenation that leads to racemisation of the stereocentre. 

Further work by the group proved the system was tolerant of numerous secondary and even 

tertiary amines; however primary amine racemisation proved elusive due to the formation of 

N-alkylation products (work has shown that this can be overcome by slow addition of 

substrate).
75

 The group found that the use of the iodide dimer 1.146b, originally formed 

in situ, via salt exchange between the chloride dimer 1.146a and potassium iodide, was 

more active than the chloride analogue. The ability of the catalyst to racemise tertiary 

amines was impressive as it involved the formation of the kinetically high energy, cationic 

nitrogen of an iminium species, 1.149, during dehydrogenation (Figure 1.10). The iminium 

ion species formed at a slower rate than secondary imines, however the iminium species was 

also reduced at a faster rate. Rates were faster for the cyclic tetrahydroisoquinoline structure 

1.147, where reduced temperatures and low catalyst loadings were tolerated (40-80 °C, 

0.2-0.5 mol%), than for acyclic structures (80-90 °C, 0.1-1.0 mol%). The reaction could 

then be used in a dynamic kinetic resolution with a chiral enzyme to discriminate the 

required stereoisomer and selectively form one stereoisomeric product.
76

 

 

Figure 1.10 The reversible formation of iminium ion species, 1.149, formed during the 

dehydrogenation of tertiary amines by Blacker and co-workers. 
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Blacker and co-workers’ method was shown to be efficacious during the synthesis of 

sertraline, (1S,4S)-1.150, the API in the Pfizer drug Zoloft. Using a dynamic kinetic 

resolution protocol (DKR), coupled with diastereomeric crystallisation with mandelic acid, 

that had already been established to selectively form a single stereoisomer, a reduction in 

waste was possible to 1 kg/kg of product (not including solvent) during the isolation of the 

desired enantiomer. The synthesis of the substrate is complicated due to the presence of two 

asymmetric centres. These centres can lead to the formation of four different diasteromers, 

(1S,4S)-1.150; (1S,4R)-1.150; (1R,4S)- 1.150 and (1R,4R)- 1.150 (Figure 1.11).
77

  

 

Figure 1.11 The 4 diastereomers of sertraline, 1.150, the active stereoisomer is 

(1S,4S)-1.150 and (R)-mandelic acid, (R)-1.151, used during crystallisation induced 

diastereomeric transformation (CIDT). 

Williams and co-workers
78

 have demonstrated several uses for the SCRAM (1.146b) 

catalyst including alkylation of amines, 1.152, with alcohols, in water in the absence of base 

to the N-alkylation product, 1.153, in 60-98% (Scheme 1.38).
79

 They were able to form a 

range of secondary amines and tertiary amines. They found no real trend between the 

isolated yield achieved and the electronic or steric nature of the parent amine. The formation 

of electron-deficient N-propyl 4-(trifluoromethyl)- and N-propyl-4-cyano-anilines was 

achieved with poor yields of 18 and 23%, respectively. The direct alkylation of amines in an 

environmentally benign solvent without the use of hazardous alkylating agents was 

desirable. 
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Scheme 1.38 Williams and co-worker’s alkylation of amines with alcohols. 

A range of complex 2,3,5-substituted pyrroles, 1.157, have recently been synthesised by 

Kempe
80

 using the hydrogen borrowing methodology (Scheme 1.39). The work was of 

particular interest as sustainable feedstocks were used and the reaction was tolerant of a 

diverse range of functional groups on the different R-groups. The ability to produce highly 

functionalised pyrroles, which are used in a variety of industrial and medicinal applications, 

across a range of yields 37-88% (for the fused cyclododecyl-benzyl and fused 

cycloheptyl-ethyl analogues) at low loadings of as little as 0.03 mol% (84% yield fused 

cycloheptyl-iso-propyl analogue) has demonstrated how important this methodology can be. 

 

Scheme 1.39 Kempe’s synthesis of 2,3,5-substituted pyrrole. 

The industrial efficacy of the hydrogen-transfer methodology has been demonstrated during 

the multi-kilogram synthesis of an API. Chemists at Pfizer developed a synthesis of the 

GlyT1 inhibitor 1.161, a potential schizophrenia therapeutic, of which the key step involved 

an iridium catalysed N-alkylation of alcohol 1.158 by amine 1.159 (Scheme 1.40). Of note 

was the ability to form 4.8 kg of product 1.160 with a substrate-catalyst ratio (S/C) of 2000. 

This ratio was a vast improvement on similar reactions of the time, where many would have 
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S/Cs of 50-100. The low loadings of catalyst make the procedure more financially viable 

and the work demonstrated that hydrogen-borrowing could be a valuable technology to the 

pharmaceutical industry. Similar processes that work as efficiently and on a similar scale to 

the Pfizer method are highly sort after by industry. In addition to these reactions, 

understanding what reactions are currently possible with imines is important. 

 

Scheme 1.40 Pfizer’s synthesis of GlyT1 inhibitor, 1.161, with iridium catalysed 

N-alkylation the key step in the synthesis. 

1.3 Nucleophilic reactions of imines  

The in situ formation of imines via the hydrogen-transfer methodology outlined previously 

is important, as the imine formed can react subsequently with nucleophiles in situ at the 

imine carbon, which is electrophilic unlike the parent amine, allowing for a change in 

reactivity. The coupling of the dehydrogenation protocol with concomitant nucleophilic 

reactions would lead to the expeditious formation of functionalised amines, reducing waste 

and increasing efficiency during synthesis. Currently the main nucleophiles used in 

hydrogen transfer reactions are amines, with either homo or hetero dimerization popular 

reactions (vide supra), however an expansion to include more nucleophiles is required to 

increase the applicability of this protocol. As such, an overview of possible reactions of 

imines with nucleophiles is advantageous to establish which reactions could be studied with 

the hydrogen-transfer protocol. This subject has been extensively reviewed by Kobayashi 

and Ishitani, detailing enantioselective catalytic additions to imines.
81

 Amongst the reactions 

mentioned of interest were the enantioselective Strecker reaction, enantioselective 

aza-Mannich reactions, enantioselective reductive aminations, enantioselective alkylation 

and enantioselective Diels–Alder reactions have already been carried out and some key 

examples will be highlighted in this section.  
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Scheme 1.41 A generic Strecker reaction involving the formation of the α-amino nitrile 

1.163 via nucleophilic attack of cyanide on the imine 1.162. 

The Strecker reaction, vide supra, has high potential due to the ability to functionalize the 

α-amino nitrile 1.163, formed through the addition of cyanide to an imine 1.162 (Scheme 

1.41).
14

 

 

Scheme 1.42 Jacobsen and Sigman’s aluminium salen catalysed asymmetric Strecker 

reaction. 

Jacobsen and Sigman have shown that aluminium(III) salen complex, 1.164, could be used 

in asymmetric Strecker reactions (Scheme 1.42).
82

 This work demonstrated that 

α-aminonitriles, 1.166, can be formed from a number of N-ally-aryl substituted imines, 

1.165, in good to excellent yields (91-99%) and moderate to excellent ee (79-95%). 

Cyclohexyl-substituted imine, 1.167, and tert-butyl substituted imine, 1.168 (Figure 1.12), 

were converted in lower yields, 77% and 69%, respectively and with moderate and poor ee, 

57% and 37%. The reaction required cryogenic conditions, -70 °C, high catalyst loadings, 

5 mol%, and long reaction times, 15 hours, which on process scale would be costly. The 

high yields possible with the aryl substituents were promising, but the reaction requires 

optimisation to become applicable industrially. 
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Figure 1.12 The imines 1.167 and 1.168 that were converted in lower yields (77% and 

69%, respectively) to the corresponding α-amino nitrile by Jacobsen and Sigman’s 

aluminium salen complex, 1.164. 

North and co-workers expanded on Jacobsen and Sigman’s system employing vanadium(V) 

salen complex, 1.169, in an asymmetric Strecker reaction with N-benzyl imine 1.170 to 

N-benzyl substituted α-amino nitrile 1.171 (Scheme 1.43).
83

 North and co-workers’ system 

was tolerant of numerous N-benzylated imines. The reaction had generally modest to good 

yields, 46-85%, and ee, 31-74%. Phenyl substituted imine, 1.172, achieved the highest 

conversion and ee of 88% and 75% respectively, however N-benzylpivaldehyde, 1.173, was 

converted with a good overall yield, 85%, but the ee was poor at 16% (Figure 1.13). 

Similarly to Jacobsen and Sigman, the reaction required expensive cryogenic conditions; 

however the temperature was slightly warmer at -40 °C. The reactions reached completion 

within 3 hours; however the reaction did require high catalyst loadings of 10 mol%. The 

reaction also required optimisation to achieve better enantioselectivities at higher 

temperatures and lower catalyst loadings, as well as increasing reaction scope, in spite of 

these drawbacks the reaction has subsequently been carried out on a >100 L scale.
84

 

 

Scheme 1.43 North and co-workers’ vanadium(V) salen catalysed asymmetric Strecker 

reaction.
83
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Figure 1.13 Imine 1.172 which achieved good conversion and ee (88 and 75%, 

respectively) and imine 1.173 which achieved good conversion but poor ee (85 and 

16%, respectively), during North and co-workers asymmetric Strecker reaction. 

Nitromethane can be used in nucleophilic reactions with imines during the aza-Henry 

(nitro-Mannich) reaction to form β-nitroamine 1.175 (Scheme 1.44). The nitroamine product 

formed by the aza-Henry reaction can be subsequently functionalised via further reactions, 

to give different functionality. The aza-Henry reaction involves the attack of nitromethane 

on imine 1.174, however the reaction is reversible and there is the possibility for the 

formation of the nitro-alkene elimination product, (1.176).
85

 

 

Scheme 1.44 A generic aza-Henry reaction for the formation of β-nitroamine 1.175 

from imine 1.174 and nitromethane, with potential formation of 1.176. 

Asymmetric variations of the aza-Henry reaction have been disclosed by Ruano and co-

workers
53

 with N-p-tolylsulfinylimines, 1.177. The group was able to react nitromethane 

under two different reaction conditions to give either of the optical isomers from either Re 

or Si facial attack. Using sodium hydroxide and 4 Å molecular sieves they were able to 

achieve up to 90% conversion to β-nitroamine 1.178 with a diastereoselectivity of up to 

94% diastereomeric excess, de, for one of the diastereomers (Scheme1.45a). Furthermore, 

using tert-butylammonium fluoride, TBAF, they were able to produce the other 

diastereomer of 1.178 with up to 100% conversion and a de of up to 48% (Scheme1.45b). 

The reaction was tolerant of numerous unsymmetric secondary sulfinylimines containing 

both alkyl and aryl substituents at the imine carbon, as well as converting the challenging 

isopropyl-substituted analogue in 32% and 79% yield for each protocol.
85 
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Scheme1.45 Ruano and co-workers protocol for asymmetric aza-Henry reactions, to 

form either diastereomer of β-nitro amine 1.78 from tolylsulfinylimine 1.177. 

Work by Okino and co-workers disclosed a bifunctional organocatalyst, 1.179 (Figure 1.14), 

to also achieve an enantioselective addition to a phosphinoyl protected imine, during 

aza-Henry reactions with nitromethane. 

 

Figure 1.14 Okino and co-workers bifunctional organocatalyst, 1.179. 

The reaction was optimised to give a maximum yield of 99% for the tosyl protected imine 

(dichloromethane, 4.5 hours, rt), however this reaction proceeded with only 4% ee for the 

()-isomer. The isolated yield and ee were 85% and 76%, respectively, for the N-

diphenylphosphinoyl protected 2-furyl imine (rt, dichloromethane, 24 hours). The reaction 

was chemoselective, which was proven when the reaction was tolerant of olefin-containing 

substrates. The reaction with imine 1.181 exhibited chemoselectivity for the 1,2- (and not 

1,4-) addition product (Scheme 1.46), with a yield of 68% of the kinetic product, 1.182. 

Furthermore, the work highlighted that although non-polar solvents would give higher 

enantioselectivities, they led to slower reactions than polar solvents. Although the reaction 

demonstrated the ability of organocatalyst 1.179 to carry out the reaction, the long reaction 

time for a comparatively low yield and ee would need to be significantly improved upon, 
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otherwise DKR reactions, such as those described previously, would be required if the 

process where to be used on an industrial scale.
86

 

 

Scheme 1.46 Okino and co-workers organocatalysed enantioselective aza-Henry 

reaction. 

Aziridines, 1.183 (Figure 1.15), the nitrogen analogues of epoxides, can be synthesised in a 

number of ways. Sweeney comprehensively reviewed the structure, reactivity, biological 

and synthetic importance and synthesis of aziridines.
87

 The review highlighted many 

methods for the synthesis of this moiety many of which include nucleophilic attack of 

carbon nucleophiles on imines.  

 

Figure 1.15 General structure of an aziridine, 1.183. 

Sweeney’s review of aziridine chemistry highlighted Davis and co-workers asymmetric 

aziridine synthesis via an aza-Darzens reaction. Davis and co-workers established new 

synthetic procedure used α-haloenolates and optically active sulfinylimines to form 

aziridines (Scheme 1.47).
88 

They formed aziridine (2R,3S)-1.186 from α-haloester 1.185 and 

sulfinylimine 1.184 using lithium hexamethyl disilylazide (LHMDS) at -78 °C in 30 min. 

with a good yield and de (85 and 90%, respectively). Aryl ring systems with electron 

withdrawing groups proved to be difficult to convert, the p-trifluoromethyl substituted 

phenyl ring analogue converting in 22% isolated yield, however the diastereomeric excess 

for the reaction was 98%. Furthermore, although it is generally assumed that activated 

imines should have a higher conversion rate, the p-methoxyphenyl analogue was formed in 

74% yield and with 98% de. Thus a new method for the asymmetric production of these 

biologically important compounds was discovered.
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Scheme 1.47 Davis and co-worker’s diastereoselective aza-Darzens reaction for the 

formation of (2R, 3S)-1.186. 

Imines can be further utilised in aza-Diels–Alder reactions, Clive and co-workers used this 

methodology in the synthesis of aza-bicyclic compound 1.190 a constituent of castoreum, a 

mixture used in the perfume industry.
89

 The aza-Diels–Alder reaction occurs at the second 

stage of the synthesis using a zinc chloride mediated cycloaddition (Scheme 1.48). 

 

Scheme 1.48 aza-Diels–Alder reaction in the synthesis of castoreum constituent 1.190. 

1.4 Summary, challenges and opportunities 

Functionalised amines are a ubiquitous chemical moiety and are important from a financial 

and therapeutic standpoint to the pharmaceutical industry. Classic methods for the 

functionalization of amines have suffered from numerous problems, from cost through to 

their hazardous nature in scalable synthesis. Historic methods for stoichiometric CH bond 

activation adjacent to nitrogen have been developed, however the use of toxic oxidants in 

stoichiometric quantities during CH bond activation is not desirable, and their use is 

undesirable on scale.  
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The field of transfer hydrogenation has gained major impetus as an alternative method to 

classic hydrogenation and has provided new routes for the formation of chemical bonds. 

Efficient asymmetric transfer hydrogenation reactions have been developed that can be used 

as part of the method of formation of carboncarbon bonds in API synthesis. These methods 

have increased the overall efficiency of the procedures, reducing waste during drug 

synthesis. The introduction of ‘hydrogenborrowing’ methodologies have provided an 

alternative method to activate numerous chemical bonds. ‘Hydrogen borrowing’ is a viable 

alternative for chiral resolution methods and the use of chiral auxiliaries that were only 

previously available, through DKR protocols. Using this methodology the maximum 

theoretical yields of a single enantiomer can be increased to 100%, where previously the 

maximum theoretical yield was 50% when chiral resolution was used. The successful 

implementation of hydrogen-borrowing in industry can be seen as Pfizer has successfully 

developed a multi-kilogram scale synthesis of an API using the methodology.  

Imines, which are formed in situ during hydrogen-borrowing reactions, can undergo a 

number of reactions when preformed separately and the literature has disclosed numerous 

protocols that utilise the electrophilic nature of imines. The Strecker, aza-Henry, aza-

Darzens and aza-DielsAlder reactions to synthesise α-aminonitriles, β-nitroamines, 

aziridines and (hetero)-cyclic compounds which are all important intermediates in organic 

chemistry. There are potential problems when reacting nucleophiles with imines, these 

include that the imine is susceptible to hydrolysis, primary imines are incredibly reactive 

and so the secondary and tertiary analogues are preferred as they are more stable. 

The ability to carry out efficient, clean, safe and cheap reactions is a key goal of organic 

chemistry and its proponents. In this regard the hydrogen transfer and hydrogen-borrowing 

methodologies provide the opportunity for the development of a synthetic tool that does not 

require the use of toxic reagents that are currently required for CH bond activation of 

amines. There is the opportunity to combine the hydrogen-borrowing methodology with 

nucleophilic reactions of imines to establish novel, synergistic protocols that can synthesise 

functionalised amines rapidly, via metal catalysis (Scheme 1.49). 
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Scheme 1.49 Ideal synthetic strategy for the functionalization of amines via metal 

catalysis.  

The following chapters will discuss the work carried out to achieve the metal catalysed 

functionalization of amines, via formation of an imine intermediate. Discussion of amine 

dehydrogenation, the cyclisation of substituted indoles, the mechanistic knowledge gained 

and the evaluation of a range of nucleophiles will be discussed and the conclusions of this 

work given. 
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Chapter 2 The dehydrogenation of primary amines 

an optimisation study 

2.1 Background 

The literature review in Chapter 1 established precedent for the activation of C-H bonds 

adjacent to amines using amine dehydrogenation to form an imine intermediate. Its 

subsequent reaction with a suitable nucleophile could be performed in situ and has the 

potential to become a useful tool in synthetic chemistry. The availability of cheap, simple 

amines, and the ubiquity of functionalised amines in synthetic 

pharmaceuticals/agrochemicals and bioactive natural products, encourage this methodology 

to become an important tool for the green atom efficient synthesis of high value chemicals. 

Before this endeavour can be achieved, a greater knowledge of the reaction and 

understanding how to form imines using this methodology is required.
39

 

2.1.1 Aims and objectives 

The dehydrogenation approach has a number of advantages over the existing direct 

oxidative methods for imine/iminium ion formation including: i) the ability to carry out 

multiple transformations in a one-pot process; ii) the absence of hazardous reagents (e.g. 

peroxides, oxygen) and iii) that molecular hydrogen is the only by-product formed in the 

process (although it is worth noting that this must be handled in a safe manner). The 

activation of C-H bonds adjacent to a variety of amines via transfer dehydrogenation to 

form imines using a variety of catalysts known to participate in this type of reaction was 

investigated (Scheme 2.1, a and b). 
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Scheme 2.1 a) The proposed iridium catalysed dehydrogenation of an amine to an 

imine, b) nucleophilic attack on the in situ generated imine. 

To establish an efficient dehydrogenation protocol a range of primary amines were tested 

(Scheme 2.1a). The catalysts that were screened had been previously shown to be active in 

hydrogen transfer reactions,
1
 including the dehydrogenation of secondary and tertiary 

amines
72, 76

 and in the dehydrogenation of alcohols.
69, 79

  

2.2 Results and Discussion 

2.2.1 Investigation into the dehydrogenation of a model amine 

substrate 

Benzhydrylamine (2.6) was selected as a model compound being a cheap and commercially, 

available primary amine (Scheme 2.2). Furthermore, dehydrogenation of this amine 

produces benzophenone imine (2.7) which is stable and isolable. Imine 2.7 is commercially 

available, as such its formation during the dehydrogenation reaction can be observed via 

comparison to the commercially available standard in gas chromatography (GC) analysis. 

Investigation into the effect of different catalysts, concentrations and additives across a 

range of temperatures was undertaken. Moreover, in situ N-alkylation of the imines to either 

the saturated or unsaturated homo-dimer, 2.8 or 2.9 respectively, was investigated. 



Chapter 2: The dehydrogenation of primary amines an optimisation study 

 

45 

 

 

Scheme 2.2 N-alkylation products formed via iridium catalysed hydrogen transfer. 

2.2.2 The N-alkylation of imine 2.7 

Williams and co-workers have demonstrated that SCRAM catalyst 2.4b can be used to 

catalyse the cross-coupling of amines.
79

 In addition, Blacker and co-workers have also 

reported that homo-coupling N-alkylation products are formed when using primary amines 

during the iridium catalysed deracemisation of chiral amines.
76

 It was reasoned that the 

SCRAM catalyst 2.4b was catalysing the in situ N-alkylation of the intermediate imines 

formed during the reaction leading to their transient appearance in GC analysis.  

 

Scheme 2.3 Proposed mechanism for formation of 2.8. 
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Table 2.1 The effect of metal and Bronstead acid catalysts on the reaction rate of imine 

2.7 N-alkylation, Scheme 2.2.
a 

Entry Catalyst Catalyst loading 

/ mol% 

Rate of Amine Consumption / 

µmoles/min
b
 

1 2.4b 1 29 

2 PTSA 50 20 

3 - - No Reaction
c
 

a Amine (2 mmols), imine (2 mmols) and catalyst (if required) were stirred in solvent (4 mL) at 

80 °C and monitored via GC analysis. 

b Calculated via GC analysis and comparison to pre-prepared standards. 

c No reaction after 24 hours at temperature. 

To test this hypothesis N-alkylation reactions were carried out with and without SCRAM 

catalyst and as a further control with para-toluene sulfonic acid, PTSA, (i.e. to generate the 

iminium ion from the preformed imine, Table 2.1). No reaction was observed when only 

equimolar quantities of imine and amine where mixed in toluene at 80 °C for 8 hours 

(Entry 3). However, when either metal 2.4b or Bronsted acid catalyst (PTSA) were present 

in the reaction mixture the unsaturated N-alkylation homo-dimer product, 2.8 was formed 

rapidly (Scheme 2.2 and Scheme 2.3, respectively). The control reaction using PTSA 

showed that formation of the iminium ion 2.11 (Scheme 2.3), was sufficient to activate it 

towards the amine nucleophile 2.6. Loss of ammonia may also be acid catalysed.  

Blacker and co-workers have proposed a catalytic cycle for the dehydrogenation of 

amines.
77

 The iridium catalysed N-alkylation reaction is thought to occur via 

dehydrogenation of amine 2.6 to imine 2.7 (Scheme 2.4). Imine 2.7 was presumed to react 

in situ with substrate 2.6 to form N-alkylation product 2.8. N-Alkylation of amine 2.6 was 

proposed to occur via coordination of the imine nitrogen onto the iridium centre, to afford 

hydrogen iodide. Coordination of the benzophenone imine nitrogen to the Lewis acidic 

iridium catalyst activated it to nucleophilic addition. In the presence of a large excess of 

amine 2.6, nucleophilic addition occurs to give the gem-aminal 2.16 with concomitant loss 

of iridium-coordinated ammonia. A proton transfer then occurs between the iminium ion 

and the catalyst bound ammonia affording neutral 2.8 and the iridium complex 2.17. Finally, 

a second equivalent of substrate 2.6 coordinates onto the iridium centre, leading to loss of 

ammonia and a continuation of the catalytic cycle (Scheme 2.4).Evidence for this pathway 

is limited and forms the basis for Chapter 3. With the knowledge that SCRAM catalyses the 

N-alkylation of primary amines and a hypothetical mechanism for N-alkylation, it was 
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possible to alter reaction conditions to optimise the formation of imine 2.7, or for the 

N-alkylation product.  

  

Scheme 2.4 Proposed catalytic cycle for SCRAM (2.4b) catalysed N-alkylation of 

benzhydrylamine 2.4.
77

 

2.2.3 Ammonium additives as N-alkylation inhibitors 

The proposed catalytic cycle is believed to have a number of steps that are in equilibrium 

(Scheme 2.4). If the N-alkylation occurred as proposed, with evolution of ammonia to form 

the N-alkylation product, the addition of ammonia would reverse the formation of dimer 2.8 

and increase the amount of imine 2.7 (Scheme 2.5). The Blacker group has shown 

previously that ammonia will complex to the iridium centre to form a toluene insoluble 

complex [IrCp*I2(NH3)], 2.10,
77

 therefore addition of ammonia might slow the rate. If the 

addition of ammonia did not lead to formation of species 2.10, micro-reversibility would 

lead, however to the concentration of imine 2.7 increasing. An initial reaction was 

performed heating a solution of amine 2.6, with the SCRAM catalyst 2.4b and an aqueous 

ammonia solution in toluene at reflux to test this hypothesis (Scheme 2.5, Table 2.2, Entry 

2). 2 equiv. of ammonia gave a marked improvement over the reactions conducted in its 

absence, with an observed 17% conversion of to imine 2.7a after 6 hours. Increasing the 

number of moles of ammonia to 10 equiv. gave 26% conversion after 6 hours (Table 2.2, 
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Entry 3). Although complete conversion to imine 2.7 was still not achieved, the observation 

of increased imine formation merited further investigation.  

 

Scheme 2.5 Use of ammonium additives to reduce N-alkylation of amine 2.6.  

 Table 2.2 Effect of aqueous ammonia on the initial rate of reaction during the iridium 

catalysed dehydrogenation of 2.6.
a
 

Entry 
Ammonium 

additive 

Quantity 

(mmole) 

GC yield
.b, c, d 

(%) 2.7 

GC yield 
b,e 

(%) 2.8 

Initial rate 

(µmoles/min) 

1 ammonia (aq) 0 <1 37 9 

2 ammonia (aq) 2 17 38 5 

3 ammonia (aq) 10 26 14 7 

4 ammonia (aq) 10
f
 0

 
 0

 
 0

 
 

5 

ammonium 

acetate 5 11 6 9 

a Amine 2.6 (2.00 mmols), complex 2.4b (1 mol%) and toluene (2 mL) were heated to reflux under nitrogen for 

6 hours. 

b GC yields to the nearest percent ± 0.5%. 

c Calculated via GC and comparison to a biphenyl internal standard and commercially available standard of 2.7. 

d Yield after 5 hours. 

e Calculated via GC and comparison to a biphenyl internal standard and pre-prepared standard of 2.8. 

f Initially 8 mmols of aqueous ammonia, with a further 12 mmols added dropwise over 1.75 hours. 

Since ammonia is a volatile reagent it will be readily lost when carrying out reactions at the 

temperature required for successful dehydrogenation (110 °C). To overcome this issue and 

increase the amount of imine 2.7 formed, dropwise addition of aqueous ammonia to the 

reaction was carried out (Table 2.2, Entry 4). Initially, aqueous ammonia (8mmols) was 

heated to reflux under the standard conditions and aqueous ammonia (12 mmols) was added 

after 2 mins. via drop-wise addition over 1.75 hours. Surprisingly this procedure resulted in 

no products being formed, which may be due to catalyst deactivation. 
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As a further probe of the reaction ammonium acetate was used to help overcome the 

problem of using ammonia. Ammonium acetate was unfortunately less successful than 

aqueous ammonia and only 11% yield of the desired imine was observed (Table 2.2, 

Entry 5), however it also reduced the formation of the N-alkylation product 2.8 to 6%. With 

these promising results, further optimisation of the N-alkylation conditions was carried out 

to try and increase the amount of imine formed. 

2.2.4 The effect of reaction temperature  

Previous work by Williams and others has identified the need for high temperatures during 

amine N-alkylation. The reaction of amine 2.6 with iridium catalyst 2.4b in non-polar 

aprotic solvents at different temperatures was undertaken to assess the formation of 

N-alkylation products and to determine if any imine 2.7 was formed (Scheme 2.2, Table 2.3, 

Entry 1). 

Table 2.3 The effect of temperature upon dimer 2.8 formation using catalyst 2.4b in 

non-polar a-protic solvents.
a
 

Entry Solvent Temp / 
o
C 

Percentage of 

2.6 in reaction 

/ %
b 

Yield of 

2.8 / 

%
b,c 

Initial Rate of 

Consumption of 

2.6 / µmols min
-1 

1 Toluene 80 >99 <1 - 

2 Toluene 110 64 34 <1 

3 Xylenes 137-140 5 37 11 

a Amine 2.6 (2 mmols.), complex 2.4b (2 mol%) were heated in solvent (4 mL) for 5 hours. 

b Product yield, determined by GC analysis and comparison to internal biphenyl standard. 

c GC yields to the nearest percent, ±0.5%. 

Little to no reaction was observed when 2.6 was heated in the presence of 1 mol% of 

complex 2.4b in toluene to 80 °C for 24 hours with only trace quantities of the products 

observed (Table 2.3, Entry 1). When the temperature was increased to 110 °C, reflux, in 

toluene (Table 2.3, Entry 2), dimers 2.8 and 2.9 were formed, , 34% and <1% and 

respectively, however conversion of the starting material was incomplete, 24%. The 

reaction was repeated in refluxing xylenes and 37% of dimer 2.8 was formed (Table 2.3, 

Entry 3). Analysis of the initial rate of consumption of 2.6 by GC showed a marked 

improvement from <1 to 11 µmols min
-1

. Nevertheless, the reaction still did not reach full 

conversion of amine 2.6 after 21.5 hours at reflux. The GC traces also showed compounds 



Chapter 2: The dehydrogenation of primary amines an optimisation study 

 

50 

 

with retention times at 12.8 and 13.2 in a ratio of 20:2. The two peaks were found to have 

masses m/z = 209 and 224, respectively and were tentatively assigned the structures 2.20 

and 2.22 (Figure 2.1, Scheme 2.6). The formation of 2.20 is proposed to occur via a Ritter 

type reaction (Scheme 2.6a). Whilst the structure 2.22 might be formed by reaction of the 

amine with iridium activated acetonitrile (Scheme 2.6b). 

 

Scheme 2.6 Proposed formation of a) 2.20 and b) 2.22. 
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Figure 2.1 Total Ion Chromatogram highlighting relevant peaks, from the GC-MS 

analysis of the iridium catalysed dehydrogenation of amine 2.6. 

The temperature study suggested that the activation energy of the dehydrogenation reaction 

has a high thermal barrier. Indeed the reaction kinetics appeared non-linear because the rate 

at 80 °C would be expected to be about 8 times less than at 110 °C, rather than hundreds of 

times slower (Figure 2.2, vide infra). One possible explanation is the endothermic loss of 



Chapter 2: The dehydrogenation of primary amines an optimisation study 

 

51 

 

hydrogen to form imine 2.7, this endothermic loss of hydrogen has been observed in other 

dehydrogenation reactions, including work by Jensen on iridium catalysed alkane 

dehydrogenation.
90

  

2.2.5 The effect of reaction atmosphere 

The proposed catalytic cycle invokes the formation of iridium-hydride species 2.15 

(Scheme 2.2),
77

 suggesting that if the cleavage of the iridium-hydride bond during the 

reaction is rate limiting, then the use of an oxidant would accelerate the rate of reaction 

(Scheme 2.7).  

 

Scheme 2.7 The use of an oxidant to form active catalyst 2.24 from iridium-hydride 

complex 2.23 that is formed during the dehydrogenation reaction. 
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Table 2.4 The rates of amine 2.6 conversion and yields of N-alkylation product 2.8 with 

various reaction conditions (Scheme 2.2).
a 

Entry Temperature Atmosphere 

Rate of 

consumption of 

amine / mmols 

min
-1b

 

Product 

2.8 (%)
d
 

Product 

2.9 (%)
d
 

1 80 Air 0.0063 2 <1 

2 80 Air 0.0083 2 <1 

3 80 Air 0.0032 2 <1 

4 80 Nitrogen 0.0006 2 <1 

5 80 Nitrogen
c 

0 <1 <1 

6 100 Nitrogen
c 

0.0068 <1
e
 <1 

7 100 Nitrogen
c 

0.0004 1
e
 <1 

8 110 Nitrogen
c 

0.0154 34 <1 

9 137 Air 0.0322 86 <1 

10 137 Nitrogen
c 

0.0114 37 <1 

11 137 Nitrogen
c 

0.0055 37 <1 

12 137 Nitrogen 0.0017 67 <1 

13 137 Nitrogen 0.0126 67 <1 

a Amine 2.6 (2 mmols), complex 2.4b (2 mol%) and solvent (4 mL) were heated with a sparge or under an 

atmosphere of nitrogen 

b Rate determined by GC analysis and comparison to a biphenyl internal standard. 

c No sparge. 

d GC yields to the nearest percent, ±0.5%. 

e Yield calculated after 120 mins. 

The use of the oxygen might cleave the metal-hydride bond of intermediate 2.23 and would 

generate water, as a by-product. The use of an air or nitrogen sparge has been demonstrated 

previously to accelerate hydrogen transfer reactions.
77

 The use of an air sparge should 

accelerate the N-alkylation of primary amine 2.8. 
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Figure 2.2 Initial rates of reaction for different SCRAM catalysed dehydrogenations of 

amine 2.6 in various aprotic solvents, at 80–137 °C with a sparge of compressed air, 

nitrogen or no sparge (Table 2.4). 

Air was bubbled through the reaction mixture at a rate of 6-32 µmol min
-1

 and reaction 

temperatures ranging from 80 to 138 °C and the rate of conversion of starting amine 2.6 was 

noted (Table 2.4, entries 1-3 and 9). At all temperatures, the air sparge gave a higher rate 

and conversion compared to the non-sparged systems (Entries 1–3 and 9 cf 5-8, 10 and 11; 

Figure 2.2).
77

 Nitrogen used as a sparge demonstrated lower rates and conversions (Entries 

4, 12 and 13). In contrast with the literature, in which a nitrogen sparge enhanced the rates 

of hydrogen transfer reactions, this system did not.
77

 Contrary to the results observed with 

secondary amines, the N-Alkylation product 2.8 was produced in significant amounts using 

both the air and nitrogen sparged reactions (86 and 67% GC yield, respectively) with no 

imine 2.7 detected. Despite these promising results, the conditions are not scalable due to 

the temperatures required; cf. 137-140 °C, in the presence of oxygen could be explosive on a 

large scale. Nevertheless, the result showed potential for further optimisation, which will 

constitute future research efforts. 

 

 



Chapter 2: The dehydrogenation of primary amines an optimisation study 

 

54 

 

2.2.6 Catalyst screening for reaction optimisation 

The SCRAM catalyst 2.4b has proven useful in the dehydrogenation of amines, nevertheless 

iridium-Cp* catalysts have been developed and reported in the literature for hydrogen 

transfer reactions.
91-94

 A small screen of different moisture and oxygen stable amine 

dehydrogenation iridium-Cp* complexes was carried out with the aim of identifying more 

active catalysts (Table 2.5).
72, 76

 

Table 2.5 Dehydrogenation of amine 2.6 catalysed by Ir (III) complexes (Scheme 2.2).
a 

Entry Catalyst 
Initial Rate of Amine 

conversion 
b, c, d

 / µmol min
-1

 

1 [IrCp*I2]2, 2.4b -14 

2 IrCp*(2-hydroxypyridine)Cl2, 2.5a -11  

3 [IrCp*Cl2]2, 2.4a -16 

a Amine 2.6 (2.mmols), catalyst (2 mol%) in toluene (4  mL) were heated to reflux. 
bRate determined by comparison with biphenyl internal standard (1.00 mmol).

 

c Rates determined for single experiments. 

d Rate to the nearest µmol +/-0.5 µmol min-1. 

Catalysts 2.4b, 2.5a and 2.4a have all proven to be useful in iridium catalysed amine 

dehydrogenation and were assessed in the benzhydrylamine system (Table 2.5).
72, 95

 The 

initial rate of 11 µmol min
-1

 shown by complex 2.5a (Entry 2)
 
was comparable to the initial 

rate for complex 2.4b, 14 µmol min
-1 

(Entry 1). The difference in activity between 

complexes 2.4a, 2.4b and 2.5a was not significant. The [IrCp*Cl2]2 catalyst 2.4a has similar 

activity to complexes 2.4b and 2.5a (16 µmol min
-1

, Entry 3). Both catalysts 2.4a and 2.4b 

gave similar amounts of the dimer 2.8, 30 and 28%, respectively. None of the catalysts 

produce imine 2.7, further suggesting that it is catalyst bound and susceptible to amine 

attack, analogous to Scheme 2.3. 

2.2.7 Evaluation of low substrate concentration to inhibit in situ N-

alkylation 

Since the formation of dimer 2.8 is bimolecular and dependent upon the concentration of 

amine 2.6 experiments were carried out at low concentration of amine 2.6 (51.3 µM) by 

slow portion-wise addition. This method would reduce the concentration of free amine 

available to react with imine 2.7 thereby minimising the N-alkylation reaction.
75

 Amine 2.6 
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was added slowly to a solution of toluene and SCRAM catalyst 2.4b (1 mol%) with 

biphenyl as an internal standard at 80 °C over 3 hours (20 µL every 10 min.). Unexpectedly 

there was no less N-alkylation product, indicating that the rate of N-alkylation was faster 

than the rate of dehydrogenation of amine 2.6. This observation supports the mechanistic 

hypothesis that the imine remains coordinated to the catalyst, which is acting as a Lewis 

acid activating the imine to nucleophilic attack (Scheme 2.4). 

2.2.8 Mechanistic investigation into SCRAM catalysed N-alkylation 

of primary amines  

Having examined the dehydrogenation of model amine substrate 2.6, an investigation of 

how other primary amines would interact with SCRAM catalyst 2.4b was undertaken. The 

electronic and steric properties of the substituents on the primary amine substrate will affect 

the rate of dehydrogenation if the migration of the hydride is rate limiting and will give 

mechanistic insights (Scheme 2.8).  

 

Scheme 2.8 Proposed rate determining step during imine dehydrogenation. 

Amines 2.27 and 2.31 were evaluated in the SCRAM catalysed dehydrogenation reaction to 

investigate the effect of proton acidity (Scheme 2.9).  

 

Scheme 2.9 Dehydrogenation reactions of aryl-alkyl and dialkyl amines. 
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The SCRAM catalysed dehydrogenation and racemisation of α-methylbenzylamine, 2.27, 

has been previously reported,
76

 showing that ()-2.27 will racemise when heated at 80 °C in 

toluene in the presence of the SCRAM catalyst 2.4b. Blacker and co-workers found that 

2.27 preferentially formed two different imine dimers (2.35 and 2.36, Figure 2.3) in 70% 

yield, with the remainder as racemised amine 2.27. Unpublished work from the same group 

also showed that dimer formation could be averted by slow addition of the amine into a 

DKR  with enzymatic acylation of the desired amine enantiomer.
75

  

 

Figure 2.3 The two diastereomeric secondary imines formed due to N-alkylation of 

a-methylbenzylamine. 

In this study (+/-)-α-methyl benzyl amine 2.27, SCRAM catalyst 2.4b, biphenyl standard 

and toluene were heated to 80 °C (Table 2.6). The rate of conversion of amine 2.27 was 

1 µmol min
-1

 (Entry 1), the reaction was repeated in refluxing xylenes with a rate of 

conversion of 26 µmol min
-1 

(Entry 2). The rate was three times higher than that of amine 

2.6 (Entry 5), which can be rationalised through a reduced steric encumbrance about the 

iridium catalyst. 
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Table 2.6 Investigation into the effect of amine constituent on the rate of iridium 

catalysed dehydrogenation of primary amines.
a
 

Entry 
Starting 

amine 

N-alklyation 

product 
Solvent 

Temp 

/ °C 

Initial rate of 

consumption 

of substrate / 

μmol min
-1b

 

GC Yield / 

% 
c
 

1 2.27 2.30 Toluene 80 1 6 

2 2.27 2.30 Xylenes 
137-

140 
26 82 

3 2.31 2.34 Toluene 110 14 52 

4 2.6 2.8 Toluene 110 15 34
c
 

5 2.6 2.8 Xylenes 
137-

140 
8 37

c
 

a Amine  (2 mmols), complex 2.4b (2 mol%) and solvent (4 mL) were heated under a nitrogen atmosphere. 

b Rate of consumption calculated to the nearest μmol min-1, ±0.5 μmol min-1. 

b GC yield calculated via comparison to a biphenyl internal standard, to the nearest percent, ±0.5%. 

c GC yield after 5 hours. 

In the first instance amine 2.27 formed four by-products in GC analysis, eluting at retention 

times of 12.6, 12.9 and 13.7 min. Those of 12.6 min and 12.9 min were identified by GC-

MS, m/z = 225 and comparison to a standard as N-alkylation product (R,R)-2.30 and 

(R,S)-2.30.  
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Figure 2.4 GC-MS chromatogram of the SCRAM catalysed dehydrogenation of amine 

2.27. 

The peak at 13.7 min. was identified as the dehydrogenated N-alkylation product 2.29 with 

m/z of 223. One interpretation for the two diastereomers, 2.30, is shown in Scheme 2.10. A 

further possibility is the non-specific condensation of either enantiomer of 2.27. To test this 

hypothesis, the commercially available diastereomer (R,R)-2.30, SCRAM catalyst 2.4b and 

toluene were stirred at reflux (Scheme 2.10).  

 

Scheme 2.10 Iridium catalysed racemisation of (R,R)-2.30 via formation of imine 2.29. 
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Figure 2.5 GC-MS analysis of the dehydrogenation of (R,R)-bis-α-methyl benzylamine 

(2.30) showing the starting material.  
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Figure 2.6 GC-MS analysis of the dehydrogenation of (R,R)-bis-α-methyl benzylamine 

(2.30), 1.5 hour sample. 
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Analysis via GC-MS showed the peak for the single diastereomer (Figure 2.5) became two 

peaks (with ratios 12:7,Figure 2.6) both having the same fragment ion m/z of 210 and 

molecular ion of 225. A smaller peak with mass corresponding to imine 2.29 222 and its 

molecular ion 208 was also generate. This result confirmed that the product of the 

N-alkylation of amine 2.30 was itself able to undergo racemisation. 

Of further interest was the GC conversions observed for the unsaturated dimers 2.29 and the 

saturated dimer 2.30. The saturated dimer 2.30 was observed as one peak corresponding to 

82% conversion and then 9% conversion to what has been assigned as the imine dimer 2.29. 

These observed conversions are in contrast to that observed with the N-alkylation of amine 

2.6, the increased stability of the unsaturated dimer was rationalised as being due to the 

conjugation into the both aryl ring systems and the increased steric bulk around the iridium 

centre. Imine 2.28 was not observed. 

The dialkylamine cyclohexylamine (2.31) was heated with SCRAM catalyst 2.4b and 

biphenyl in refluxing toluene at reflux (Entry 3) and formed amine 2.34 in 6% isolated 

yield. Amine 2.31 was consumed at an initial rate of 14 µmol min
-1

, via GC analysis with 

biphenyl as an internal standard and amine 2.34 was formed in 6% isolated yield. It was not 

possible to carry out the reaction in refluxing xylene due to the amines lower boiling point, 

without carrying out under pressure. Formation of 2.34 indicates a hydrogen-borrowing 

mechanism, with neither the unsatured dimer 2.33 or the monomer imine 2.32 observed. 

The data showed that dehydrogenation and dimerisation of the benzylic amines was more 

rapid than that of the aliphatic amines (Scheme 2.11). 

 

Scheme 2.11 Analysis of dicyclohexylamine (2.34) dehydrogenation. 

To check this hypothesis, amine 2.34, toluene and SCRAM catalyst 2.4b (1 mol%) were 

stirred at reflux (Scheme 2.11). Trace quantities of imine 2.33 were observed in GC-MS 

analysis indicating the equilibrium lies far to the left, toward saturated product. As the 

starting material was not chiral it was not possible to observe if rapid dehydrogenation-

hydrogenation was occurring, which would be observable with chiral GC analysis. Future 
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work will involve using deuterium exchange reactions to prove that imine formation is 

occurring during this reaction.  

2.3 Conclusions 

Primary amines are active towards dehydrogenation with iridium catalysts, however, as has 

been shown previously in the literature,
37, 79, 96

 they readily undergo N-alkylation reactions 

with trace observation of primary imine via GC analysis. The N-alkylation reaction of 

benzhydrylamine revealed that the main N-alkylation product is the unsaturated imine homo 

dimer. The rate of the N-alkylation reaction was enhanced by using elevated temperatures or 

by employing different Cp*-iridium catalysts. An indication of the probable rate limiting 

step during the dehydrogenation pathway has been found, as the presence of an oxidant (an 

air sparge) dramatically increased the rate of N-alkylation. This enhancement is thought to 

be due to facilitated cleavage of the iridium-hydride bond to generate water. Efforts to 

inhibit the N-alkylation and form solely primary imine were unsuccessful; however the use 

of ammonia and ammonium salts to change the equilibrium toward imine monomer 

formation were successful, thus warranting further investigation (Chapter 5). Stereo-

electronic effects have been evaluated using aryl and alkyl substituted primary amines, 

showing that aryl or diaryl primary amines reacted faster than dialkyl amines. These results 

have given insight into the mechanism of the reaction and with knowledge of primary amine 

dehydrogenation study of the in situ generated imines was carried out and discussed in 

Chapter 5. Further analysis of the mechanism using a range of analytical techniques is 

reported in Chapter 3. 





Chapter 3 Mechanistic studies of amine dehydrogenation via NMR, mass-spectrometry and 

X-ray diffraction studies 

 

63 

 

Chapter 3 Mechanistic studies of amine 

dehydrogenation via NMR, mass-spectrometry and 

X-ray diffraction studies 

3.1 Introduction 

N-Alkylation of the amine starting material was the predominate observation in metal-

catalysed primary amine activation reactions discussed in Chapter 2. The reaction of amines 

with alcohols via iridium-catalysed hydrogen borrowing has been characterised 

mechanistically in silico and experimentally by Madsen, providing insight into the 

intermediates of the reaction, showing that the more electro-withdrawing substituents will 

increase the rate of N-alkylation (Scheme 3.1, Figure 3.1).
97

 

 

Scheme 3.1 Previous mechanistic work into N-alkylation of alcohols by amines. 
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Figure 3.1 Madsen’s Hammett analysis graph of the N-alkylation of 4-substituted 

benzylalcohols by aniline via iridium catalysis.  

There remains, however, a broad scope for the direct elucidation of the mechanism of 

iridium(III) half-sandwich complex amine activation, as this field is not currently well 

characterised, except in silco.
98

 Nevertheless, mechanistic understanding has been gained 

through studies of Shvo catalyst catalysed proton/deuterium exchange with tertiary amines 

via NMR analysis (Scheme 3.2).
99

 

 

Scheme 3.2 Proton deutrium exchange during tertiary amine dehydrogenation. 
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Whilst analysis of electronic effects have been carried out on several systems 

(Scheme 3.3),
91, 100

 except for Madsen’s work, the main investigations have focused on 

alcohol dehydrogenation reactions and considered only the yield of the reactions without an 

in depth analysis of the rate of formation of the final product. Analysis of these rates of 

reaction will probe the mechanism, establishing whether or not a build of charge occurs in 

the transition state of the reaction.  

 

Scheme 3.3 Analysis of different substitution pattern on alcohol dehydrogenation and 

N-alkylation product yield. 

Blacker and co-workers have observed reaction intermediates, forming iridium-amine 

complex 4.4, an insoluble catalyst inhibition product formed during amine dehydrogenation 

(Scheme 1.37, vide infra).
77

 Observation of potential intermediates, through X-ray 

diffraction, NMR studies and mass spectrometry analysis will enable a greater 

understanding of the conditions required to achieve preferential amine dehydrogenation, 

without the immediate undesired N-alkylation reaction. Further analysis in this way will 

help gain understanding of how and why Williams’ observed preferential cross-coupling, 

rather than homo-coupling of amines when isopropanol and benzylamine were used in the 

dehydrogenation process (Scheme 3.4). 

 

Scheme 3.4 Williams and co-workers’ iridium catalysed amine cross-coupling. 
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2D-NMR spectroscopic techniques including 
1
H DOSY experiments can be used to provide 

structural information on the size and structure of components of complex mixtures.
101

 

1
H DOSY NMR uses pulsed field gradient spin-echo (PGSE) or stimulated echo nuclear 

magnetic resonance, to separate components of a mixture by their diffusion gradients. A 

smaller molecule will therefore move faster along an NMR tube than a larger component, 

giving indication of size and structure, through elucidation of diffusion coefficient (Figure 

3.2).
102, 103

 DOSY NMR has been employed extensively to analyse mixtures, including 

hydrocarbon mixtures in fuels, the size distribution of different polymers in a solution, 

protein-ligand binding and for to detect the formation of π-π complexes.
104-112

 The technique 

benefits from being non-destructive, but providing important insight into the structure of 

components of complex mixtures. The use of this technique coupled with similar 2D-NMR 

analysis can be used to elucidate the structure of intermediates formed during the reaction of 

amines with iridium catalysts. 

 

Figure 3.2 The application of a pulsed field gradient used for DOSY NMR to give 

different attenuations for particle B compared to particle A due to different diffusion 

coefficients.
113

 

3.1.1 Aims and Objectives 

The interaction and reaction of different primary, secondary and tertiary amines with 

SCRAM catalyst, 3.1 were monitored by 1D- and 2D-NMR, and the intermediates analysed 

by LC-MS and HRMS to elucidate the structure of species within the reaction mixture. The 

rates of amine dehydrogenation of a range of substituted benzylamines were investigated by 

1
H NMR analysis allowing investigation of the mechanism and transition state via a 

Hammett plot. Crystallisation and X-ray diffraction were used to elucidate the structure of 
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any stable intermediates formed during the reaction, which may affect the course of the 

reaction. 

3.2 Results and Discussion 

3.2.1 Analysis of reactive intermediates 

The recrystallisation of solids formed when commercially available amines or imines were 

mixed with catalyst complexes allowed for the expedient elucidation of the structure of 

intermediates that form during the reaction through X-ray analysis. Preliminary 

investigations involved looking for the existence of iridium-imine complexes (3.3). A pre-

formed iridium complex (3.1) was mixed with benzophenone imine (3.2) and the 

recrystallized solid was analysed by X-ray diffraction (Scheme 3.5). 

 

Scheme 3.5 Attempted formation of iridium-imine complex, 3.3. 

Two different sets of crystals were formed during the recrystallisation procedure. X-ray 

studies (X-ray analysis carried out by Dr H. Sheppard, University of Leeds) revealed that 

two distinct species were formed. The iridium-amine complex 3.4 was identified as the 

structure for one set of crystals (Figure 3.3) and the second set, the unreacted iridium dimer, 

3.1. There was no evidence for the formation of the desired iridium-imine complex 

formation. 
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Figure 3.3 X-ray crystal structure of the iridium-amine complex 3.4 formed when 

SCRAM complex (3.1) and benzophenone imine (3.2) were mixed in dicholoromethane 

and then recrystallised. 

Comparison of the crystal structure of iridium-amine complex 3.4 at room temperature 

revealed that the Ir-N bond length was 2.159 Å, the Ir-Cg distance was 1.799 Å and the 

average Ir-I bond length was 2.746 Å, which were all in accordance with the literature 

(similar to 2.133 (Ir-N), 1.783 (Ir-Cg) and 2.715 Å (Ir-I), respectively).
77

 The presence of 

these two compounds within the reaction mixture indicated that instead of the desired 

coordination complex being formed the N=C bond of the imine was cleaved, presumably 

facilitated by the imine nitrogen being iridium bound, leading to the formation of the 

iridium-amine complex, reported by Blacker and co-workers (Scheme 3.6).  

 

Scheme 3.6 Formation of iridium-amine complex 3.4, via in situ oxidation of 

benzophenone imine (3.2) to benzophenone (3.5) by SCRAM catalyst (3.1) and an 

oxidant.  

Absence of the characteristic imine-proton peak at 9.34 ppm,
114

 further showed that 

benzophenone imine was not present in the 
1
H NMR of the mother liquor (Figure 3.4). 
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Benzophenone 3.5 however was observed, indicating that the imine had in fact undergone 

an in situ oxidation or hydrolysis, presumably due to oxygen and/or water in the atmosphere 

of the crystallisation vessel. 

 

Figure 3.4 
1
H NMR of benzophenone imine 3.2 and SCRAM complex (3.1) mother 

liquor not containing highlighted peak (top) and benzophenone imine 3.2 standard 

containing the characteristic imine proton. 

As solid state analysis of the key catalyst bound imine intermediate was not possible, further 

solution phase reaction structural characterisation was instead used to give greater insight 

into the mechanism in solution.  

3.2.2 1D and 2D NMR studies of amine N-alkylation and substrate 

catalyst binding 

3.2.2.1 1D NMR  

The binding of the amine to the catalyst can be monitored during catalyst-substrate binding 

studies via 
1
H NMR analysis, as the amine and the α-proton to the amino-group undergo 

Crystalisation 

mother liquor 

Benzophenone 

imine 
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chemical shift changes between the non-bound and bound states. Stoichiometric studies 

using NMR titration were carried out with a range of primary, secondary and tertiary amines 

and the iridium catalyst complex 3.1 (Scheme 3.7), allowing direct comparison of benzylic 

and alkyl-amines, 3.6 and 3.10, and therefore, studies on electronic effects, 3.7-3.8. Amine 

(3.6-3.15) was added to an NMR tube containing the iridium complex in DMSO-d6 or 

CDCl3 and 
1
H NMRs were taken after each addition (Scheme 3.7, Table 3.1). 

 

Scheme 3.7 Analysis of amine iridium catalyst binding. 

Benzhydrylamine (3.6), used during the N-alkylation studies (Chapter 2), and catalyst 

complex 3.1 were initially investigated in the amine-binding study. It was envisioned that 

after the lone-pair of the nitrogen bound to the catalyst centre, the amino protons would 

assume a down-field chemical shift, due to lower electron density at the nitrogen via 

formation of the coordinate bond, in the catalyst bound amine complex. Furthermore, during 

the course of the experiment the amino protons would move from down- to up-field 

chemical shifts (ppm) as the equivalence of the iridium was decreased and there would be a 

lower probability of the amine binding to the catalyst centre.  



Chapter 3 Mechanistic studies of amine dehydrogenation via NMR, mass-spectrometry and 

X-ray diffraction studies 

 

71 

 

 

Figure 3.5 
1
H NMR spectra of iridium catalyst (3.1) in DMSO-d6 with 0, 0.2, 0.5, 1.0, 

2.0 or 10.0 equiv. of benzhydrylamine 3.6.  

Amine 3.6 was added to iridium catalyst (3.1, 4.2 µmols, 9.4 µmols of iridium) in DMSO-d6 

and analysis of the resulting 
1
H NMR spectra showed that there was a change in the 

chemical shift of the amine protons. As the equivalences of amine 3.6 increased in the 

reaction (Figure 3.5), a change in the chemical shift of the amino-proton of amine 3.6 was 

observed (Table 3.1). The observed, up-field chemical shift with increasing amine 

equivalence suggested there was no longer the presence of the amine-catalyst bond. The 

lack of down-field shifted signal (from the catalyst bound amine) indicated that amine 

coordination/decoordination is in rapid equilibrium, and at low iridium concentration a time 

averaged observation of free amine signal was predominant. 

  

10 equiv. 

2.0 equiv. 

1.0 equiv. 

0.5 equiv. 

0.2 equiv. 

[IrCp*I2]2 

1.0 equiv. 

0.5 equiv. 

0.2 equiv. 

0 equiv. 

Water 
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Table 3.1 Change in amino-proton chemical shift after benzhydrylamine, 3.6, addition 

to iridium complex, 3.1, and comparison with the free amine.
a
 

Entry 
Molar equivalence of amine 

added to the solution
b
 

Δppm of amino-proton 

(c.f. free amine) 

Observed Chemical 

shift of 

amino-proton / ppm 

0 0 n/a n/a 

1 0.5 0.2 2.43 

2 1 0.17 2.4 

3 2 0.14 2.37 

4 10 0.07 2.3 

5 Free amine 0 2.23 

a Iridium complex 3.1 (0.5 equiv.) was suspended in DMSO-d6 (0.7 mL) and shaken for 60 seconds. The 

resulting suspension was analysed by 1H NMR. Amine 3.6 (0.5-10 equiv.) was added to the resulting pale 

orange suspension and shaken for 60 seconds. The resulting suspension was then analysed by 1H NMR, this 

process was then repeated for each entry. 

b Equivalence related to the amount of iridium in solution (i.e. two moles of amine = two moles of iridium 

monomer). 

The environment of the Cp*-protons, will give an insight into the environment at the iridium 

centre. Focusing on this region, there was a dramatic change noticeable in the Cp*-proton 

chemical shifts (Figure 3.6). At 0.5 equiv. of amine 3.6 the chemical shift of the 

Cp*-protons changed from being solely at 1.88 ppm (the pure complex) to have an 

additional peak at 2.10 ppm. The ratio of the two different Cp*-proton peaks was 11:4-10:5 

(1.88 ppm: 2.10 ppm, Figure 3.6, Table 3.2).  
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Table 3.2 Changes to the chemical shifts of Cp*-protons at different equivalences of 

various benzylic amines.
a
 

Entry Amine 
Equivalence 

of amine
b
 

Cp* proton ppm / number of protons 

1.88 2.1  

1 

Benzhydrylamine, 

3.6 

0 30 0  

0.2 29 0  

0.5 29 0  

 1 9 21  

 2 20 10  

 10 20 10  

   1.88 1.85 1.82 

 Benzylamine, 0 0 0 0 

2 

3.11 0.2 3 27 0 

 0.5 0 23 7 

 1 0 22 8 

 2 0 15 15 

 10 0 15 15 

   1.88            2.09  

 Dibenzylamine, 0 30              0  

3 

3.14 0.2 27              3  

 0.5 27              3  

 1 26              4  

 2 26              4  

 10 26              4  

a Iridium complex 3.1 (0.5 equiv.) was suspended in DMSO-d6 (0.7 mL) and shaken for 60 seconds. The 

resulting suspension was analysed by 1H NMR. Amine (0.2-10 equiv.) was added to the resulting pale orange 

suspension and shaken for 60 seconds. The resulting suspension was then analysed by 1H NMR, this process 

was then repeated for each entry in the table. 

b Molar equivalence related to the amount of iridium in solution (i.e. one mole of catalyst 3.1 was equivalent to 

2 moles of iridium). 
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Entry Amine 
Equivalence 

of amine
b
 

Cp* proton ppm / number of protons 

1.88             1.75 

 Tribenzylamine, 0          30                       0  

4 

3.15 0.2           29.5                      0.5  

 0.5           29.5                      0.5  

 1         29                       1  

 2         29                       1  

 10         26                       4  

a Iridium complex 3.1 (0.5 equiv.) was suspended in DMSO-d6 (0.7 mL) and shaken for 60 seconds. The 

resulting suspension was analysed by 1H NMR. Amine (0.2-10 equiv.) was added to the resulting pale orange 

suspension and shaken for 60 seconds. The resulting suspension was then analysed by 1H NMR, this process 

was then repeated for each entry in the table. 

b Molar equivalence related to the amount of iridium in solution (i.e. one mole of catalyst 3.1 was equivalent to 

2 moles of iridium). 

 

Figure 3.6 
1
H NMR spectra of iridium catalyst (4.1) in DMSO-d6 with 0, 0.2, 0.5, 1.0, 

2.0 or 10.0 equiv. of benzhydrylamine 3.6; focused on the Cp*-protons region.  

This observation indicated that two different iridium species were present within the 

reaction mixture, the new peak was either the catalyst bound amine complex 3.16 or the 

active catalyst monomer complex (3.16), similar to that which has been suggested in the 

10 equiv. 

2.0 equiv. 

1.0 equiv. 

0.5 equiv. 

0.2 equiv. 

0 equiv. 
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literature from in silico studies.
97

 Further analysis of the NMR values of the different 

Cp*-environments could potentially indicate the direction of any equilibrium. 

Analysis of the concentrations of different species at different concentrations was used to 

give a potential value for the equilibrium constant, Kc. The equilibrium between the free 

amine and dimeric catalyst with the monomeric amine bound catalyst was believed to be the 

equilibrium that was observed (Scheme 3.8).  

 

Scheme 3.8 Potential equilibrium between non-bound and catalyst bound amine. 

The Cp* protons of the dimeric catalyst in solution have a chemical shift of 1.88 ppm, the 

new species, which was assigned as a monomeric iridium species, has Cp* protons with a 

chemical shift of 2.10 ppm, which has been shown in previous literature.
97

 These two 

species were compared to that for the benzylic protons of the free amine at a chemical shift 

of 5.09 ppm at different concentrations (Table 3.3), in order to give an indication of the 

equilibrium constant of the amine bound catalyst.   
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Table 3.3 Concentration of different species within the 
1
H NMR analysis of 

benzhydrylamine and catalyst 3.1 coordination.
a, b

 

Amine in 

solution / 

equiv. 

Volume of 

DMSO-d6 / 

µL 

Concentration in solution / species mL
-1

 

Dimeric catalyst 

complex 

(1.88 ppm) 

Monomer 

catalyst complex 

(2.10 ppm)
c
 

Free 

benzhydrylamine 

0 700 4.69 0 0 

0.2 717 5.31 0.08 2.93 

0.5 742 4.76 4.02 6.46 

1 784 4.21 3.80 10.71 

2 869 3.43 3.10 16.57 

10 869 3.15 3.18 81.14 

a Iridium complex 3.1 (0.5 equiv.) was suspended in DMSO-d6 (0.7 mL) and shaken for 60 seconds. The resulting suspension was 

analysed by 1H NMR. Amine (0.2-10 equiv.) was added to the resulting pale orange suspension and shaken for 60 seconds. The 

resulting suspension was then analysed by 1H NMR, this process was then repeated for each entry in the table  
b Calculated by normalising the spectrum  to DMSO-d6 (if applicable over the range including the amine integral and ensuring that 

this does not affect the integral, 6 protons), then dividing the new integrals by the volume of DMSO-d6 added. 

c Monomer value was multiplied by 2 as the ratio of dimeric to monomeric protons was 2:1 

From these results it became apparent that there was an optimum concentration for the 

formation of the complex with chemical shift 2.10 ppm (Figure 3.7), after which both 

dimeric catalyst 3.1 and the monomeric derivative 3.16 had higher concentrations. The 

graph suggested that the highest concentration of the monomeric species was between 

0.5-0.6 equiv. of amine. 
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Figure 3.7 Concentration of species in solution vs amine equivalence for 

benzhydrylamine iridium catalyst coordination experiment. 

To calculate a potential equilibrium constant, Kc, Equation 3.1 was used. The concentrations 

for both dimeric and monomeric complex when monomeric complex was at its maximum 

were 4.65 and 4.1 species mL
-1

, respectively. When these values were used for the 

calculation, along with a benzhydrylamine concentration of 6.3 species mL
-1

, Kc was 0.574. 

This value represents a potential figure for Kc, as the reaction may behave differently in the 

non-polar solvents generally used for dehydrogenation reactions. These solvents also have 

differences in solubility, such that each species considered may not have been completely in 

solution. However, this value indicated that the equilibrium lied toward free amine and 

dimer, thus supporting literature evidence that breaking of the dimer to the monomer is 

important for successful dehydrogenation reactions. 

 

Equation 3.1 Equilibrium equation for benzhydrylamine catalyst binding. 
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To further assess the affects observed on both the amino- and the Cp*-protons and gain 

further mechanistic and structural understanding a range of amines were evaluated using the 

same methodology. 

Benzylamine, 3.11, a benzylic primary amine is not as sterically encumbered as amine 3.6 

after binding to the iridium centre, which would be more facile. Amine 3.11 was added to a 

solution of iridium complex (3.1) in DMSO-d6 and 
1
H NMR analysis was again carried out 

to probe for any changes in environment caused by the amine binding to the iridium centre 

(Table 3.1, Figure 3.8).  

 

Figure 3.8 
1
H NMR spectra [IrCp*I2]2 in DMSO-d6 with 0, 0.2, 0.5, 1.0, 2.0 or 10 equiv. 

of benzylamine, 3.11.  

10 equiv. 

2.0 equiv. 

1.0 equiv. 

0.5 equiv. 

0.25 equiv. 

0 equiv. 

0.2 equiv. 

[IrCp*I2]2 
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Figure 3.9 
1
H NMR spectra focused on the Cp*-protons, containing [IrCp*I2]2 

(0.5 equiv. of dimer, 1 equiv. of iridium monomer) and 0, 0.2 or 0.5 equiv. of amine 

3.11 in DMSO-d6 (0.7 mL). 

The 
1
H NMR analysis showed the presence of three different Cp*-proton environments 

(Figure 3.9, Table 3.2), similar to benzhydrylamine, however the chemical shift for these 

peaks was 1.88 (free Cp*-dimer), 1.85 (after 0.2 equiv. of amine addition) and 1.82 ppm 

(0.5-10 equiv.) respectively. 

With the 0, 0.2 and 0.5 equiv. of amine NMRs there is an observable progression in the Cp* 

region from 1.88 to 1.82 ppm (Table 3.2). The ratio of the Cp*-proton environments 

between 1.88, 1.85 and 1.82 ppm was 1:0:0, 2:13:0 and 0:12:3; for the 0, 0.2 and 0.5 equiv. 

respectively. Quantitative analysis of the ratios for the three environments was not possible 

for the spectra with 1, 2 and 10 equiv. of amine as the amino-protons for the free 

benzylamine (1.73 ppm) altered the intergration of the Cp*-protons. Qualitatively however, 

there is no evidence for the 1.88 ppm species in the spectra, but the peak heights for the 1.85 

and 1.82 ppm species have become equivalent. The removal of the 1.88 ppm species 

indicated that the dimer complex must break before reaction can take place, providing 

empirical evidence for Madsen’s in silico postulate of a monomeric species being the active 

catalyst.
97

 Comparison of mono-benzylamine through to tribenzylamine has shown that as 

substitution increases there is a reduction in the amount that the Cp*-protons are affected 

and the formation of a  third species not being observed nor a reduction in the amount of a 

second species at 2.10 or 1.75 ppm being observed  for both di-and tri-benzylamine, 

respectively, also. 

0.5 equiv. 

0.2 equiv. 

[IrCp*I2]2 

0.5 equiv. 

0.25 equiv. 

0 equiv. 
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The region of the spectra between 3.5 and 6.0 ppm showed a change as the equivalences of 

amine increased through the course of the reaction (Figure 3.10). Firstly the protons at 3.72 

and 4.08 ppm were two separate sets of triplets, assigned as the benzylic protons. The first 

proton at 3.72 ppm was at the same chemical shift as the benzylic protons of the free amine, 

as indicated most noticeably in the top stacked spectra (Figure 3.10). A triplet however, was 

more downfield at 4.08 ppm and integration of the spectrum confirmed that each peak was a 

separate proton. In the free amine the benzylic protons appeared as a singlet, whereas in the 

recorded spectrum the inequivalency observed indicated a change to a more constrained 

structure of amine 3.6 and catalyst complex 3.1 where proton exchange cannot take place. 

 

Figure 3.10 
1
H NMR spectra of [IrCp*I2]2 in DMSO-d6 and 0, 0.2, 0.5, 1.0, 2.0 or 

10.0 equiv. of benzylamine, 3.11; focusing on the region 3.5-6.0 ppm. 

The protons observed at 5.58 ppm as a doublet of triplets, were assigned as the amino-

protons of an iridium-bound benzylamine (Figure 3.11). The change in the chemical shift of 

the amino-protons of 3.85 ppm (to 5.58 ppm) places their environment in a region between 

that of the free amine (1.73 ppm) and those of the ammonium hydrochloride (8.46 ppm).
115

 

The intermediate environment displayed by the amino-protons showed that the lone-pair of 

the amino-nitrogen was now coordinating to the iridium centre, reducing electron density to 

a level between that of free amine and ammonium ion. 

10 equiv. 

2.0 equiv. 

1.0 equiv. 

0.5 equiv. 

0.2 equiv. 

0 equiv. 



Chapter 3 Mechanistic studies of amine dehydrogenation via NMR, mass-spectrometry and 

X-ray diffraction studies 

 

81 

 

 

Figure 3.11 Rationale for the different chemical environments observed during 

1
H NMR substrate-catalyst binding studies. 

Table 3.4 Concentration of the three amine species at different concentration of amine 

in solution.
a,b

 

Equivalence of 

benzylamine 

Ratio of species 

Free Amine 

(3.7 ppm) 

Catalyst bound 

amine 1 (4.08 ppm) 

Catalyst bound 

amine 2 (3.95 ppm) 

0.2 0 1 0 

0.5 9 2 1 

1 16 1 1 

2 42 1 2 

10 70 1 3 

a Iridium complex 3.1 (0.5 equiv.) was suspended in DMSO-d6 (0.7 mL) and shaken for 60 seconds. The resulting suspension 

was analysed by 1H NMR. Amine (0.2-10 equiv.) was added to the resulting pale orange suspension and shaken for 

60 seconds. The resulting suspension was then analysed by 1H NMR, this process was then repeated for each entry in the table 
b Ratios calculated by integrating the species and normalising the values to the lowest value. 

Further analysis revealed that a third environment for the benzylic protons was being 

formed at a chemical shift of 3.95 ppm after 0.5 equiv, of amine was added. The three 

different environments were present at different concentrations depending on the amine 

loading (Table 3.4, Figure 3.12). At low equiv. of amine, a catalyst bound amine species 

with benzylic protons at a chemical shift of 4.08 ppm predominated, being the sole species 

present at 0.2 equiv. of benzylamine. As the equiv. of amine increased the second species 

with benzylic protons at a chemical shift of 3.95 ppm began to predominated, at a ratio of 

3:1 at 10 equiv. 



Chapter 3 Mechanistic studies of amine dehydrogenation via NMR, mass-spectrometry and 

X-ray diffraction studies 

 

82 

 

 

Figure 3.12 Stacked integrated spectra for the benzylic protons of free benzylamine, 

and two different catalyst bound amine species when 0.2, 0.5, 1, 2 or 10 equiv. of 

benzylamine 3.11 was added to [IrCp*I2]2 in DMSO-d6. 

Overall free amine was the predominant species, due to the large equivalences present, 

however the change between two different catalyst bound amine species, gave an indication 

of the potential mechanism for binding of amine to the catalyst during amine 

dehydrogenation. At low amine concentration it suggests that there would be only one 

amine bound to the iridium centre or that multiple iridiums may be bound to an amine 

centre (Scheme 3.9). At high equivalences of iridium multiple amines would be expected to 

bind to the iridium centre, however further analysis was required to ensure whether this 

hypothesis was correct. Analysis of different substitution patterns on the arene ring was 

carried out to see how these substrates were affected by iridium binding. 

10 equiv. 

2.0 equiv. 

1.0 equiv. 

0.5 equiv. 

0.2 equiv. 
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Scheme 3.9 Potential change in amine catalyst binding at first low then high 

equivalence of benzylamine. 

Table 3.5 Change in amine proton chemical shift for different amines when mixed with 

[IrCp*I2]2.
a
 

Amine 
Free NH proton 

δ-chemical shift 

NH proton δ-

chemical shift with 

[IrCp*I2]2 

Change in 

chemical shift 

Cyclohexylamine, 3.10 2.48
b, 116 

2.93 0.45 

Benzhydrylamine, 3.6 2.23 2.43 0.20 

Dibenzylamine, 3.14 2.67 2.63 0.04 

Benzylamine, 3.11 1.73 5.58 3.85 

Dicyclohexylamine, 3.9 0.77 2.47 0.38 

α-Methyl benzylamine, 

3.12 
1.25 1.47 0.22 

N-Methyl-α-methyl 

benzylamine, 3.13 
1.25 1.44 0.19 

4-Bromo benzylamine, 3.7 1.4 5.57 4.17 

4-Methoxy benzylamine, 

3.8 
1.42

117
 5.52 and 5.45 4.1 and 4.03 

a Amine (1 equiv.) and [IrCp*I2]2 (0.5 equiv.; 1.0 equiv. of iridium) in DMSO-d6 (0.7 mL) were shaken together 

for 60 seconds and then analysed by 1H NMR. 

b Value quoted as the mid-point from the literature value of 2.40-2.55 ppm.  
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Comparison of the different amine environments showed that the substituted benzylamines 

changed significantly when in the presence of [IrCp*I2]2 complex, compared to the free 

amine, this was more pronounced with the electron deficient 4-bromo, than the 

unsubstituted analogue and was in comparison to the electron-rich 4-methoxy analogue. The 

increased proximity of the nitrogen to the iridium centre due to the reduced sterics of the 

benzyl amines compared to benzhydrylamine, the cyclohexylamines and the 

α-methylbenzylamines was believed to cause the larger change in amino-proton 

environment. 

When the α-protons to the amine were considered, these showed little variance. The only 

noted difference was with the benzylic protons of the benzylamines, and it was rationalised 

as a steric affect with the benzylamines, with the close proximity of the benzylic C-H to the 

iridium centre causing the proton to become more acidic, increasing its ppm chemical shift, 

above that of the free amine. Of further note was that the substituted benzylamines were not 

affected by the substituent at the 4-position, as the 4-methoxy and 4-bromo both underwent 

larger changes in chemical shift of their amine protons compared to that of the unsubstituted 

benzylamine, inspite of their activating and deactivating properties, respectively. This result 

suggested that there was no effect of ring system on amine-iridium bonding. 

Finally, a difference between the Cp*-protons within the initial NMR containing only the 

iridium complex (1.88 ppm for DMSO-d6 and 1.83 for CDCl3) and that containing the 

various amines was observed (Table 3.6). The changes to the cyclohexylamine and 

dicyclohexylamine reactions, were not easy to interpret due to the reactants substrate proton 

environments masking the Cp*-protons. Nevertheless, at 10 equiv. of cyclohexylamine there 

was no evidence of the 1.88 ppm Cp* species, conversely this species was observed with 

dicyclohexylamine, an indication that more sterically hindered amines were not binding to 

the iridium centre. Of further note was that tribenzylamine, dibenzylamine and N-methyl-α-

methylbenzylamine were also able to influence the iridium centre, indicating that although 

they are substituted, the reduced sterics of their substituents allowed for interaction with the 

iridium centre. 
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Table 3.6 Cp*-proton environments for different alkyl and aryl substituted amines.
a
 

Entry Amine 
Equivalence of 

amine
b
 

Cp* proton ppm / number of protons 

1.88  

 Dicyclohexylamine,  0 30  

1 

3.9 0.2 30  

0.5 30  

1 30  

2 30  

10 30  

 α-Methyl 

benzylamine, 3.12 

 1.84 1.81 

2 

0 30 0 

0.2 30 0 

0.5 15 15 

1 3 27 

2 0 30 

10 0 30 

 N-Methyl-α-methyl 

benzylamine, 3.13 

 1.83 2.04 

3 

0 30 0 

0.2 30 0 

0.5 30 0 

1 30 1 

2 30 1 

10 30 5 

a Iridium complex 3.1 (0.5 equiv.) was suspended in DMSO-d6 (0.7 mL) and shaken for 60 seconds. The resulting 

suspension was analysed by 1H NMR. Amine (0.2-10 equiv.) was added to the resulting pale orange suspension 

and shaken for 60 seconds. The resulting suspension was then analysed by 1H NMR, this process was then 

repeated for each entry in the table. 

b Molar equivalence related to the amount of iridium in solution (i.e. one mole of catalyst 3.1 was equivalent to 

2 moles of iridium). 
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Entry Amine 
Equivalence of 

amine
b
 

Cp* proton ppm / number of protons 

1.88  

4 

4-Bromo 

benzylamine, 3.7 

 1.88 1.84 1.92  

0 30 0 0  

0.5 23 6 1  

1 20 9 1  

5 

4-Methoxy 

benzylamine, 3.8 

 1.88 1.92 1.84 2.09 

0 30 0 0 0 

0.5 19 2 6 3 

1 13 2 12 3 

a Iridium complex 3.1 (0.5 equiv.) was suspended in DMSO-d6 (0.7 mL) and shaken for 60 seconds. The resulting 

suspension was analysed by 1H NMR. Amine (0.2-10 equiv.) was added to the resulting pale orange suspension 

and shaken for 60 seconds. The resulting suspension was then analysed by 1H NMR, this process was then 

repeated for each entry in the table. 

b Molar equivalence related to the amount of iridium in solution (i.e. one mole of catalyst 3.1 was equivalent to 

2 moles of iridium). 

These changes in Cp*-proton environment provided further evidence for catalyst bound 

amines or monomeric iridium species being formed in solution. Whilst these results had 

shown evidence of amine-catalyst binding, further 2D-NMR analysis was required to 

establish which Cp*-protons and hence iridium complex was related to these protons. 

Elevated temperature analysis of the dehydrogenation reactions, to look for evidence of 

imine in solution was also required. 

3.2.2.2 Elevated Temperature Studies 

10 molar equiv. of amine in suspension with 0.5 equiv. of iridium catalyst (1 molar equiv. of 

iridium) in DMSO-d6 (0.7 mL) were shaken together and then heated in an oil bath (120 °C) 

and analysed by 
1
H NMR (Table 3.7). Amines 3.6, 3.9-3.11 and 3.14-3.15 were heated and 

transient monomeric imine (<1%) formation was observed for benzhydrylamine only 

(Figure 3.13 and Figure 3.14). 
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Figure 3.13 Stacked temperature time course experiment of the heating of 

benzhydrylamine, showing formation of benzophenone imine, 

N-benzhydryldiphenylmethanimine and dibenzhydrylamine. 

10equiv. 

0.25 h. 

0.5 h. 

1 h.  

2 h. 

3 h. 

4 h. 

27 h. 
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Figure 3.14 Integrated 
1
H NMR spectrum of benzhydrylamine heated in DMSO-d6, at 

110 °C for 27 hours. 

Benzylic primary amines and benzhydrylamine however, produced their unsaturated 

N-alkylation products. N-benzhydryldiphenylmethanimine was produced in a 2:1 ratio of 

starting material to product, which was calculated by comparison of the integrals of the 

benzylic protons of benzhydrylamine and N-benzhydryldiphenylmethanimine, after 

27 hours of heating. The formation of the unsaturated N-alkylation product further 

evidenced that catalyst bound imine is highly reactive, and will readily undergo the 

N-alkylation reaction. Benzylamine reacted faster than the other primary amines as 

noticeable quantities of N-benzylidene-benzylamine (a ratio of 10:1, of starting material to 

product) were observed even after 0.25 hours, rising to complete imine product after 

27 hours (Figure 3.15 and Figure 3.16). 
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Figure 3.15 Stacked temperature time course experiment of the heating of 

benzylamine, showing formation of N-benzylidene benzylamine, dibenzylamine from 

potential catalyst bound benzylamine. 

10equiv 

0.25 h. 

0.5 h. 

1 h.  

2 h. 

3 h. 

4 h. 

27 h. 
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Figure 3.16 Integrated 
1
H NMR spectrum of benzhylamine heated in DMSO-d6, at 

110 °C for 0.25 hours (top) and 27 hours (bottom). 
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Of further note, no evidence for the dehydrogenation products of either di-or tribenzylamine 

or dicyclohexylamine, also heated using the same procedure was observed after 4 hours 

(Figure 3.17 and Figure 3.18). 

 

Figure 3.17 Stacked 
1
H NMR spectra for the heating of dibenzylamine at 115 °C 

(oil bath temperature) in DMSO-d6. 

10equiv 

0.25 h. 

0.5 h. 

1 h.  

2 h. 

3 h. 

4 h. 
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Figure 3.18 Stacked 
1
H NMR spectra for the heating of tribenzylamine at 115 °C 

(oil bath temperature) in DMSO-d6.  

 

 

10equiv 

0.25 h. 

0.5 h. 

1 h.  

2 h. 
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Figure 3.19 Stacked 
1
H NMR spectra for the heating of dicyclohexylamine at 115 °C 

(oil bath temperature) in DMSO-d6. 

Finally cyclohexylamine was assessed, however due to similarities between the solvent and 

substrate or product-protons full analysis was not possible (Figure 3.20). What was clear 

however was that the no reaction was observed after heating for two hours. These results 

indicated that the less sterically crowded and benzylic amines are more active in the 

dehydrogenation and their ease of coordination may facilitate a quicker reaction. 

10equiv 

0.25 h. 

0.5 h. 

1 h.  

2 h. 
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Figure 3.20 Stacked 
1
H NMR spectra for the heating of cyclohexylamine at 115 °C 

(oil bath temperature) in DMSO-d6. 

The observation of rapid dehydrogenation with benzylamine and the slower rate with the 

secondary amines and alkyl amines provided further evidence to explain Williams’ 

observations during the cross-coupling of benzylamines and isopropyl amines (Scheme 3.4). 

During the reaction, the benzylamine can self-condense preferentially to form 

N-benzylidene-benzylamine (3.17), observed in the 
1
H NMR of the high temperature 

reaction (Scheme 3.10, Figure 3.13). The formation of dimeric imine 3.17, allowed for the 

N-alkylation of the alkylamine to hemi-aminal 3.20 and then secondary amine 3.22. Amine 

3.22 formed from this process, will preferentially undergo dehydrogenation at the benzylic, 

over the alkyl centre, as shown by the high temperature experiments, therefore the cross and 

not-homo-coupled product will predominate. 

10equiv 

0.25 h. 

0.5 h. 

1 h.  

2 h. 
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Scheme 3.10 Potential mechanistic rationale for Williams’ observed amine cross-

coupling over homo-coupling. 

The Cp*-protons changed chemical shift during the course of the high temperature 

reactions. During the benzhydrylamine experiment the Cp*-protons changed from one 

species at 1.88 ppm to form a new species at 1.82 ppm (after 180 min.) then, after 

1620 min., to produce fours species, at 1.88, 1.92, 1.78 and 1.74 ppm. A similar situation 

was observed with the benzylamine, where the initial species was at 1.85 ppm, and 

numerous other species were observed after 240 min., by 1680 min. the peak at 1.88 ppm 

was predominant, but there were still numerous species present in the mixture. When 

moving to dibenzylamine, the Cp* was less complicated, the protons moved from 1.88 ppm 

to more upfield 1.83 ppm with heating until after 246 min. a species at 1.81 ppm was 

predominant. Finally, tribenzylamine showed no change in the Cp*-proton environment. 

This led to a similar observation as for the stoichiometry investigation, as the greater 

number of species that are formed with the less substituted amine indicated that the smaller 

the amine the more it can interact with the metal catalyst, furthermore it showed that heating 

was required to induce a change in the dibenzylamine, presumably due to the energetic cost 

of binding to the metal centre. 
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Table 3.7 
1
H NMR monitoring of the dehydrogenation of amines heated in an oil bath 

at 120 °C.
a 

Amine 

Ratio of starting 

amine protons to 

solvent protons
b
  

Ratio of amine 

protons to solvent 

protons
 b

 

Ratio of dimer 

imine protons to 

protons of solvent
b
 

Benzhydrylamine, 3.6 4.85 4.0 (0)
c
 0.4 (11.5)

c
 

Benzylamine, 3.11 1.94 0.9 (0.3)
c
 0.7 (1.2)

c
 

Dibenzylamine, 3.14 8.85 11.1 0.2 

Tribenzylamine, 3.15 9.66 9.6
d
 0 

a Amine (10 equiv.) and [IrCp*I2]2 (0.5 equiv.; 1.0 equiv. of iridium) in DMSO-d6 (0.7 mL) were shaken 

together for 60 seconds and then analysed by 1H NMR. The mixture was then heated in an oil bath (T = 120 °C), 

the reaction was monitored by 1H NMR after 0.25, 0.5, 1, 1.5, 2, 3 and 4 hours. 

b Concentration after 4 hours calculated by comparison of characteristic benzylic proton peaks to the solvent 

protons to give the number of protons of the molecule per molecule of solvent protons. 

c Concentration after heating overnight. 

d After 2 hours at 120 °C. 

A similar situation can be seen with dicyclohexylamine, where Cp*-protons changed from 

1.88 ppm initially to form a species at 1.93 ppm after 15 min. which dominated after 

120 min. Furthermore, with cyclohexylamine there was a change from 1.76 ppm to 1.84 and 

1.93 ppm observed after 15 min. of heating, which were in equal quantities. Further NMR 

analysis was required to gain a greater insight into the mechanism of amine 

dehydrogenation, as such 2D-NMR techniques, principally 
1
H-DOSY was employed to give 

further insight into the reaction, and to try to elucidate the structure of the different 

Cp*-protons. 

3.2.3 2D NMR analysis 

1
H DOSY spectroscopy was used to establish which Cp*-protons were related to the doublet 

of triplets and the two distinct triplets observed during the analysis of the 
1
H DOSY when 

0.2 equiv. of benzylamine (3.11) was mixed with iridium complex (3.1, Figure 3.10). A 

sample containing 0.5 equiv. of benzylamine, 0.5 equiv. iridium complex and DMSO-d6 

was analysed using 
1
H-

1
H DOSY spectroscopy (Figure 3.21, 

1
H-DOSY spectroscopic 

analysis and diffusion coefficient determination carried out by Dr J. Fisher, University of 

Leeds). 
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Figure 3.21 DOSY NMR spectra for a sample of benzylamine 0.5 equiv. benzylamine 

mixed with 0.5 equiv. iridium complex in DMSO-d6, with highlighted catalyst species 

at diffusion coefficient.1.59 m
2
s

-1
. 

The analysis of the 
1
H DOSY spectra established that the doublet of triplets at 5.58 ppm and 

the two distinct triplets at 3.72 ppm and 4.08 ppm had the same diffusion coefficient, 

1.59 x 10
-10

 m
2
s

-1
, as the aryl protons and the Cp*-protons at chemical shift 1.85 ppm. The 

ratio of integrals of the Cp*-protons, benzylic and amino-protons was: 15:4:4; establishing 

that the species comprised two benzylamines bound to an iridium centre (Figure 3.22). 

 

Figure 3.22 Proposed structure (3.25) of the complex formed during addition of 

benzylamine (3.11) to iridium catalyst (3.1). 
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The proposed structure implied that the complex was di-cationic (with iodides as the counter 

ions). Comparison of the stoichiometric analysis confirmed that the initial dimeric iridium 

complex 3.1, converts to the monomeric bis-amine complex 3.25 or catalyst bound amine 

complex 3.29, inferring a potential inner sphere mechanism for the N-alkylation process. 

The 
1
H DOSY could not, however, confirm whether there were associated amine protons 

with those observed at 1.82 ppm, which are likely to be associated with the species at 

1.85 ppm. HRMS analysis was used to confirm species 3.25 was present and elucidate the 

potential structure of this species. 

3.2.3.1 Hammett analysis of amine dehydrogenation 

3.2.3.1.1. Aryl substitution effects on the rate of dehydrogenation of 

various 4-substituted benzylamines 

The Hammett analysis can prove key to investigate the reaction mechanism and probe the 

structure of the transition state during the rate determining step, and it was therefore carried 

out on substituted benzylamines (Scheme 3.11, Table 3.8). It was envisaged that the study 

would allow understanding of how the activity would change at a benzylic centre depending 

on the substituents of the aryl ring on the rate of reaction (even at a pKa 9.33).
118, 119

 

 

Scheme 3.11 Analysis of the effect of the 4-substituent of aryl rings on benzylamine 

dehydrogenation. 
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Table 3.8 Results of the Hammett analysis of the dehydrogenation of 4-substituted 

benzylamines, 3.7-3.8, 3.11 and 3.17-3.18. 

Entry X 
Rate of consumption of substrate (kX) / 

μmol min
-1 b

 
log(kX/kH) 

σ-

value
120

 

1 H -0.000333 0 0 

2 MeO -0.000277 -0.080 −0.268 

3 Me -0.00144 0.636 −0.170 

4 Cl -0.00317 0.979 +0.227 

5 Br -0.0138 1.620 +0.232 

a Amine (2 mmols), biphenyl and iridium catalyst 4.1 (1 mol%) were heated in toluene-d8 (0.7 mL) to 120 °C (oil 

bath temperature), in a sealed NMR pressure tube. 

b Calculated via NMR analysis and comparison of proton integral normalised with solvent integration over 180 

min. 

A variety of 4-substituted benzlyamines were heated, with the iridium catalyst 3.1 in an oil 

bath and the rate of consumption of starting material was monitored by 
1
H NMR analysis. 

The study showed a positive correlation between the rate of amine consumption and the 

electron donating effect of the substituent (Figure 3.23) due to the x-coefficient of 2.1483. 

The correlation between electronic effects and the rate of dehydrogenation had an R
2
 value 

of 0.6014, which was quite strong, but further experimentation was required to prove the 

strength of the correlation. From these results it indicated that the rate determining step of 

the reaction did involve the build up of positive charge. This result supported the 

mechanistic hypothesis that hydride migration in the dehydrogenation process is rate-

limiting, as a more electron rich ring would be expected to make the loss of the hydride 

more facile at the benzylic position. The rate data showed that the reactions were occurring 

slower than expected, as it was envisioned that as although the benzyl proton was less 

acidic, the reduced steric encumbrance of the reactive centre would overcome the problem 

and lead to comparable rates. This result supported the mechanistic hypothesis that cleavage 

of the iridium-hydride bond to form the active catalyst was rate limiting, as has been shown 

with iridium(I) catalysts.  
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Figure 3.23 Hammett plot for the electronic effects on the rate of consumption of 

different 4-substituted benzylamines in iridium catalysed amine dehydrogenation in 

toluene at 105-110 °C. 

An alternate explanation for the R
2
 value was the possible competing effects of the electron 

withdrawing groups and electron donating groups on the reaction. If the key intermediate 

during dehydrogenation is structure 3.28 (Figure 3.24), hydride migration from the benzylic 

position would be aided by an electron donating group and be hindered by a more electron 

withdrawing group. Loss of the hydrogen from the amine to form the imine would also be 

dependent on the pKa of that proton. Work by Blackwell has shown that more electron 

withdrawing groups will reduce the pKa of an ammonium in aqueous solution, as 

unsubstituted ammoniums had a pKa of 9.38 whereas 4-bromo and 4-chloro have pKas of 

9.13 and 9.14 resepectively, whereas 4-methyl and 4-methoxy ammoniums have pKas of 

9.54 and 9.51, respectively.
121

 These two competing phenomena could act against each other 

as when the benzylic hydrogen is more hydridic, due to an electron donating group, the 

amine proton is less acidic and vice versa, but in this instance it appeared that the effect of 

the electron-donating groups was more pronounced. 
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Figure 3.24 Potential intermediate in the iridium catalysed dehydrogenation of amines. 

During the Hammett analysis, precipitate formed inside the NMR tubes and it was analysed 

to ascertain its structure and if it had an effect on the reaction. The solid was therefore 

isolated and recrystalised from dichloromethane. Examination of the resultant 
1
H NMR of 

the crystals showed that a new species had been formed. Comparison of the 
1
H NMR of the 

crystals showed that the Cp*-protons were at 1.93 ppm, similar in chemical shift to those 

observed for benzylamine in CDCl3 (1.92 ppm, Appendix), indicating that this species was 

produced during the reaction. 4-Methyl benzylamine produced suitable crystals for X-ray 

diffraction analysis, which confirmed that the structure was a catalyst bound amine species 

(3.29, X-ray analysis carried out by Dr. C. Pask, University of Leeds, Figure 3.25). This 

observation represents the first example of benzylamine coordinated to an IrCp* centre. 

Notably, it was in contrast to previous literature observations of iridium–amine formation 

during amine dehydrogenation.
77

 

 

Figure 3.25 X-ray crystal structure of catalyst bound amine species 3.29 formed during 

the heating of 4-methylbenzylamine and [IrCp*I2]2 in toluene-d8. 
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Catalyst bound amine 3.29 was not soluble in toluene-d8, even when heated to reflux, and its 

insolubility and stability was envisioned to inhibit the dehydrogenation reaction of the 

amine. This hypothesis was further supported by the results obtained carrying out the 

reaction in DMSO-d6, where the now soluble species underwent N-alkylation, although at a 

reduced rate. This result also supported the hypothesis that the catalyst-bound imine 

complex was highly reactive, as iridium-imine complex has yet to be observed. Even when 

complex 3.1 was heated to reflux in toluene-d8 with imine 3.2, only the hydrogen iodide salt 

of benzophenone imine was isolated as a stable species, which precipitated from solution.  

This observed structure, combined with the DOSY data discussed previously was 

interesting, as it was contrary to that expected from the original 
1
H NMR data, as instead of 

the expected monomeric catalyst bound amine 3.29 becoming the bis-amine complex 3.25, 

originally hypothesised, the converse was appearing to happen. Complex 3.25 is a 16 

electron species, whilst structure 3.29 (Figure 3.25) is an 18 electron mono-dentate species. 

bis-Amine complex 3.25 became the monomeric complex 3.29. One potential driving force 

for this phenomenon was solubility, as the monomeric complex was driven out of solution, 

forming the precipitate. Further analysis of how these complexes form will form the basis of 

future work, as well as analysis of the crystal structures of similar catalyst bound amines. 

3.2.4 Mass spectra analysis of intermediates formed during amine 

dehydrogenation 

Mass-spectrometry (MS) analysis was carried out on the crude mixture containing 

benzylamine, iridium complex and DMSO (in collaboration with Dr. Stuart Warriner, 

University of Leeds). Analysis via direct injection onto an Ultra-High Performance Liquid 

ChromatographyTime of Flight mass spectrometer (UPLCTOFMS) showed the 

formation of several different distinct species (Figure 3.26). 
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Figure 3.26 UPLC-TOF-MS trace for a mixture of benzylamine, iridium complex and 

DMSO. 

There were four distinct species of interest formed with m/z, 434, 470, 562 and 1034. The 

structure of the species with m/z: 1034 was rationalised as being the starting SCRAM 

complex, 3.1 , which had lost an iodide ion, this can lead to the formation of the triply 

bridged complex 3.30, previously observed by Lucas (Figure 3.27).
122

 The observation of 

complex 3.30 was unusual as the complex would have converted between two 18 electron 

species (with respect to each centre). 

 

Figure 3.27 Triply bridged iridium dimer complex observed during MS analysis. 

The predicted ion for the bis-amine complex 3.25, m/z 542, was not observed during 

analysis, indicating this species was not stable under the ionisation conditions used in this 

instance. Conversely, iridium-amine complex 3.31, was observed (m/z 562.0583) in the 

normal and high resolution methods (Scheme 3.12). Of further interest was the observation 



Chapter 3 Mechanistic studies of amine dehydrogenation via NMR, mass-spectrometry and 

X-ray diffraction studies 

 

104 

 

of a species with m/z 434.1464, which was rationalised as being the isobaric, isoelectronic 

iridium-bound amine 3.32 or imine-iridium species 3.33. 

 

Scheme 3.12 The related iridium-amine complexes formed during SCRAM complex, 

3.1, catalysed benzylamine, 3.11, dehydrogenation, conversion occurs via loss of the 

hydrogen iodide.  

 

Scheme 3.13 Proposed catalytic cycle for SCRAM (3.1) catalysed N-alkylation of 

benzhydrylamine 3.6.
77
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Chapter 2 discussed Blacker and co-workers proposed catalytic cycle for amine 

dehydrogenation and N-alkylation (Scheme 3.13).
77

 The MS evidence showed that two 

stable species were observed, the difference in mass between the two species was the loss of 

hydrogen iodide. The two species had two related structures, the first, where the amine was 

bound via a coordinate bond, 3.42 and secondly, after the hydrogen iodide loss, where two 

isobaric species are possible, either amine bound via a formal bond, 3.44 or where the 

dehydrogenation has already occurred with catalyst-bound imine 3.43 (Scheme 3.12). The 

observation of these three species would suggest that the dehydrogenation may occur via a 

step-wise process and is supported by the formation of the stable iridium-amine complex 

3.29 (Scheme 3.14). NMR analysis of the mixture did not show the presence of any up-field 

protons in the region expected for iridium-hydride species (−14.5-[−15.5 ppm]).
123

 The lack 

of observed iridium-hydride would indicate that structure 3.44 and not structure 3.43 was 

observed in the mixture. 

 

Scheme 3.14 Proposed mechanism for amine coordination and dehydrogenation, 

observed via MS, X-ray and NMR analysis. 

The observed formation of the catalyst bound amine complex 3.29 (vide supra) has given 

further support to the mechanistic hypothesis,
77

 being the first empirical evidence for 

catalyst bound amine formation for a non bi-dentate or tethered amine. The observed 

inhibition when this species is formed indicates that amine-iridium binding is also important 

in the catalytic cycle, as a strong amine-iridium bond leads to the inert species, whereas 

more labile amine-iridium coordination allows for faster reactions. This observation could 

be crucial in future catalyst design. 
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3.3 Conclusions 

The proposed mechanism for the iridium catalysed dehydrogenation of amines and their 

N-alkylation requires elucidation to observe potential intermediates during the reaction and 

to aid in improving the reaction (Scheme 3.14). Madsen has observed that the formation of 

active monomer from the dimer must be an initial step in the mechanism.
97

 In this work 

1
H NMR titration experiments have shown how amines interact with the iridium centre 

when in solution and provided evidence for the second step of the mechanism, amine 

coordination. This work has confirmed that the more sterically encumbered an amine, the 

less it will interact with the iridium centre, as evidenced by the formation of several 

different IrCp* environments in 
1
H NMR with small amines, such as benzylamines. The 

first observation of a benzylamine bound to an IrCp* centre, via X-ray analysis, has 

provided further support for the direct formation of catalyst bound amine during the reaction 

and shown that this is a stable complex. Observations with benzylamines have shown that 

they have the largest difference between bound and non-bound amine, having protons that 

are intermediate between amine and ammonium environments, indicating that they are in 

the process of becoming an imine. Furthermore, preliminary analysis of the equilibrium 

between bound and non-bound benzhydrylamines have been carried out, a potential Kc value 

has been determined in DMSO-d6. A Kc value of 0.57 indicated that the non-bound amine 

and dimer catalyst species 3.6 and 3.1 were preferred. Future work, will focus on 

establishing the equilibrium constants of different amines, to prove conclusively which 

states are preferred. 

The direct observation of catalyst bound or free primary imines, or secondary imines from 

primary or secondary amines, respectively (the proposed third step of the catalytic cycle) 

have not been observed previously and their observation has not been possible in large 

amounts during this investigation. The observation of rapid formation of the N-alkylation 

products over imines has supported the hypothesis that the imines formed must remain 

catalyst bound in the case of primary amines, which are more prone to attack by starting 

material. Observation of <1% formation in the benzhydrylamine reaction of a potential 

catalyst bound imine species supported this assertion and evidenced the transient nature of 

the catalyst bound imine or free imine species.  In the case of secondary amines, the results 

indicate that their reaction was not as facile as the primary amines and that they may be in 

equilibrium between a non-bound amine and catalyst bound imine state. 
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This work has given indication of the potential mechanism by which N-alkylation occurs. 

The observation of bis-benzylamine iridium complex 3.25 at high iridium concentration by 

NMR analysis was interesting as the amine bound iridium complex 3.29 was expected to be 

dominant at high iridium concentration, furthermore as more amine was added to the system 

the mono-benzylamine was the predominant species, whilst it was not clear why this was the 

case, the insolubility of the mono-amine iridium complex may have been the driving force 

for its formation. The formation of the bis-amine complex however indicated that the 

N-alkylation mechanism maybe via an at metal, inner sphere mechanism, at least in the case 

of benzylamines. Unfortunately, this mechanism could not be proven as there was no 

evidence for the formation of the bis-amine species in MS analysis. 

The observation of the N-alkylation products during NMR analysis of amine 

dehydrogenation, confirmed that this was an alternative pathway leading to by-product 

formation, furthermore the observation of iridium bound ammonia during crystallisation 

studies with imines supported the literature hypothesis that this is a mechanism for 

N-alkylation, furthermore the insolubility of this species and the catalyst bound amine 

species were potential inhibition pathways.  

Mass spectrometry has shown the formation of ions that have a similar structure to those 

observed previously in the literature, of an iridium dimer, triply bridged by iodide ions. Ions 

have also been observed with structures that indicate the formation of iridium-amine species 

that are part of the proposed catalytic cycle. Iridium-imine or iridium-hydride species were 

not observed via a combination of MS and NMR analysis, which suggested that these 

species may be transient in nature. 

Attempts to probe electronic effects on the dehydrogenation and N-alkylation reactions have 

been carried out. There was no strong correlation between changes in electron donating or 

withdrawing groups and the rate of reaction for substituted benzylamines, this was believed 

to be either an effect of insolubility, as precipitates formed, one of which being the 

characterised as the catalyst bound amine species 3.29. The other potential reason could be 

the conflict between benzylic hydrogen nature and amine or ammonium hydrogen nature on 

the rate of dehydrogenation, where electron withdrawing groups would help the loss of the 

ammonium or catalyst bound amine hydrogen, but would hinder the loss of the hydride 

during the hydride migration step. Deuterium labelling experiments could potentially target 

each interaction and a secondary kinetic isotope effect seen, which would determine which 

interaction is more important in the reaction, this study will form the basis for future work 

on this system. Having gained further mechanistic knowledge via these methods, 
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exploitation of this methodology could be used to carry out nucleophilic reactions, 

investigation of these nucleophilic reactions will be discussed in the remaining chapters. 
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Chapter 4 Towards an improved synthesis of 

polycyclic indoles  

4.1 Background 

During the course of primary amine dehydrogenation described in Chapter 2, N-alkylation 

appeared to be the predominant pathway for the reaction. The further mechanistic work 

discussed in Chapter 3 demonstrated that secondary amine dehydrogenation was not as facile 

as primary amine dehydrogenation. To overcome the problems associated with N-alkylation, 

tertiary amines presented an attractive target for their reactions with nucleophiles when 

converted to their corresponding iminium ions. 

4.1.1 The PictetSpengler reaction and its variants 

The Pictet–Spengler reaction (Scheme 4.1a) has the potential to be incorporated with the 

hydrogen transfer methodology with iminiums ions. The reaction, known since 1911, was 

initially used for the formation of isoquinoline 4.6 from phenethylamine, 4.1, and 

formaldehyde, 4.2 via acid catalysed imine formation, cyclisation and re-aromatisation.
124

 Its 

scope and optimisation has been thoroughly characterised,
125

 with variants used for the 

synthesis of indole 4.12 (Scheme 4.1b).
124, 126-128

  

 

Scheme 4.1 The PictetSpengler reaction of a) phenethylamines and b) tryptamines.  
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Metal mediated variants of the PictetSpengler reaction are not extensively characterised, 

Uskokvic’s mercuric acetate mediated amine C-H activation to form penta-cyclic 

tryptamines from their tetra-cyclic precursors is one example (Scheme 1.10).
15

 A change 

from stoichiometric mercuric acetate to a catalytic method provides an opportunity to further 

exploit such cyclisations. Recent advances have been seen in the formation of poly-cyclic 

indoles using iridium complexes, however these reactions proceed via allylic 

dearomatization and require anhydrous conditions, which may be problematic at a large 

scale.
129

 Whilst biosynthetic Pictet–Spengler reactions have been developed recently which 

utilise MAO-N to form the required iminium, and occur at mild temperatures, there remains 

the opportunity for the establishment of iridium catalysed protocols.
130

 

4.1.2 Hydrogen-transfer methodology in nitrogen heterocycle and 

PictetSpengler type polycyclic indole synthesis 

The development of a Pictet-Spengler type cyclisation using a hydrogen-transfer 

methodology would be desirable to avoid formaldehyde, potentially increase the yield and 

broader reaction scope, leading to reactions under ambient atmosphere, with formation of 

hydrogen, water or ammonia as the only by-products, as described in the literature (Chapter 

1). Marsden and Blacker have established a method for the activation of tertiary amines to 

facilitate PictetSpengler type intra-molecular cyclisations with 2- and 3-substituted indolyl 

amines, 4.13, 4.16 and 4.18, using the hydrogen-transfer methodology to form a range of 

polycyclic indoles (Scheme 4.2, Table 4.1).
95

 



Chapter 4 Towards an improved synthesis of polycyclic indoles 

111 

 

 

Scheme 4.2 Iridium catalysed cyclisation of: a) 3-substituted indolyl amine, 4.13 and b) 

2-substituted indolyl amine, 4.16 and 4.18. 

Table 4.1 Pictet–Spengler ring closure of 2-substituted indoles (Scheme 4.2b).
95

 

Entry X Amine 

Yield / % 

(RSM / 

%) 

Entry X Amine 

Yield / % 

(RSM / 

%) 

1 H 4.16a 41 (23) 7 H 4.16g  

2 H 4.16b  8 H 4.16h  

3 H 4.16c 61 (35) 9 OMe 4.18a 42 (23) 

4 H 4.16d 35 (39) 10 OMe 4.18c 61 (35) 

5 H 4.16e 54 (24) 11 OMe 4.18d 39 (30) 

6 H 4.16f  12 OMe 4.18e 49 (22) 

The low to moderate yields observed, 35-61%, for the 2-substituted indoles were reasoned 

to be due to over-oxidation of the product to iminium species 4.21, as also observed by 

Uskokovic.
15

 This reaction pathway was preferential to further cyclisation, requiring a 
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reductive work-up before product isolation (Scheme 4.3a). Cyclisation to form 

(±)-Desbromoarborescidine A from the parent alkylated tryptamine was achieved, but 

required increased reaction temperature and time scale, presumably due to progressing 

through a similar 5-membered spiro-cyclic intermediate 4.23 (Scheme 4.3b) as those in the 

standard PictetSpengler and Uskokovic reactions (Scheme 4.a and Scheme 1.10, vide 

supra). Optimisation of the process would make the reaction more attractive to industry. 

 

Scheme 4.3 Iridium catalysed cyclisation of: a) 2-substituted indolyl amine 4.16 with 

formation of over-oxidation product 4.21 and b) 3-substituted indolyl amine 4.13 via 

strained spiro-cyclic indole 4.23. 

Incorporation of iridium catalysed hetero-cyclisation reactions developed by Fujita 

(Scheme 4.4a)
131

 and Williams (Scheme 4.4b),
132

 provide the opportunity for telescoping the 

synthesis of polycyclic indoles. This prospect is made more inviting as alkylated tryptamines 

have been formed from tryptamines and tryptaphols by this technique. 
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Scheme 4.4 a) Iridium catalysed formation of heterocycles;
131

 b) Iridium catalysed 

synthesis of alkylated tryptamines.
132

 

Both reactions require dehydrogenation of both alcohols of diol 4.25 and then N-alkylation 

of the resultant aldehyde. The reaction can be visualised to occur through two possible 

mechanisms: the first is via two sequential dehydrogenation-N-alkylation steps (Scheme 4.5, 

Path A); the second via a double dehydrogenation and then double N-alkylation reaction 

(Path B).  

  



Chapter 4 Towards an improved synthesis of polycyclic indoles 

114 

 

 

Scheme 4.5 Formation of heterocyclic amine 4.26: Path A) via sequential 

dehydrogenation and N-alkylation or Path B) via double dehydrogenation and double 

N-alkylation. 

Either mechanism invokes imine or iminium ion formation, which are susceptible to 

Pictet-Spengler type cyclisations from either indolyl alcohol 4.36 or amine 4.39 

(Scheme 4.6a and b), which increase the attractiveness of this approach. 

 

Scheme 4.6 Telescoped synthesis of polycyclic indoles using iridium catalysed 

heterocyclisation from: a) 2-substituted indolyl alcohol 4.36; b) 2-substituted indolyl 

amine 4.39. 
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4.1.3 Indoles in the pharmaceutical industry 

Polycyclic indoles were chosen because the moiety is present in the structure of numerous 

multi-million dollar selling drugs such as Tadalafil, 4.40, (1.88 billion $/yr)
133

 and 

Octreotide acetate, 4.41, (649 million $/yr)
134

 (Figure 4.1). Compounds 4.40 and 4.41 are 

used for the treatment of erectile dysfunction and hypothalamic disorder, respectively. As 

such, drug compounds 4.40 and 4.41 represent both financial and medicinally important 

drug substances to the pharmaceutical industry. 

 

Figure 4.1 Medicinally and economically relevant indole amines. 

Indoles and their polycyclic derivatives are prevalent not only as biologically active motifs 

in lucrative pharmaceuticals, but also as active natural products.
135

 Dimebolin, 4.42 is a 

pharmaceutically active natural product currently used as an antihistamine, however it has 

also shown potential as an anti-Alzheimer’s and anti-Huntingdon’s disease therapeutic 

(Figure 4.1).
136

 Compounds 4.40-4.42 provide a snapshot of the significance of indoles and 

polycyclic indoles to the chemical industries; their cheap and efficient synthesis provide a 

substantial challenge to process chemists to decrease the cost and ease with which they are 

synthesised. As polycyclic indoles, drug compounds 4.40 and 4.42 can potentially be 

synthesised via the PictetSpengler type cyclisation conditions. Furthermore, telescoping the 

formation of poly-cyclic indoles could be financially beneficial due to reduced waste streams 

and conciseness of synthetic strategy compared to a multi-step approach; therefore 

optimisation of the synthesis of polycyclic indoles via hydrogen-transfer was investigated. 
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4.1.4 Aims and objectives 

To increase the efficacy of the cyclisation reaction a range of catalyst systems and reduction 

methods were probed. Telescoping of the reaction to develop a one-pot multi-component 

reaction to proceed directly from either a 2-indolyl alcohol and an amine or the 2- or 3-

substituted indolyl amine and an alcohol with subsequent cyclisation to the polycyclic 

indoles 4.17c or 4.38 (Scheme 4.6a and b, respectively) was investigated, as was its 

optimisation. Finally an increase in the scope of the reaction was investigated to incorporate 

substitution of the aryl ring with 4 or 5-substituted indoles and different amines. 

4.2 Results and Discussion 

4.2.1 Attempted optimisation of the cyclisation of 2-substituted 

indolyl amines 

4.2.1.1 Analysis of different catalyst systems 

Other iridium,
73, 137, 138

 ruthenium
139

 and palladium based systems have been established to 

catalyse amine dehydrogenation. These methods were incorporated into the cyclisation 

protocol to improve upon the original conditions and increase cyclised indole formation. 

Indole amines 4.16c-e and g were synthesised using a literature procedure. N-Mesyl-indolyl 

alcohol, 4.46, was synthesised from 2-iodo-aniline (4.43), subsequent mesylation, 

N-alkylation and deprotection gave the desired free amino indoles (4.16c-e and g) 

(Scheme 4.7).
140, 141
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Scheme 4.7 Synthesis of indole starting materials (4.16 c-e and f) from 2-iodo-aniline 

(4.43). 

Ruthenium trichloride monohydrate, has been used to cyanate tertiary amines and similar 

conditions were used for the cyclisation reaction (Scheme 4.8). Air was sparged through a 

mixture of indole 4.16g and ruthenium complex at 60 °C in a MeOH–acetic acid solvent 

mixture (3:1, v/v). Despite the use of a very reactive benzylic amine as shown in Chapter 2 

and 3, 
1
H NMR and LC-MS analysis revealed that overnight heating did not afford the 

cyclised product. It was therefore hypothesised that the lower temperature used in this 

modified literature procedure was insufficient to facilitate cyclisation and different catalytic 

systems were therefore investigated. 
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Scheme 4.8 Screening reactions employing various palladium, copper, iridium and 

ruthenium catalysts. 

As palladium based catalysts have been developed for alcohol dehydrogenation, these 

systems were investigated to achieve the cyclisation reaction (Scheme 4.8). Palladium 

complex 4.49 was evaluated with indole 4.16e using two different stoichiometric oxidants, 

in the first instance an air sparge and in the second benzoquinone was assessed. After 

stirring for two days at room temperature only starting material was observed by 
1
H NMR 

or LC-MS analysis. Several attempts confirmed these results indicating that also this 

complex was not suitable for amine dehydrogenation. 

Copper acetate monohydrate was subsequently employed, as this system has been used to 

activate oxindoles
142

 and dihydro-1,3-oxazines
143

 to cyclisations, via C-H activation, under 

similar conditions to those for the cyclisation. It is also worth noting that this catalyst is 

economically advantageous being £10 g
-1

, which is cheaper in comparison to [IrCp*Cl2]2 

(4.51, £590 g
-1

) the starting material for complex 4.14.
144

 This catalyst afforded promising 

results, as when the copper complex was incorporated into the standard reaction conditions 

(after one day) the crude 
1
H NMR showed a 4% conversion to the desired product (Scheme 

4.8). Unfortunately, when the crude reaction mixture was recycled, no further product was 
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observed after heating for a further day, revealing that the rate of formation of cyclised 

product was slower compared to Fujita catalyst 4.14 (Table 4.1, Entry 5, 35% after two 

days). Further catalysts were screened, although it is worth noting that there remain further 

avenues for exploitation in the field of copper catalysis, which may prove more process 

friendly from an economic standpoint. 

Two iridium catalysts were eventually evaluated in the system (Scheme 4.8, complexes 4.48 

and 4.50). Xiao’s catalyst (4.48) was evaluated using the literature conditions for secondary 

amine dehydrogenation,
73

 however after two days no product was observed. Furthermore, 

immobilised complex 4.50, which has proven successful in benzaldehyde-isopropanol 

transfer hydrogenations,
138

 was evaluated under the standard conditions. After heating for 

two days, cyclised product was not observed in the reaction. These results proved that the 

Fujita complex 4.14 was more active under the reaction conditions, however future efforts 

will focus on further analysis of other Xiao type catalyst systems, which have not been 

possible due to time constraints. 

4.2.1.2 Evaluation of transfer-hydrogenation for over-oxidation product 

reduction 

Use of a different hydrogen source to NaBH4 for the reduction of the over-oxidation product 

4.21 formed during the cyclisation reaction was investigated. TEAF solution 

(triethylamineformic acid 2:5, azeotropic solution) transfer-hydrogenation allowed for the 

realisation of a full hydrogen-transfer sequence, forming carbon dioxide as a result of the 

reduction of the iminium ion by-product formed during the reaction (4.21). Using these 

conditions, the desired product indole 4.17c was isolated in 78% yield from indole 4.16c 

(438 µmol scale, Scheme 4.8). The observed yield enhancement therefore provided a 

promising starting point for further investigation. 

The cyclisation reaction was carried out in a solution of TEAF and MeCN, rather than in 

previously employed xylenes, using the morpholine adduct 4.16d to probe the scope of the 

TEAF modification (Scheme 4.9). After refluxing for the standard two day time period, 

1
H NMR analysis of the crude reaction mixture showed a 10% yield of the cyclised product. 

MeCN refluxes at a lower temperature than xylenes (bpMeCN = 81 °C vs. bpxylenes = 137-140 

°C), the reaction was repeated with the piperidine analogue, heated to 110 °C for one day 

then 140 °C for one day (bath temperature, sealed tube) to evaluate the effect of increased 

temperatures, leading to a 41% NMR yield of indole 4.17d, which was comparable to 

standard conditions. This result proved promising, as it is believed to be the first reported 
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example of the oxidation of a tertiary amine in a reductive environment. However, time 

constraints did not allow further investigation to determine if this reaction will be successful 

in a TEAF only system. Such investigations will therefore form the bulk of future work to 

assess the scope of this reaction. 

 

Scheme 4.9 Use of TEAF solution in the cyclisation of 2-substituted indolyl amines. 

4.2.2 Telescoping of iridium catalysed polycyclic indole formation 

Hydrolysis of the N-mesyl group yielded the free indolyl alcohol, 4.36, in 88% yield (from 

4.46, Scheme 4.10). With indolyl alcohol 4.36 in hand, a test reaction was carried out with 

piperidine 4.52 and catalyst 4.14 heated to reflux in xylenes for two days for comparison 

with the standard conditions (Scheme 4.11). A reductive work-up, using NaBH4, was 

carried out and the crude mixture was analysed by 
1
H NMR analysis. 

 

Scheme 4.10 The synthesis of starting material, indolyl alcohol 4.36. 
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Scheme 4.11 The iridium catalysed multi-component reaction of indolyl alchol 4.36 in 

the presence of amines 4.52 or 4.53. 

Initial analysis was promising, due to the presence of the diagnostic indole protons of 

compound 4.17c (C11, 1H, 3.37.ppm, t and NH, 1H, 7.90 ppm, s, Figure 4.2).  

 

Figure 4.2 Crude 
1
H NMR analysis of one-pot multi-component synthesis of indole 

4.17c, with highlighted diagnostic protons. 

Unfortunately, isolation of the polycyclic indole, 4.17c, was not possible by column 

chromatography across a range of solvent polarities. This was due to the range of products 
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formed during the reaction with similar Rf values, which would not be separated in all 

solvent mixtures trialled. Optimisation of this initial result was carried out, investigating a 

range of solvents, temperatures, equivalences of amine and methods of addition of amine 

4.52. 

4.2.2.1 Optimisation of the 2-substituted indolyl alcohol multi-component 

reaction 

A range of conditions were screened to optimise the formation of the desired cyclisation 

product 4.17c (Scheme 4.11, Table 4.2). HPLC analysis suggested the formation of the 

cyclisation product 4.17c (in the UV analysis) for all conditions. LC-MS and 
1
H NMR 

analysis did not provide evidence for product formation however, as the mass-spectrum did 

not correlate with the product [(MH
+
), 227] and the characteristic protons were not 

observed [3.37 ppm, 1H, d (J=8.4), C11’H]. 

Formation of the N-alkylation product 4.16c was indeed observed via HPLC and LC-MS 

analysis, which correlated with the literature.
132

 A black amorphous precipitate was formed 

on the sides of the reaction vessel in all instances. The precipitate was insoluble in a range of 

solvents (including MeOH, petroleum ether, toluene, DMSO and water), which did not allow 

for its isolation and characterisation. It was however hypothesised that this precipitate could 

be attributed to indole polymerisation products 4.55a-c (Figure 4.3)
145, 146

 or indole thermal 

isomerisation (>970 K), which have been observed in the literature.
147-150

 As the temperature 

for the reaction is below that required for thermal isomerisation this reaction appears 

unlikely, however chemical formation of polyindole occurs at the operating temperature in 

the prescence of an oxidant, in aqueous buffer and is therefore possible under the reaction 

conditions. As the desired formation of the tetracyclic cyclisation product 4.17c would not 

occur under the conditions screened, a different strategy was required. 
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Table 4.2 Conditions screened during optimisation of indole N-alkylation-cyclisation 

(Scheme 4.11).
a
 

Entry Solvent Base Catalyst 
Piperidine 

/ Equiv. 

Temperature 

/ °C 

Yield of 

Product / % 

1 Xylenes No 4.14 0.8 137-140 0 

2 Xylenes No 4.14 1 137-140 0 

3 Xylenes No 4.14 1
b 

137-140 0 

4 Xylenes No 4.14 1.5 137-140 0 

5 Piperidine No 4.14 solvent 106 0 

6 PhCl No 4.14 1 100 0 

7 PhCl K2CO3 4.51 1 100 0 

8 PhCl No 4.51 1 100 0 

9 PhCl K2CO3 4.51 1 100 0 

10 PhCl No 4.51 1 100 0 

11 PhCl K2CO3 4.14 1 100 0 

12 PhCl No 4.14 1 100 0 

13 AcOH No 4.14 1 100 0 

14 PhCl No 4.14 1 110 0 

15 Xylenes No 4.51 1 110 0 

16 Xylenes TMG 4.14 1 110 0 

17 Xylenes No 4.14 1 110 0 

a Indole alcohol 4.36 (1 equiv.) was added to a suspension of 4.14 or [IrCp*Cl2]2 (4.51) (1 mol%) and (if 

required) base (1 mol%) in solvent (0.5 mL) and was heated to reflux. Piperidine was added to the 

resultant suspension which was stirred for up to seven days.  

b Dropwise addition over 1 hour.    

 

Figure 4.3 Poly-indoles 4.55a-c, potential structures of insoluble precipitate formed in 

the multi-component reactions. 
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4.2.3.2. Analysis of potential catalyst inhibition products 

To ensure that coordination of indolyl alcohol 4.36 alcohol and nitrogen lone pairs to the 

iridium centre of complex 4.14 was not reducing or stopping catalytic activity, formation of  

new iridium complex 4.57 was attempted (Scheme 4.12). 

 

Scheme 4.12 Potential ligand exchange reaction between indolyl alcohol 4.36 and 

iridium complex 4.14. 

X-ray diffraction was used to investigate whether indolyl alcohol 4.36 was binding to the 

iridium 4.14, inhibiting the reaction by formation of insoluble coordination complexes. 

Fujita catalyst 4.14 contains the ligand 2-hydroxy-5-(trifluoromethyl)-pyridine (4.56), which 

has the potential to form a chelation complex with the iridium centre. Analogous complexes 

have been observed in the literature,
151

 therefore iridium dimer complex, [IrCp*Cl2]2, 4.51 

was used to model Fujita catalyst 4.14. The only limitation of using iridium complex 4.51, 

however was that the monomeric iridium chloride complex must be formed before a ligand 

exchange can occur. Indolyl alcohol 4.36 was mixed with iridium catalyst 4.14 at room 

temperature in dichloromethane (Scheme 4.13) to probe any chelation effects on the catalyst. 

A solid was formed which was recrystalised from dichloromethane. 

 

Scheme 4.13 Attempted formation of indolyl alcohol bound iridium. 
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X-ray diffraction of the resultant crystals did not show that a ligand exchange had occurred. 

Hydrogen-bonding between a chlorine ligand and alcohol proton of the indole was the only 

interaction observed (analysis carried out by Dr. H. Sheppard, Figure 4.4). This observation 

did not support that substrate-catalyst deactivation was inhibiting the reaction at room 

temperature, the lack of precipitate formation at the reaction temperature before amine 

formation would have given evidence to support that catalyst inhibition was precluding 

reaction. 

 

Figure 4.4 X-ray crystal structure 4.57 confirming hydrogen-bonding interaction 

between substrate and catalyst after mixing at room temperature. 

4.2.2.2 Substrate scope of telescoped reaction 

Morpholine, 4.53, was also analysed as the reactive amine to increase the synthetic efficacy 

and scope of the multi-component reaction. Amine 4.53, indolylalcohol 4.36, xylenes and 

catalyst 4.14 were heated to reflux for 3 days and yielded 11% (15 mg) of impure polycyclic 

indole, 4.17d (Scheme 4.11). The poor yield of this reaction suggested that choice of amine 

was not exerting a major role in the reaction process but that other factors were affecting the 

reaction. Tryptamine instead of indolyl alcohol was therefore evaluated within the multi-

component reaction. 
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4.2.2.3 Evaluation of indolyl amines in the multi-component reaction 

A similar protocol to that employed by Williams was evaluated for the formation of 

polycyclic indoles.
132

 Tryptamine 4.7, 1, 5-pentandiol 4.25, xylenes, iridium complex 4.14 

and NaHCO3 were heated to 100 °C for 4 h. and then reflux for 2 days. (Scheme 4.14). The 

reaction was monitored via LC-MS and showed the formation of a mixture of products 

(4.13, 4.15 and 4.58). After an acid work-up and column chromatography, 7% (10.7 mg) of 

impure cyclised product was obtained. 

 

Scheme 4.14 Iridium catalysed multi-component synthesis of polycyclic indole 4.15 in 

the presence of diol 4.25. 

Inspite of the poor yield, the formation of 4.15 was interesting, as it represented an example 

of hydrogen-transfer methodology being utilised to form two CN and one CC bonds 

within a single reaction, and therefore merits further examination to improve the yield. As 

with the Williams’ chemistry (Scheme 4.4b, vide supra),
132

 there are different possible 

pathways for the reaction, and the poor observed yield could be rationalised by the 

possibility for a number of by-products being formed. Future work therefore necessitates 

focusing on the determination of the preferred desired pathway and the optimisation of this 

methodology. 

4.2.3 Increase in substrate scope via ring functionalisation 

Preliminary work to increase the synthetic efficacy of the protocol by incorporating a pre-

functionalised indole was carried out. Pre-functionalised indoles would provide more diverse 
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structural motifs, that could be functionalised post-reaction at not only the indole nitrogen, 

but also at either the 4’- and, or 5’-positions. Palladium catalysed cross-coupling would be a 

potential utilisation of the methodology, and the scope has the potential to be expanded to 

form 5-methyl polycyclic indoles, similar to dimebolin, with potential therapeutic benefits 

(Scheme 4.15). 

 

Scheme 4.15 Proposed iridium catalysed cyclisation of 4’-chloro or 5’-methyl-2-

substituted indoles. 

As an initial test of the functionalised indoles and with a view towards the synthesis of 

dimebolin type motifs, a test reaction with an N-methyl piperazine analogue of 5-methyl-

indole 4.64a was carried out. 4- and 5-substituted indole alcohols 4.62a and b were 

synthesised from 4-chloro methyl-2-iodo- aniline (4.60b) or 4-toluidine (4.59) employing a 

modified literature method, used in the synthesis of indole alcohol 4.36 (Scheme 4.16). 

4-Methylindole alcohol 4.62a was mesylated, N-alkylated and hydrolysed to give the 

N-methyl piperazine analogue 4.64a (416 µmols).  
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Scheme 4.16 Synthesis of the 4’chloro and 5’-methyl substituted indole starting 

material. 

5-Methylindole amine 4.64a was evaluated in the cyclisation protocol by refluxing in 

xylenes in the presence of Fujita catalyst 4.14 for two days on a 156 µmol scale 

(Scheme 4.17). The reaction was then cooled and a TEAF hydrogenation was carried out in 

MeCN. No cyclised product was observed however during post work-up analysis via 

1
H NMR and LC-MS analysis. The reaction was repeated on the same scale, but a NaBH4 

reduction was carried out; however no product was observed again. It was not clear why the 

reaction was not successful, as 4’-methoxy substituted indoles (4.18) have been successfully 

cyclised under the similar conditions by Marsden and Blacker,
95

 however an initial 

hypothesis was that the altered steric environment of indole 4.64a may be precluding the 

formation of the polycyclic indole. The bulk of future research efforts will focus on 

investigating this hypothesis and also to expand the scope exploiting 4-chloroindole alcohol 

4.62b and 5-chloro-indoles. 
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Scheme 4.17 Attempted incorporation of 5-methylsubsituted indole 4.64a into the 

cyclisation protocol. 

4.3 Summary and future work 

Various different conditions and methodologies have been assessed to optimise the synthesis 

of polycyclic indoles via metal catalysed amine dehydrogenation. TEAF has been evaluated 

during the reduction of over-oxidation product 4.21 formed during the cyclisation reaction 

and it has been shown to give a yield enhancement over the previous conditions (using 

NaBH4).The requirement for the use of a reductive work-up was itself not desirable and 

other catalytic systems were assessed in an attempt to optimise the conditions. Whilst some 

success was seen with the copper acetate systems, poorer yields than those with the standard 

conditions were observed. Future work to improve upon the initial work with copper 

catalysts or to assess other catalysts similar to Xiao catalyst 4.48 could potentially provide a 

less energy intensive and economic method to form polycyclic indoles, and to carry out 

telescoped reactions. 

A telescoped method for the formation of polycyclic indoles, directly from alcohols rather 

than tertiary indole amines was investigated. The reason for lack of success observed was 

hypothesised to have been due to the multi-component reaction proceeding via multiple 

reaction pathways, leading to the production of a large range of products, observed via TLC 

analysis. Polymerisation was a viable by-product however the low solubility did not allow 

for structural analysis and determination to confirm this hypothesis.  

A test reaction with a new indole amine that was functionalised on the aryl ring of the indole 

was also carried out. 5-Methylindole analogue 4.64a was not successfully incorporated into 

the reaction with only starting material observed. A preliminary hypothesis was that steric 

hindrance was precluding the reaction of the 5-methyl substituted indole. The incorporation 

of further amines that are functionalised on the indole nitrogen will be a continued goal for 
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this work, with the ultimate aim of accessing an industrially relevant protocol for the 

production of dimebolin type motifs (4.42) and examination of their biological effects. 
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Chapter 5 The Evaluation of Further Nucleophiles 

5.1 Introduction 

The research discussed in Chapters 2 and 4 about primary and secondary amine 

dehydrogenation, has shown that amines readily undergo dehydrogenation with an iridium 

catalyst. Primary amines were most facile, however as has been shown in the literature, 

N-alkylation occurs rapidly with primary amines.
96

 Whilst the N-alkylation itself is an 

efficacious process, proven to be desirable to industry,
152

 it limits the scope of products 

synthesisable by this process. Indeed N-alkylation is the most common reaction with iridium 

catalysed hydrogen-borrowing of amines.
39

 The literature review (Chapter 1) described a 

number of nucleophilic addition reactions of imines
81-83, 85-89

 and Chapter 3 discussed the 

intramolecular cyclisation reactions of indoles, via an iminium ion intermediate. The 

success of the cyclisation reaction is achieved as formation of N-alkylation products is not 

possible with tertiary amines. The formation of aldimines or ketimines is a useful 

transformation and it would be useful to extend the scope of the reactants to other 

nucleophiles beyond amines. As such, further reagents (cyanide, ammonia and 

dimethylsulfoxonium methylide) were evaluated in an attempt to establish new 

functionalisation protocols for amines via iridium catalysed hydrogen transfer reactions 

(Scheme 5.1). 

 

Scheme 5.1 Proposed incorporation of various nucleophiles into iridium catalysed 

hydrogen borrowing.  
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5.2 Addition of Cyanide to Imines 

5.2.1 Background and Synthetic Rationale 

The Strecker reaction, is a highly useful reaction (Scheme 5.2). The formation of α-amino 

nitrile 5.3 is itself an interesting transformation, however further attractiveness is added as 

the product after homologation is functionalisable.
153

 Strecker product 5.3, can be 

hydrolysed to form β-amino acid 5.4 with the potential to form unnatural amino acids 

(Scheme 5.2a). Further reactivity can be achieved when 5.3 is reduced, thus forming 

diamine 5.5 which can be useful in several other reactions (Scheme 5.2b).
154-156

 Use of a 

base and then electrophile allows for further functionalization to form compound 5.6
157

 

(Scheme 5.2c) with subsequent reduction or hydrolysis still possible.  

 

Scheme 5.2 A generalised Strecker reaction with post reaction functionalization to: a) 

β-amino acid 5.4, b) diamine 5.5 or c) further alkylated product 5.6. 

Work carried out previously has described the formation of α-amino nitriles using 

biochemical transformations. Turner and co-workers’ have disclosed a MAO-N D5 

catalysed method for the formation of fused α-cyano-pyrrolidines (Scheme 1.28a). This 

methodology is currently applicable to only these fused pyrrolidines, however a similarly 

successful method that can form acid 1.113 over two steps from fused pyrrolidine 1.111 via 

α-cyano-pyrrolidine intermediate, 1.112 would be desirable. 

Whilst Murahashi
139

 and others
158-162

 have shown that similar homogeneous or 

heterogeneous transition metal catalysed reactions are possible (Scheme 5.3). Many of these 

methods are only tolerant of tertiary amines, whereas this new methodology might be 

applicable to primary and secondary amines. This methodology may also avoid the use of an 
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external oxidant, such as the atomic oxygen employed in Murahashi’s work. The formation 

of Ir-imine complex should facilitate the addition of the cyanide nucleophile, especially if 

amine concentration is kept low relative to the cyanide nucleophile then selective addition 

should be possible. The iridium catalysed formation of α-amino nitriles from amines was 

evaluated. 

 

Scheme 5.3 Ruthenium
139

, copper
158

, rhenium
159

, manganese
160

, iron
161

, or cobalt
162

 

catalysed synthesis of tertiary-α-aminonitriles via iminium ion formation. 

5.2.2 Result and Discussions 

The initial research focused on the use of sodium cyanide (NaCN), a hard and strongly 

nucleophilic cyanide source,. In this form the cyanide anion has the potential to react rapidly 

with the imine, envisaged to overcome the problems observed previously in primary amine 

dehydrogenation (Chapter 2), due to N-alkylation with unreacted starting material 

(Scheme 5.4). 

 

Scheme 5.4 Proposed use of potassium cyanide as the cyanide source during Strecker 

type reaction, with molar excess of cyanide source overcoming N-alkylation. 

An initial reaction was carried out where iridium Cp* iodide catalyst, 5.1a (1 mol%) was 

stirred with potassium cyanide (0.79 equiv.) and amine 5.8, a cheap and commercially 

available amine (1 equiv.), in deionised water at 100 °C (Scheme 5.5 and Table 5.1, 

Entry 1). Monitoring of the reaction by either TLC or GC-MS proved difficult due to poor 

solubility of the amine in the bulk aqueous solution. Aqueous extraction, followed by 
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solvent removal in vacuo and NMR analysis of the crude reaction mixture showed that 

instead of α-aminonitrile 5.10, homo-dimerisation to secondary amine 5.11 had occurred. 

Evaluation of a range of different reaction conditions was carried out investigating changes 

to concentrations of reagents, the solvents, different catalyst effects and the evaluation of 

different cyanide sources, to try and establish a successful method for the synthesis of the 

desired α-amino nitrile (Table 5.1). 

 

Scheme 5.5 General procedure for the evaluation of cyanide sources in iridium 

catalysed amine dehydrogenation reactions. 

Table 5.1 Conditions screened during SCRAM catalysed cyanide addition to imines
a
 

Entry 

Cyanide 

Source and 

quantity / 

mol equiv. 

Catalyst 

Catalyst 

Loading / 

mol% 

Overall 

Concentration of 

reactants in 

solution / N
 

Product 

Observed 

via GC-MS 

1 KCN, 0.79 5.1b 1 0.57 5.11
b 

2 KCN, 4 5.1b 1 2.09 5.12 or 5.13 

3 KCN, 4 5.1a 1 2.09 5.12 or 5.13 

4 KCN, 4 5.2 2 2.09 5.12 or 5.13 

5 KCN, 4 5.2 2 2.09 5.12 or 5.13 

6 TMSCN, 1.5 5.1b 1 1.25 No
c 

a Amine 5.9 (2 equiv.), iridium catalyst (1 mol%), cyanide source (5 equiv.) and water (5 mL) were heated 

to reflux for 24-60 hours. 

bProduct observed via analysis of crude NMR and comparison to commercially available 5.11 

cReaction carried out in toluene 
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5.2.2.1 Reactant concentration 

A higher reactant concentration of 2.09 M failed to give any product (Table 5.1, Entry 2). 

However, during GC-MS analysis of the 2.09 M reaction, two by-product peaks with m/z 

134 and 139 were observed in minor quantities. The compound with m/z 139 was tentatively 

assigned the structure of enamide 5.12, formed via reaction with acetonitrile (the GC-MS 

solvent) and subsequent water hydrolysis (Scheme 5.6). Structure 5.13 was tentatively 

assigned to the compound with mass m/z = 134 and might be formed by double addition of 

cyanide to the imine. The formation of this product could provide a potentially useful entry 

into the drug gabapentin, 5.14 (Figure 5.1). Compounds 5.12 and 5.13 did not appear in 
1
H-

NMR analysis and were not isolable from the reaction mixture, appearing instead to be 

artefacts of the analysis process.
163

 

 

Scheme 5.6 Formation of enamide 5.12 and dinitrile 5.13 from the reaction of 

cyclohexylamine with MeCN and cyanide respectively. 

 

Figure 5.1 Gabapentin.
163

 

5.2.2.2 Catalyst screening  

In Chapter 2, different catalysts were shown to have different activities in amine 

dehydrogenation. Accordingly a series of catalysts were evaluated (Table 5.1, Entries 2-5). 

Amine 5.9 and potassium cyanide (4 equiv.) were heated to reflux in the presence of 
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catalysts 5.1b, 5.2 or 5.1a in deionised water and the reaction monitored via GC-MS. The 

catalyst loadings were normalised to ensure that the same number of moles of iridium were 

available in each reaction. After 24 h GC analysis indicated that two species were present in 

the reaction mixture at 5.2 min with m/z = 139 and at 5.6 min. with m/z = 134 that were 

tentatively assigned structures 5.12 and 5.13, which had been observed previously (vide 

supra).  

5.2.2.3 Evaluation of a different cyanide source 

Barton and co-workers’ developed a Strecker reaction in organic media using trimethyl 

silylcyanide (TMSCN) as the cyanide source (Chapter 1, Scheme 1.9).
14

 To evaluate 

whether the solubility of the amine was affecting the reaction, the reaction was carried out 

with TMSCN, in organic media (Table 5.1, Entry 5). Amine 5.9 was stirred with complex 

5.1b (1 mol%) and TMSCN (1.5 equiv.) in anhydrous toluene at 100 °C for 60 hours. No 

reaction was observed by GC-MS, an indication that the TMSCN was not nucleophilic 

enough to react with the imine. 

5.2.3 Conclusion 

A range of conditions have been evaluated for the synthesis of α-amino nitriles by a 

Strecker type synthesis from primary amines, using hydrogen transfer methodology to form 

an imine in situ, all conditions have proven unsuccessful. The species observed, during 

analysis of the reaction mixtures, indicated that homo-dimerisation, by-product formation 

(that could be potentially useful) or no-reaction was observed. As primary and not 

secondary or tertiary amines were evaluated, these may prove more fruitful endeavours in α-

aminonitrile synthesis as has been shown in the literature, in situ generation of the desired 

imine from carbonyl and amine attack and these avenues will constitute the bulk of future 

efforts. 

5.3 Novel aziridine formation 

5.3.1 Background and synthetic rationale 

The formation of aziridines is very important in organic synthesis, as noted in Sweeney’s 

review of the moiety.
87

 Aziridines can be considered umpolung synthons during 

retrosynthetic analysis and, as such, they are highly useful reagents in natural product 

synthesis (Figure 5.2).  
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Figure 5.2 Example of an umpolung situation in retrosynthetic analysis, leading to an 

aziridine being a potential synthon. 

The aziridine moiety has been used recently as an intermediate in the synthesis of a number 

of antibiotics including 5.15-5.18, synthesised from the key fused cyclohexane-aziridine 

structure, 5.14 (Figure 5.3).
164

 

 

Figure 5.3 Intermediate 5.14 used in the synthesis of antibiotics 5.15-5.18. 

It was envisioned that the imine formed in situ during iridium catalysed amine 

dehydrogenation would react with a nucleophile containing a potential leaving group, for 

example a sulfonium (5.19) or sulfoxonium ylide (5.20) as in the 

Johnson-Corey-Chaykovsky reaction (Scheme 5.7).
165, 166

  

 

Scheme 5.7 Epoxide formation using the Johnson-Corey-Chaykovsky reaction, with 

dimethylsulfonium (5.19) or dimethylsulfoxonium (5.20) ylides. 
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This new method would not require the use of potentially hazardous diazo compounds, 

which have been used previously to form aziridines via Lewis acid
167

 and rhodium 

catalysis.
168

 Therefore, due to the importance of the aziridine moiety and the significant 

potential of its synthesis directly from amines via iridium catalysed hydrogen-transfer 

reactions, the evaluation of its formation was tested using the standard dehydrogenation 

conditions and dimethylsulfoxonium methylide. 

5.3.2 Results and discussions 

The dimethylsulfoxonium methylide (5.20) nucleophile used to evaluate the potential 

formation of aziridines through the iridium catalysed dehydrogenation of amines was 

formed via deprotonation of trimethylsulfoxonium iodide (5.21) using the conditions of 

Smith and co-workers (Scheme 5.8).169
  Dimethylsulfoxonium methylide was used as the 

DMSO formed during the reaction was preferred compared to the more volatile 

dimethsulfide formed with the sulfonium analogue.  

 

Scheme 5.8 Synthesis of dimethylsulfoxonium methylide, 5.20. 

Ylide 5.20 reacts readily with water, therefore its use is potentially problematic during scale 

up due to the requirement for anhydrous conditions during ylide synthesis (Scheme 5.8). 

The negative-charge localised onto the amine nitrogen of zwitterionic species 5.22 would be 

available to attack the α-carbon to form the aziridine species (5.23) via concomitant loss of 

DMSO (Scheme 5.9). 

 

Scheme 5.9 The proposed use of dimethylsulfoxonium methylide (5.20) as the 

nucleophile during aziridine synthesis.  
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A standard of phenyl aziridine (5.25) was prepared from phenylglycinol (5.24) in 33% yield 

using Li’s method (Scheme 5.10).
170

 This standard was used for comparison in GC analysis 

during the study. When stored at room temperature, the phenyl aziridine standard was 

observed to decompose over several days at room temperature by NMR analysis. 

 

Scheme 5.10 Li’s synthesis of phenyl aziridine, 5.25.
170

 

Ylide 5.20 was initially tested as a nucleophile with benzylamine (5.26) activated via 

iridium catalysed dehydrogenation at reflux in xylenes (with dropwise addition of 

amine-ylide solution into the reaction, Scheme 5.11, Table 5.2, Entry 1). The formation of 

tentatively assigned aziridine 5.25 was observed via GC and GC-MS at 14% conversion via 

comparison to the separately prepared standard. Isolable quantities of aziridine 5.25 were 

not possible. The decomposition observed of the standard aziridine 5.25 indicated there may 

be associated problems due to thermal opening during the reaction, which have been 

observed in the formation of azomethine ylides and there subsequent reactions.
171-177

 

 

Scheme 5.11 In situ aziridination and subsequent azetidination or oxidation. 
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Table 5.2 Reaction conditions screened during aziridine formation study.
a 

Entry 
Solvent A Solvent B Solvent C 

Proposed Main Product / 

N
o 

Product
b, c

 / % 

1 Xylenes THF n/a 5.28 14 

2 PhMe DMSO n/a 5.25 32 

3 PhMe THF n/a 5.29 20 

4 Xylenes THF DMF 5.25/ 5.27 21/23 

5 Xylenes Anisole n/a No reaction 0 

a Amine 5.26 (1.00 equiv.), iridium complex 5.1b (1 mol%) in anhydrous solvent A (2 mL) were heated to reflux 

and a suspension of ylide 5.20 (1.5 equiv.) and solvent B (1 mL) were added slowly. 

b Calculated via comparison to a biphenyl internal standard. 

c Yield to the nearest percent, ±0.5%. 

Several different reaction conditions were screened (Table 5.2), however isolation of 

aziridine 5.25 proved impossible. Various over-reaction products including: azetidine 5.28, 

pyrrolidine 5.29 (Entries 1 and 3), as well as oxidation products that form in the presence of 

DMSO (5.27), were observed instead (Entry 4).  

 

Scheme 5.12 Proposed mechanism for formation of azetidine 5.28. 

The azetidine and pyrrolidine observed during GCMS analysis (Figure 5.4) are proposed to 

form due to an excess of ylide 5.20 in the reaction vessel (Scheme 5.12), as similar reactions 

have been described previously by Carrié and co-workers.
178, 179

 Ylide 5.20 preferentially 

attacks the less substituted position to ring open aziridine 5.20. The product of the ring 

opening, 5.30, then itself ring closes to afford azetidine 5.28 and another equivalent of 

DMSO. Alternatively, the reaction may also occur without an initial ring closure to aziridine 

5.25 (Scheme 5.13). 
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Figure 5.4 Total Ion Chromatogram for the iridium catalysed dehydrogenative 

nucleophilic reaction of amine 5.26 with ylide 5.20, showing the major ions and 

omitting the solvent peaks. 106 (benzylamine), 120 (rationalised as phenyl aziridine), 

135 (rationalised as oxidation product 5.27), 147 (rationalised as phenyl pyrrolidine, 

5.28), 154 (biphenyl standard).  

 

Scheme 5.13 Alternative proposed mechanism for azetidination 5.28 formation.  

Phenyl pyrrolidine 5.29 formation was anticipated to occur via a second ring opening with 

subsequent ring closure analogous to that seen with azetidination (Scheme 5.14). The 

formation of the piperidine analogue of pyrrolidine 5.29, was however not observed in the 

initial GC analysis or during isolation.  

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

3 4 5 6 7 8 9 10 11

Abundance

Time / mins

105

106

135120
147

154



Chapter 5 The Evaluation of Further Nucleophiles 

 

142 

 

  

Scheme 5.14 Formation of pyrrolidine 5.29. 

A range of polar aprotic solvents were assessed in the reaction. When DMSO was used as a 

solvent (Table 5.2, Entry 2), oxidation of aziridine 5.25 to 1-phenyl-2-aminoethanone 

(5.27), was observed as a peak at 4.9 min with m/z of 135 in GC-MS analysis. Analogous 

oxidations of aziridines to similar products by DMSO have been observed separately by 

Heine and Fujita (Scheme 5.11).
180-182

 The use of DMSO as a solvent in the ylide forming 

reaction led to 32% to aziridine 5.25 and oxidation product 5.27 (3%) as measured by GC 

against an internal standard. 

DMF was evaluated as a different high boiling aprotic solvent. The ylide 5.20 appeared 

soluble in DMF, allowing for the solvent to be changed from THF to DMF after the 

formation of ylide 5.20 (Table 5.2, Entry 4). During the reaction a mixture of compounds 

rationalised as aziridine 5.25 (21%), azetidine 5.28 (4%), pyrrolidine 5.29 (<1%) and 

oxidation product 5.27 (23%) were observed via GC analysis, as well as the starting amine 

5.26 (47%). However, when the reaction was carried out in toluene at reflux, the pyrrolidine 

5.29 was observed after 18 hours. Isolation of the aziridine 5.25 via column chromatography 

was carried out with different solvents, pH and media (silica and alumina) but separation 

proved elusive. 

Anisole was evaluated as a further high boiling point (154 °C), polar aprotic solvent 

(Table 5.2, Entry 5), able to dissolve ylide 5.20 and allow for faster dehydrogenation, 

however no reaction was observed during the reaction. 

5.3.3 Conclusions 

Different conditions were screened to obtain phenyl aziridine 5.25, however successful 

isolation proved impossible. Nevertheless, GC yields of upto 32% were observed by 
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comparing with both an authentic sample of phenyl aziridine and internal standard. The 

molecular ions of numerous by-products were observed via GC-MS analysis that included 

those due to ring expansion (5.28 and 5.29), through reaction with unreacted ylide 5.20, or 

oxidation by DMSO (5.27). The evaluation of secondary amines may prove fruitful, due to 

the reduced nucleophilicity, however the thermal ring-opening that is known to occur with 

aziridines at the operating temperature will require the use of catalysts that are highly active 

even at lower temperatures or use of flow chemistry to allow for reduced time at high 

temperatures. 

5.4 A novel method for the deprotection of amines 

5.4.1 Introduction  

The protection and deprotection of reactive functional groups is vitally important to organic 

synthesis, as it enables synthetic chemists to build a diverse array of molecules with varying 

sizes and complexities. Funtionalised amines are important to the pharmaceutical and fine 

chemical industries, as such their protection during the synthesis of APIs is exceptionally 

important. The textbooks by Kocieński
183

 and Greene
184

 provide a great insight and 

overview of the possible protecting group strategies available to the organic chemist for 

amines. 

The C-N bond of an alkylated amine is not generally considered easy to break and is 

normally an irreversible process. The benzyl protecting group can be deprotected by 

hydrogenolysis to cleave the desired C-N bond to form the unprotected amine 

(Scheme 5.15). 

 

Scheme 5.15 General hydrogenolysis of N-benzyl protected amine. 

In Chapter 2 ammonium salts were shown to partially inhibit N-alkylation of primary 

amines during iridium catalysed dehydrogenation, through reversing the N-alkylation 

equilibrium to enhance product primary amine and imine formation in Scheme 5.16.  
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Scheme 5.16 Use of ammonium additives to reduce N-alkylation of amine 5.34. 

The N-alkylation process is believed to be dependent upon the loss of ammonia (Scheme 

5.16), so within a closed system an equilibrium will form. By carrying out dehydrogenation 

reactions with secondary and tertiary amines in the presence of an ammonia source, a de-

alkylation to form two separate amines could be performed as the excess of ammonia would 

drive the equilibrium to increased primary amine formation. The successful implementation 

of this methodology would lead to a new protocol for the deprotection of amines that would 

make use of alternative reaction conditions to hydrogenolysis, establishing for example 

novel protecting groups such as the -methyl, -phenyl or -tert-butyl groups (Figure 5.5), 

which are not generally possible and would add further impact to the protocol. This work 

could thus allow for an expansion in the landscape of amine-based synthetic chemistry. In 

order to realise this objective, the synthesis of a range of secondary amines was carried out 

and these were analysed for successful deprotection by ammonia. 

 

Figure 5.5 An N–methyl protected amine, a potential novel protecting group that could 

be realised via iridium catalysis. 

Beller and co-workers have previously shown that a ruthenium system based on Shvo’s 

catalyst 5.38 and ammonia gas can form primary amines from secondary and tertiary amines 

(Scheme 5.17). 
185

 Whilst Beller’s protocol was applicable to a range of alkylated acyclic 

and cyclic amines, benzylic (aryl) amines were poorly represented (50% yield, 56% 

conversion). The results reported were based on GC yields so the development of a method 

that isolated and fully characterised the amine products would be desirable. 
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Scheme 5.17 Beller’s synthesis of primary amines. 

5.4.2 Results and Discussion 

5.4.2.1 Starting material synthesis 

A range of secondary amines were synthesised via reductive amination reactions using the 

modified literature procedures of Abdel-Magid
186

 or Lai
187

 and isolated as the hydrochloride 

salts (Scheme 5.18). With this range of secondary amines in hand, the screening of a various 

conditions was carried out to dealkylate secondary amines. 

 

Scheme 5.18 Synthesis of secondary amine hydrochloride salts. 
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5.4.2.2 Conditions screened in attempted secondary amine deprotection 

During the screening of reaction conditions for secondary amine deprotection, N-benzyl 

cyclohexylamine and N-benzyl-α-methyl benzylamine were chosen as model amine 

substrates.  

 

Scheme 5.19 Conditions trialled during unsuccessful amine deprotection. 

Studying successful reactions with N-benzyl cyclohexylamine could give a further 

indication of mechanism, if labelling studies were carried out. Amines 5.40 and 5.41 were 

tested in a range of conditions: different ammonia sources; temperatures; solvents; closed or 

open systems were examined (Table 5.3).  
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Table 5.3 Conditions evaluated during deprotection study.
a 

Entry Amine Nucleophile Source 
Temp 

/ °C 
Solvent 

Sealed 

Tube 

Yield of 

deprotected 

amine / % 

1
 b
 5.40

 NH4OAc 110 PhMe No 0 

2 5.40 NH4OH 55 MeCN Yes 0 

3 5.40 NH4OAc 82 MeCN No 0 

4 5.40 NH4OAc 90 iPrOH Yes 0 

5 5.41 NH4OH 90 iPrOH Yes 0 

6 5.41 NH3 40 iPrOH Yes 0 

7 5.40 NH2OH•HCl, Na2CO3 reflux MeOH No 0 

8 5.41 NH2OH(aq) reflux CH2Cl2 No 0 

9 5.40 
NH2OH•HCl, Na2CO3 

(in CH2Cl2)
c
 

reflux xylenes No 0 

10 5.40 NH2OH•HCl reflux PhMe No 0 

11 5.40 NH2OH•HCl reflux MeCN No 0 

12 5.40 NH2OH•HCl reflux THF No 0 

13 5.40 NH2OH•HCl reflux 
n
BuOAc No 0 

14 5.40 NH2OH•HCl reflux H2O No 0 

15 5.40 
NH2OH•HCl, Na2CO3 

(in CH2Cl2) 
reflux xylenes No 0 

16 5.40 
NH4OH, Na2CO3 

(in MeCN) 
reflux xylenes No 0 

a Amine (1 equiv.), ammonia source, complex 5.1b (1 mol%) in solvent (2 mL) were heated and monitored 

by GC-MS, LC-MS and 1H-NMR analysis. 

b Formed in situ from iridium complex 5.1a and KI. 

c Dropwise addition of amine to reaction. 
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Analysis of all reactions by LC-MS and 
1
H NMR indicated that only starting material was 

present in the crude mixture. Two conclusions can be drawn from the screening experiments 

as to the reason for their failure (Table 5.3): either no reaction was occurring, which was 

possible due to the literature precedent for inactive, insoluble iridium-amine species being 

formed
77

 or that the equilibrium lies far to the side of N-alkylation and the equilibrium 

constant, Kc, is less than one for the required reaction shown in Scheme 5.16 (as supported 

by evidence in Chapter 2). 

When an open reaction vessel was used ammonia could evaporate resulting in a loss of 

reagent (Table 5.3, Entries 1, 3, 6, 8-18). The higher boiling ammonium acetate was then 

used to overcome this issue. However, the formation of the desired amine was not observed. 

This result would lead to the second conclusion being true, however a further hypothesis 

could be that the rate of N-alkylation is far greater than that for dealkylation. The operating 

temperature that Beller used during dealkylation were higher than those achievable 

(150 170 °C) for sealed tube reactions using the apparatus available.
185

 The vessel used for 

the deprotection with ammonia dissolved in isopropanol reached an internal temperature of 

55 °C due to the requirement for a specially designed metal jacket, which was harder to heat 

uniformly, indeed Beller had to use specialised equipment to carry out his deprotections. 

5.4.3 Conclusions 

Successful deprotection of secondary amines has proven elusive. In spite of a wide range of 

conditions being screened, there has been no evidence for the formation of primary amines. 

The reason for this may lie in the fact that the primary amines formed rapidly undergo the 

reverse reaction, as it has been observed previously (Chapter 2), or that iridium-amine 

complexes are being formed that precipitate out of solution and also inhibit the 

dehydrogenation process. A similar system to that which has been used in the literature was 

evaluated, however the pressures of ammonia that would have formed in the reaction vessel 

are not desirable on a laboratory scale, furthermore, the use of jacketed vessels inhibited the  

heating of the reaction and so high temperatures were not achievable. 

5.5 Overall Conclusions 

A range of nucleophiles have been evaluated to try to broaden the scope of iridium catalysed 

hydrogen transfer reactions. For the formation of α-cyano amine 5.10 from primary amines, 

homo-dimerisation has predominated, which has been rationalised by the reversibility of the 

cyanide addition and the facile nature of N-alkylation at the operating conditions. Due to the 
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forcing conditions of the reaction, even when formation of aziridine 5.25 had been observed 

via GC, secondary reactions were observed, leading to low yields of aziridine products and 

mixtures of products. Trying to exploit the equilibrium formed during N-alkylation to 

reverse the process and form primary amines from secondary amines has not been 

successful. This result was rationalised as the facile nature of imine alkylation and 

encouraged further by iridium coordination of the imine intermediates.  
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Chapter 6 Overall Conclusions and Future Work 

Functionalised amines are important molecules to the chemical industries, in both functional 

and economic terms. The methods to make functionalised amines are varied, but tend to 

require multi-step reactions that produce stoichiometric waste streams and can require the 

use of hazardous reagents that must be controlled, especially in API synthesis. These facets 

of amine functionalisation can add further cost to the formation of amines on an industrial 

scale; however attempts have been made to functionalise amines via in situ activation.  

Previous published work has focused on the functionalisation of amines using 

stoichiometric oxidants,
15, 16, 139

 a drawback of these reactions is that the oxidants are 

hazardous and can be expensive to use on anything above a laboratory scale. There has also 

been a focus on new metal catalysed methodologies for the functionalisation of molecules 

that has been a direct evolution of hydrogenation and transfer hydrogenation chemistry. 

Hydrogen-transfer reactions have risen to prominence in recent years,
39

 with the attraction 

of being a cost-effective, greener methodology to activate low cost materials to reactions 

that produce higher value products. Hydrogen-transfer methodology activates often-

considered non-electrophilic substrates to nucleophilic attack, forming imines, carbonyls 

and alkenes from amines, alcohols and alkanes, respectively. 

Hydrogen-transfer reactions have been thoroughly explored with alcohols, however there 

remains an opportunity to extend this methodology further to incorporate amines. 

Hydrogen-transfers have been used with amines to form single stereoisomers through 

kinetic resolution and then racemisation of non-reactive stereo-centres,
74, 76, 77, 96

 to reduce 

waste during reactions. The methodology is used to carry out N-alkylation reactions of 

amines. Whilst these reactions have showcased the technology with respect to amines, 

further functionalisation reactions can be exploited to help form numerous different 

products including: α-aminonitriles, β-nitroamines, aziridines and (hetero)-cyclic 

compounds, via nucleophilic reactions of imines formed in situ. The potential for 

industrially important contributions using this method has been exemplified through Pfizer’s 

multi-kilo API intermediate synthesis using hydrogen-transfer activation of an alcohol to 

carry out an N-alkylation.
152

 There are several potential problems that may arise with this 

method that include homo-dimerisation of the amine used once it has dehydrogenated and 

by-product formation, due to the reactive nature of imines (primary imines especially).
96
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The research carried out during PhD studies has shown that the selective formation and 

isolation of imines is not facile via iridium catalysed dehydrogenation methodology. 

Chapter 2 described how in the case of primary imines especially, after formation they will 

rapidly and readily undergo N-alkylation reactions, as has been disclosed previously within 

the literature. This process can be tuned to form N-alkylated amines faster. Conversely to 

previous literature reports, a rate enhancement can be seen using molecular oxygen as an 

oxidant (with an air sparge), which is not observed using only a nitrogen sparge. This result 

supported the mechanistic hypothesis that the cleavage of the iridium-hydride bond to 

reform the active catalyst was rate limiting. The equilibrium formed during the 

dehydrogenation and N-alkylation reactions, by the addition of a source of ammonia, to 

facilitate the formation of small quantities of imine, was also exploited; however 

N-alkylation product was still formed. Deuterium labelling experiments could potentially 

give further insight into the reactions probed. For example, these reactions could 

definitively prove whether or not dicyclohexylamine is dehydrogenating and the rate at 

which it is undergoing the process (Scheme 6.1), giving further mechanistic information. 

Furthermore, this reaction could also be used to probe any Secondary Kinetic Isotope 

Effects (SKIE) experienced by the C-H bond alpha to the amine group. 

 

Scheme 6.1 Potential deuterium labelling experiments. 

Chapter 3 outlined the mechanistic information that has been gained by various analytical 

methods, including NMR, MS and X-ray diffraction. Several different species have been 

observed that are potential intermediates during N-alkylation reactions. NMR analysis has 

shown that reaction can occur with several different species of iridium complex being 

formed and that many amines will bind to the iridium centre, with less sterically hindered 

amines showing a greater interaction. A potential bis-amine-iridium complex has also been 

observed, whose formation suggested that N-alkylation may occur via an inner sphere 

mechanism. The crystal structure of a mono-dentate iridium-benzylamine complex has been 

elucidated, suggesting a potential catalyst inhibition pathway for the reaction. A Hammett 

analysis of a range of 4-substituted benzylamines has not shown conclusively that the rate 

limiting step of the reaction involves the build-up of charge at the reactive centre. This 
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result would support the mechanistic hypothesis that iridium-hydride cleavage maybe the 

rate limiting step. Further mechanistic work is required, with the isolation and analysis of 

other amine bound iridium complexes being very important, as this may give further 

information on how this complex affects the reaction. Furthermore, in silico and molecular 

modelling studies focused on understanding how Fujita’s and similar monomeric iridium 

systems, would give further understanding of the reaction.  

Chapter 4 described findings from the functionalisation of tertiary amines with iridium 

catalysed iminium ion formation and cyclisation to form polycyclic indoles. The reaction 

benefits from the inability of the iminium ion to undergo N-alkylation, however the greater 

energetic demands of the process require higher reaction temperatures and there are lower 

substrate conversions and yields. Future work analogous to this could be highly profitable, 

as if a similar reaction to that disclosed previously was developed, this could allow access to 

several functionalised polycyclic isoquinolines which are medicinally important. 

(Scheme 6.2).
128

 

 

Scheme 6.2 Potential synthesis of isoquinolines using iridium catalysis. 

Finally a range of other nucleophiles, including cyanide and sulphur ylides, have also been 

evaluated in their reactions with a range of primary amines. Homo-dimerisation tended to 

predominate or product degradation was observed during reaction monitoring. The use of 

iridium catalysts to synthesise α-amino nitriles, rather than ruthenium catalysts, in a similar 

fashion to Murahashi
139

 is a further potential avenue that could be exploited (Scheme 6.3). 

 

Scheme 6.3 Potential synthesis of α-amino nitriles, using iridium catalysed hydrogen 

transfer. 

The cleavage of secondary amines to form two separate primary amines (using ammonia) or 

to form an amine and alcohol (using water or hydroxide) has also been evaluated with no 
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success observed. This result suggested that the rate of N-alkylation is faster than the 

backward reaction and a large excess of ammonia or hydroxyl are required, with respect to 

the ammonia reaction the pressures involved when heating ammonia have meant that this 

reaction has been hard to evaluate on a laboratory scale. In the future, the in situ formation 

of secondary imines via the reaction of amines with carbonyls (formed through transfer 

dehydrogenation of the parent alcohol) could potentially be successful with these more 

stable imines being more ready to react with nucleophiles (Scheme 6.4). 

 

Scheme 6.4 Potential use of in situ N-alkylation to synthesise functionalised amines 

from alcohols. 

Xiao’s catalyst,
73, 137

 described in Chapter 1, has recently received interest due to its 

increased activity compared to Fujita’s catalyst, whilst it was not successful in its use in 

iridium catalysed polycyclic indole formation, the catalyst can successfully activate amines 

at lower temperatures than [IrCp*I2]2 and could potentially solve the thermal ring opening 

observed with azridine formation (Scheme 6.5). Stabilised aziridine formation using amides 

could potentially overcome the instability problems observed. Furthermore, the potential 

formation of pyrrolidines and azetidines due to ring expansion of aziridines merits further 

investigation. 

 

Scheme 6.5 Potential use of Xiao’s catalyst to form aziridines at lower temperature or 

use of stabilised aziridines. 
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There is also work being carried out on immobilising SCRAM type catalysts,
138

 putting 

reactions in flow systems, which may solve some of the problems associated with 

dimerization, by reducing the time the amine is available for the catalyst to dehydrogenate, 

and also the thermal ring opening associated with aziridines. 
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Chapter 7 Experimental Section 

7.1 General methods 

Unless otherwise stated, all the chemicals and reagents were obtained commercially from 

Sigma-Aldrich, Fisher Scientific, Alfa Aesar or Merck and used without further purification. 

Xiao’s catalyst, 4.48
73, 137

 and immobilised catalyst 4.50
138

 were obtained from Yorkshire 

Process Technology and were used without further purification. Palladium complex 4.49, 

was prepared by Dr. J. P. Cooksey using the method of Waymouth
188

 and used without 

further purification. All solvents used were HPLC grade. Analytical Thin Layer 

Chromatography was performed on precoated silica gel plates (Kieselgel 60F254, Merck). 

Column chromatographic purifications were performed with flash silica gel. NMR spectra 

were recorded in CDCl3, toluene-d8, DMSO-d6 or CD3OD, unless otherwise stated, on 

DPX300, AV 500 MHz Bruker or Varian Inova 500 MHz NMR spectrometers. All 

chemical shifts are reported in  ppm downfield of TMS and peak multiplicities as singlet 

(s), doublet (d), quartet (q), quintet (quin), septet (sep), doublet of doublets (dd), broad 

singlet (bs), and multiplet (m). Signal assignment, where possible/necessary, was made with 

the help of 2D-NMR techniques (COSY, HMQC, HMBC, and DOSY). High resolution 

mass spectra (HRMS) were obtained using either a Waters GCT Premier mass spectrometer, 

using electron impact (EI), a Bruker microTOF using electrospray ionisation (ESI), or a 

Bruker MaXis Impact, using electrospray ionisation (ESI). Electrospray ionisation mass-

spectrometry (ESI-MS) were run on an Agilent 1200 LC system equipped with a 

Phenomenex Luna C18(2) 50 × 2 mm column, 5 μm particle size, on an acetonitrile/water 

gradient (5-95% acetonitrile, 0.1% formic acid, over 3 minutes) and a Bruker Daltonics 

HTCUltra™ system equipped with an ion trap MS detector. Infra-red (IR) analyses were 

performed using a Perkin Elmer FT-IR spectrometer or a Bruker Platinum-ATR system 

equipped with an Alpha FT-IR spectrometer and the samples were analysed as solids. 

Melting points were determined using a Griffin and George melting point apparatus and are 

uncorrected. Single crystal X-ray data were collected and structures resolved by Dr H. 

Sheppard or Dr C. Pask (University of Leeds) on a Bruker SMART APEX CCD area 

diffractometer with graphite monochromatized (Mo Kα = 0.71073Å) radiation at 

room temperature or Agilent Super Nova area diffractometer with mirror monochromatized 

((Mo Kα = 0.71073Å). Gas chromatography was carried out using a HP 6890 series GC 

system, Agilent Technologies 7683 series injector and HP 7683 series autosampler. GC 

method (for conversion) Column = HP-5 5% polymethyl siloxane capillary column (30 m x 
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320 µm x 0.25 µm). Oven temperature = 60 °C isothermal for 2 min.; 15 °C min
-1

 ramp to 

235 °C; 235 °C isothermal for 7 mins. Inlet pressure = 4.31 psi. Gas chromatography mass 

spectrometry was carried out using an HP 7683 series injector, HP 5973 mass selective 

detector, HP 6890 GC system, HP 7683 series auto sampler. GC-MS method (for crude 

mass measurements) Column = HP-5MS-Agilent 190915-413 capillary column (30 m x 

320 µm x 0.25 µm). Oven temperature = 60 °C isothermal for 2 min; 15 °C min
-1

 ramp to 

235 °C; 235 °C isothermal for 7 min. He flow = 4.30 psi, flow rate = 1.8 ml min
-1

, with a 

2.5 min solvent delay. GC yields are reported compared to an internal biphenyl standard, 

where isolation has been achieved these values are corrected using the internal response 

factor, F, for the analyte. 

7.2 Experiments discussed in Chapter 2 

7.2.1 Calibration of GC data and determination of F 

Table 7.1 Values used for the calculation of internal response factor, F, for analytes in 

GC analysis. 

Analyte 

Analyte 

Mass / 

mg
b
 

Peak Area 

Analyte
c
 

Biphenyl 

Mass / mg
b
 

Peak Area 

Biphenyl
c
 

F
a
 

Benzophenone 

imine, 2.7 
182 10952 63 4377 1.03 

Benzylamine, 3.6  132 5317 67 3950 0.48 

Benzhydrylamine, 

2.6 
183 11201 27 1738 1.11 

N-benzhydryl 

diphenyl 

methanimine, 2.8 

20 454 17 1893 0.24 

Cyclohexylamine, 

2.31 
142 4230 10 575 0.71 

Dicyclohexylamin, 

2.34 
193 8845 10 700 0.76 

a Biphenyl and analyte dissolved in 5 mL aliquot of acetonitrile, F determined using Equation 7.. 

b Mass +/- 0.5 mg. 

c Peak area +/- 0.5 units 
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A 5 mL aliquot of biphenyl and the analyte was prepared in acetonitrile (5 mL) (Table 7.1). 

The solution was added to a sample vial and analysed via GC. The concentration of the 

biphenyl and analyte in the aliquot was calculated. The peak area of the analyte was then 

measured and compared to the peak area of the biphenyl. A ratio of the peak areas to 

concentrations for the analyte and biphenyl were calculated. The internal response factor, F, 

was calculated as the ratio of the analyte response to biphenyl response (Equation 7.). 

𝐹 =

𝐴𝑥
[𝑋]
𝐴𝑠
[𝑆]

 

Equation 7.1 Used for the calculation of internal response factor, during GC analysis. 

F= Internal response factor. 

Ax= Peak area of analyte. 

[X]= Concentration of analyte 

As= Peak area of standard 

[S]= Concentration of standard. 

7.2.2 Direct N-alkylation of benzyhydrylamine by benzophenone 

with different catalysts 

Synthetic procedure 7.2.a 

A general synthetic procedure was used with minor modifications to assess the effect of 

different catalysts on the N-alkylation of benzhydrylamine by benzophenone. The procedure 

is described briefly below: 
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The imine, 2.7, (168 µL, 0.97 mmol, 1 equiv.) was added to a solution of the catalyst, amine 

2.6 (172 µL, 0.97 mmol, 1 equiv.) and internal standard biphenyl (155 mg, 1.00 mmol, 

1.00 equiv.) in toluene (4 mL) and heated to 80 °C for 5 hours. The reaction was monitored 

by GC and GC-MS at regular intervals by sampling 10 µL and diluting in 5 mL of 

acetonitrile. 2 mL aliquots of the resulting solution were analysed by GC and GC-MS. 

2 mL aliquots of the resulting mixture were then analysed and the concentration of the 

N-alkylation product 2.8 in the reaction calculated using Equation 7.1 (GC elution time: 

16.0 min). The initial reaction rates were calculated by calculating the change in 

concentration of starting material over the first 0.25 hours of reaction. 

Entry Catalyst Catalyst Loading / mol% Compound 2.8
a
 / % 

1 [IrCp*I2], 2.4b 2 84 

2 tosic acid, 2.10 50 11 

3 no catalyst 0 0 

a Yield based on GC area percent and comparison to internal biphenyl standard, calculated to the nearest 

percent, ±0.5%.  

Entry 1: General procedure 7.2.a was followed. Pentamethyl-cyclopentadienyl iridium (III) 

iodide dimer (23 mg, 20 µmol, 2 mol%) was used. The formation of the N-alkylation 

product was confirmed via GC analysis (84%). 

Entry 2: General procedure 7.2.a was followed. Toluene sulfonic acid 

(2.10) was used (95.1 mg, 500 µmol, 0.5 equiv.). Removal of the solvent 

in vacuo gave the crude product, which was purified by column 

chromatography (SiO2, 2:1 petroleum ether–dichloromethane) to afford 
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imine 2.8 
189,190

 (38.5 mg, 111 µmols, 11%) as colourless needles; m.p. (dichloromethane-

petroleum ether) 153-155 °C; Rf 0.31 (1:1 dichloromethane–petroleum ether); 
1
H NMR 

(500 MHz, CDCl3) δ: 7.75–7.70 (m, 2H, CArH), 7.59 – 7.15 (m, 16H, CArH), 7.12-7.02 (m, 

2H, CArH), 5.53 (s, 1H, C2H); 
13

C NMR (75 MHz, CDCl3) 167.0 (C1N), 145.0 (CAr), 

139.9 (CAr), 136.8 (CAr), 130.2 (CAr), 128.9 (CAr), 128.6 (CAr), 128.5 (CAr), 128.5 (CAr), 

128.1 (CAr), 127.9 (CAr), 127.7 (CAr), 126.8 (CAr), 70.0 (C2N); ESI-MS (ES+): m/z = 

348.2 [MH
+
, 100%], 167.1 (10%); HRMS (ES+): m/z = 348.1751 [MH

+
, 100 %]; calculated 

for C26H22N1 [MH
+
] found m/z = 347.1747. GC elution time: 16.0 min. (This compound was 

used as a standard for comparison during GC analysis). 

Entry 3 No catalyst was used. No reaction was observed via GC after 90 min. 

7.2.3 Dehydrogenation of primary amines at different temperatures 

Synthetic Procedure 7.2.b 

A general synthetic procedure was used with minor modifications to assess the 

dehydrogenation of primary amines at different temperatures. The procedure is described 

below: 

 

Benzhydrylamine, 2.6 (344 µL, 1.94 mmol, 1.94 equiv.) was added to a suspension of the 

pentamethylcyclopentadienyl-iridium catalyst (20 µmol, 2 mol%) and internal standard 

biphenyl (155.0 mg, 1.00 mmol, 1.00 equiv.) in the solvent chosen for the screening (0.5 M) 

and was heated to the required temperature for 5 hours. The reaction was monitored by GC 

and GC-MS at regular intervals by sampling 10-30 µL of the reaction mixture and diluting 
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into 25 mL of acetonitrile. 2 mL aliquots of the resulting mixture were then analysed and the 

concentration of the N-alkylation product 2.8 in the reaction calculated using Equation 7.1 

(GC elution time: 16.0 min). The initial reaction rates were calculated by calculating the 

change in concentration of starting material over the first 0.25 hours of reaction. 

Entry Solvent Catalyst Temp / °C 
Yield of 

2.8 / %
a
 

1 PhMe 2.4b 80 <1 

2 PhMe 2.4b 110 34 

3 Xylenes 2.4b 137-140 37 

4 PhMe 2.4a  110 28 

5 PhMe 2.5a 110 30 

a Yield based on GC area percent and comparison to internal biphenyl standard. Yield calculated to the 

nearest percent, ±0.5%.   

Entry 1 The general procedure 7.2.b was followed (heated to 80 °C). Toluene (4 mL) and 

complex 2.4b (23.3 mg, 20 µmol, 2 mol%) were used. The formation of the N-alkylation 

product was confirmed via GC analysis (<1%). 

Entry 2 The general procedure 7.2.b was followed (heated to 110 °C). Toluene (4 mL) and 

complex 2.4b (23.3 mg, 20 µmol, 2 mol%) were used. The formation of the N-alkylation 

product was confirmed via GC analysis (34%).  

Entry 3 The general procedure 7.2.b was followed (heated to 137-140 °C). Xylenes (4 mL) 

and complex 2.4b (23.3 mg, 20 µmol, 2 mol%) were used. The formation of the 

N-alkylation product was confirmed via GC analysis (37%). 

Entry 4 The general procedure 7.2.b was followed (heated to 110 °C).Toluene (4 mL) and 

complex 2.4a (15.5 mg, 20 µmol, 2 mol%) were used. The formation of the N-alkylation 

product was confirmed via GC analysis (28%). 

Entry 5 The general procedure 7.2.b was followed (heated to 110 °C).Toluene (4 mL) and 

complex 2.5a (9.87 mg, 20 µmol, 2 mol%) were used. The formation of the N-alkylation 

product was confirmed via GC analysis (30%). 

  



Chapter 7 Experimental Section 

163 

 

7.2.4 Portion-wise addition of amine to the iridium catalysed 

dehydrogenation of primary amines 

 

Diiodopentamethylcyclopentadienyliridium(III) dimer (23.3 mg, 20 µmol, 1 mol%) was 

added to a solution of internal standard biphenyl (155.0 mg, 1.00 mmol, 0.52 equiv.) in 

toluene (4 mL) and heated to 80 °C for 5 hours. After 2 min., benzhydrylamine (340 µL, 

1.91 mmol, 1.91 equiv.) was added via portion-wise addition (20 µL every 10 min.) to the 

resulting solution. The reaction was monitored by GC and GC-MS at regular intervals by 

sampling 10 µL of the reaction mixture and diluting into 25 mL of acetonitrile. 2 mL 

aliquots of the resulting mixture were then analysed and the concentration of the 

N-alkylation product 2.8 in the reaction calculated using Equation 7.1 (GC elution time: 

16.0 min). The formation of the N-alkylation product was confirmed via GC analysis 

(50%). 

7.2.5 The evaluation of different sparging conditions on the iridium 

catalysed N-alkylation of benzhydrylamine 

Synthetic Procedure 7.2.c 

A general synthetic procedure was used with minor modifications to assess the 

dehydrogenation of primary amines. The procedure is described briefly below: 
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Diiodopentamethylcyclopentadienyliridium(III) dimer (23.3 mg, 20 µmol, 2 mol%), was 

added to a suspension of internal standard biphenyl (155.0 mg, 1.00 mmol, 1.00 equiv.) in 

4 mL of the solvent chosen for the screening (0.5 M) and was saturated with oxygen for 15 

min. and the condenser left open to air. The benzylamine, 2.6 (344 µL, 1.94 mmol, 1.94 

equiv.) was added to the suspension, which was stirred at reflux whilst the sparge was 

maintained. The reaction was monitored by GC and GC-MS at regular intervals by sampling 

10 µL of the reaction mixture and diluting into 25 mL of acetonitrile. 2 mL aliquots of the 

resulting mixture were then analysed by GC by comparison to an internal standard and the 

concentration of the N-alkylation product 2.6 in the reaction calculated using Equation 7.1 

(GC elution time: 16.0 min.). The rate of conversion of 2.6 was determined by calucating 

the change in concentration of 2.6 after the first 0.25 hours. 

Entry Solvent Temp / °C 
Rate of conversion of 

2.6 / mmols min
-1

 
Yield of 2.8

a
 / % 

1 Toluene 80 0.00628 2 

2 Toluene 80 0.00830 2 

3 Toluene 80 0.00321 2 

4 Xylenes 137-140 0.03224 86 

5 Toluene 80 0.00061 2 

6 Xylenes 137-140 0.00165 67 

7 Xylenes 137-140 0.01262 67 

a Yield based on GC area percent and comparison to internal biphenyl standard. Yield calculated to the 

nearest percent, ±0.5%. 

Entries 1-3 The general procedure 7.2.c was followed (heated to 80 °C). Toluene (4 mL) 

and a sparge of compressed air were used. The formation of N-alkylation product 2.8 was 

confirmed via GC analysis (2%). 

Entry 4 The general procedure 7.2.c was followed (heated to 137-140 °C). Xylenes (4 mL) 

and a sparge of compressed air were used. The formation of the N-alkylation product 2.8 

was confirmed via GC analysis (86%).  

Entry 5 The general procedure 7.2.c was followed (heated to 80 °C). Toluene (4 mL) and a 

sparge of nitrogen were used. The formation of the N-alkylation product 2.8 was confirmed 

via GC analysis (2%). 
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Entries 6 and 7 The general procedure 7.2.c was followed (heated to 137-140 °C). Xylenes 

(4 mL) and a sparge of nitrogen were used. The formation of the N-alkylation product 2.8 

was confirmed via GC analysis (67%). 

7.2.6 Inhibition of benzhydrylamine N-alkylation by ammonium 

salt additives 

Synthetic Procedure 7.2.d 

A general synthetic procedure was used with minor modifications to assess the inhibition of 

N-alkylation product formation during primary amine dehydrogenation. The procedure is 

described briefly below: 

 

The amine 2.6 (344 µL, 1.94 mmol, 1.94 equiv.) was added to a suspension of 

diiodopentamethylcyclopentadienyliridium (III) catalyst (23.3 mg, 20 µmol, 1 mol%.), 

internal standard biphenyl (155 mg, 1.00 mmol, 1.00 equiv.) and ammonium additive in 

toluene (4 mL) and was heated to reflux. The resulting brick red suspension became 

homogeneous, fading to orange with gas evolution. The reaction was monitored by GC and 

GC-MS at regular intervals by sampling 10 µL of the reaction mixture and diluting into 

25 mL of acetonitrile. 2 mL aliquots of the resulting mixture were then analysed and the 

concentration of the N-alkylation product 2.8 and the imine 2.7 in the reaction calculated 

using Equation 7.1 (GC elution times: 16.0 min. and 12.4 min., respectively). 
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Entry Ammonium Additive 
Quantity / 

mmols 

Yield of 

imine / % 
Yield of 2.8

a
 / % 

1 35% Aqueous Ammonia 2 17 38 

2 
35% Aqueous 

Ammonia 
10 26 14 

3 Ammonium Acetate 5 11 6 

a Yield based on GC area percent and comparison to internal biphenyl standard. Yield calculated to the 

nearest percent, ±0.5%. 

Entry 1 The general procedure 7.2.d was followed. 35 % Aqueous ammonia (225 µL, 

2.00 mmol, 2.00 equiv.) was used. The formation of the imine 2.7 was confirmed via GC 

analysis (17%). The formation of the N-alkylation product 2.8 was confirmed via GC 

analysis (38%). 

Entry 2 The general procedure 7.2.d was followed. 35% Aqueous ammonia (1135 µL, 

10.00 mmol, 10.0 equiv.) was used. The formation of the imine was confirmed via GC 

analysis (26%). The formation of the N-alkylation product was confirmed via GC analysis 

(14%). 

Entry 3 The general procedure 7.2.d was followed. Ammonium acetate (405 mg, 

5.26 mmol, 5.26 equiv.) was used. The formation of imine 2.7 was confirmed via GC 

analysis (11%). The formation of N-alkylation product 2.8 was confirmed via GC analysis 

(6%). 

7.2.7 Iridium catalysed dehydrogenation of benzhydrylamine with 

dropwise addition of aqueous ammonia 

 



Chapter 7 Experimental Section 

167 

 

The amine 2.6 (688 µL, 3.88 mmol, 1.0 equiv.) was added to a suspension of 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (46.6 mg, 40 µmol, 1 

mol%), internal standard biphenyl (310 mg, 2.00 mmol, 0.5 equiv.) and 0.35% w/w aqueous 

ammonia (900 µL, 8.09 mmol, 2.00 equiv.) toluene (8 mL) and heated to reflux for 24 

hours. Aqueous ammonia (1350 µL, 12.1 mmol, 1.5 equiv.) was added by syringe pump 

(0.763 cc hr
-1

) to the resulting solution after 2 min. The resulting brick red heterogeneous 

solution became homogeneous and faded to orange with gas evolution. The reaction was 

monitored by GC and GC-MS at regular intervals by sampling 20 µL of the reaction 

mixture and diluting into 5 mL of acetonitrile. 2 mL aliquots of the resulting mixture were 

then analysed and the concentration of the N-alkylation product 2.8 in the reaction 

calculated using Equation 7.1 (GC elution times: 16.0 min). The N-alkylation product was 

confirmed via GC analysis (50%). 

7.2.8 Iridium catalysed N-alkylation of (+)-α-methylbenzylamine 

Synthetic Procedure 7.2.e 

A general synthetic procedure was used with minor modifications to assess the 

dehydrogenation of primary amines. The procedure is described briefly below: 

 

The amine (257 µL, 1.97 mmols, 1.97 equiv.) was added to a suspension of 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (23.3 mg, 20 µmol, 

1 mol%), internal standard biphenyl (155 mg, 1.00 mmol, 1.00 equiv.) in the solvent 

(0.5 M) and heated to the required temperature for 5 hours. The resulting brick red solution 

faded to light orange and grew darker with time. The reaction was monitored by GC and 

GC-MS at regular intervals by sampling 10 µL of the reaction mixture and diluting into 

5 mL of acetonitrile. 2 mL aliquots of the resulting mixture were then analysed and the 

concentration of the saturated N-alkylation product 2.30 in the reaction and unsaturated 

N-alkylation product 2.29 calculated using Equation 7.1 (GC elution times: 12.3 min and 
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13.2 min). The unsaturated and saturated N-alkylation products (2.29 and 2.30, respectively) 

were confirmed via GC-MS analysis (m/z = 223 and 225).  

Entry Solvent Temp / °C Yield of 2.30
a
 / % Yield of 2.29 product

a
 / % 

1 Toluene 80 6 <1 

2 Xylenes 137-140 82 9 

a Yield based on GC area percent and comparison to internal biphenyl standard. Yield calculated to the 

nearest percent, ±0.5%  

Entry 1 The general procedure 7.2.e was followed (heated to 80 °C). Toluene (4 mL) was 

the solvent. The saturated N-alkylation product 2.29 was confirmed by GC analysis (6%). 

The unsaturated N-alkylation product 2.30 was confirmed by GC and GC-MS analysis 

(<1%).  

Entry 2 The general procedure 7.2.e was followed (heated to 

137-140 °C). Xylenes (4 mL) was the solvent used. The saturated 

N-alkylation product 2.30 was confirmed by GC analysis (82%). The 

unsaturated N-alkylation product 2.29 was confirmed by GC and 

GC-MS analysis (9%). After 21.5 hours the reaction was cooled and the solvent removed 

in vacuo, the resulting orange oil was purified by column chromatography [SiO2; ethyl 

acetate-petroleum ether; 1:4] to give the product 2.30 as an unknown mixture of 

diastereomers (702 mg, 3.12 mmols, 39%) as a yellow oil.
191, 192

 Rf 0.33 (1:4 ethyl acetate–

petroleum ether); 
1
H NMR (500 MHz, CDCl3): δ = 7.35–7.18 (apparent m, 10H, CArH), 

3.76 (q, J = 6.6 Hz, 1H, C2H), 3.50 (q, J = 6.7 Hz, 1H, C2H), 1.66 (broad s, NH), 1.35 (d, J 

= 6.6Hz, 3 H, C1H3), 1.27 (d, J = 6.7 Hz, 3H, C1H3). 
13

C NMR (75 MHz, CDCl3): δ = 

145.5 (C3), 128.5 (CAr), 126.8 (CAr), 126.6 (CAr), 54.9 (C2), 22.9 (C1). GC elution time: 

13.2 min. ESI-MS (ES+): m/z = 226 [MH
+
, 100%]. HRMS (ES+): m/z = 226.1606 [MH

+
, 

100 %]; calculated for C16H20N [MH
+
] m/z = 226.1596. IR (liquid film) ν = 3082, 3061, 

3025, 2960, 2924, 2863, 1602, 1492 cm
-1

. 

 

 

 

 



Chapter 7 Experimental Section 

169 

 

7.2.9 Iridium catalysed N-alkylation of cyclohexylamine
151

 

 

The amine 2.31 (1.38 mL, 7.76 mmol, 1.0 equiv.) was added to a suspension of 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (92 mg, 0.08 mmol, 1 

mol%) in toluene (16mL) and heated to reflux for 21.5 hours. The reaction was monitored 

by GC and GC-MS at regular intervals by sampling 10 µL of the reaction mixture and 

diluting into 5 mL of acetonitrile. 2 mL aliquots of the resulting mixture were then analysed 

and the concentration of the saturated N-alkylation product 2.34 in the reaction. Removal of 

the solvent in vacuo gave the crude product. Distillation by short path distillation by 

Kügelrohr gave the product 2.34 as a brown oil (43.4 mg, 240 μmol, 6%). Rf 0.31 

(petroleum ether–ethyl acetate, 3:1), 
1
H NMR (500 MHz, CDCl3) : δ = 2.48 (tt, J = 10.5, 

3.6 Hz, 2H), 1.79 (d, J = 10.9 Hz, 4H), 1.64 (d, J = 13.2 Hz, 4H), 1.54 (dd, J = 9.1, 3.3 Hz, 

2H), 1.33-0.43 (m, 11H). 
13

C NMR (75 MHz, CDCl3): δ = 53.1, 34.4, 26.2, 25.3; IR (film); 

ν = 2925 cm
-1

. 

7.3 Experiments discussed in Chapter 3 

7.3.1 General notes on NMR titration spectra 

The 
1
H NMR spectra taken during the titration experiments are reported for each individual 

spectrum at the specific amine equivalence or time interval, however each species within the 

spectrum is reported separately. The ratios are then given between each relevant species. 

Where more than one iridium species are present, the species are listed alphabetically for 

clarity in each individual spectrum. 
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7.3.2 Formation of catalyst-bound ammonia complex 

 

Diiodopentamethylcyclopentadienyliridium(III) dimer complex (19.9 mg, 17.1 µmols, 

2.00 equiv.) was suspended in chloroform-d and benzophenone imine 3.2 (5.7 µl, 

34.2 µmols, 1.0 equiv.) was added and the suspension shaken vigorously for 60 seconds. 

The solvent was removed and the resulting solid was recrystalised from dichloromethane 

via diffusion crystalisation. The resulting orange crystals were analysed by X-ray diffraction 

(performed by Dr H. Sheppard, University of Leeds).  

Crystallographic data diiodopentamethylcyclopenatdienyliridium(III)-amine (3.4) 

Single crystals of 3.4 were grown by slow evaporation of dichloromethane. An prismatic 

crystal of dimensions 0.41 x 0.41 x 0.12 mm was used for the data collection;  T = 120(2) 

K; θ range = 5.44 ≤ θ ≤ 60.36 °, Formula = C10H18I2IrN; Formula weight = 598.25; crystals 

belong to monoclinic, space group P 21/c; a = 8.9155 (9) Å, b = 8.0190 (7) Å, c = 21.087 (2) 

Å; α = 90 °, β = 100.533 °, γ = 90 °; Volume = 1482.1 (2) Å
3
, Z = 4, Density (calculated): 

2.681 mg mm
-3

, µ = 13.145 mm
-1

. Reflections collected 14319; Independent reflections 

4358 [R(int) = 0.0341]; R value = 0.0291, wR2 = 0.0683. 
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7.3.3 Synthesis of bis(diphenylmethanamine)193, 194 as an NMR 

standard 

 

N-Benzhydryldiphenylmethanimine (347 mg, 1.00 mmols, 1.00 equiv.) was dissolved in 

diethyl ether (6 mL) at 0ºC. Lithium aluminium tetrahydride (184 mg, 5 mmols, 5 equiv.) 

was added portionwise to the resulting suspension, which gradually became a suspension. 

The suspension was slowly heated to reflux and stirred for 21 hours. Water (6 mL) was 

added portionwise to the solution at 0 ºC. The resulting suspension was filtered and the 

solvent removed from the solute in vacuo, washing the resulting solid with ice cold 

petroleum ether gave product 3.41 (127 mg, 364 µmols, 36%) as colourless crystalline 

needles. m.p. (diethyl ether) 139-142 ºC. 
1
H NMR (500 MHz, CDCl3) δ: 7.34 (d, J = 6.7 

Hz, 8H, C1H), 7.30 (t, J = 7.6 Hz, 8H, C2H), 7.22 (t, J = 7.2 Hz, 4H, C3H), 4.74 (s, 2H, 

C5H), 2.22 (s, 1H, NH). 
13

C NMR (126 MHz, CDCl3) δ: 143.8 (C4), 128.5 (C1), 127.6 

(C2), 127.0 (C3), 63.6 (C5). ESI-MS (ES+): m/z = 350.2 [MH
+
, 100%]. HRMS (ES+): m/z 

= 350.1907 [MH
+
, 100%); calculated for C26H24N [MH

+
] found 350.1903. IR (liquid film) ν 

= 3349, 3061, 3025, 2846, 1597 cm
-1

. 

7.3.4 Amine/imine-catalyst binding analysis through NMR 

spectroscopy 

General Procedure 7.4a 

A general synthetic procedure was used with minor modifications to assess the binding of 

primary, secondary and tertiary amines to the catalyst complex. The procedure is described 

briefly below: 
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The diiodopentamethylcyclopentadienyliridium(III) dimer (0.5 equiv.; 1.0 equiv. of iridium) 

complex was suspended in deuterated solvent (0.7 mL) in an NMR tube. The resulting 

orange suspension was shaken vigorously for 60 seconds. The suspension was then analysed 

by 
1
H-NMR spectroscopy. The amine or imine was added, vigorously for 60 seconds and 

the sample analysed by 
1
H NMR spectroscopy. This process was repeated with the amine at 

0.2, 0.5, 1, 2 and 10 equiv. 

Entry Amine 
Amine added / equiv., 

µmols 

Volume of 0.1 M amine 

in DMSO-d6
a
/ µL 

1 

 

0.2 17.0 

0.5 25.0 

1.0 42.0 

2.0 84.0 

10.0 11.5
b 

2 

 

0.2 22.5 

0.5 34.0 

1.0 78.0 

2.0 146.0 

10.0 10.0
b
 

3 

 

0.2 14.0 

0.5 21.0 

1.0 35.0 

2.0 71.0 

10.0 11.0
b 

a Non-cumulative volume added 
b Added as the pure amine  
c Added as a solid 
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Entry Amine 
Amine added / equiv., 

µmols 

Volume of 0.1 M amine 

in DMSO-d6
a
/ µL 

4 

 

0.2 17.5 

0.5 26.5 

1.0 45.0 

2.0 130.0 

10.0 19.9 mg
c
 

5 

 

0.2 25.0 

0.5 37.0 

1.0 62.0 

2.0 124.0 

10.0 11.5
b 

6 

 

0.2 40.0 

0.5 60.0 

1.0 99.0 

2.0 4.0
b 

10.0 31.5
b
 

       7 

 

        0.2       14.0 

        0.5       20.5 

        1.0       34.5 

        2.0      68.0 

       10.0        6.0
b 

      8
c
 

 

      0.2        21.5 

      0.5        32.5 

      1.0        54.0 

      2.0        108.5 

     10.0         12.5
b
 

      9
c
 

 

     0.2        23.5 

     0.5        35.0 

     1.0        58.5 

     2.0        117.0 

     10.0          13.5
b
 

a Non-cumulative volume added 
b Added as the pure amine  
c Added as a solid 
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Entry Amine 
Amine added / equiv., 

µmols 

Volume of 0.1 M amine 

in DMSO-d6
a
/ µL 

10 

 

0.5 41.0 

1.0 41.5 

11 

 

0.5 44.5 

1.0 45.0 

a non-cumulative volume added. 

b Added as the pure amine. 

c Added as a solid. 

d CDCl3 was the deuterated solvent used for the reaction and the 0.1 N solution. 

Entry 1 Synthetic procedure 7.4a was followed. Benzhydrylamine and complex 3.1 

(4.9 mg, 4.21 µmol) in DMSO-d6 were used. Benzhydrylamine and iridium catalyst were 

observed in the 
1
H NMR spectra (Figure 7.1):  

 

Figure 7.1 Stacked spectra for benzhydrylamine, 3.6 and iridium catalyst 7.3.4, 

Entry 1.171 

10 equiv. 

2 equiv. 

1 equiv. 

0.5 equiv. 

0.2 equiv. 

0 equiv. 
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0.00 equiv. of amine, iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 

30H, C5Me5). 

For 0.2 equiv. of amine 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 7.8 Hz, 4H, CArH), 

7.27 (t, J = 7.7 Hz, 4H, CArH), 7.17 (t, J = 7.3 Hz, 2H, CArH), 5.76 (s, 2H, NH2), 5.09 (s, 

1H, CBnH). Iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, 

C5Me5). 

For 0.5 equiv. of amine
 1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 7.5 Hz, 4H, CArH), 

7.27 (t, J = 7.4 Hz, 4H, CArH), 7.16 (t, J = 7.3 Hz, 2H, CArH), 5.09 (s, 1H, CBnH), 2.41 (br 

s, 2H, NH2). Iridium catalyst complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 2.08 (s, 30H, 

C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, 

C5Me5). Ratio 2.08 ppm complex: 1.88 ppm complex = 1:2. 

For 1.00 equiv. of amine
 1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 7.5 Hz, 4H, CArH), 

7.27 (t, J = 7.4 Hz, 4H, CArH), 7.16 (t, J = 7.3 Hz, 2H, CArH), 5.09 (s, 1H, CBnH), 2.40 

(br s, 2H, NH2). Iridium catalyst complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 2.08 (s, 

30H, C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 

30H, C5Me5). Ratio 2.08 ppm complex: 1.88 ppm complex = 1:2. 

For 2.00 equiv. of amine 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 7.5 Hz, 4H, CArH), 

7.27 (t, J = 7.5 Hz, 4H, CArH), 7.17 (t, J = 7.3 Hz, 2H, CArH), 5.09 (s, 1H, CBnH), 2.37 (br 

s, 2H, NH2), 2.08 (s, 5H, C5Me5). Iridium catalyst complex A, 
1
H NMR (500MHz, 

DMSO-d6) δ: 2.08 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, 

DMSO-d6) δ: 1.88 (s, 30H, C5Me5). Ratio 2.08 ppm complex: 1.88 ppm complex = 1:2. 

For 10.0 equiv. of amine 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 7.4 Hz, 4H, CArH), 

7.27 (t, J = 7.5 Hz, 4H, CArH), 7.17 (t, J = 7.2 Hz, 2H, CArH), 5.09 (s, 1H, CBnH), 2.30 

(br s, 2H, NH2). Iridium catalyst complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 2.09 (s, 

30H, C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 

30H, C5Me5). Ratio 2.08 ppm complex: 1.88 ppm complex = 1:2 

Entry 2 Synthetic procedure 7.4a was followed. Benzylamine, 3.11 and complex 3.1 

(6.5 mg, 5.59 μmols) in DMSO-d6 were used. Benzylamine, iridium catalyst and the catalyst 

bound amine complex were observed by 
1
H NMR (Figure 7.2): 
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Figure 7.2 Stacked spectra for benzhydrylamine, 3.11 and iridium catalyst 7.3.4, 

Entry 2. 

0.00 equiv. of amine, iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 

30H, C5Me5). 

For 0.2 equiv. of amine, catalyst bound amine complex: 
1
H NMR (500MHz, DMSO-d6) δ: 

7.46-7.26 (m, 5H, CArH), 5.62 (t, J = 10.6 Hz, 1H, NH), 5.54 (t, J = 10.5 Hz, 1H, NH), 4.08 

(t, J = 11.6 Hz, 1H, CBnH), 3.72 (t, J = 11.5 Hz, 1H, CBnH). Iridium catalyst complex A, 

1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H) and iridium catalyst complex B, 

1
H NMR 

(500MHz, DMSO-d6) δ: 1.85 (s, 30H). Ratio of 1.88 ppm complex: 1.85 ppm complex = 

2:13. 

For 0.5 equiv. of amine, catalyst bound amine complex:
 1
H NMR (500MHz, DMSO-d6) δ: 

7.58-7.12 (m, 5H, CArH) 5.62 (d, J = 10.0 Hz, 1H, NH), 5.54 (d, J = 10.0 Hz, 1H, NH) 4.08 

(t, J = 11.6 Hz, 1H, CBnH) 3.72 (t, J = 11.6 Hz, 1H, CBnH). Benzylamine:
 1

H NMR 

(500MHz, DMSO-d6) δ: 7.46-7.26 (m, 5H, CArH), 3.71(apparent s, 1H, CBnH), 1.83 

(apparent br s, 2H, NH2).Iridium catalyst complex A, 
1
H NMR (500MHz, DMSO) δ: 1.85 

(s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.82 (s, 

30H, C5Me5). Ratio of 1.85 ppm complex: 1.82 ppm complex = 23:7. 

10 equiv. 

2 equiv. 

1 equiv. 

0.5 equiv. 

0.2 equiv. 

0 equiv. 
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For 1.00 equiv. of amine,
 
catalyst bound amine complex:

 1
H NMR (500MHz, DMSO-d6) δ: 

7.45-7.11 (apparent m, 5H, CArH), 5.63 (t, J = 10.4 Hz, 1H, NH), 5.54 (t, J = 10.2 Hz, 1H, 

NH), 4.08 (t, J = 12.1 Hz, 1H, CBnH), 3.71 (apparent s, 1H, CBnH). Benzylamine 
1
H NMR 

(500MHz, DMSO-d6) δ: 7.45-7.11 (apparent m, 5H, CArH), 3.71 (s, 1H, CBnH2), 1.77 

(apparent br s, 2H, NH2). Ratio benzyl amine: catalyst bound amine = 10:1. Iridium catalyst 

complex A:
 1

H NMR (500MHz, DMSO-d6) δ: 1.85 (s, 30H, C5Me5) and iridium catalyst 

complex B:
 1

H NMR (500MHz, DMSO-d6) δ: 1.82 (s, 30H, C5Me5). Ratio of 1.85 ppm 

complex: 1.82 ppm complex = 11:4. 

For 2.00 equiv. of amine, catalyst bound amine complex:
 1
H NMR (500MHz, DMSO-d6) δ: 

7.52-7.07 (m, 5H, CArH) 5.63 (t, J = 10.8 Hz, 1H, NH), 5.55 (t, J = 10.7 Hz, 1H, NH) 4.08 

(t, J = 12.0 Hz, 1H, CBnH), 3.71 (apparent s, 1H, CBnH). Benzylamine:
 1

H NMR 

(500MHz, DMSO-d6) δ: 7.46-7.26 (m, 5H, CArH), 3.71(apparent s, 1H, CBnH), 1.78 

(apparent br s, 2H, NH2). ). Ratio benzyl amine: catalyst bound amine = 21:1. Iridium 

catalyst complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 1.85 (s, 30H, C5Me5) and iridium 

catalyst complex B:
 1
H NMR (500MHz, DMSO-d6) δ: 1.82 (s, 30H, C5Me5). Ratio of 1.85 

ppm complex: 1.82 ppm complex = 8:7. 

For 10.0 equiv. of amine, catalyst bound amine complex:
 1
H NMR (500MHz, DMSO-d6) δ: 

7.52-7.07 (m, 5H, CArH) 5.63 (t, J = 10.8 Hz, 1H, NH), 5.55 (t, J = 10.7 Hz, 1H, NH) 4.08 

(t, J = 12.0 Hz, 1H, CBnH), 3.71 (apparent s, 1H, CBnH). Benzylamine:
 1

H NMR 

(500MHz, DMSO-d6) δ: 7.46-7.26 (m, 5H, CArH), 3.71(apparent s, 1H, CBnH), 1.78 

(apparent br s, 2H, NH2). Ratio benzyl amine: catalyst bound amine = 35:1. Iridium catalyst 

complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 1.85 (s, 30H, C5Me5) and iridium catalyst 

complex B:
 1

H NMR (500MHz, DMSO-d6) δ:  1.82 (s, 30H, C5Me5). Ratio of 1.85 ppm 

complex: 1.82 ppm complex = 8:7. 

Entry 3 Synthetic procedure 7.4a was followed. Dibenzylamine and complex 3.1 (4.1 mg, 

3.53 μmols) in DMSO-d6 were used. Dibenzylamine and iridium complexes were observed 

via 
1
H NMR (Figure 7.3). 
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Figure 7.3 Stacked spectra dibenzyllamine, 3.14 and iridium catalyst 7.3.4, Entry 3. 

For 0.0 equiv. of amine, iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5). 

For 0.2 equiv. of amine, dibenzylamine: 
1
H NMR (500MHz, DMSO-d6) δ: 7.36–7.28 (m, 

8H, CArH), 7.22 (t, J = 6.9 Hz, 2H, CArH), 3.69 (s, 4H, CBnH), 2.63 (s, 1H, NH). Iridium 

catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 2.09 (s, 30H, C5Me5) and iridium 

catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5). Ratio of 

2.09 ppm complex: 1.88 ppm complex = 1:11. 

For 0.5 equiv. of amine, dibenzylamine: 
1
H NMR (500MHz, DMSO-d6) δ: 7.36–7.28 (m, 

8H, CArH), 7.22 (t, J = 6.9 Hz, 2H, CArH), 3.69 (s, 4H, CBnH), 2.63 (s, 1H, NH). Iridium 

catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5) and iridium 

catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5). Ratio of 2.08 

ppm complex: 1.88 ppm complex = 1:8. 

For 1.0 equiv. of amine, dibenzylamine: 
1
H NMR (500MHz, DMSO-d6) δ: 7.36-7.28 (m, 

8H, CArH), 7.22 (t, J = 6.9 Hz, 2H, CArH), 3.69 (s, 4H, CBnH), 2.63 (s, 1H, NH). Iridium 

catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5) and iridium 

10 equiv. 

2 equiv. 

1 equiv. 

0.5 equiv. 

0.2 equiv. 

0 equiv. 
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catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5). Ratio of 2.08 

ppm complex: 1.88 ppm complex = 1:7. 

For 2.0 equiv. of amine, dibenzylamine: 
1
H NMR (500MHz, DMSO-d6) δ: 7.36-7.28 (m, 

8H, CArH), 7.22 (t, J = 6.9 Hz, 2H, CArH), 3.69 (s, 4H, CBnH), 2.63 (s, 1H, NH). Iridium 

catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5) and iridium 

catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5). Ratio of 

2.08 ppm complex: 1.88 ppm complex = 1:7. 

For 10.0 equiv. of amine, dibenzylamine: 
1
H NMR (500MHz, DMSO-d6) δ: 7.36-7.28 (m, 

8H, CArH), 7.22 (t, J = 6.9 Hz, 2H, CArH), 3.69 (s, 4H, CBnH), 2.63 (s, 1H, NH). Iridium 

catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5), iridium 

catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5) iridium 

catalyst complex C: 
1
H NMR (500MHz, DMSO-d6) δ: 1.82 (s, 30H, C5Me5), iridium 

catalyst complex D: 
1
H NMR (500MHz, DMSO-d6) δ: 1.81 (s, 30H, C5Me5) and iridium 

catalyst complex E: 
1
H NMR (500MHz, DMSO-d6) δ: 1.77 (s, 30H, C5Me5). Ratio of 2.08 

ppm complex: 1.88 ppm complex: 1.82 ppm complex: 1.81 ppm complex: 1.77 ppm 

complex = 8:46:3:2:4. 

Entry 4 Synthetic procedure 7.4a was followed. Tribenzylamine and complex 3.1 (5.1 mg, 

4.39 μmols) in DMSO-d6 were used. Tribenzylamine and iridium complexes were observed 

via 
1
H NMR (Figure 7.4). 
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Figure 7.4 Stacked spectra for tribenzylamine, 3.17 and iridium catalyst 7.3.4, Entry 4. 

For 0.0 equiv. of amine, iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5). 

For 0.2 equiv. of amine, tribenzylamine: 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.1 Hz, 6H, CArH), 7.34 (t, J = 7.2 Hz, 6H, CArH), 7.24 (t, J = 7.3 Hz, 3H, CArH), 3.50 

(s, 6H, CBnH). Iridium catalyst complex: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 

30H, C5Me5). 

For 0.5 equiv. of amine, tribenzylamine: 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.1 Hz, 6H, CArH), 7.34 (t, J = 7.2 Hz, 6H, CArH), 7.24 (t, J = 7.3 Hz, 3H, CArH), 3.50 

(s, 6H, CBnH). Iridium catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 

30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.75 (s, 

30H, C5Me5). Ratio of 1.88 ppm complex: 1.75 complex = 59:1. 

For 1.0 equiv. of amine, tribenzylamine: 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.1 Hz, 6H, CArH), 7.34 (t, J = 7.2 Hz, 6H, CArH), 7.24 (t, J = 7.3 Hz, 3H, CArH), 3.50 

(s, 6H, CBnH). Iridium catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 

10 equiv. 

2 equiv. 

1 equiv. 

0.5 equiv. 

0.2 equiv. 

0 equiv. 
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30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.75 (s, 

30H, C5Me5). Ratio of 1.88 ppm complex: 1.75 complex = 29:1. 

For 2.0 equiv. of amine, tribenzylamine: 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.1 Hz, 6H, CArH), 7.34 (t, J = 7.2 Hz, 6H, CArH), 7.24 (t, J = 7.3 Hz, 3H, CArH), 3.50 

(s, 6H, CBnH). Iridium catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 

30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.75 (s, 

30H, C5Me5). Ratio of 1.88 ppm complex: 1.75 complex = 29:1. 

For 10.0 equiv. of amine, tribenzylamine: 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.1 Hz, 6H, CArH), 7.34 (t, J = 7.2 Hz, 6H, CArH), 7.24 (t, J = 7.3 Hz, 3H, CArH), 3.50 

(s, 6H, CBnH). Iridium catalyst complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 

30H, C5Me5); iridium catalyst complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.75 (s, 

30H, C5Me5) and iridium catalyst complex C, 
1
H NMR (500MHz, DMSO-d6) δ: 1.62 (s, 

30H, C5Me5). Ratio of 1.88 ppm complex: 1.75 ppm complex: 1.62 ppm complex = 25:4:1. 

Entry 5 Synthetic procedure 7.4a was followed. Cyclohexylamine and complex 3.1 (7.2 

mg, 6.19 μmols) in DMSO-d6 were used. Different iridium complexes were observed, 

elucidation of cyclohexylamine environments was not possible for all equivalences by 

1
H NMR (Figure 7.5). 
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Figure 7.5  Stacked spectra for cyclohexylamine, 3.10 and iridium catalyst 7.3.4, 

Entry 5. 

For 0.0 equiv. of amine, iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5). 

For 0.2 equiv. of amine, iridium catalyst complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5), iridium catalyst complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.84 (s, 

30H, C5Me5) and iridium catalyst complex C, 
1
H NMR (500MHz, DMSO-d6) δ: 1.70 (s, 

30H, C5Me5). Ratio of 1.88 ppm complex: 1.84 ppm complex: 1.70 ppm complex: = 90:5:2. 

Observation of the cyclohexylamine added was not possible at this concentration.  

For 0.5 equiv. of amine, iridium catalyst complex A,
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5), iridium catalyst complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.84 (s, 

30H, C5Me5), iridium catalyst complex C, 
1
H NMR (500MHz, DMSO-d6) δ: 1.76 (s, 

30H, C5Me5) and iridium catalyst complex D, 
1
H NMR (500MHz, DMSO-d6) δ: 1.70 (s, 

30H, C5Me5). Ratio of 1.88 ppm complex: 1.84 ppm complex: 1.76 ppm complex: 1.70 ppm 

complex: = 61:4:1:5. Observation of the cyclohexylamine added was not possible at this 

concentration. 

10 equiv. 

2 equiv. 

1 equiv. 

0.5 equiv. 

0.2 equiv. 

0 equiv. 
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For 1.0 equiv. of amine, iridium catalyst complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5), iridium catalyst complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.84 (s, 

30H, C5Me5), iridium catalyst complex C, 
1
H NMR (500MHz, DMSO-d6) δ: 1.76 (s, 

30H, C5Me5) and iridium catalyst complex D, 
1
H NMR (500MHz, DMSO-d6) δ: 1.70 (s, 

30H, C5Me5). Ratio of 1.88 ppm complex: 1.84 ppm complex: 1.76 ppm complex: 1.70 ppm 

complex: = 18:2:1:4. Observation of the cyclohexylamine added was not possible at this 

concentration. 

For 2.0 equiv. of amine, cyclohexylamine: 
1
H NMR (500 MHz, DMSO-d6) δ 1.72-1.66 (m, 

2H), 1.66-1.45 (m, 3H), 1.25-1.11 (m, 2H), 1.11-1.01 (m, 1H), 1.01-0.88 (m, 2H). Iridium 

catalyst complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5), iridium 

catalyst complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.84 (s, 30H, C5Me5), iridium 

catalyst complex C, 
1
H NMR (500MHz, DMSO-d6) δ: 1.76 (s, 30H, C5Me5) and iridium 

catalyst complex D, 
1
H NMR (500MHz, DMSO-d6) δ: 1.70 (s, 30H, C5Me5). Ratio of 

1.88 ppm complex: 1.84 ppm complex: 1.76 ppm complex: 1.70 ppm complex: = 15:2:3:10. 

For 10.0 equiv. of amine, cyclohexylamine: 
1
H NMR (500 MHz, DMSO-d6) δ 1.72-1.66 

(m, 2H), 1.66-1.45 (m, 3H), 1.25-1.11 (m, 2H), 1.11-1.01 (m, 1H), 1.01-0.88 (m, 2H). 

Iridium catalyst complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5), 

iridium catalyst complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.76 (s, 30H, C5Me5) and 

iridium catalyst complex C, 
1
H NMR (500MHz, DMSO-d6) δ: 1.70 (s, 30H, C5Me5). Ratio 

of 1.88 ppm complex: 1.76 ppm complex: 1.70 ppm complex = 1:3:10. 

Entry 6 Synthetic procedure 7.4a was followed. Dicyclohexylamine and complex 3.1 

(11.6 mg, 9.97 μmols) in DMSO-d6 were used. Iridium catalyst complex and 

dicyclohexylamine were observed by 
1
H NMR analysis (Figure 7.6). Not all dicyclohexyl 

protons were visible during analysis.  
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Figure 7.6 Stacked spectra for dicyclohexylamine, 3.9 and iridium catalyst 7.3.4, 

Entry 6. 

For 0.0 equiv. of amine, iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5). 

For 0.2 equiv. of amine, dicyclohexylamine, 
1
H NMR (500MHz, DMSO-d6) δ: δ 1.80-1.73 

(m, 4H), 1.69-1.60 (m, 4H), 1.54 (d, J = 12.0 Hz, 2H), 1.20 (q, J = 12.0 Hz, 4H), 1.09 (t, J = 

12.0 Hz, 2H), 0.95 (q, J = 10.7 Hz, 4H). Iridium catalyst complex: 
1
H NMR (500MHz, 

DMSO-d6) δ: 1.88 (s, 30H, C5Me5) 

For 0.5 equiv. of amine, dicyclohexylamine: 
1
H NMR (500 MHz, DMSO-d6) δ: 1.76 (d, J = 

9.7 Hz, 4H), 1.64 (d, J = 9.6 Hz, 4H), 1.54 (d, J = 11.9 Hz, 2H), 1.19 (q, J = 12.3 Hz, 4H), 

1.09 (q, J = 12.3 Hz, 2H), 0.93 (q, J = 9.8 Hz, 4H). Iridium catalyst complex: 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5). 

For 1.0 equiv. of amine, dicyclohexylamine, 
1
H NMR (500 MHz, DMSO-d6) δ: 1.76 (d, J = 

9.7 Hz, 4H), 1.64 (d, J = 9.6 Hz, 4H), 1.54 (d, J = 11.9 Hz, 2H), 1.19 (q, J = 12.3 Hz, 4H), 

1.09 (q, J = 12.3 Hz, 2H), 0.93 (q, J = 9.8 Hz, 4H). Iridium catalyst complex: 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5). 

10 equiv. 

2 equiv. 

1 equiv. 

0.5 equiv. 

0.2 equiv. 

0 equiv. 
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For 2.0 equiv. of amine, dicyclohexylamine, 
1
H NMR (500 MHz, DMSO-d6) δ: 1.76 (d, J = 

9.7 Hz, 4H), 1.64 (d, J = 9.6 Hz, 4H), 1.54 (d, J = 11.9 Hz, 2H), 1.19 (q, J = 12.3 Hz, 4H), 

1.09 (q, J = 12.3 Hz, 2H), 0.93 (q, J = 9.8 Hz, 4H). Iridium catalyst complex: 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5). 

For 10.0 equiv. of amine, dicyclohexylamine, 
1
H NMR (500 MHz, DMSO-d6) δ: 1.76 (d, J 

= 9.7 Hz, 4H), 1.64 (d, J = 9.6 Hz, 4H), 1.54 (d, J = 11.9 Hz, 2H), 1.19 (q, J = 12.3 Hz, 4H), 

1.09 (q, J = 12.3 Hz, 2H), 0.93 (q, J = 9.8 Hz, 4H). Iridium catalyst complex: 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5). 

Entry 7 Synthetic procedure 7.4a was followed. Benzophenone imine and complex 3.1 

(4.0 mg, 3.44 μmols) in DMSO-d6 were used. Benzophenone imine and iridium complex 

were observed by 
1
H NMR (Figure 7.7). 

 

Figure 7.7 Stacked spectra for benzophenone, 3.2 and iridium catalyst 7.3.4, Entry 7. 

For 0.0 equiv. of amine, iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5). 

10 equiv. 

2 equiv. 

1 equiv. 

0.5 equiv. 

0.2 equiv. 

0 equiv. 
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For 0.2 equiv. of amine, benzophenone imine (500 MHz, DMSO-d6) δ: 10.61 (s, 1H, NH), 

7.55-7.41 (apparent m, 10H, CArH). Iridium catalyst complex: 
1
H NMR (500MHz, 

DMSO-d6) δ: 1.88 (s, 30H, C5Me5). 

For 0.5 equiv. of amine, benzophenone imine: 
1
H NMR (500MHz, DMSO-d6) δ: 10.63 (s, 

1H, NH), 7.60-7.38 (m, 10H, CArH). Iridium catalyst complex A, 
1
H NMR (500MHz, 

DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, 

DMSO-d6) δ: 1.83 (s, 30H, C5Me5). Ratio of 1.88 ppm complex: 1.83 ppm complex = 29:1. 

For 1.0 equiv. of amine, benzophenone imine: 
1
H NMR (500MHz, DMSO-d6) δ: 10.63 (s, 

1H, NH), 7.52 (t, J = 6.8 Hz, 6H, CArH), 7.49-7.44 (apparent m, 4H, CArH). Iridium 

catalyst complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5); iridium 

complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.83 (s, 30H, C5Me5) and iridium catalyst 

complex C, 
1
H NMR (500MHz, DMSO-d6) δ: 1.75 (s, 30H, C5Me5). Ratio of 1.88 ppm 

complex: 1.83 ppm complex: 1.75 ppm complex = 73:4. 

For 2.0 equiv. of amine, benzophenone imine: 
1
H NMR (500MHz, DMSO-d6) δ: 10.65 (s, 

1H, NH), 7.52 (t, J = 6.8 Hz, 6H, CArH), 7.49-7.43 (apparent m, 4H, CArH). Iridium 

catalyst complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5) iridium 

catalyst complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and iridium 

catalyst complex C, 
1
H NMR (500MHz, DMSO-d6) δ: 1.83 (s, 30H, C5Me5). Ratio of 2.08 

ppm complex: 1.88 ppm complex: 1.83 ppm complex = 8:20:2. 

For 10.0 equiv. of amine, benzophenone imine: 
1
H NMR (500MHz, DMSO-d6) δ: 10.65 (s, 

1H, NH), 7.52 (t, J = 6.8 Hz, 6H, CArH), 7.49-7.43 (apparent m, 4H, CArH). Iridium 

catalyst complex A, 
1
H NMR (500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5) iridium 

catalyst complex B, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and iridium 

catalyst complex C, 
1
H NMR (500MHz, DMSO-d6) δ: 1.83 (s, 30H, C5Me5) iridium 

catalyst complex D, 
1
H NMR (500MHz, DMSO-d6) δ: 1.82 (s, 30H, C5Me5). Ratio of 2.08 

ppm complex: 1.88 ppm complex: 1.83 ppm complex: 1.82 ppm complex = 8:14:4:4. 

Entry 8 Synthetic procedure 7.4a was followed. α-Methyl benzylamine and complex 3.1 

(6.8 mg, 5.85 μmols) in CDCl3 were used. α-Methyl benzylamine and iridium complexes 

were observed by 
1
H NMR (Figure 7.8). 
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Figure 7.8 Stacked spectra for α-methyl benzylamine, 3.12 and iridium catalyst 7.3.4, 

Entry 8. 

For 0.0 equiv. of amine, iridium catalyst complex: 
1
H NMR (500MHz, CDCl3) δ: 1.83 (s, 

30H, C5Me5). 

For 0.2 equiv. of amine, α-methyl benzylamine: 
1
H NMR (500MHz, CDCl3) δ: 7.39 (t, J = 

7.3 Hz, 2H, CArH), 7.31 (d, J = 8.2 Hz, 2H, CArH),7.27-7.24 (apparent m, 1H, CArH), 4.39 

(s, 1H, CBnH), 1.53 (d, J = 6.7 Hz, 3H, (CH)CH3). Iridium complex:
 1

H NMR (500MHz, 

CDCl3) δ: 1.83 (s, 30H, C5Me5). 

For 0.5 equiv. of amine, α-methyl benzylamine: 
1
H NMR (500MHz, CDCl3) δ: 7.38 (t, J = 

7.2 Hz, 2H, CArH), 7.32 (t, J = 7.8 Hz, 3H, CArH), 4.39 (s, 1H, CBnH), 1.69 (d, J = 10.4, 

3H, (CH)CH3). Iridium catalyst complex A, 
1
H NMR (500MHz, CDCl3) δ: 1.83 (s, 30H, 

C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, CDCl3) δ: 1.81 (s, 30H, 

C5Me5). Ratio of 1.83 ppm complex: 1.81 ppm complex = 1:1. 

For 1.0 equiv. of amine, α-methyl benzylamine: 
1
H NMR (500MHz, CDCl3) δ: : 7.38 (t, 

J = 7.1 Hz, 2H, CArH), 7.32 (apparent d, J = 7.3 Hz, 3H, CArH), 4.37 (s, 1H, CBnH), 1.51 

(apparent br s, 4H, (CH)CH3 and NH). Iridium catalyst complex A, 
1
H NMR (500MHz, 

10 equiv. 

2 equiv. 

1 equiv. 

0.5 equiv. 

0.2 equiv. 

0 equiv. 
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CDCl3) δ: 1.83 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, 

CDCl3) δ: 1.80 (s, 30H, C5Me5). Ratio of 1.83 ppm complex: 1.80 ppm complex = 1:4. 

For 2.0 equiv. of amine, α-methyl benzylamine: 
1
H NMR (500MHz, CDCl3) δ: 7.47-7.20 

(apparent m, 5H, CArH), 4.15 (apparent s, 1H, CBnH), 1.56 (apparent br s, 2H, NH), 1.45 

(apparent br s, 3H, (CH)CH3). Iridium catalyst complex: 
1
H NMR (500MHz, CDCl3) δ: 

1.80 (s, 30H, C5Me5). 

For 10.0 equiv. of amine, α-methyl benzylamine: 
1
H NMR (500MHz, CDCl3) δ: 7.57-6.95 

(apparent m, 5H, CArH), 4.11 (apparent d, 1H, CBnH), 1.53 (br s, 2H, NH), 1.39 (d, J = 

5.5 Hz, 3H, (CH)CH3). Iridium catalyst complex: 
1
H NMR (500MHz, CDCl3) δ: 1.80 (s, 

30H, C5Me5). 

Entry 9 Synthetic procedure 7.4a was followed. N-Methyl-α-methylbenzylamine and 

complex 3.1 (6.3 mg, 5.42 µmols, 0.5 equiv.) in CDCl3 were used. 

N-methyl-α-methylbenzylamine, and iridium complexes were observed by 
1
H NMR 

analysis (Figure 7.9). 

 

Figure 7.9 Stacked spectra for N-methyl-α-methyl benzylamine, 3.13 and iridium 

catalyst 7.3.4, Entry 9. 

10 equiv. 

2 equiv. 

1 equiv. 

0.5 equiv. 

0.2 equiv. 

0 equiv. 
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For 0.0 equiv. of amine, iridium catalyst complex: 
1
H NMR (500MHz, CDCl3) δ: 1.83 (s, 

30H, C5Me5). 

For 0.2 equiv. of amine, N-methyl-α-methyl benzylamine: 
1
H NMR (500MHz, CDCl3) δ: 

7.36-7.27 (apparent m, 4H, CArH), 7.23 (apparent d, J = 7.0 Hz, 1H, CArH), 3.66 (s, 1H, 

CBnH), 2.32 (s, 3H, NCH3), 1.53 (s, 1H, NH), 1.36 (d, J = 6.6 Hz, 3H, CH3). Iridium 

complex:
 1
H NMR (500MHz, CDCl3) δ: 1.83 (s, 30H, C5Me5). 

For 0.5 equiv. of amine, N-methyl-α-methyl benzylamine: 
1
H NMR (500MHz, CDCl3) δ: 

7.42-7.08 (apparent m, 5H, CArH), s, 1H,), 3.66 (s, 1H, CBnH), 2.32 (s, 3H, NCH3), 1.54 (s, 

1H, NH), 1.36 (d, J = 6.6 Hz, 3H, CH3). Iridium catalyst complex A: 
1
H NMR (500MHz, 

CDCl3) δ: 2.04 (s, 30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, 

CDCl3) δ: 1.83 (s, 30H, C5Me5). Ratio of 2.04 ppm complex: 1.83 ppm complex = 1:71. 

For 1.0 equiv. of amine, N-methyl-α-methyl benzylamine: 
1
H NMR (500MHz, CDCl3) δ: 

7.39-7.19 (m, 5H, CArH), 3.66 (s, 1H, CBnH), 2.32 (s, 3H, NCH3), 1.53 (s, 1H, NH), 1.36 

(d, J = 6.6 Hz, 3H, CH3). Iridium catalyst complex A: 
1
H NMR (500MHz, CDCl3) δ: 2.04 

(s, 30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, CDCl3) δ: 1.83 (s, 

30H, C5Me5). Ratio of 2.04 ppm complex: 1.83 ppm complex = 1:40. 

For 2.0 equiv. of amine, N-methyl-α-methyl benzylamine: 
1
H NMR (500MHz, CDCl3) δ: 

7.49-7.10 (apparent m, 5H, CArH), 3.66 (s, 1H, CBnH), 2.32 (s, 3H, NCH3), 1.52 (s, 1H, 

NH), 1.36 (d, J = 6.6 Hz, 3H, CH3). Iridium catalyst complex A: 
1
H NMR (500MHz, 

CDCl3) δ: 2.04 (s, 30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, 

CDCl3) δ: 1.83 (s, 30H, C5Me5). Ratio of 2.04 ppm complex: 1.83 ppm complex = 2:41. 

For 10.0 equiv. of amine, N-methyl-α-methyl benzylamine: 
1
H NMR (500MHz, CDCl3) δ: 

7.56-7.08 (m, 5H, CArH), 3.65 (s, 1H, CBnH), 2.31 (s, 3H, NCH3), 1.49 (s, 1H, NH), 1.36 

(d, J = 6.6 Hz, 3H, CH3). Iridium catalyst complex A: 
1
H NMR (500MHz, CDCl3) δ: 2.04 

(s, 30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, CDCl3) δ: 1.83 (s, 

30H, C5Me5). Ratio of 2.04 ppm complex: 1.83 ppm complex = 2:9. 

Entry 10 Synthetic procedure 7.4a was followed. 4-Bromo-benzylamine and complex 3.1 

(6.7 mg, 5.76 μmols) in DMSO-d6 were used. Iridium bound 4-bromo-benzylamine and 

iridium complexes were observed via 
1
H NMR analysis (Figure 7.10). 
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Figure 7.10 Stacked spectra for 4-bromobenzylamine, 3.7 and iridium catalyst 7.3.4, 

Entry 10. 

For 0.0 equiv. of amine, iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5). 

For 0.5 equiv. of amine, catalyst bound 4-bromobenzylamine: 
1
H NMR (500MHz, 

DMSO-d6) δ: 7.63 (d, J = 8.4 Hz, 2H, CArH), 7.38 (d, J = 8.4 Hz, 2H, CArH), 5.56 (s, 2H, 

NH2), 4.03 (t, J = 12.8 Hz, 1H, CBnH), 3.68 (t, J = 12.6 Hz, 1H, CBnH). Iridium catalyst 

complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 1.91 (s, 30H, C5Me5); iridium catalyst 

complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and iridium catalyst 

complex C: 
1
H NMR (500MHz, DMSO-d6) δ: 1.83 (s, 30H, C5Me5). Ratio of 1.91 ppm 

complex: 1.88 ppm complex: 1.83 ppm complex = 1:22:7. 

For 1.0 equiv. of amine, catalyst bound 4-bromobenzylamine: 
1
H NMR (500MHz, 

DMSO-d6) δ: 7.63 (d, J = 8.2 Hz, 2H, CArH), 7.38 (d, J = 8.3 Hz, 2H, CArH), 5.55 (s, 2H, 

NH2), 4.03 (t, J = 11.9 Hz, 1H, CBnH), 3.68 (t, J = 12.1 Hz, 1H, CBnH). Iridium catalyst 

complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 1.91 (s, 30H, C5Me5); iridium catalyst 

complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and iridium catalyst 

1 equiv. 

0.5 equiv. 

0 equiv. 



Chapter 7 Experimental Section 

191 

 

complex C: 
1
H NMR (500MHz, DMSO-d6) δ: 1.83 (s, 30H, C5Me5). Ratio of 1.91 ppm 

complex: 1.88 ppm complex: 1.83 ppm complex = 1:19:10. 

Entry 11 Synthetic procedure 7.4a was followed. 4-Methoxy-benzylamine, iridium 

complex 3.1 (5.2 mg, 4.47 µmols, 0.5 equiv.) and DMSO-d6 were used. Iridium complexes 

and catalyst bound 4-methoxybenzylamine were observed by 
1
H-NMR analysis (Figure 

7.11). 

 

Figure 7.11 Stacked spectra for 4-methoxybenzylamine, 3.8 and iridium catalyst 7.3.4, 

Entry 11. 

For 0.0 equiv. of amine, For 0.0 equiv. of amine, iridium catalyst complex, 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5). 

For 0.5 equiv. of amine, catalyst bound 4-methoxybenzylamine: 
1
H NMR (500MHz, 

DMSO-d6) δ: 7.34 (d, J = 8.2 Hz, 2H, CArH), 6.96 (d, J = 8.2 Hz, 2H, CArH), 5.58-5.39 

(apparent m, 2H, NH2), 3.98 (t, J = 12.5 Hz, 1H, CBnH), 3.74 (t, J = 12.5 Hz, 1H, CBnH). 

Iridium catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 1.92 (s, 30H, C5Me5); 

iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and 

1 equiv. 

0.5 equiv. 

0 equiv. 
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iridium catalyst complex C: 
1
H NMR (500MHz, DMSO-d6) δ: 1.84 (s, 30H, C5Me5). Ratio 

of 1.92 ppm complex: 1.88 ppm complex: 1.84 ppm complex = 2:21:7. 

For 1.0 equiv. of amine, catalyst bound 4-bromobenzylamine: 
1
H NMR (500MHz, 

DMSO-d6) δ: 7.34 (d, J = 8.6 Hz, 2H, CArH), 6.96 (d, J = 8.6 Hz, 2H, CArH), 5.55-5.40 

(apparent m, 2H, NH2), 3.99 (t, J = 11.7 Hz, 1H, CBnH), 3.67-3.59 (apparent m, 1H, 

CBnH). Iridium catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 1.92 (s, 

30H, C5Me5); iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 

30H, C5Me5) and iridium catalyst complex C: 
1
H NMR (500MHz, DMSO-d6) δ: 1.84 (s, 

30H, C5Me5). Ratio of 1.92 ppm complex: 1.88 ppm complex: 1.84 ppm complex = 3:13:13. 

7.3.5 2D NMR analysis of benzylamine bound iridium complex via 

1
H-

1
H-diffusion ordered spectroscopic (DOSY spectroscopy)  

 

Analyte in 

standard 

Moles of 

analyte / 

μmols 

Mass of analyte 

added or volume of 

0.1 M analyte added 

Volume of 

DMSO-d6/ 

mL 

Concentration / 

mM 

 

6.25 62.50 μL 0.5375 12.50 

 

6.25 62.50 μL 0.5375 12.50 

 

6.25 62.50 μL 0.5375 12.50 

 
3.13 3.60 mg 0.6000 6.25 

 
6.25 7.28 mg 0.6000 12.50 
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Standards of diiodopentamethylcyclopentadienyliridium(III) dimer complex (6.25 mM and 

12.5 mM), benzylamine (12.5 mM), N-benzylidene benzyl amine (12.5 mM) and 

dibenzylamine (12.5 mM) were prepared in DMSO-d6. All the standards were analysed by 

DOSY NMR spectroscopy (spectra recorded and processed by Dr. J. Fisher, University of 

Leeds) and their diffusion coefficients determined. Separately, benzylamine (62.5 µL of 

0.1 M solution in DMSO-d6, 6.25 µmol, 2.00 equiv.) was added to a suspension of 

diiodopentamethylcyclopentadienyliridium (III) dimer complex (3.6 mg, 3.13 µmol, 

1.00 equiv.) in DMSO-d6 (0.5375 mL) and shaken vigorously for 60 seconds. The DOSY 

spectrums were recorded on a Varia Inova Unity 500 MHz instrument, using the oneshot 

pulse sequence. A sweep width of 6000 Hz, recycle delay of 10 seconds, and 16 transients 

were used. Fifteen gradient levels were employed, with a diffusion delay of 0.002 seconds 

was included, as was an unbalancing factor of 0.2. Data was processed with a 1H2 line 

broadening prior to Fourier transformation, then phased and base line corrected to produce 

the DOSY plot. The diffusion coefficient of the standards were obtained from their DOSY 

spectra and the spectra were compared to that of the sample and a mass range was 

determined. Catalyst bound amine complex:
 1

H NMR (500MHz, DMSO-d6) δ: 7.45-7.11 

(apparent m, 5H, CArH), 5.63 (t, J = 10.4 Hz, 1H, NH), 5.54 (t, J = 10.2 Hz, 1H, NH), 4.08 

(t, J = 12.1 Hz, 1H, CBnH), 3.71 (apparent s, 1H, CBnH). Iridium catalyst complex:
 

1
H NMR (500MHz, DMSO-d6) δ: 1.85 (s, 30H, C5Me5). Ratio of 1.85 ppm Cp* protons: 

amine protons at 4.08 ppm = 15:2. Diffusion coefficient, (D): 1.59 x 10
-10

 m
2
s

-1
 ≡ mass 

> 6000 Da. 

7.3.6 NMR analysis of iridium catalysed amine dehydrogenation at 

elevated temperature 

General Procedure 7.4b 

A general synthetic procedure was used with minor modifications to assess the 

dehydrogenation of primary, secondary and tertiary amines at elevated temperature. The 

procedure is described briefly below: 
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Diiodopentamethylcyclopentadienyliridium(III) dimer complex was suspended in 

deuterated solvent (0.7 mL) in an NMR tube, shaken for 60 seconds and analysed by 

1
H NMR spectroscopy. The amine was added to the resultant suspension and shaken for 

60 seconds and heated. The reaction was monitored by cooling the NMR tube to room 

temperature and analysing by 
1
H NMR spectroscopy. 

Entry 1 Synthetic procedure 7.4b was followed. Benzhydrylamine (169 μLs of 0.1M amine 

in DMSO-d6 and 11.5 μLs of pure amine, 84.3 μmols, 20 equiv.), iridium complex 3.1 

(4.9 mg, 4.21 μmols, 1.00 equiv.) and DMSO-d6 were used and the reaction was heated by 

an oil bath (115 °C). The reaction was monitored at 0, 0.25, 0.5, 1, 2, 3, 4 and 27 hours. 

Iridium complexes, benzhydrylamine (3.6), N-benzhydryl-diphenylmethanimine (3.40) and 

N,N-dibenzhydrylamine (3.41) were observed (Figure 7.12). 
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Figure 7.12 Stacked spectra for benzhydrylamine, 3.6 and iridium catalyst 7.3.6, 

Entry 1. 

For 0.0 equiv. of amine, iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5). 

For 10.0 equiv. of amine, benzhydrylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.4 Hz, 4H, CArH), 7.27 (t, J = 7.5 Hz, 4H, CArH), 7.17 (t, J = 7.2 Hz, 2H, CArH), 5.09 (s, 

1H, CBnH), 2.30 (br s, 2H, NH2). Iridium catalyst complex A: 
1
H NMR (500MHz, DMSO-

d6) δ: 2.09 (s, 30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) 

δ: 1.88 (s, 30H, C5Me5). Ratio of 2.09 ppm complex: 1.88 ppm complex = 1:2. 

For 0.25 hours at 110 °C, benzhydrylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.4 Hz, 4H, CArH), 7.27 (t, J = 7.5 Hz, 4H, CArH), 7.17 (t, J = 7.2 Hz, 2H, CArH), 5.09 (s, 

1H, CBnH), 2.42 (br s, 2H, NH2). Iridium catalyst complex A: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 2.08 (s, 30H, C5Me3), iridium catalyst complex B: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and iridium catalyst complex C: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.82 (s, 30H, C5Me5). Ratio of 2.09 ppm complex: 1.88 ppm complex: 

1.82 ppm complex = 2:4:1. 

3 h 

1 h 

0 h 

0.5 h 

0.25 h 

2 h 

4 h 

27 h 
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For 0.5 hours at 110 °C, benzhydrylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.4 Hz, 4H, CArH), 7.27 (t, J = 7.5 Hz, 4H, CArH), 7.17 (t, J = 7.2 Hz, 2H, CArH), 5.09 (s, 

1H, CBnH), 2.45 (br s, 2H, NH2). Iridium catalyst complex A: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 2.08 (s, 30H, C5Me3), iridium catalyst complex B: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and iridium catalyst complex C: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.82 (s, 30H, C5Me5). Ratio of 2.09 ppm complex: 1.88 ppm complex: 

1.82 ppmcomplex = 2:4:1. 

For 1 hour at 110 °C, benzhydrylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.4 Hz, 4H, CArH), 7.27 (t, J = 7.5 Hz, 4H, CArH), 7.17 (t, J = 7.2 Hz, 2H, CArH), 5.09 (s, 

1H, CBnH), 2.64 (br s, 2H, NH2). Iridium catalyst complex A: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 2.08 (s, 30H, C5Me3), iridium catalyst complex B: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 2.03 (s, 30H, C5Me5), iridium catalyst complex C: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and iridium catalyst complex D: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.82 (s, 30H, C5Me5). Ratio of 2.09 ppm complex: 2.03 ppm complex: 

1.88 ppm complex: 1.82 ppm, complex = 6:2:13:9. 

For 2 hours at 110 °C, benzhydrylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.4 Hz, 4H, CArH), 7.27 (t, J = 7.5 Hz, 4H, CArH), 7.17 (t, J = 7.2 Hz, 2H, CArH), 5.09 (s, 

1H, CBnH), 2.91 (br s, 2H, NH2). Iridium catalyst complex A: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 2.08 (s, 30H, C5Me3), iridium catalyst complex B: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 2.03 (s, 30H, C5Me5), iridium catalyst complex C: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and iridium catalyst complex D: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.82 (s, 30H, C5Me5). Ratio of 2.09 ppm complex: 2.03 ppm complex: 

1.88 ppm complex: 1.82 ppmcomplex = 6:1:10:12. 

For 3 hours at 110 °C, benzhydrylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.4 Hz, 4H, CArH), 7.27 (t, J = 7.5 Hz, 4H, CArH), 7.17 (t, J = 7.2 Hz, 2H, CArH), 5.09 (s, 

1H, CBnH), 3.24 (br s, 2H, NH2). Iridium catalyst complex A: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 2.08 (s, 30H, C5Me3), iridium catalyst complex B: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 2.03 (s, 30H, C5Me5), iridium catalyst complex C: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.88 (s, 30H, C5Me5), iridium catalyst complex D: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.82 (s, 30H, C5Me5) and iridium catalyst complex E: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.81 (s, 30H, C5Me5). Ratio of 2.09 ppm complex: 2.03 ppm complex: 

1.88 ppm complex: 1.82 ppm complex: 1.81 ppm complex = 5:6:14:3. 
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For 4 hours at 110 °C, benzhydrylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.4 Hz, 4H, CArH), 7.27 (t, J = 7.5 Hz, 4H, CArH), 7.17 (t, J = 7.2 Hz, 2H, CArH), 5.09 (s, 

1H, CBnH), 3.34 (br s, 2H, NH2). Iridium catalyst complex A: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 2.08 (s, 30H, C5Me3), iridium catalyst complex B: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 2.03 (s, 30H, C5Me5), iridium catalyst complex C: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.88 (s, 30H, C5Me5), iridium catalyst complex D: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.82 (s, 30H, C5Me5) and iridium catalyst complex E: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.81 (s, 30H, C5Me5). Ratio of 2.09 ppm complex: 2.03 ppm complex: 

1.88 ppm complex: 1.82 ppm complex: 1.81 ppm complex = 4:3:16:3. 

For 27 hours at 110 °C, benzhydrylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.5-7.2 

(apparent m, 10H, CArH), 5.09 (s, 1H, CBnH), 3.34 (br s, 2H, NH2) 

N-benzhydryldiphenylmethanimine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.75-7.4 (apparent 

m, 10H, CArH), 5.49 (s, 1H, CBnH). Iridium catalyst complex A: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.92 (s, 30H, C5Me5), iridium catalyst complex B: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.82 (s, 30H, C5Me5), iridium catalyst complex C: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.78 (s, 30H, C5Me5) and iridium catalyst complex D: 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.74 (s, 30H, C5Me5). Ratio of 1.92 ppm complex: 1.82 ppm complex: 

1.78 ppm complex: 1.74 ppm complex = 2:20:3:2. 

Entry 2 Synthetic procedure 7.4b was followed. Benzylamine (3.5 μLs, 33.3 μmols, 

8 equiv.), iridium complex 3.1 (4.9 mg, 4.21 μmols, 1 equiv.) and DMSO-d6 were used and 

the reaction was heated by an oil bath (115 °C). The reaction was monitored at 0, 0.25, 0.5, 

1.08, 2, 3, 4 and 28 hours. Benzylamine (3.11) and N-benzylidene benzylamine (3.17) and 

iridium complexes were observed by 
1
H NMR analysis (Figure 7.13). 
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Figure 7.13 Stacked spectra for benzylamine, 3.11 and iridium catalyst 7.3.6, Entry 2. 

For 0.0 equiv. of amine, iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5). 

For 10.0 equiv. of amine, catalyst bound benzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 

7.53-7.38 (m, 2H, CArH), 7.36-7.24 (m, 2H, CArH), 7.24-7.13 (m, 1H, CArH), 5.62 (t, J = 

10.5 Hz, 1H, NH), 5.54 (t, J = 10.5 Hz, 1H, NH), 4.08 (t, J = 11.6 Hz, 1H, CBnH), 3.72 (t, 

J= 11.6, 1H, CBnH) and free benzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.53-7.38 (m, 

2H, CArH), 7.36-7.24 (m, 2H, CArH), 7.24–7.13 (m, 1H, CArH), 3.72 (t, J= 11.6, 2H, 

CBnH) 1.78 (br s, 2H, NH2). Ratio of free amine protons at 3.72 ppm: to catalyst bound 

amine protons at 4.08 ppm = 1:3. Iridium catalyst complex A: 
1
H NMR (500MHz, 

DMSO-d6) δ: 1.85 (s, 30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, 

DMSO-d6) δ: 1.82 (s, 30H, C5Me5). Ratio of 1.85 ppm complex: 1.82 ppm complex = 13:2. 

For 0.25 hours at 110 °C, catalyst bound benzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 

7.42-7.17 (m, 5H, CArH), 5.62 (t, J = 10.5 Hz, 1H, NH), 5.54 (t, J = 10.5 Hz, 1H, NH), 4.08 

(t, J = 11.6 Hz, 1H, CBnH), 3.72 (t, J= 11.6, 1H, CBnH), N-benzylidene benzylamine,
 

1
H NMR (500MHz, DMSO-d6) δ: 8.51 (s, 1H, CimineH), 7.78 (d, J = 5.6 Hz, 2H, CArH), 

7.42-7.17 (m, 8H, CArH), 4.78 (s, 2H, CBnH) and free benzylamine, 
1
H NMR (500MHz, 

3 h 

1 h 

0 h 

0.5 h 

0.25 h 

4 h 

27 h 

2 h 
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DMSO-d6) δ: 7.42-7.17 (m, 5H, CArH), 3.72 (s, 2H, CBnH) 2.70 (br s, 2H, NH2). Ratio of 

free benzylamine: catalyst bound benzylamine: N-benzylidene benzylamine = 20:8:1. 

Iridium catalyst complex A: 
1
H NMR (500 MHz, DMSO-d6) δ: 1.93 (s, 30H, C5Me3), 

iridium catalyst complex B: 
1
H NMR (500 MHz, DMSO-d6) δ: 1.85 (s, 30H, C5Me5) and 

iridium catalyst complex C: 
1
H NMR (500 MHz, DMSO-d6) δ: 1.78 (s, 30H, C5Me5). Ratio 

of 1.93 ppm complex: 1.85 ppm complex: 1.78 ppm complex = 3:21:5. 

For 0.5 hours at 110 °C, catalyst bound benzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 

7.53-7.13 (m, 5H, CArH), 5.62 (t, J = 10.5 Hz, 1H, NH), 5.54 (t, J = 10.5 Hz, 1H, NH), 4.08 

(t, J = 11.6 Hz, 1H, CBnH), 3.72 (t, J= 11.6, 1H, CBnH), N-benzylidene benzylamine,
 

1
H NMR (500MHz, DMSO-d6) δ: 8.51 (s, 1H, CimineH), 7.78 (d, J = 5.6 Hz, 2H, CArH), 

7.42-7.17 (m, 8H, CArH), 4.78 (s, 2H, CBnH) and and free benzylamine, 
1
H NMR 

(500MHz, DMSO-d6) δ: 7.53-7.13 (m, 5H, CArH), 3.72 (s, 2H, CBnH) 2.70 (br s, 2H, NH2). 

Ratio of free benzylamine: catalyst bound benzylamine: N-benzylidene benzylamine = 

15:6:1. Iridium catalyst complex A: 
1
H NMR (500 MHz, DMSO-d6) δ: 1.93 (s, 30H, 

C5Me3), iridium catalyst complex B: 
1
H NMR (500 MHz, DMSO-d6) δ: 1.85 (s, 30H, 

C5Me5), iridium catalyst complex C: 
1
H NMR (500 MHz, DMSO-d6) δ: 1.79 (s, 30H, 

C5Me5) and iridium catalyst complex D: 
1
H NMR (500 MHz, DMSO-d6) δ: 1.73 (s, 30H, 

C5Me5). Ratio of 1.93 ppm complex: 1.85 ppm complex: 1.79 ppm complex: 1.73 ppm 

complex = 1:20:6:2. 

For 1.08 hours at 110 °C, catalyst bound benzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 

7.53-7.13 (m, 5H, CArH), 5.62 (t, J = 10.5 Hz, 1H, NH), 5.54 (t, J = 10.5 Hz, 1H, NH), 4.08 

(t, J = 11.6 Hz, 1H, CBnH), 3.72 (t, J= 11.6, 1H, CBnH), N-benzylidene benzylamine (major 

isomer),
 1
H NMR (500MHz, DMSO-d6) δ: 8.51 (s, 1H, CimineH), 7.78 (d, J = 5.6 Hz, 2H, 

CArH), 7. 42-7.17 (m, 8H, CArH), 4.78 (s, 2H, CBnH), N-benzylidene benzylamine (minor 

isomer) 
1
H NMR (500MHz, DMSO-d6) δ: 8.32 (s, 1H, CimineH), 7.78 (d, J = 5.6 Hz, 2H, 

CArH), 7. 42-7.17 (m, 8H, CArH), 4.78 (s, 2H, CBnH) and free benzylamine, 
1
H NMR 

(500MHz, DMSO-d6) δ: 7.53-7.13 (m, 5H, CArH), 3.72 (s, 2H, CBnH) 3.30 (br s, 2H, NH2). 

Ratio of free benzylamine: catalyst bound benzylamine: N-benzylidene benzylamine 

(major): N-benzylidene benzylamine (minor) = 18:6:2:1. Iridium catalyst complex A: 

1
H NMR (500 MHz, DMSO-d6) δ: 1.93 (s, 30H, C5Me3), iridium catalyst complex B: 

1
H NMR (500 MHz, DMSO-d6) δ: 1.85 (s, 30H, C5Me5), iridium catalyst complex C: 

1
H NMR (500 MHz, DMSO-d6) δ: 1.79 (s, 30H, C5Me5) and iridium catalyst complex D: 

1
H NMR (500 MHz, DMSO-d6) δ: 1.73 (s, 30H, C5Me5). Ratio of 1.93 ppm complex: 

1.85 ppm complex: 1.79 ppm complex: 1.73 ppm complex = 1:28:14:5. 
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For 2 hours at 110 °C, catalyst bound benzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 

7.53-7.13 (m, 5H, CArH), 5.62 (t, J = 10.5 Hz, 1H, NH), 5.54 (t, J = 10.5 Hz, 1H, NH), 4.08 

(t, J = 11.6 Hz, 1H, CBnH), 3.72 (t, J= 11.6, 1H, CBnH), N-benzylidene benzylamine (major 

isomer),
 1
H NMR (500MHz, DMSO-d6) δ: 8.51 (s, 1H, CimineH), 7.78 (d, J = 5.6 Hz, 2H, 

CArH), 7. 42-7.17 (m, 8H, CArH), 4.78 (s, 2H, CBnH), N-benzylidene benzylamine (minor 

isomer) 
1
H NMR (500MHz, DMSO-d6) δ: 8.32 (s, 1H, CimineH), 7.78 (d, J = 5.6 Hz, 2H, 

CArH), 7. 42-7.17 (m, 8H, CArH), 4.78 (s, 2H, CBnH) and free benzylamine, 
1
H NMR 

(500MHz, DMSO-d6) δ: 7.53-7.13 (m, 5H, CArH), 3.72 (s, 2H, CBnH) 3.30 (br s, 2H, NH2). 

Ratio of free benzylamine: catalyst bound benzylamine: N-benzylidene benzylamine 

(major): N-benzylidene benzylamine (minor) = 16:4:2:1. Iridium catalyst complex A: 

1
H NMR (500 MHz, DMSO-d6) δ: 1.85 (s, 30H, C5Me3), iridium catalyst complex B: 

1
H NMR (500 MHz, DMSO-d6) δ: 1.79 (s, 30H, C5Me5), iridium catalyst complex C: 

1
H NMR (500 MHz, DMSO-d6) δ: 1.73 (s, 30H, C5Me5) and iridium catalyst complex D: 

1
H NMR (500 MHz, DMSO-d6) δ: 1.68 (s, 30H, C5Me5). Ratio of 1.85 ppm complex: 

1.79 ppm complex: 1.73 ppm complex: 1.68 ppm complex = 26:21:8:3. 

For 3 hours at 110 °C, catalyst bound benzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 

7.53-7.13 (m, 5H, CArH), 5.62 (t, J = 10.5 Hz, 1H, NH), 5.54 (t, J = 10.5 Hz, 1H, NH), 4.08 

(t, J = 11.6 Hz, 1H, CBnH), 3.72 (t, J= 11.6 Hz, 1H, CBnH), N-benzylidene benzylamine 

(major isomer),
 1

H NMR (500MHz, DMSO-d6) δ: 8.51 (s, 1H, CimineH), 7.78 (d, 

J = 5.6 Hz, 2H, CArH), 7. 42-7.17 (m, 8H, CArH), 4.78 (s, 2H, CBnH), N-benzylidene 

benzylamine (minor isomer) 
1
H NMR (500MHz, DMSO-d6) δ: 8.32 (s, 1H, CimineH), 7.78 

(d, J = 5.6 Hz, 2H, CArH), 7. 42-7.17 (m, 8H, CArH), 4.78 (s, 2H, CBnH) and free 

benzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.53-7.13 (m, 5H, CArH), 3.72 (s, 2H, 

CBnH) 3.30 (br s, 2H, NH2). Ratio of free benzylamine: catalyst bound benzylamine: 

N-benzylidene benzylamine (major): N-benzylidene benzylamine (minor) = 10:2:2:1. 

Iridium catalyst complex A, 
1
H NMR (500 MHz, DMSO-d6) δ: 1.85 (s, 30H, C5Me3), 

iridium catalyst complex B, 
1
H NMR (500 MHz, DMSO-d6) δ: 1.79 (s, 30H, C5Me5), 

iridium catalyst complex C, 
1
H NMR (500 MHz, DMSO-d6) δ: 1.73 (s, 30H, C5Me5) and 

iridium catalyst complex D, 
1
H NMR (500 MHz, DMSO-d6) δ: 1.68 (s, 30H, C5Me5). Ratio 

of 1.85 ppm complex: 1.79 ppm complex: 1.73 ppm complex: 1.68 ppm complex = 6:6:2:1. 

For 4 hours at 110 °C, catalyst bound benzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 

7.53-7.13 (m, 5H, CArH), 5.62 (t, J = 10.5 Hz, 1H, NH), 5.54 (t, J = 10.5 Hz, 1H, NH), 4.08 

(t, J = 11.6 Hz, 1H, CBnH), 3.72 (t, J= 11.6, 1H, CBnH), N-benzylidene benzylamine (major 

isomer),
 1
H NMR (500MHz, DMSO-d6) δ: 8.51 (s, 1H, CimineH), 7.78 (d, J = 5.6 Hz, 2H, 

CArH), 7. 42-7.17 (m, 8H, CArH), 4.78 (s, 2H, CBnH), N-benzylidene benzylamine (minor 



Chapter 7 Experimental Section 

201 

 

isomer) 
1
H NMR (500MHz, DMSO-d6) δ: 8.32 (s, 1H, CimineH), 7.78 (d, J = 5.6 Hz, 2H, 

CArH), 7. 42-7.17 (m, 8H, CArH), 4.78 (s, 2H, CBnH) and free benzylamine, 
1
H NMR 

(500MHz, DMSO-d6) δ: 7.53-7.13 (m, 5H, CArH), 3.72 (s, 2H, CBnH) 3.30 (br s, 2H, NH2). 

Ratio of free benzylamine: catalyst bound benzylamine: N-benzylidene benzylamine 

(major): N-benzylidene benzylamine (minor) = 7:2:2:1. Iridium catalyst complex A, 

1
H NMR (500 MHz, DMSO-d6) δ: 1.85 (s, 30H, C5Me3), iridium catalyst complex B, 

1
H NMR (500 MHz, DMSO-d6) δ: 1.79 (s, 30H, C5Me5), iridium catalyst complex C, 

1
H NMR (500 MHz, DMSO-d6) δ: 1.73 (s, 30H, C5Me5) and iridium catalyst complex D, 

1
H NMR (500 MHz, DMSO-d6) δ: 1.68 (s, 30H, C5Me5). Ratio of 1.85 ppm complex: 

1.79 ppm complex: 1.73 ppm complex: 1.68 ppm complex = 12:14:5:2. 

For 27 hours at 110 °C, N-benzylidene benzylamine (major isomer),
 1

H NMR (500MHz, 

DMSO-d6) δ: 8.51 (s, 1H, CimineH), 7.78 (d, J = 5.6 Hz, 2H, CArH), 7. 42-7.17 (m, 8H, 

CArH), 4.78 (s, 2H, CBnH) and N-benzylidene benzylamine (minor isomer) 
1
H NMR 

(500MHz, DMSO-d6) δ: 8.32 (s, 1H, CimineH), 7.78 (d, J = 5.6 Hz, 2H, CArH), 7. 42-7.17 

(m, 8H, CArH), 4.78 (s, 2H, CBnH). Ratio of N-benzylidene benzylamine (major): 

N-benzylidene benzylamine (minor) = 3:1. Iridium catalyst complex A, 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.87 (s, 30H, C5Me3), iridium catalyst complex B, 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.82 (s, 30H, C5Me5), iridium catalyst complex C, 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.79 (s, 30H, C5Me5), iridium catalyst complex D, 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.73 (s, 30H, C5Me5), iridium catalyst complex E, 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.68 (s, 30H, C5Me5) and iridium catalyst complex F, 
1
H NMR (500 MHz, 

DMSO-d6) δ: 1.63 (s, 30H, C5Me5). Ratio of 1.87 ppm complex: 1.82 ppm complex: 

1.79 ppm complex: 1.73 ppm complex: 1.68 ppm complex: 1.63 ppm complex = 

6:3:2:5:3:2. 

Entry 3 Synthetic procedure 7.4b was followed. Benzylamine (11.8 μLs, 108 μmols, 

20.0 equiv.), iridium complex 3.1 (6.3 mg, 5.42 μmols, 1.00 equiv.) and toluene-d8 (0.8 mL) 

were used and the temperature of the oil bath was 120 °C. An orange precipitate formed 

upon heating. The reaction was monitored at 0, 0.25, 0.5, 1, 1.5, 2 and 3 hours. Benzylamine 

(3.11) and iridium complexes were observed by 
1
H NMR (Figure 7.14). 
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Figure 7.14 Stacked spectra for benzylamine, 3.11 and iridium catalyst 7.3.6, Entry 3. 

For 0 hours, benzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.18-7.03 (m, 5H. CArH), 

3.54 (s, 2H, CBnH), 0.76 (s, 2H, NH2). Iridium catalyst complex A, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.57 (s, 30H, C5Me5), iridium catalyst complex B, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.52 (s, 30H, C5Me5) and iridium catalyst complex C, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.48 (s, 30H, C5Me5). Ratio of 1.57 ppm complex: 1.52 ppm complex: 

1.47 ppm complex =2:7:46. 

For 0.25 hours, benzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.18-7.03 (m, 5H. CArH), 

3.54 (s, 2H, CBnH), 0.76 (s, 2H, NH2). Iridium catalyst complex A, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.52 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.47 (s, 30H, C5Me5). Ratio of 1.52 ppm complex: 1.47 ppm complex =1:3. 

For 0.5 hours, benzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.18-7.03 (m, 5H. CArH), 

3.54 (s, 2H, CBnH), 0.76 (s, 2H, NH2). Iridium catalyst complex A, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.52 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.47 (s, 30H, C5Me5). Ratio of 1.52 ppm complex: 1.47 ppm complex =2:7. 

3 h 

1 h 

0 h 

0.5 h 

0.25 h 

4 h 

27 h 

2 h 
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For 1 hour, benzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.18-7.03 (m, 5H. CArH), 3.54 

(s, 2H, CBnH), 0.76 (s, 2H, NH2). Iridium catalyst complex A, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.52 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.47 (s, 30H, C5Me5). Ratio of 1.52 ppm complex: 1.47 ppm complex =1:3. 

For 1.5 hours, benzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.18-7.03 (m, 5H. CArH), 

3.54 (s, 2H, CBnH), 0.76 (s, 2H, NH2). Iridium catalyst complex A, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.52 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.47 (s, 30H, C5Me5). Ratio of 1.52 ppm complex: 1.47 ppm complex =1:3. 

For 2 hours, benzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.18-7.03 (m, 5H. CArH), 

3.54 (s, 2H, CBnH), 0.76 (s, 2H, NH2). Iridium catalyst complex A, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.52 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.47(s, 30H, C5Me5). Ratio of 1.52 ppm complex: 1.47 ppm complex =2:7. 

For 3 hours, benzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.18-7.03 (m, 5H. CArH), 

3.54 (s, 2H, CBnH), 0.76 (s, 2H, NH2). Iridium catalyst complex A, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.52 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.47 (s, 30H, C5Me5). Ratio of 1.52 ppm complex: 1.47 ppm complex =1:3. 

For 4 hours, benzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.18-7.03 (m, 5H. CArH), 

3.54 (s, 2H, CBnH), 0.76 (s, 2H, NH2). Iridium catalyst complex A, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.52 (s, 30H, C5Me5), iridium catalyst complex B, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.47 (s, 30H, C5Me5) and iridium catalyst complex C, 
1
H NMR (500MHz, 

toluene-d8) δ: 1.45 (s, 30H, C5Me5). Ratio of 1.52 ppm complex: 1.47 ppm complex: 

1.45 ppm complex =2:6:1. 

Entry 4 Synthetic procedure 7.4b was followed. Dibenzylamine (141 μLs of 0.1 M solution 

in DMSO-d6 and 11 μLs of pure amine, 70.6 μLs, 20 equiv.), iridium complex 3.1a (4.1 mg, 

3.53 μmols, 1 equiv.) and DMSO-d6 were used and the reaction was heated by an oil bath 

(115 °C). The reaction was monitored at 0, 0.25, 0.5, 1, 2, 3, 4.08 hours. Dibenzylamine 

(3.14) and iridium catalyst complexes were observed during 
1
H NMR analysis (Figure 

7.15). 
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Figure 7.15 Stacked spectra for dibenzylamine, 3.14 and iridium catalyst 7.3.6, 

Entry 4. 

For 0.0 equiv. of amine, iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5). 

For 10.0 equiv. of amine, dibenzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.55-7.22 

apparent m, 10H, CArH), 3.59 (s, 4H, CBnH), 2.78 (s, 1H, NH). Iridium catalyst complex 

A, 
1
H NMR (500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5) and iridium catalyst complex B, 

1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5). Ratio of 2.08 ppm complex: 

1.88 ppm complex = 3:21. 

For 0.25 hours, dibenzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.55-7.22 apparent m, 

10H, CArH), 3.59 (s, 4H, CBnH), 3.39 (s, 1H, NH). Iridium catalyst complex A, 
1
H NMR 

(500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5), iridium catalyst complex B, 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and iridium catalyst complex C, 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.81 (s, 30H, C5Me5). Ratio of 2.08 ppm complex: 1.88 ppm 

complex: 1.81 ppm complex = 1:1:6. 

3 h 

1 h 

0 h 

0.5 h 

0.25 h 

4 h 

2 h 
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For 0.5 hours, dibenzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.55-7.22 (apparent m, 

10H, CArH), 3.59 (s, 4H, CBnH), 3.45 (s, 1H, NH). Iridium catalyst complex A, 
1
H NMR 

(500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5), iridium catalyst complex B, 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and iridium catalyst complex C, 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.81 (s, 30H, C5Me5). Ratio of 2.08 ppm complex: 1.88 ppm 

complex: 1.81 ppm complex = 2:1:7. 

For 1 hour, dibenzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.55-7.22 (apparent m, 10H, 

CArH), 3.59 (s, 4H, CBnH), 3.45 (s, 1H, NH). Iridium catalyst complex A, 
1
H NMR 

(500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.81 (s, 30H, C5Me5). Ratio of 2.08 ppm complex: 1.81 ppm 

complex = 1:8. 

For 2 hours, dibenzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.55-7.22 (apparent m, 10H, 

CArH), 3.59 (s, 4H, CBnH), 3.49 (s, 1H, NH). Iridium catalyst complex A, 
1
H NMR 

(500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.81 (s, 30H, C5Me5). Ratio of 2.08 ppm complex: 1.81 ppm 

complex = 1:9. 

For 3 hours, dibenzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.55-7.22 (apparent m, 10H, 

CArH), 3.59 (s, 4H, CBnH), 3.49 (s, 1H, NH). Iridium catalyst complex A, 
1
H NMR 

(500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.81 (s, 30H, C5Me5). Ratio of 2.08 ppm complex: 1.81 ppm 

complex = 1:10. 

For 4 hours, dibenzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.55-7.22 (apparent m, 10H, 

CArH), 3.59 (s, 4H, CBnH), 3.49 (s, 1H, NH). Iridium catalyst complex A, 
1
H NMR 

(500MHz, DMSO-d6) δ: 2.08 (s, 30H, C5Me5) and iridium catalyst complex B, 
1
H NMR 

(500MHz, DMSO-d6) δ: 1.81 (s, 30H, C5Me5). Ratio of 2.08 ppm complex: 1.81 ppm 

complex = 1:12. 

Entry 5 Synthetic procedure 7.4b was followed. Tribenzylamine (176 μLs of 0.1 M solution 

in DMSO-d6 and 19.9 mg of pure amine, 87.8 μmols, 1.0 equiv.), iridium complex 3.1 

(5.1 mg, 4.39 μmols, 1 equiv.) were used and the reaction was heated by an oil bath 

(115 °C). The reaction was monitored at 0, 0.25, 0.5, 1, 2 hours. No reaction was observed 

via 
1
H NMR analysis (Figure 7.16). 
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Figure 7.16 Stacked spectra for tribenzylamine, 3.15 and iridium catalyst 7.3.6, 

Entry 5. 

For 0.0 equiv. of amine, iridium catalyst complex, 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 

(s, 30H, C5Me5). 

For 10.0 equiv. of amine, tribenzylamine: 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 

7.1 Hz, 6H, CArH), 7.34 (t, J = 7.2 Hz, 6H, CArH), 7.24 (t, J = 7.3 Hz, 3H, CArH), 3.50 

(s, 6H, CBnH). Iridium catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 

30H, C5Me5); iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.75 (s, 

30H, C5Me5) and iridium catalyst complex C: 
1
H NMR (500MHz, DMSO-d6) δ: 1.62 (s, 

30H, C5Me5). Ratio of 1.88 ppm complex: 1.75 ppm complex: 1.62 ppm complex = 25:4:1. 

For 0.25 hours, tribenzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 7.1 Hz, 6H, 

CArH), 7.34 (t, J = 7.2 Hz, 6H, CArH), 7.24 (t, J = 7.3 Hz, 3H, CArH), 3.50 (s, 6H, CBnH). 

Iridium catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and 

iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.75 (s, 30H, C5Me5). Ratio 

of 1.88 ppm complex: 1.75 ppm complex = 4:1. 

1 h 

0 h 

0.5 h 

0.25 h 

2 h 
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For 0.5 hours, tribenzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 7.1 Hz, 6H, 

CArH), 7.34 (t, J = 7.2 Hz, 6H, CArH), 7.24 (t, J = 7.3 Hz, 3H, CArH), 3.50 (s, 6H, CBnH). 

Iridium catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and 

iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.75 (s, 30H, C5Me5). Ratio 

of 1.88 ppm complex: 1.75 ppm complex = 4:1. 

For 1 hour, tribenzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 7.1 Hz, 6H, 

CArH), 7.34 (t, J = 7.2 Hz, 6H, CArH), 7.24 (t, J = 7.3 Hz, 3H, CArH), 3.50 (s, 6H, CBnH). 

Iridium catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and 

iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.75 (s, 30H, C5Me5). Ratio 

of 1.88 ppm complex: 1.75 ppm complex = 4:1. 

For 2 hours, tribenzylamine, 
1
H NMR (500MHz, DMSO-d6) δ: 7.39 (d, J = 7.1 Hz, 6H, 

CArH), 7.34 (t, J = 7.2 Hz, 6H, CArH), 7.24 (t, J = 7.3 Hz, 3H, CArH), 3.50 (s, 6H, CBnH). 

Iridium catalyst complex A: 
1
H NMR (500MHz, DMSO-d6) δ: 1.88 (s, 30H, C5Me5) and 

iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.75 (s, 30H, C5Me5). Ratio 

of 1.88 ppm complex: 1.75 ppm complex = 4:1. 

Entry 6 Synthetic procedure 7.4b was followed. 4-Bromobenzylamine (21.4 mg, 115 

μmols, 20 equiv.), iridium complex 3.1 (6.7 mg, 5.76 μmols, 1.00 equiv.) and toluene-d8 

(0.8 mL) were used and the reaction was heated by an oil bath (120 °C). The reaction was 

monitored at 0, 0.25, 0.5, 1, 1.5 2 and 3 hours. The formation of a yellow precipitate was 

observed (Figure 7.17).  
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Figure 7.17 Stacked spectra for 4-bromobenzylamine, 3.7 and iridium catalyst 7.3.6, 

Entry 6. 

For 0 hours, 4-bromobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.22 (d, J = 8.3 Hz, 

2H. CArH), 6.77 (d, J = 8.3 Hz, 2H, CArH), 3.33 (s, 2H, CBnH), 0.67 (s, 2H, NH2). Iridium 

catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.83 (s, 30H, C5Me5), Iridium 

catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 1.58 (s, 30H, C5Me5), Iridium 

catalyst complex C: 
1
H NMR (500MHz, toluene-d8) δ: 1.52 (s, 30H, C5Me5), Iridium 

catalyst complex D: 
1
H NMR (500MHz, toluene-d8) δ: 1.47 (s, 30H, C5Me5) and iridium 

catalyst complex E: 
1
H NMR (500MHz, toluene-d8) δ: 1.34 (s, 30H, C5Me5). Ratio of 

1.83 ppm complex: 1.58 ppm complex: 1.52 ppm complex: 1.47 ppm complex: 1.34 ppm 

complex = 2:2:1:5:3. 

For 0.25 hours, 4-bromobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.22 (d, J = 8.3 

Hz, 2H. CArH), 6.77 (d, J = 8.3 Hz, 2H, CArH), 3.33 (s, 2H, CBnH), 0.67 (s, 2H, NH2). 

Iridium catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.83 (s, 30H, C5Me5), 

Iridium catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 1.58 (s, 30H, C5Me5), 

Iridium catalyst complex C: 
1
H NMR (500MHz, toluene-d8) δ: 1.52 (s, 30H, C5Me5), 

Iridium catalyst complex D: 
1
H NMR (500MHz, toluene-d8) δ: 1.47 (s, 30H, C5Me5) and 

iridium catalyst complex E: 
1
H NMR (500MHz, toluene-d8) δ: 1.34 (s, 30H, C5Me5). Ratio 

1.5 h 

1 h 

0 h 

30 h 

0.25 h 

2 h 

3 h 



Chapter 7 Experimental Section 

209 

 

of 1.83 ppm complex: 1.58 ppm complex: 1.52 ppm complex: 1.47 ppm complex: 1.34 ppm 

complex = 2:2:1:5:3. 

For 0.5 hours, 4-bromobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.22 (d, J = 8.3 Hz, 

2H. CArH), 6.77 (d, J = 8.3 Hz, 2H, CArH), 3.33 (s, 2H, CBnH), 0.67 (s, 2H, NH2). Iridium 

catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.83 (s, 30H, C5Me5), Iridium 

catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 1.58 (s, 30H, C5Me5), Iridium 

catalyst complex C: 
1
H NMR (500MHz, toluene-d8) δ: 1.52 (s, 30H, C5Me5), Iridium 

catalyst complex D: 
1
H NMR (500MHz, toluene-d8) δ: 1.47 (s, 30H, C5Me5) and iridium 

catalyst complex E: 
1
H NMR (500MHz, toluene-d8) δ: 1.34 (s, 30H, C5Me5). Ratio of 

1.83 ppm complex: 1.58 ppm complex: 1.52 ppm complex: 1.47 ppm complex: 1.34 ppm 

complex = 2:1:1:5:3. 

For 1 hour, 4-bromobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.22 (d, J = 8.3 Hz, 

2H. CArH), 6.77 (d, J = 8.3 Hz, 2H, CArH), 3.33 (s, 2H, CBnH), 0.67 (s, 2H, NH2). Iridium 

catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.83 (s, 30H, C5Me5), Iridium 

catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 1.58 (s, 30H, C5Me5), Iridium 

catalyst complex C: 
1
H NMR (500MHz, toluene-d8) δ: 1.52 (s, 30H, C5Me5), Iridium 

catalyst complex D: 
1
H NMR (500MHz, toluene-d8) δ: 1.47 (s, 30H, C5Me5) and iridium 

catalyst complex E: 
1
H NMR (500MHz, toluene-d8) δ: 1.34 (s, 30H, C5Me5). Ratio of 

1.83 ppm complex: 1.58 ppm complex: 1.52 ppm complex: 1.47 ppm complex: 1.34 ppm 

complex = 1:1:1:5:2. 

For 1.5 hours, 4-bromobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.22 (d, J = 8.3 Hz, 

2H. CArH), 6.77 (d, J = 8.3 Hz, 2H, CArH), 3.33 (s, 2H, CBnH), 0.67 (s, 2H, NH2). Iridium 

catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.83 (s, 30H, C5Me5), Iridium 

catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 1.58 (s, 30H, C5Me5), Iridium 

catalyst complex C: 
1
H NMR (500MHz, toluene-d8) δ: 1.53 (s, 30H, C5Me5), Iridium 

catalyst complex D: 
1
H NMR (500MHz, toluene-d8) δ: 1.48 (s, 30H, C5Me5) and iridium 

catalyst complex E: 
1
H NMR (500MHz, toluene-d8) δ: 1.34 (s, 30H, C5Me5). Ratio of 

1.83 ppm complex: 1.58 ppm complex: 1.53 ppm complex: 1.48 ppm complex: 1.34 ppm 

complex = 1:1:1:4:2. 

For 2 hours, 4-bromobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.22 (d, J = 8.3 Hz, 

2H. CArH), 6.77 (d, J = 8.3 Hz, 2H, CArH), 3.33 (s, 2H, CBnH), 0.67 (s, 2H, NH2). Iridium 

catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.83 (s, 30H, C5Me5), Iridium 

catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 1.58 (s, 30H, C5Me5), Iridium 
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catalyst complex C: 
1
H NMR (500MHz, toluene-d8) δ: 1.52 (s, 30H, C5Me5), Iridium 

catalyst complex D: 
1
H NMR (500MHz, toluene-d8) δ: 1.47 (s, 30H, C5Me5) and iridium 

catalyst complex E: 
1
H NMR (500MHz, toluene-d8) δ: 1.34 (s, 30H, C5Me5). Ratio of 

1.83 ppm complex: 1.58 ppm complex: 1.52 ppm complex: 1.47 ppm complex: 1.34 ppm 

complex = 1:1:1:5:2. 

For 3 hours, 4-bromobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ 7.22 (d, J = 8.3 Hz, 

2H. CArH), 6.77 (d, J = 8.3 Hz, 2H, CArH), 3.33 (s, 2H, CBnH), 0.67 (s, 2H, NH2). Iridium 

catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.83 (s, 30H, C5Me5), Iridium 

catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 1.58 (s, 30H, C5Me5), Iridium 

catalyst complex C: 
1
H NMR (500MHz, toluene-d8) δ: 1.52 (s, 30H, C5Me5), Iridium 

catalyst complex D: 
1
H NMR (500MHz, toluene-d8) δ: 1.50 (s, 30H, C5Me5), Iridium 

catalyst complex E: 
1
H NMR (500MHz, toluene-d8) δ: 1.47 (s, 30H, C5Me5) and iridium 

catalyst complex F: 
1
H NMR (500MHz, toluene-d8) δ: 1.34 (s, 30H, C5Me5). Ratio of 

1.83 ppm complex: 1.58 ppm complex: 1.52 ppm complex: 1.50 ppm complex: 1.47 ppm 

complex: 1.34 ppm complex = 2:2:2:1:8:3. 

Entry 7 Synthetic procedure 7.4b was followed. 4-Methoxybenzylamine (15.0 μLs, 

113 μmols, 20 equiv.), iridium complex 3.1 (6.6 mg, 5.67 μmols, 1.00 equiv.) and toluene-

d8 (0.8 mL) were used and the reaction was heated by an oil bath (120 °C). The reaction was 

monitored at 0, 0.25, 0.5, 1, 1.5, 2 and 3 hours. The formation of a yellow precipitate was 

observed, 4-methoxybenzylamine (3.8) and iridium complexes were observed by 
1
H NMR 

analysis.  
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Figure 7.18 Stacked spectra for 4-methoxybenzylamine, 3.8 and iridium catalyst 7.3.6, 

Entry 7. 

For 0 hours, 4-methoxybenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 

8.7 Hz, 2H, CArH), 6.74 (d, J = 8.6 Hz, 2H, CArH), 3.51 (s, 2H, CBnH), 3.36 (s, 3H, 

OCH3), 0.85 (s, 2H, NH2). Iridium catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 

1.59 (s, 30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, toluene-d6) δ: 

1.53 (s, 30H, C5Me5). Ratio of 1.59 ppm complex: 1.53 ppm complex = 1:7. 

For 0.25 hours, 4-methoxybenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 

8.7 Hz, 2H, CArH), 6.74 (d, J = 8.6 Hz, 2H, CArH), 3.51 (s, 2H, CBnH), 3.36 (s, 3H, 

OCH3), 0.85 (s, 2H, NH2). Iridium catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 

1.60 (s, 30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 

1.53 (s, 30H, C5Me5). Ratio of 1.59 ppm complex: 1.53 ppm complex = 1:7. 

For 0.5 hours, 4-methoxybenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 

8.7 Hz, 2H, CArH), 6.74 (d, J = 8.6 Hz, 2H, CArH), 3.52 (s, 2H, CBnH), 3.36 (s, 3H, 

OCH3), 0.85 (s, 2H, NH2). 4-methoxybenzylamine species, 
1
H NMR (500 MHz, toluene-d8) 

δ: 7.19 (d, J = 8.7 Hz, 2H), 6.79 – 6.76 (m, 2H), 3.59 (s, 2H), 3.37 (s, 3H). Ratio of protons 

at 3.59 ppm: protons at 3.52 ppm = 1:17. Iridium catalyst complex A: 
1
H NMR (500MHz, 

1.5 h 

1 h 

0 h 

0.5 h 

0.25 h 

2 h 

3 h 
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toluene-d8) δ: 1.60 (s, 30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, 

toluene-d8) δ: 1.53 (s, 30H, C5Me5). Ratio of 1.59 ppm complex: 1.53 ppm complex = 1:7. 

For 1 hour, 4-methoxybenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 8.7 Hz, 

2H, CArH), 6.74 (d, J = 8.6 Hz, 2H, CArH), 3.52 (s, 2H, CBnH), 3.36 (s, 3H, OCH3), 0.85 

(s, 2H, NH2), 4-methoxybenzylamine species, 
1
H NMR (500 MHz, toluene-d8) δ: 7.19 (d, 

J = 8.7 Hz, 2H, CArH), 6.79-6.76 (m, 2H, CArH), 3.59 (s, 2H, CBnH), 3.37 (s, 3H, OCH3). 

Ratio of protons at 3.59 ppm: protons at 3.52 ppm = 1:6. Iridium catalyst complex A: 
1
H 

NMR (500 MHz, toluene-d8) δ: 1.62 (s, 30H, C5Me5), iridium catalyst complex B: 
1
H NMR 

(500 MHz, toluene-d8) δ: 1.59 (s, 30H, C5Me5) and iridium catalyst complex C: 
1
H NMR 

(500 MHz, toluene-d8) δ: 1.54 (s, 30H, C5Me5). Ratio of 1.62 ppm complex: 1.59 ppm 

complex: 1.53 ppm complex = 1:1:5. 

For 1.5 hours, 4-methoxybenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 

8.7 Hz, 2H, CArH), 6.74 (d, J = 8.6 Hz, 2H, CArH), 3.52 (s, 2H, CBnH), 3.36 (s, 3H, 

OCH3), 0.85 (s, 2H, NH2), 4-methoxybenzylamine species, 
1
H NMR (500 MHz, toluene-d8) 

δ: 7.19 (d, J = 8.7 Hz, 2H, CArH), 6.79-6.76 (m, 2H, CArH), 3.59 (s, 2H, CBnH), 3.37 (s, 

3H, OCH3). Ratio of protons at 3.59 ppm: protons at 3.52 ppm = 1:4. Iridium catalyst 

complex A: 
1
H NMR (500 MHz, toluene-d8) δ: 1.62 (s, 30H, C5Me5), iridium catalyst 

complex B: 
1
H NMR (500 MHz, toluene-d8) δ: 1.60 (s, 30H, C5Me5) and iridium catalyst 

complex C: 
1
H NMR (500 MHz, toluene-d8) δ: 1.54 (s, 30H, C5Me5). Ratio of 1.62 ppm 

complex: 1.60 ppm complex: 1.53 ppm complex = 2:3:8. 

For 2 hours, 4-methoxybenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 8.7 

Hz, 2H, CArH), 6.74 (d, J = 8.6 Hz, 2H, CArH), 3.53 (s, 2H, CBnH), 3.36 (s, 3H, OCH3), 

0.85 (s, 2H, NH2), 4-methoxybenzylamine species, 
1
H NMR (500 MHz, toluene-d8) δ: 7.19 

(d, J = 8.7 Hz, 2H, CArH), 6.79-6.76 (m, 2H, CArH), 3.59 (s, 2H, CBnH), 3.37 (s, 3H, 

OCH3). Ratio of protons at 3.59 ppm: protons at 3.51 ppm = 2:5. Iridium catalyst complex 

A: 
1
H NMR (500MHz, toluene-d8) δ: 1.61 (s, 30H, C5Me5) and iridium catalyst complex B: 

1
H NMR (500MHz, toluene-d8) δ: 1.54 (s, 30H, C5Me5). Ratio of 1.61 ppm complex: 1.53 

ppm complex = 1:1. 

For 3 hours, 4-methoxybenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 8.7 

Hz, 2H, CArH), 6.74 (d, J = 8.6 Hz, 2H, CArH), 3.51 (s, 2H, CBnH), 3.36 (s, 3H, OCH3), 

0.85 (s, 2H, NH2), 4-methoxybenzylamine species, 
1
H NMR (500 MHz, toluene-d8) δ: 7.19 

(d, J = 8.7 Hz, 2H, CArH), 6.79-6.76 (m, 2H, CArH), 3.59 (s, 2H, CBnH), 3.37 (s, 3H, 

OCH3). Ratio of protons at 3.59 ppm: protons at 3.51 ppm = 2:3. Iridium catalyst complex 
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A: 
1
H NMR (500MHz, toluene-d8) δ: 1.67 (s, 30H, C5Me5), iridium catalyst complex B: 

1
H NMR (500MHz, toluene-d8) δ: 1.64 (s, 30H, C5Me5), iridium catalyst complex C: 

1
H NMR (500MHz, toluene-d8) δ: 1.62 (s, 30H, C5Me5) and iridium catalyst complex D: 

1
H NMR (500MHz, toluene-d8) δ: 1.54 (s, 30H, C5Me5). Ratio of 1.67 ppm complex: 

1.64 ppm complex: 1.612 ppm complex: 1.54 ppm complex = 1:5:1:5. 

Entry 8 Synthetic procedure 7.4b was followed. 4-Methylbenzylamine 

(14.0 μLs, 112 μmols, 20 equiv.), iridium complex 3.1 (6.5 mg, 5.59 μmols, 

1.00 equiv.) and toluene-d8 (0.8 mL) were used and the reaction was heated 

by an oil bath (120 °C). The reaction was monitored at 0, 0.25, 0.5, 1, 1.5, 2, 

3 hours. The formation of an orange precipitate was observed, the reaction was filtered and 

the crystals washed with petrol (Figure 7.19). Recrystallisation from dichloromethane gave 

catalyst bound amine 3.19 (13 mg, 18.5 µmols, >99%) as orange crystals. IR (solid): ν = 

3265, 3176, 3102, 2915, 1909, 1802, 1638 cm
−1

.  

 

Figure 7.19 Stacked spectra for 4-methylbenzylamine, 3.27 and iridium catalyst 7.3.6, 

Entry 8. 

For 0 hours, 4-methylbenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 7.8 Hz, 

2H, CArH), 6.97 (d, J = 8.1 Hz, 2H, CArH), 3.55 (s, 2H, CBnH), 2.15 (s, 3H, CH3), 0.79 (s, 

1.5 h 

1 h 

0 h 

0.5 h 

0.25 h 

2 h 

3 h 
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2H, NH2). Iridium catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.53 (s, 

30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.48 (s, 

30H, C5Me5). Ratio of 1.53 ppm complex: 1.48 ppm complex = 2:5. 

For 0.25 hours, 4-methylbenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 

7.8 Hz, 2H, CArH), 6.97 (d, J = 8.1 Hz, 2H, CArH), 3.55 (s, 2H, CBnH), 2.15 (s, 3H, CH3), 

0.79 (s, 2H, NH2). Iridium catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.53 (s, 

30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 1.48 (s, 

30H, C5Me5). Ratio of 1.53 ppm complex: 1.48 ppm complex = 2:5. 

For 0.5 hours, 4-methylbenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 7.8 

Hz, 2H, CArH), 6.97 (d, J = 8.1 Hz, 2H, CArH), 3.55 (s, 2H, CBnH), 2.15 (s, 3H, CH3), 0.79 

(s, 2H, NH2). Iridium catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.53 (s, 

30H, C5Me5) and iridium catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 1.48 (s, 

30H, C5Me5). Ratio of 1.53 ppm complex: 1.48 ppm complex = 2:5. 

For 1 hour, 4-methylbenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 7.8 Hz, 

2H, CArH), 6.97 (d, J = 8.1 Hz, 2H, CArH), 3.55 (s, 2H, CBnH), 2.15 (s, 3H, CH3), 0.79 (s, 

2H, NH2). Iridium catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.53 (s, 

30H, C5Me5), iridium catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 1.50 (s, 

30H, C5Me5) and iridium catalyst complex C: 
1
H NMR (500MHz, toluene-d8) δ: 1.48 (s, 

30H, C5Me5). Ratio of 1.53 ppm complex: 1.50 ppm complex: 1.48 ppm complex = 5:1:10. 

For 1.5 hours, 4-methylbenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 7.8 

Hz, 2H, CArH), 6.97 (d, J = 8.1 Hz, 2H, CArH), 3.55 (s, 2H, CBnH), 2.15 (s, 3H, CH3), 0.79 

(s, 2H, NH2). Iridium catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.55 (s, 

30H, C5Me5), iridium catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 1.51 (s, 

30H, C5Me5) and iridium catalyst complex C: 
1
H NMR (500MHz, toluene-d8) δ: 1.49 (s, 

30H, C5Me5). Ratio of 1.53 ppm complex: 1.50 ppm complex: 1.48 ppm complex = 4:1:5. 

For 2 hours, 4-methylbenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 7.8 Hz, 

2H, CArH), 6.97 (d, J = 8.1 Hz, 2H, CArH), 3.55 (s, 2H, CBnH), 2.15 (s, 3H, CH3), 0.79 (s, 

2H, NH2). Iridium catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.55 (s, 

30H, C5Me5), iridium catalyst complex B: 
1
H NMR (500MHz, toluene-d8) δ: 1.51 (s, 

30H, C5Me5) and iridium catalyst complex C: 
1
H NMR (500MHz, toluene-d8) δ: 1.49 (s, 

30H, C5Me5). Ratio of 1.53 ppm complex: 1.50 ppm complex: 1.48 ppm complex = 3:1:5. 
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For 3 hours, 4-methylbenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.05 (d, J = 7.8 Hz, 

2H, CArH), 6.97 (d, J = 8.1 Hz, 2H, CArH), 3.55 (s, 2H, CBnH), 2.15 (s, 3H, CH3), 0.79 (s, 

2H, NH2). 4-methylbenzylamine species, 
1
H NMR (500 MHz, toluene-d8) δ: 7.19 (d, J = 

7.9 Hz, 2H, CArH), 6.93 (d, J = 10.4 Hz, 2H, CArH), 3.60 (s, 2H, CBnH), 2.16 (s, 3H, CH3). 

Ratio of protons at 3.60: protons at 3.55 = 1:8. Iridium catalyst complex A: 
1
H NMR 

(500MHz, toluene-d8) δ: 1.55 (s, 30H, C5Me5), iridium catalyst complex B: 
1
H NMR 

(500MHz, toluene-d8) δ: 1.51 (s, 30H, C5Me5) and iridium catalyst complex C: 
1
H NMR 

(500MHz, toluene-d8) δ: 1.49 (s, 30H, C5Me5). Ratio of 1.53 ppm complex: 1.50 ppm 

complex: 1.48 ppm complex = 3:1:6. 

Crystalallographic data of diiodopentamethylcyclopentadienyl-4-methyl-benzylamine-

iridium(III) (3.19). 

Orange block shaped crystals of 3.19 were grown by slow evaporation of a dichloromethane 

solution. An orange block crystal of approximate size 0.2 x 0.04 x 0.03 mm. θ range = 

5.82 ≤ θ ≤ 52.74 °. Formula = C18H26I2IrN; formula weight = 702.40; Crystals belong to 

monoclinic, P21/n space group, with one molecule in the asymmetric unit; a = 11.0247 (3) 

Å, b = 13.5771 (4) Å, c = 13.5644 (4) Å, α = 90.00 °, β = 95.194 (3) °, γ = 90.00 °, Volume 

= 2022.03 (11) Å
3
, Z = 4, Density (calculated): 2.307 mg mm

-3
, µ = 9.654 mm

-1
, Reflections 

collected 19644; Independent reflections 4127 [R(int) = 0.0578]; R value = 0.0260, wR2 = 

0.0523. 

 Entry 9 Synthetic procedure 7.4b was followed. 4-Chlorobenzylamine (14.0 μLs, 

113 μmols, 20 equiv.), iridium complex 3.1 (6.6 mg, 5.67 μmols, 1.00 equiv.) and toluene-

d8 (0.8 mL) were used and the reaction was heated by an oil bath (120 °C). The reaction was 

monitored at 0, 0.25, 0.5, 1, 1.5, 2 and 3 hours. The formation of an orange precipitate was 

observed. 4-Chlorobenzylamine (3.26) and iridium complex were observed by 
1
H NMR 

analysis (Figure 7.20). 
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Figure 7.20 Stacked spectra for 4-chlorobenzylamine, 3.26 and iridium catalyst 7.3.6, 

Entry 9. 

For 0 hours, 4-chlorobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.07 (d, J = 8.3 Hz, 

2H, CArH), 6.83 (d, J = 8.4 Hz, 2H, CArH), 3.35 (s, 2H, CBnH), 0.66 (s, 2H, NH2). Iridium 

catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.50 (s, 30H, C5Me5) and iridium 

catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.44 (s, 30H, C5Me5). Ratio of 

1.50 ppm complex: 1.44 ppm complex = 2:3. 

For 0.25 hours, 4-chlorobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.07 (d, J = 

8.3 Hz, 2H, CArH), 6.83 (d, J = 8.4 Hz, 2H, CArH), 3.35 (s, 2H, CBnH), 0.66 (s, 2H, NH2). 

Iridium catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.50 (s, 30H, C5Me5) and 

iridium catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.44 (s, 30H, C5Me5). Ratio 

of 1.50 ppm complex: 1.44 ppm complex = 2:3. 

For 0.5 hours, 4-chlorobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.07 (d, J = 8.3 Hz, 

2H, CArH), 6.83 (d, J = 8.4 Hz, 2H, CArH), 3.35 (s, 2H, CBnH), 0.66 (s, 2H, NH2). Iridium 

catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.50 (s, 30H, C5Me5) and iridium 

catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.44 (s, 30H, C5Me5). Ratio of 

1.50 ppm complex: 1.44 ppm complex = 2:3. 

1.5 h 
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For 1 hour, 4-chlorobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.07 (d, J = 8.3 Hz, 

2H, CArH), 6.83 (d, J = 8.4 Hz, 2H, CArH), 3.35 (s, 2H, CBnH), 0.66 (s, 2H, NH2). Iridium 

catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.50 (s, 30H, C5Me5) and iridium 

catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.44 (s, 30H, C5Me5). Ratio of 

1.50 ppm complex: 1.44 ppm complex = 1:1. 

For 1.5 hours, 4-chlorobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.07 (d, J = 8.3 Hz, 

2H, CArH), 6.83 (d, J = 8.4 Hz, 2H, CArH), 3.35 (s, 2H, CBnH), 0.66 (s, 2H, NH2). Iridium 

catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.50 (s, 30H, C5Me5) and iridium 

catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.44 (s, 30H, C5Me5). Ratio of 

1.50 ppm complex: 1.44 ppm complex = 1:1. 

For 2 hours, 4-chlorobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.07 (d, J = 8.3 Hz, 

2H, CArH), 6.83 (d, J = 8.4 Hz, 2H, CArH), 3.35 (s, 2H, CBnH), 0.66 (s, 2H, NH2). Iridium 

catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.50 (s, 30H, C5Me5) and iridium 

catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.44 (s, 30H, C5Me5). Ratio of 

1.50 ppm complex: 1.44 ppm complex = 1:1.  

For 3 hours, 4-chlorobenzylamine, 
1
H NMR (500 MHz, toluene-d8) δ: 7.07 (d, J = 8.3 Hz, 

2H, CArH), 6.83 (d, J = 8.4 Hz, 2H, CArH), 3.35 (s, 2H, CBnH), 0.66 (s, 2H, NH2). Iridium 

catalyst complex A: 
1
H NMR (500MHz, toluene-d8) δ: 1.50 (s, 30H, C5Me5) and iridium 

catalyst complex B: 
1
H NMR (500MHz, DMSO-d6) δ: 1.44 (s, 30H, C5Me5). Ratio of 

1.50 ppm complex: 1.44 ppm complex = 1:1. 

7.4 Experiments discussed in Chapter 4 

7.4.1 Synthesis of 3-methyl-2-iodo-aniline
195

 

 

2-Iodo-4-methylaniline was synthesised following the procedure of Patel and co-workers,
195

 

with slight modifications. 4-Methylaniline (1.01 g, 9.44 mmols, 1.0 equiv.) was dissolved in 

dichloromethane (12 mL). Iodine (2.63 g, 20.9 mmols, 2.21 equiv.) and water (2 mL) were 

added to the solution. The resulting biphasic mixture was cooled to 0 °C and sodium 
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bicarbonate (8.72 g, 103 mmols, 10.9 equiv) was added. The biphasic mixture was stirred 

for 18 hours and then poured into dichloromethane (100 mL) and water (100 mL), the layers 

separated and the organics extracted with dichloromethane (2 x 100 mL). The combined 

organics were dried (sodium sulfate), filtered and the solvent removed in vacuo to give a 

brown oil as crude. Purification via column chromatography eluting with petroleum ether̶—

ethyl acetate (SiO2, gradient elution, 1:0 to 0:1) gave the title compound (1.52 g, 6.52 

mmols, 69%) as a black oil. The product was used without further purification. 
1
H NMR 

(500 MHz, 298 K, CDCl3): 7.52-7.42 (apparent m, 1H), 6.97 (dd, J = 7.8, 1.6 Hz), 6.74 (d, J 

= 8.1 Hz), 4.60 (s, 2H), 2.22 (s, 3H). LC-MS, 1.90 min (m/z = 234, 100%). 

7.4.2 Synthesis of 3- or 4-substituted N-(methylsulfonyl)-2-iodo-

anilines
 

General Procedure 7.3a 

The method of Sakamoto
140

 was followed with minor modifications for the synthesis of 3- 

or 4-substituted N-(methansulfonyl)-2-iodo-anilines, as described briefly below: 

 

Methane sulfonyl chloride (1.5 equiv.) was added to a solution of the substituted 

2-iodo-aniline (1.00 equiv.) in pyridine and stirred at room temperature for one day. The 

solvent was removed in vacuo to give a black or brown residue as crude. The crude product 

was dissolved in dichloromethane and washed sequentially with hydrochloric acid solution 

(aqueous, 1M), brine and sodium hydrogen carbonate (saturated, aqueous, 0.96M). The 

combined organics were dried over magnesium sulfate, filtered and the solvent removed 

in vacuo to give a brown solid as crude. Recrystalisation from the relevant solvent gave the 

product. 
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7.4.2.1 N-(Methylsulfonyl)-2-iodo-aniline
196

 

N-(Methylsulfonyl)-2-iodo-aniline was synthesised using general procedure 

7.2a with slight modifications. Methanesulfonyl chloride (3.50 mL, 

45.0 mmols), 2-iodoaniline (6.54 g, 29.7 mmols) in pyridine (40 mL) were 

used. The black residue was dissolved in dichloromethane (40 mL) and the 

organics were washed with hydrochloric acid solution (3M, aqueous, 3 x 30 mL), brine 

(30 mL) and saturated aqueous sodium hydrogen carbonate (30 mL). The combined 

organics were dried (magnesium sulfate), filtered and the solvent removed in vacuo to give 

a brown solid as crude. The solid was recrystallised from dichloromethane–iso-hexane to 

give N-(methylsulfonyl)-2-iodo-aniline
141, 196 

(6.88 g, 23.2 mmols, 78%) as light brown rods. 

The product was used without further purification. m.p. (dichloromethane–iso-hexane) 

92-95 °C (lit. 94-96 °C). 
1
H NMR (500 MHz, 298 K, CDCl3): δ = 7.83 (dd, J = 8.0, 1.3 Hz, 

1H, C4H); 7.65 (dd, J = 8.2, 1.5 Hz, 1H, C1H); 7.42-7.35 (m, 1H, C2H); 6.94 (td, J = 7.9, 

1.5 Hz, 1H, NH); 3.19 (s, 3H, SO2CH3). 
13

C NMR (75 MHz, 298 K, CDCl3): δ = 139.5 

(C4), 137.6 (CN), 130.0 (C2), 127.3 (C3), 122.5 (C1), 92.1 (CI), 40.2 (SO2CH3). ESI-MS 

(ES+ mode): m/z = 319 [MNa
+
, 100%]. HRMS (ES+ mode): m/z = 319.9212 [MNa

+
, 

100%]; calculated for C7H8INNaO2S [MNa
+
]: m/z = 319.9213. IR (solid) ν = 3275, 1583 

cm
-1

. 

7.4.2.2 N-(Methylsulfonyl)-2-iodo-5-chloro-aniline 

N-(Methylsulfonyl)-2-iodo-5-chloro-aniline was synthesised using the 

general procedure 7.2a with slight modifications. Methansulfonyl chloride 

(700 μL, 9.04 mmols, 1.14 equiv.), 2-iodo-5-chloro-aniline (2.00 g, 

7.91 mmols), pyridine (1 mL) and dichloromethane (15 mL) were used and 

stirred for one day. The crude reaction mixture was poured into dichloromethane (100 mL), 

the organics were washed with hydrochloric acid solution (1M, aqueous 150 mL) and then 

re-extracted with dichloromethane (2 x 100 mL). The combined organics were dried 

(magnesium sulfate), filtered and the solvent removed in vacuo to give a brown solid as 

crude. The crude product was recrystallised from iso-propanol to give N-(methylsulfonyl)-2-

iodo-5-chloro-aniline (2.11 g, 6.36 mmols, 81%) as discoloured crystalline rods. The 

product was used without further purification. m.p. (isopropanol) 150-152 ºC. 
1
H NMR 

(500 MHz, 298 K, CDCl3) δ: 7.73 (d, J = 8.5 Hz, 1H, C1H), 7.66 (d, J = 2.4 Hz, 1H, C3H), 

6.94 (dd, J = 8.5, 2.4 Hz, 1H, C2H), 6.65 (br s, 1H, NH), 3.05 (s, 3H, SO2CH3). 
13

C NMR 

(75 MHz, 298 K, CDCl3): δ = 140.0 (C2), 138.8 (C1), 136.1 (C3), 127.2 (C4) 121.6 (C5), 

94.9 (C6), 40.4 (SO2C). ESI-MS (ES- mode): m/z = 330 [M-H
-
, 100%]. HRMS (ES+ 
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mode): m/z = 353.8826 [MNa
+
, 100%]; calculated for C7H7ClINNaO2S [MNa

+
]: m/z = 

353.8828. IR (solid) ν = 3286, 2806, 2593, 1574 cm
-1

. 

7.4.2.3 N-(Methylsulfonyl)-2-iodo-4-methyl-aniline 

N-(Methylsulfonyl)-2-iodo-4-methyl-aniline was synthesised using the 

general procedure 7.2a with slight modifications. Methanesulfonyl chloride 

(7 mL, 90.4 mmols) added over 20 mins, crude 2-iodo-4-methyl-aniline 

(22.3 g, 95.8 mmols), pyridine (11.5 mL) and dichloromethane (200 mL) 

were used and were stirred for two hours. The resulting black viscous oil was dissolved in 

dichloromethane (1.00 L) and the organics were washed with hydrochloric acid solution 

(2M, aqueous 500 mL), sodium hydrogen carbonate (saturated aqueous, 500 mL). The 

combined organics were dried (magnesium sulfate), filtered and the solvent removed in 

vacuo to give a brown solid as crude. The solid was recrystallised from isopropanol to give 

N-(methylsulfonyl)-2-iodo-4-methyl-aniline (18.2 g, 58.5 mmols, 61%) as light brown 

crystalline rods. The product was used without further purification. m.p. (isopropanol) 

105-108 ºC. 
1
H NMR (500 MHz, 298 K, CDCl3) δ: 7.65 (s, 1H, C2H), 7.49 (d, J = 8.2 Hz, 

1H, C5H), 7.17 (d, J = 8.2 Hz, 1H, C3H), 6.62 (s, 1H, NHSO2), 2.98 (s, 3H, CH3SO2), 2.30 

(s, 3H, CH3C4). 
13

C NMR (75 MHz, 298 K, CDCl3): δ = 140.4 (C4), 139.7, (C1), 139.5 

(C2), 130.5 (C3), 122.8 (C5), 92.7 (C6), 39.7 (SO2CH3), 20.0 (CH3C4). ESI-MS 

(ES+ mode): m/z = 334 [MNa
+
, 100%]. HRMS (ES+ mode): m/z = 333.9380 [MNa

+
, 

100%]; calculated for C8H10INNaO2S [MNa
+
]: m/z = 333.9375. IR (solid): ν = 3252, 3026, 

2934, 1484 cm
-1

. 

7.4.3 The synthesis of substituted (N-mesyl-(1H-indol-2-yl)) 

ethanols 

General Procedure 7.3b 

The Sakamoto
140

 method was followed with minor modifications for the synthesis of 4-, 5- 

or non-substituted-(1H-indol-2-yl) ethanols, as described briefly below: 
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3-Butyn-1-ol (1.-1.83 equiv.) was added to a suspension of N-(methanesulfonyl)-2-iodo-

aniline (1 equiv.), bis-(triphenylphosphine)palladium(II) chloride (2 mol%) and copper(I) 

iodide (2 mol%) in triethyl amine and N,N-dimethyl formamide which was heated to 80 °C 

for 1 day. The resulting dark brown solution was poured into water and the organics 

extracted with ethyl acetate or tert-butylmethyl ether. The combined organics were dried 

(magnesium sulphate), filtered and the solvent removed in vacuo to give a dark brown oil 

which was purified via column chromatography and recrystallised to give the product. 

7.4.3.1 2-(1-(Methansulfonyl)-1H-(indol-2-yl)-ethanol
140

 

2-(1-(Methansulfonyl)-1H-(indol-2-yl)-ethanol was synthesised using 

general procedure 7.3b with slight modifications. 3-Butyn-1-ol 

(4.00 mL, 61.6 mmols, 1.83 equiv.) was added to a stirring suspension 

of N-mesyl-2-iodo-aniline (10.0 g, 33.7 mmols, 1.0 equiv.), 

bis (triphenylphosphine) palladium(II) chloride (500 mg, 701 μmols, 2 mol%) and copper(I) 

iodide (500 mg, 2.63 mmols, 7.8 mol%) in triethylamine (7 mL) and 

N,N-dimethyl formamide (13 mL), which was heated to 80 °C for one day. The resulting 

suspension became dark brown with time. The reaction was poured into water (250 mL) and 

the organics extracted with tert-butyl methyl ether (3 x 200 mL). The combined organics 

were dried (magnesium sulfate), filtered and the solvent removed in vacuo; purification via 

column chromatography [SiO2, dichloromethane–methanol; gradient elution 1:0 to 0:1] 

gave 2-(1-(methylsulfonyl)-1H-indol-2-yl) ethanol 4.46 (8.49 g, 35.5 mmols, >99%) as a 

colourless crystals, which was used without further purification. 

m.p. (ethyl acetate-hexane): 80-81°C (lit. 80-81 °C). 
1
H NMR (500 MHz, 298 K, CDCl3): 
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δ = 7.98 (d, J = 5.9, 1H, C5'H), 7.50 (d, J = 7.1, 1H, C8’H), 7.29 (t, J = 7.1, 1H, C7’H), 7.26 

(t, J = 6.8, 1H, C6’H), 6.58 (s, 1H, C3’H), 4.00 (t, J = 6.1 Hz, 2H, C1H2), 3.26 (t, J = 6.2, 

2H, C2H2), 3.04 (s, 3H, SO2CH3), 1.71 (s, 1H, OH). 
13

C NMR (75 MHz, CDCl3): δ = 138.5 

(C9’), 137.0 (C4'), 129.8 (C2’), 124.5 (C7’), 124.0 (C6’), 120.7 (C8’), 114.3 (C5’), 110.5 

(C3’), 61.9 (C1), 40.6 (SO2CH3), 32.2 (C2). ESI-MS (ES+ mode): m/z = 240 [MH
+
, 100%]. 

HRMS (ES+ mode): m/z = 240.0681 [MH
+
, 100%]; calculated for C11H14NO3S [MH

+
]: m/z 

= 240.0689.
197

 IR (solid): ν = 3600-3000, 3010, 2933, 2884, 1592, 1567, 1474, 1451, 1354, 

1305, 1246, 1217 cm
−1

.  

7.4.3.2 2-(5-Methane(1-(methanesulfonyl)-1H-(indol-2-yl)-ethanol 

2-(5-Methane(1-(methanesulfonyl)-1H-(indol-2-yl)-ethanol was 

synthesised using general procedure 7.3b with slight modifications. 

3-butyn-1-ol (5.44 mL, 71.9 mmols, 1.5 equiv.) was added in 250 µL 

portions over 70 min. N-Mesyl-2-iodo-4-methyl-laniline (15 g, 

48.0 mmols, 1.0 equiv.), bis (triphenylphosphine) palladium(II) chloride (240 mg, 

342 µmols, 1 mol%), copper(I) iodide (264 mg, 1.39 mmols, 3 mol%), 

N, N-dimethylformamide (92 mL) and triethylamine (92 mL) were used and stirred at 80 °C. 

The resulting brown solution was cooled after four hours and stirred for 18 hours. The 

reaction was poured into water (200 mL) and the aqueous extracted with ethyl acetate 

(2 x 200 mL and 1 x 150 mL). The reaction was dried (magnesium sulphate), filtered and 

the solvent removed in vacuo to give the product as a brown viscuous oil, which was 

purified by column chromatography (0:1→1:0; Methanol–dichloromethane). 

Recrystalisation from ethyl acetate–petroleum ether gave the product as light brown 

crystalline rods (3.52 g, 13.9 mmol, 29%). m.p. (ethyl acetate-petroleum ether) 85-87 ºC. 

1
H NMR (500 MHz, 298 K, CDCl3): δ 7.88 (d, J = 8.5 Hz, 1H, C8’H), 7.32 (s, 1H, C5’ H), 

7.14 (d, J = 8.4 Hz 1H, C7’ H), 6.53 (s, 1H, C3
’ 
H), 4.00 (t, J = 6.1 Hz, 2H, C2H2), 3.25 (t, J 

= 6.2 Hz, 2H, C1H2), 3.02 (s, 3H, CH3SO2), 2.45(s, 3H, CH3C6’ ), 1.95 (s, 1H, OH). 
13

C 

NMR (75 MHz, 298 K, CDCl3): 138.8 (C2’ ), 136.8 (C9’ ), 128.9 (C6’ ), 126.9 (C4’ ), 

124.9 (C7’ ) δ 120.4 (C5’ ), 113.8 (C8’ ) 110.2 (C3’ ), 62.0 (C2), 40.0 (SO2CH3), 32.0, (C1), 

21.0 (CH3C6’ ). ESI-MS (ES+ mode): m/z = 276 [MNa
+
, 100%] HRMS (ES+ mode): 

m/z = 254.0723 [MH
+
, 100%]; calculated for C12H16NO3S [MNa

+
]: m/z = 254.0851. IR 

(solid): ν = 3373, 3009, 2929, 1588 cm
-1

. 
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7.4.3.3 2-(4-Chloro-(1-(methanesulfonyl)-1H-(indol-2-yl)-ethanol 

2-(4-Chloro-(1-(methanesulfonyl)-1H-(indol-2-yl)-ethanol was 

synthesised using general procedure 7.3b with slight modifications. 

3-Butyn-1-ol (600 µL, 61.6 mmols, 1.83 equiv.), 

5-chloro-N-mesyl-2-iodo-aniline (1.75 g, 5.28 mmols, 1.0 equiv.), 

bis (triphenylphosphine) palladium (II) chloride (100 mg, 701 μmols, 2 mol%) and 

copper (I) iodide (106 mg,  mmols,  mol%) in triethylamine (2 mL) and 

N,N-dimethyl formamide (2 mL), which was heated to 80 °C for one day. The resulting 

suspension became dark brown with time. The reaction was poured into water (100 mL) and 

the organics extracted with ethyl acetate (2 x 100 mL) then diethyl ether (100 mL). The 

combined organics were dried (magnesium sulfate), filtered and the solvent removed 

in vacuo; purification via column chromatography [SiO2, petroleum ether-ethyl acetate; 

gradient elution 1:0 to 0:1; then methanol] gave 2-(4-chloro-(1-(methanesulfonyl)-1H-

(indol-2-yl)-ethanol
 
4.63b (729.6 mg, 2.67 mmols, 51%) as colourless crystalline rods, 

which was used without further purification. m.p.
 
(ethyl acetate-petroleum ether): 108-110 

°C.
 1
H NMR (500 MHz, 298 K, CDCl3): δ 8.01 (s, 1H, C8’ H), 7.41 (d, J = 8.3 Hz, 1H, C5’ 

H), 7.24 (dd, J = 8.3, 1.8 Hz, 1H, C6’ H), 6.54 (s, 1H, C3’ H), 3.97 (t, J = 6.1 Hz, 2H, C2H), 

3.22 (t, J = 6.2 Hz, 2H, C1H), 3.06 (s, 3H, SO2CH3), 2.03 (s, 1H, OH). 
13

C NMR (75 MHz, 

CDCl3) δ 139.1(C2’ ), 137.1 (C9’ ), 130.4 (CCl), 128.8 (C5’ ), 124.5 (C6’ ), 121.2 (C5’ ), 

114.5 (C8’ ), 109.8 (C3’ ), 61.8 (C2), 40.9 (CSO2), 32.02 (C1). ESI-MS (ES+ mode): m/z = 

274 [MH
+
, 100%] HRMS (ES+ mode): m/z = 274.0310 [MH

+
, 100%]; calculated for 

C11H13ClNO3S [MH
+
]: m/z = 274.0305. IR (solid) ν = 3364, 2967, 1586 cm

-1
. 

7.4.3.4 The synthesis of (1H-indol-2-yl) ethanol
198

 

 

Crude 2-(1-(methylsulfonyl)-1H-indol-2-yl) ethanol 4.46 (8.49 g, 35.5 mmols, 1.0 equiv.) 

was dissolved in 5N aqueous sodium hydroxide (30 mL) and ethanol (65 mL) and heated to 

reflux for one day to give a light brown solution. The reaction was poured into 

dichloromethane (100 mL) and the organics extracted. The aqueous layer was acidified with 

1M aqueous hydrochloric acid (200 mL) and neutralised to pH 7 with sodium hydrogen 

carbonate (saturated aqueous) and the organics were extracted with dichloromethane 
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(3 x 100 mL). The combined organics were dried (magnesium sulfate), filtered and 

concentrated in vacuo to give a thick viscous dark red oil, purification via column 

chromatography [dichloromethane–methanol] gave (1H-indol-2-yl) ethanol
 
4.36 (4.82 g, 

29.9 mmols, 88% [from N-mesyl-2-iodoaniline, 4.46]) as a dark red amorphous solid. 

1
H NMR (500 MHz, 298 K, CDCl3): δ = 8.36 (1H, s, NH), 7.53 (1H, d, J = 7.9 Hz, C5’ H), 

7.25 (d, J = 7.9 Hz, 1H, C8’ H), 7.12 (t, J = 7.5 Hz, 1H,C7’ H), 7.07 (t, J = 7.5 Hz, 

1H,C6’ H) 6.24 (1H, s, C3’ H), 3.81 (2H, t, J = 5.9 Hz, C1H), 2.86 (2H, t, J = 5.9 Hz, C2H), 

2.19 (1H, br, s, OH). 
13

C NMR (75 MHz, 298 K, CDCl3): δ = 137.1 (C2’ ), 136.2 (C9’ ), 

128.6 (C4’ ), 121.3 (C7’) , 119.9 (C6’ ), 119.7 (C5’ ), 110.7 (C8’ ), 100.2 (C3’ ), 62.2 (C1), 

31.2 (C2). ESI-MS (ES− + mode): m/z = 160 [M−H, 100%]. HRMS (ES-): m/z = 160.0763 

[M-H, 100%] calculated for C10H10NO [M-H]: m/z = 160.076788. IR (solid): ν = 3373 cm
-1

. 

7.4.4 The synthesis of substituted (1H-indol-2-yl) ethanamines 

General Procedure 7.3c 

The method of Marsden
95

 was followed with minor modifications for the synthesis of 4-, 

5- or non-substituted-(N-methanesulfonyl-(1H-indol-2-yl)) ethanamines, as described 

briefly below: 
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Methanesulfonyl chloride (1.2 equiv) was added dropwise to a solution of indole 4.63 or 

4.46 (1.0 equiv) and triethylamine (1.5 equiv) in dichloromethane (15 mL) at room 

temperature and the resulting pale yellow solution stirred at room temperature for 1 hour. 

The reaction mixture was washed with hydrochloric acid (1M, aqueous, 20 mL) followed by 

sodium hydrogen carbonate (saturated aqueous; 20 mL), the layers separated and the 

organic layer dried (sodium sulfate), filtered and concentrated in vacuo to give the crude 

dimesylate as a pale yellow oil which was used with no further purification. The secondary 

amine (4.0 equiv) was added dropwise to the crude mesylate in acetonitrile (10 mL) at room 

temperature and the resulting pale yellow solution stirred at room temperature for 48 hours. 

The reaction mixture was quenched with sodium hydrogen carbonate (saturated aqueous; 

20 mL), dichloromethane (20 mL) added, the layers separated and the aqueous layer 

extracted with dichloromethane (3  20 mL).  The combined organic layers were dried 

(sodium sulfate), filtered and concentrated in vacuo to give the crude N-mesylate indole that 

was purified by column chromatography/recrystalisation using the solvents specified. 

A solution of the N-mesylate indole (2.00 mmol, 1.0 equiv) in sodium hydroxide (5M, 

aqueous, 2 mL) and ethanol (5 mL) was heated under reflux for 18 hours. The reaction 

mixture was allowed to cool to room temperature and extracted with dichloromethane 

(3  20 mL). The combined organic layers were dried, filtered and the solvents removed 

in vacuo to give the crude indole that was purified by column chromatography and, or 

recrystallisation using the solvents specified. 

7.4.4.1 2-(2-(Piperidin-1-yl)ethyl)-1H-indole 

General Procedure 7.3c was followed. Indole 4.46 (2.00 g, 

8.36 mmols), methanesulfonyl chloride (780 µL, 10.0 mmol), 

triethylamine (1.74 mL, 12.5 mmol, 1.5 equiv), dichloromethane 

(50 mL) were used. The crude dimesylate was obtained after work 

up as a yellow oil which was used without further purification. 

Piperidine (3.3 mL, 33.4 mmol) and acetonitrile (30 mL) were stirred with the crude 

dimesylate for two days during the N-alkylation. The reaction was poured into sodium 

hydrogen carbonate solution (saturated aqueous, 50 mL) and dichloromethane (50 mL) was 

added, the organics were then extracted with dichloromethane (3 x 50 mL). The combined 

organics were dried (sodium sulphate), filtered and the solvent removed in vacuo to give the 

crude as a light brown oil. Purification by column chromatography (SiO2, petroleum ether-

ethyl acetate; 10:1 then→0:1) gave product 4.47c (2.36 g, 7.71 mmol, 92%) which was used 
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without recrystallisation. m.p. (ethyl acetate-hexane) 105-107 °C. 
1
H NMR (500 MHz, 

CDCl3): δ = 7.99 (1H, d, J = 7.8 Hz, C4H), 7.49 (1H, dd, J = 6.5, 2.1, C7H), 7.28 (1H, dt, J 

= 7.3, 1.7, C6H), 7.25 (1H, dt, J = 7.3, 1.7, C5H), 6.50 (1H, s, C3H), 3.18 (2H, t, J = 7.7, 

C5' H2), 3.02 (3H, s, SO2CH3), 2.75 (2H, t, J = 7.7, C7' H2), 2.55–2.43 (4H, m, C8' H2), 1.61 

(4H, apparent quint, J = 5.6 C4' H2), 1.49–1.41 (2H, m, C9' H2). 
13

C NMR (75 MHz, 

CDCl3): δ = 140.5 (C8), 136.7 (C3' ), 129.8 (C2), 124.1 (C6), 123.8 (C5), 120.4 (C7), 114.2 

(C4), 109.1 (C3), 58.7 (C4' ), 54.6 (2C, C7' ), 40.5 (SO2CH3), 26.5 (C5' ), 26.1 (2C, C8' ), 

24.5 (C9' ). ESI-MS (ES+ mode): m/z = 307 [MH
+
, 100%]. HRMS (ES+ mode): m/z = 

307.1476 [MH
+
, 100%]; calculated for C16H23N2O2S [MH

+
]: m/z = 307.1475. IR (solid): ν = 

2925, 1591, 1566, 1453, 1400, 1359, 1271, 1223, 1158 cm
−1

.  

N-mesyl indole 4.47c, sodium hydroxide (5M, aqueous, 2 mL) and 

ethanol (10 mL) were used and stirred under reflux for 18 hours. 

The reaction was poured into water (50 mL) and the organics 

extracted with dichloromethane (3 x 50 mL). The combined 

organics were dried (magnesium sulfate), filtered and the solvent removed in vacuo to 

afford the crude product. Purification by column chromatography (petroleum ether-ethyl 

acetate; 10:1 then→0:1) afforded the desired compound as a colourless solid (1.50g, 

6.55 mmol 89%). m.p. (ethyl acetate-petroleum ether) 74-76 °C. 
1
H NMR (500 MHz, 

CDCl3): δ = 9.49 (1H, s, NH), 7.52 (1H, d, J = 7.7, C4H), 7.32 (1H, d, J = 8.0, C7H), 7.11 

(1H, td, J = 8.0, 0.7, C6H), 7.05 (1H, td, J = 8.0, 0.7, C5H), 6.22 (1H, s, C3H), 3.81 (4H, t, J 

= 4.5, C8' H2), 2.94 (2H, t, J = 6.3, C5' H2), 2.72 (2H, t, J = 6.3, C4' H2), 2.58 (4H, broad s, 

C7' H2).  
13

C NMR (75 MHz, CDCl3): δ = 139.1 (C8), 135.9 (C3' ), 128.5 (C2), 121.0 (C6), 

119.9 (C4), 119.6 (C5), 110.7 (C7), 99.5 (C3), 67.3 (2C, C8' ), 58.2 (C4' ), 53.7 (2C, C7' ), 

24.2 (C5' ). ESI-MS (ES+ mode): m/z = 231 [MH
+
, 100%]. HRMS (ES+ mode): m/z = 

231.1493 [MH
+
, 100%]; calculated for C14H19N2O [MH

+
]: m/z = 231.1492. IR (solid): ν = 

3600–2400, 2920, 2222, 1901, 1869, 1840, 1793, 1653, 1621, 1579, 1505 cm
−1

.   

7.4.4.2 4-(2-(1H-Indol-2-yl)ethyl)morpholine 

General Procedure 7.3c was followed. Indole 4.46 (1.56 g, 

4.85 mmols), methanesulfonyl chloride (450 µL, 5.82 mmol), 

triethylamine (1.01 mL, 7.28 mmol, 1.5 equiv), dichloromethane 

(15 mL) were used.. The crude dimesylate was obtained after work 

up as a yellow oil which was used without further purification. 

Morpholine (2.92 mL, 33.5 mmol) and acetonitrile (20 mL) were stirred with the crude 

dimesylate for two days during the N-alkylation. The reaction was poured into sodium 
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hydrogen carbonate (saturated aqueous, 50 mL) and dichloromethane (50 mL) was added, 

the organics were then extracted with dichloromethane (3 x 50 mL). The combined organics 

were dried (sodium sulphate), filtered and the solvent removed in vacuo to a yellow/orange 

solid. Purification by column chromatography [SiO2, dichloromethane-ethylacetate 

(10:1)(0:1)] gave 4.47d (2.25 g, 7.29 mmol, 87%) a discoloured solid. m.p. 

(ethyl acetate/hexane) 101-104 °C. 
1
H NMR (500 MHz, CDCl3): δ = 7.99 (1H, d, J = 7.9, 

C4H), 7.51–7.48 (1H, m, C7H), 7.25–7.30 (2H, m, C5H/C6H), 6.53 (1H, s, C3H), 3.73 (4H, 

t, J = 9.2, C8' H2), 3.17 (2H, q, J = 7.5, C5' H2), 3.01 (3H, s, SO2CH3), 2.78 (2H, t, J = 7.5, 

C5' H2), 2.56 (4H, t, J = 3.9, C7' H2). 
13

C NMR (75 MHz, CDCl3): δ = 140.3 (C8), 137.1 

(C3' ), 130.2 (C2), 124.6 (C6), 124.2 (C5), 120.9 (C7), 114.6 (C4), 109.8 (C3), 67.3 (2C, 

C8' ), 58.7 (C5' ), 53.9 (2C, C7' ), 40.8 (SO2CH3), 26.6 (C4' ). ESI-MS (ES+ mode): m/z = 

309 [MH
+
, 100%]. HRMS (ES+ mode): m/z = 309.1278 [MH

+
, 100%]; calculated for 

C15H21N2O3S [MH
+
]: m/z = 309.1267. IR (solid): ν = 3300–2600, 2811, 1926, 1895, 1855, 

1810, 1775, 1587, 1546, 1495, 1454, 1430 cm
−1

.  

N-mesyl indole 4.47d, sodium hydroxide (5M, aqueous, 2 mL) and 

ethanol (10 mL) were used and stirred under reflux for 18 hours. The 

reaction was poured into water (50 mL) and the organics extracted 

with dichloromethane (3 x 50 mL). The combined organics were 

dried (magnesium sulfate), filtered and the solvent removed in vacuo to give the crude 

product. Purification by column chromatography (petroleum ether/ethyl acetate; 10:1 

then→0:1) afforded the desired compound as a colourless solid (1.11 g, 4.82 mmol, 70%). 

m.p. (ethyl acetae-hexane) 75-76 °C. 
1
H NMR (500 MHz, CDCl3): δ = 9.36 (1H, s, NH), 

7.39 (1H, d, J = 8.6, C4H), 6.83 (1 H, dd, J = 1.9, C7H), 6.73 (1H, dd, J = 8.6, 1.9, C5H), 

6.14 (1H, s, C3H), 3.85 (3H, s, OCH3), 3.82 (4H, t, J = 4.6, C8 H2), 2.92 (2H, t, J = 6.2, 

C5 H2), 2.72 (2H, t, J = 6.3, C4 H2), 2.61–2.55 (4H, m, C7 H2). 
13

C NMR (75 MHz, 

CDCl3): δ = 155.6 (C6), 137.6 (C8), 136.4 (C3' ), 122.7 (C2), 120.3 (C4), 109.2 (C5), 99.0 

(C3), 94.6 (C7), 67.1 (2C, C8 ), 58.2 (C4' ), 55.7 (OCH3), 53.6 (2C, C7 ), 24.2 (C5' ). ESI-

MS (ES+ mode): m/z = 261 [MH
+
, 100%]. HRMS (ES+ mode): m/z = 261.1598 [MH

+
, 

100%]; calculated for C15H21N2O2 [MH
+
]: m/z = 261.1598. IR (solid): ν = 3800–2500, 2992, 

1915, 1837, 1629, 1587, 1552, 1463, 1351 cm
−1

. 
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7.4.4.3 2-(2-(4-Methylpiperazin-1-yl)ethyl)-1H-indole 

General Procedure 7.3c was followed. Indole 4.46 (1.56 g, 

4.85 mmols), methanesulfonyl chloride (450 µL, 5.82 mmol), 

triethylamine (1.01 mL, 7.28 mmol, 1.5 equiv), dichloromethane 

(15 mL) were used.. The crude dimesylate was obtained after work 

up as a yellow oil which was used without further purification. N-

Methylpiperazine (3.71 mL, 33.4 mmol) and acetonitrile (20 mL) were stirred with the 

crude dimesylate for two days during the N-alkylation. The reaction was poured into sodium 

hydrogen carbonate (saturated aqueous, 50 mL) and dichloromethane (50 mL) was added, 

the organics were then extracted with dichloromethane (3 x 50 mL). The combined organics 

were dried (sodium sulphate), filtered and the solvent removed in vacuo to a yellow/orange 

solid. Purification by column chromatography [SiO2, dichloromethane-ethyl acetate 

(10:1)(0:1)] gave 4.47e (2.41 g, 7.49 mmol, 90%) a discoloured solid. m.p. (ethyl 

acetate-hexane) 93-96 °C
 1
H NMR (500 MHz, CDCl3): δ = 7.99 (1H, d, J = 7.8, C4H), 7.49 

(1H, dd, J = 6.7, 1.9, C7H), 7.24–7.30 (2H, m, C5H/C6H), 6.51 (1H, s, C3H), 3.18 (2H, t, J 

= 7.7, C5' H2), 3.01 (3H, s, SO2CH3), 2.80 (2H, t, C4' H2), 2.70–2.36 (8H, m, C7' H2/C8' 

H2), 2.29 (3H, s, NCH3). 
13

C NMR (75 MHz, CDCl3): δ = 140.0 (C8), 136.6 (C3' ), 129.7 

(C2), 124.1 (C6), 123.6 (C5), 120.3 (C7), 114.1 (C4), 109.1 (C3), 57.7 (C4' ), 55.0 (2C, 

C7' ), 52.9 (2C, C8' ), 46.0 (NCH3), 40.4 (SO2CH3), 26.3 (C5' ). ESI-MS (ES+ mode): m/z = 

322 [MH
+
, 100%]. HRMS (ES+ mode): m/z = 322.1582 [MH

+
, 100%]; calculated for 

C16H24N3O2S [MH
+
]: m/z = 322.1584. IR (solid): ν = 3074, 3015, 2937, 2788, 2697, 2317, 

1934, 1899, 1676, 1593, 1568, 1455, 1410, 1396 cm
−1

.  

N-mesyl indole 4.47e was used without recrystallization and 

sodium hydroxide (5M, aqueous, 2 mL) and ethanol (2 mL) were 

used and stirred under reflux for 18 hours. The reaction was 

poured into water (50 mL) and the organics extracted with 

dichloromethane (3 x 50 mL). The combined organics were dried (magnesium sulfate), 

filtered and the solvent removed in vacuo to give the crude product. Purification by column 

chromatography (SiO2, petroleum ether-ethyl acetate; 10:1 then→0:1) gave indole 4.16e as 

a colourless crystalline needles (1.34 g, 5.51 mmol, 79%). m.p. (ethyl acetate-hexane) 143–

146 °C. 
1
H NMR (500 MHz, CDCl3): δ = 9.70 (1H, s, NH), 7.52 (1H, d, J = 7.7, C4H), 7.32 

(1H, d, J = 8.0, C7H), 7.10 (1H, t, J = 7.5, C6H), 7.05 (1H, t, J = 7.4, C5H), 6.21 (1H, s, 

C3H), 2.93 (3H, t, J = 6.2, C5' H2), 2.72 (3H, t, J = 6.2, C4' H2), 2.48–2.60 (8H, m, 

C7' H2/C8' H2), 2.33 (4H, s, NCH3). 
13

C NMR (75 MHz, CDCl3): δ = 139.3 (C8), 
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135.8 (C3 '), 128.5 (C2), 120.8 (C6), 119.8 (C4), 119.4 (C5), 110.7 (C7), 99.2 (C3), 57.6 

(C4' ), 55.6 (C7' ), 53.1 (C8' ), 46.2 (NCH3), 24.4 (C5). ESI-MS (ES+ mode): m/z = 244.2 

[MH
+
, 100%].  HRMS (ES+ mode): m/z = 244.1801 [MH

+
, 100%]; calculated for C15H22N3 

[MH
+
]: m/z = 244.1808. IR (solid): ν = 3800–2400, 2925, 1905, 1871, 1739, 1618, 1621, 

1548, 1456 cm
−1

.  

7.4.4.4 N-Benzyl-2-(1H-indol-2-yl)-N-methylethanamine 

General Procedure 7.3c was followed. Indole 4.46 (1.58 g, 4.93 mmols), 

methanesulfonyl chloride (450 µL, 5.82 mmol), triethylamine (1.01 mL, 

7.28 mmol, 1.5 equiv), dichloromethane (15 mL) were used. The crude 

dimesylate was obtained after work up as a yellow oil which was used 

without further purification. N-Methylbenzylamine (2.44 mL, 18.9 mmol, 4.0 

equiv.) and acetonitrile (22.5 mL) were stirred with the crude dimesylate for two days 

during the N-alkylation. The reaction was poured into sodium hydrogen carbonate (saturated 

aquesou, 50 mL) and dichloromethane (50 mL) was added, the organics were then extracted 

with dichloromethane (3 x 50 mL). The combined organics were dried (sodium sulphate), 

filtered and the solvent removed in vacuo to give the crude as a light brown oil. Purification 

by column chromatography (SiO2, petroleum ether-ethyl acetate; 10:1 then→0:1) gave 

product 4.47g (1.55 g, 4.54 mmol, 96%) as a yellow oil which. 
1
H NMR (500 MHz, 

CDCl3): δ = 7.98 (1H, d, J = 7.9, C4H), 7.48 (1H, dd, J = 7.0, 1.4, C7H), 7.21–7.29 (7H, m, 

C6H/C5H/Ph), 6.46 (1H, s, C3H), 3.59 (2H, s, C7' H2), 3.19 (2H, t, J = 7.3, C5' H2), 2.95 

(3H, s, SO2CH3), 2.82 (2H, t, J = 7.3, C4' H2), 2.31 (3H, s, C8' H3). 
13

C NMR (75 MHz, 

CDCl3): δ = 140.3 (C8), 139.0 (Ph), 136.7 (C3' ), 129.8 (C2' ), 129.1 (2C, Ph), 128.2 (2C, 

Ph), 127.0 (Ph), 124.1 (C6), 123.7 (C5), 120.4 (C7), 114.2 (C4), 109.4 (C3), 62.3 (CH2Ph), 

56.6 (C4' ), 42.3 (C8' ), 40.4 (SO2CH3), 26.8 (C5'). ESI-MS (ES+ mode): m/z = 343 [MH
+
, 

100%]. HRMS (ES+ mode): m/z = 343.1473 [MH
+
, 100%]; calculated for C16H23N2O2S 

[MH
+
]: m/z = 343.1475. IR (solid): ν = 3061, 3026, 2931, 2841, 2792, 1591, 1567, 1494, 

1453 1366 cm
−1

.  

N-mesyl indole 4.47g and sodium hydroxide (5M, aqueous, 2 mL) and 

ethanol (10 mL) were used and stirred under reflux for 18 hours. The reaction 

was poured into water (50 mL) and the organics extracted with 

dichloromethane (3 x 50 mL). The combined organics were dried 

(magnesium sulfate), filtered and the solvent removed in vacuo to afford the 

crude product. Purification by column chromatography (petroleum ether-ethyl acetate; 10:1 

then→0:1) afforded the desired compound as a colourless solid (1.00 g, 3.78 mmols, 93%). 
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m.p. (ethyl acetate-hexane) 46-48 °C.
1
H NMR (500 MHz, CDCl3): δ = 9.72 (1H, s, NH), 

7.52 (1H, d, J = 7.6, C4H), 7.27-7.36 (6H, m, C7H/Ph), 7.11 (1H, t, J = 7.4, C6H), 7.05 

(1H, t, J = 7.1, C5H), 6.20 (1H, s, C3H), 3.58 (2H, s, C7' H2), 2.96 (2H, t, J = 6.1, C5' H2), 

2.78 (2H, t, J = 6.1, C4' H2), 2.31 (3H, s, (2H, t, J = 6.1, C8' H3). 
13

C NMR (75 MHz, 

CDCl3): δ = 139.5 (C8), 138.6 (Ph), 135.9 (C3' ), 129.3 (2C, Ph), 128.6 (3C, C2/Ph), 127.4 

(Ph), 120.8 (C6), 119.8 (C4), 119.5 (C5), 110.7 (C7), 99.1 (C3), 62.8 (CH2Ph), 57.0 (C4' ), 

41.6 (C8'), 25.0 (C5'). ESI-MS (ES+ mode): m/z = 265 [MH
+
, 100%]. HRMS (ES+ mode): 

m/z = 265.1706 [MH
+
, 100%]; calculated for C18H21N2 [MH

+
]: m/z = 265.1699. IR (solid): ν 

= 3500-2300, 2849, 1976, 1958, 1910, 1874, 1839, 1819, 1795, 1759, 1651, 1620, 1589, 

1549, 1494, 1455, 1390 cm
−1

. 

7.4.4.5 N-mesyl indole5-methyl-2-(2-(piperidin-1-yl)ethyl)-1H-indole 

General Procedure 7.3c was followed. Indole 4.65a was 

synthesised directly from 4.63. 5-Methyl-2-(1-

(methanesulfonyl)-1H-(indol-2-yl)-ethanol (1.00 g, 

3.95 mmols), methanesulfonyl chloride (350 µL, 4.35 mmol), triethylamine (850 µL, 

5.93 mmol), dichloromethane (20 mL) were used. The crude dimesylate was obtained after 

work up as a yellow oil which was used without further purification. N-Methylpiperazine 

(700 mL, 6.32 mmol), dichloromethane (2 mL) and acetonitrile (20 mL) were stirred with 

the crude dimesylate for two days during the N-alkylation. The reaction was poured into 

sodium hydrogen carbonate (saturated aqueous, 50 mL) and dichloromethane (50 mL) was 

added, the organics were then extracted with dichloromethane (3 x 50 mL). The combined 

organics were dried (sodium sulphate), filtered and the solvent removed in vacuo to give 

crude 4.64a as a yellow/orange solid which was used without further purification. Crude 

4.64a (760 mg), sodium hydroxide (5M, aqueous, 1 mL) and ethanol (20 mL) were used. 

The reaction was poured into 2M hydrochloric acid (2M, aqueous, 2.5 mL) and diluted in 

water (50 mL), the organics were extracted with dichloromethane (3 x 50 mL). The 

combined organic layers were dried (sodium sulphate), filtered and the solvents removed in 

vacuo to give the crude indole, purification by column chromatography (SiO2, gradient 

elution, dichloromethane -MeOH; 1:0→0:1) gave the title compound (106.8 mg, 416 µmols, 

18% [from 4.63]) as a discoloured solid. m.p. (isopropanol) 128-132 °C. 
1
H NMR (300 

MHz, CDCl3) δ: 9.49 (s, 1H, NH), 7.23 (s, 1H, C5’H), 7.16 (d, J = 8.1 Hz, 1H, C7’H), 6.89 

(dd, J = 8.2, 1.4 Hz, 1H, C6’H), 6.11 (s, 1H, C3’ H), 2.77 (t, J = 6.2 Hz, 2H, C2H2), 2.57 (t, 

J = 6.3 Hz, 2H, C1H2), 2.50 (apparent s, 4H, C10’ H2), 2.36 (s, 3H, CH3C6’ ), 2.32 (s, 3H, 

C12’ H3), 1.61 (s, 4H, C11’ H2). 
13

C NMR
 
(75 MHz, CDCl3) δ: 138.9 (C2’ ), 136.4 (C8’ 

),130.5 (C6’ ), 127.4 (C4’ ), 121.6 (C5’ ), 118.1 (C7’ ), 109.8 (C8’ ), 100.6 (C3’ ) 57.4 
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(C11’ ), 54.5 (C10’ ), 45.8 (C12’ ), 35.8 (C1), 21.5 (C2), 21.3(CH3C6’ ). ESI-MS (ES+ 

mode): m/z = 258 [MH
+
, 100%]. HRMS (ES+ mode): m/z = 258.2011 [MH

+
, 100%]; 

calculated for C16H24N3 [MH
+
]: m/z = 258.1970. IR (solid) ν = 3363, 1558 cm

-1
. 

7.4.5 Pentamethyl-cyclopentadienyl-(5-trifluoromethyl-2-

hydroxypyridyl) iridium dichloride, 4.14 

 

Pentamethylcyclopentadienyl-(5-trifluoromethyl-2-hydroxypyridyl) iridium dichloride was 

synthesised using the procedure of Fujita.
69

 The 2-hydroxy-5-(trifluoromethyl)-pyridine 

(75.5 mg, 463 μmols, 1.85 equiv.) was added to a stirring solution of 

pentamethylcyclopentdienyl iridium (III) dichloride dimer (199 mg, 250 μmols, 1.0 equiv.) 

in dichloromethane (5 mL) and stirred for 1 hour. The resulting dark red suspension was 

concentrated in vacuo and recrystallized from dichloromethane–iso-hexane to give 

pentamethyl-cyclopentadienyl-(5-trifluoromethyl-2-hydroypyridyl) iridium(III) dichloride 

4.14 as yellow crystalline needles (163 mg, 290 μmols, 58%). 

m.p. (dichloromethane-iso-hexane) decomposition at 250 °C. 
1
H NMR (500 MHz, 298 K, 

CDCl3): δ = 11.33 (1H, broad s, OH), 8.87 (1H, broad s, C4H), 7.75 (1H, broad s, C6H), 

6.86 (1H, broad s, C3H), 1.56 (15H, broad s, C5Me5). ESI-MS (ES+ mode): m/z = 490 

[M−2Cl, 100%]. HRMS (ES+ mode): m/z = 548.0537 [MNa−HCl, 100%]; calculated for 

C16H18ClIrF3NNaO [MNa-HCl]: m/z = 548.0550. IR (solid): ν = 3800-2600, 2978, 1629, 

1574, 1505, 1378, 1349, 1321, 1228, 1209 cm
−1

. 

7.4.6 Screening reactions for the one-pot dehydrogenation-

cyclisation strategy for the synthesis of polycyclic amines: 

General Procedure 7.3f 

A general procedure with slight modifications was used for the evaluation of various 

conditions for the synthesis of polycyclic indoles via a dehydrogenation-cyclisation strategy. 

The procedure is described briefly below: 
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A suspension of 2-amino-indole 4.16c-e or g (1.0 equiv) and catalyst 4.14, 4.48-4.50, 

copper acetate monohydrate or ruthenium chloride monohydrate was heated in solvent for 

1-5 days. The reaction was cooled. The crude reaction mixture was diluted in methanol or 

acetonitrile, and triethylamine–formic acid azeotropic solution [2:5 (TEAF)] or sodium 

borohydride was added and the solution stirred for 1-5 hours. The reaction mixture was 

diluted in water, and the aqueous extracted with ethyl acetate and dichloromethane. The 

organics were washed with saturated aqueous sodium hydrogen carbonate and brine. The 

combined organics were dried (sodium sulfate or magnesium sulfate), filtered and the 

solvent removed in vacuo to give crude product as a brown oil. Purification by column 

chromatography [dichloromethane–methanol (5:1)] gave the product as colourless needles. 

7.4.6.1 1,2,3,4,6,7,8,12c-octahydroindolo[3,2-a]quinolizine 

1,2,3,4,6,7,8,12c-octahydroindolo[3,2-a]quinolizine was synthesised using 

general procedure 7.3f with slight modifications. 2-(2-(piperidin-1-yl)ethyl)-

1H-indole 4.16c (100 mg, 438 mol), 

pentamethylcyclopentadienyl-(5-trifluoromethyl-2-

hydroypyridyl)iridium(III) dichloride 4.14 (6.2 mg, 11.3 µmol, 2 mol%) and 

xylenes (1.1 mL) were used and heated to reflux for 2 days. Acetonitrile (1 mL) and 
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triethylamine–formic acid azeotropic solution (1.43 mL formic acid–3.57 mL triethylamine) 

were used for the reduction and stirred at room temperature for 5 hours. The reaction 

mixture was diluted in water (20 mL), and the aqueous extracted with ethyl acetate (2  20 

mL) and dichloromethane (20 mL). The organics were washed with saturated aqueous 

sodium hydrogen carbonate (20 mL) and brine (20 mL). The combined organics were dried 

(sodium sulfate), filtered and the solvent removed in vacuo to give crude product as a brown 

oil. Purification by column chromatography [dichloromethane–methanol (5:1)] gave 

1,2,3,4,6,7,8,12c-octahydroindolo[3,2-a] quinolizine
95

 4.17c (77.6 mg, 343 µmol, 78%) as 

colourless needles. m.p. (ethanol-water) 212–213 °C. 
1
H NMR (500 MHz, CDCl3): δ = 

7.96 (1H, s, NH), 7.57 (1H, d, J = 7.8, C4H), 7.26–7.23 (1H, m, C7H), 7.08 (1H, t, J = 7.3, 

C6H), 7.04 (1H, t, J = 7.3, C5H), 3.37 (1H, d, J = 8.4, C11' H), 3.14–3.07 (1H, m, 

C7' HAHB), 3.02 (1H, dd, J = 10.7, 6.5, C5' HAHB), 3.05–2.98 (1H, m, C4' HAHB), 2.70–2.58 

(3H, m, C5' HAHB/C7' HAHB/C10' HAHB), 2.50 (1H, td, J = 11.6, 3.0, C4' HAHB), 1.93–1.87 

(1H, m, C9' HAHB), 1.83–1.71 (2H, m, C8H2), 1.61–1.51 (2H, m, C9' HAHB/C10' HAHB). 

13
C NMR (75 MHz, CDCl3): δ = 136.5 (C8), 132.5 (C3' ), 126.0 (C2), 120.9 (C6), 119.4 

(C4), 119.3 (C5), 112.5 (C3), 110.9 (C7), 61.4 (C11' ), 56.2 (C4' ), 52.6 (C5' ), 31.4 (C10' ), 

26.2 (C8' ), 24.9 (C9' ), 24.4 (C7' ). ESI-MS (ES+ mode): m/z = 227 [MH
+
, 100%].  HRMS 

(ES+ mode): m/z = 227.1551 [MH
+
, 100%]; calculated for C15H19N2 [MH

+
]: m/z = 

227.1543. IR (solid): ν = 3600–2400, 2920, 2222, 1901, 1869, 1840, 1793, 1653, 1621, 

1579, 1505, 1455 cm
−1

. 

7.4.6.2 1,2,3,4,6,7,8,12c-octahydroindolo[3,2-a]quinolizine 

1,2,3,4,6,7,8,12c-octahydroindolo[3,2-a]quinolizine was synthesised using 

general procedure 7.3f with slight modifications. 2-(2-(piperidin-1-yl)ethyl)-

1H-indole 4.16c (508 mg, 2.24 mmol), 

pentamethylcyclopentadienyl-5-trifluoromethyl-2-

hydroypyridyl)iridium(III) dichloride 4.14 (26.1 mg, 47.6 µmol, 2 mol%) 

and xylenes (5.5 mL) were used and heated to reflux for 2 days. Methanol (25 mL) and 

sodium borohydride (331 mg, 8.76 mmol, 4.0 equiv.) were used for the reduction and stirred 

at room temperature for 1 hour. The reaction mixture was quenched in sodium hydrogen 

carbonate (saturated aqueous, 50 mL) and the organics extracted with dichloromethane (3 x 

50 mL). The organics were washed with saturated aqueous sodium hydrogen carbonate 

(20 mL) and brine (20 mL). The combined organics were dried (magnesium sulfate), filtered 

and the solvent removed in vacuo to give the crude product as a brown oil. Purification by 

column chromatography [SiO2, dichloromethane-methanol (5:1)] gave 
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1,2,3,4,6,7,8,12c-octahydroindolo[3,2-a]quinolizine
95

 4.17c (233 mg, 1.03 mmol, 46%) as 

colourless needles. Spectroscopic data was identical to that previously report (vide supra). 

7.4.6.3 3,4,6,7,8,12c-Hexahydro-1H-[1,4]oxazino[4',3':1,2]pyrido[4,3-b]indole 

3,4,6,7,8,12c-Hexahydro-1H-[1,4]oxazino[4',3':1,2]pyrido[4,3-b]indole was 

synthesised using general procedure 7.3f with slight modifications. Indole 

amine 4.16d (100 mg, 435 μmols) and pentamethyl-cyclopentadienyl-(5-

trifluoromethyl-2-hydroypyridyl) iridium (III) dichloride (8.4 mg, 

14.9 μmols, 3 mol%) in acetonitrile (1 mL) and triethylamine–formic acid solution (1 mL, 

triethylamine (0.3 mL): formic acid (0.7 mL)) was heated to reflux for two days. The 

solvent was removed in vacuo to give crude 

3,4,6,7,8,12c-Hexahydro-1H-[1,4]oxazino[4',3':1,2]pyrido[4,3-b]indole
95

 4.17d (9%, 

NMR yield) as a discoloured solid (NMR yield calculated via comparison of the integrals of 

C3H of indole 4.16d and C10’H of the product indole 4.17d); 
1
H NMR (500 MHz, 298 K, 

CDCl3): δ = 8.19 (1H, s, NH), 4.68 (1H, dd, J = 11.0, 2.7, C10' H). lit.
95

 
1
H NMR (500 

MHz, CDCl3): δ = 8.19 (1H, s, NH), 7.44 (1H, d, J = 7.7, C4H), 7.20 (1H, d, J = 7.8, C7H), 

7.09 (1H, td, J = 7.6, 1.1, C6H), 7.05 (1H, td, J = 7.6, 1.1, C5H), 4.68 (1H, dd, J = 11.0, 2.7, 

C10' H), 3.93 (1H, d, J = 10.6, C8' HAHB), 3.84 (1H, td, J = 10.6, 4.0, C8' HAHB), 3.67 (1H, 

dd, J = 10.1, 1.9, C9' HAHB), 3.53 (1H, t, J = 10.6, C9' HAHB), 3.00–3.08 (2H, m, C5'HAHB 

/C4' HAHB), 2.79–2.85 (2H, m, C7' HAHB), 2.70–2.75 (1H, m, C5' HAHB), 2.57 (1H, dd, J = 

14.7, 4.9, C4' HAHB). 

7.4.6.4 3,4,6,7,8,12c-Hexahydro-1H-[1,4]oxazino[4',3':1,2]pyrido[4,3-b]indole 

3,4,6,7,8,12c-Hexahydro-1H-[1,4]oxazino[4',3':1,2]pyrido[4,3-b]indole was 

synthesised using general procedure 7.3f with slight modifications. Indole 

amine 4.16d (116 mg, 509 μmols) and copper acetate monohydrate (6.3 mg, 

31.6 μmols, 6 mol%) in xylenes (2.5 mL) were used and heated to reflux for 

one day. The solvent was removed in vacuo and the crude was washed with 

hydrochloric acid (1N, aqueous, 100 mL) and then the organics extracted with 

dichloromethane (100 mL). The aqueous was neutralised with sodium hydrogen carbonate 

(saturated aqueous, 100 mL) and the organics extracted with dichloromethane (3 x 100 mL). 

The combined organics were dried (magnesium sulfate), filtered and the solvent removed in 

vacuo to give a brown oil as crude 3,4,6,7,8,12c-Hexahydro-1H-

[1,4]oxazino[4',3':1,2]pyrido[4,3-b]indole
95

 4.17d (4%, NMR yield) as a discoloured solid 

(NMR yield calculated via comparison of the integrals of C3H of indole 4.16d and C10’ H 
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of the product indole 4.17d); 
1
H NMR (500 MHz, 298 K, CDCl3): δ = 8.19 (1H, s, NH), 

4.68 (1H, dd, J = 11.0, 2.7, C10' H), which were in accordance with the literature reported 

previously (vide supra). 

7.4.6.5 Attempted formation of 3,4,6,7,8,12c-Hexahydro-1H-

[1,4]oxazino[4',3':1,2]pyrido[4,3-b]indole 

Attempted synthesis of 3,4,6,7,8,12c-Hexahydro-1H-

[1,4]oxazino[4',3':1,2]pyrido[4,3-b]indole was carried out using general 

procedure 7.3f with slight modifications. 2-(2-(piperidin-1-yl)ethyl)-1H-

indole 4.16d (111 mg, 483 mol), iridum complex 4.48. (2.8 mg, 4.66 µmol, 

1 mol%) and 2,2,2,2-tetrafluoroethanol (2.95 mL) were used and heated to reflux for 2 days. 

Acetonitrle (5 mL) and TEAF solution (5:2 azeotropic solution, 1 mL) were used for the 

reduction and stirred at room temperature for 18 hours. The reaction mixture was poured 

into water (50 mL) and the organics extracted with dichloromethane (3 x 50 mL). The 

combined organics were dried (magnesium sulfate), filtered and the solvent removed 

in vacuo to give the crude as a brown oil. No product formation was observed by 
1
H NMR 

or LC-MS analysis. 

7.4.6.6 Attempted formation of 3,4,6,7,8,12c-Hexahydro-1H-

[1,4]oxazino[4',3':1,2]pyrido[4,3-b]indole 

Attempted synthesis of 3,4,6,7,8,12c-Hexahydro-1H-

[1,4]oxazino[4',3':1,2]pyrido[4,3-b]indole was carried out using general 

procedure 7.3f with slight modifications. 2-(2-(piperidin-1-yl)ethyl)-1H-

indole 4.16d (111 mg, 434 mol), immobilised iridium complex 4.50 (81 mg, 

4.34 µmol, 1 mol%) and xylenes (10 mL) were used and heated to reflux for 2 days. 

Methanol (5 mL) and sodium borohydride (43.5 mg, 1.15 mmol, 2.65 equiv.) were used for 

the reduction and stirred at room temaperature for 1 hour. The reaction mixture was poured 

into water (50 mL) and the organics extracted with dichloromethane (3 x 50 mL). The 

combined organics were dried (magnesium sulfate), filtered and the solvent removed in 

vacuo to give the crude as a brown oil. No product formation was observed by 
1
H NMR or 

LC-MS analysis. 
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7.4.6.7 1,2,3,4,6,7,8,12c-octahydroindolo[3,2-a]quinolizine 

1,2,3,4,6,7,8,12c-octahydroindolo[3,2-a]quinolizine was synthesised using 

general procedure 7.3f with slight modifications. Triethylamine–formic acid 

solution (1 mL, triethylamine (0.3 mL): formic acid (0.7 mL)) was slowly 

added to a solution of indole amine 4.16c (111 mg, 487 μmols) and 

pentamethyl-cyclopentadienyl-(5-trifluoromethyl-2-hydroypyridyl) 

iridium(III)dichloride 1.33 (11.6 mg, 20.6 μmols, 4 mol%) in acetonitrile (2 mL) and was 

heated in a sealed tube at 110 °C for one day then 140 °C for one day. The solvent was 

removed in vacuo to give crude 1,2,3,4,6,7,8,12c-octahydroindolo[3,2-a]quinolizine
95

 (41%, 

NMR yield) as a brown oil (NMR yield calculated via comparison of the integrals of C3H 

of indole 4.16c and C11’  H of the product indole 4.17c); 
1
H NMR (500 MHz, 298 K, 

CDCl3): δ = 7.96 (1H, s, NH), 3.37 (1H, d, J = 8.4, C11' H), which were in agreement with 

those previously reported (vide supra). 

7.4.6.8 Attempted formation of 2-Methyl-1,2,3,4,6,7,8,12c-

octahydropyrazino[1',2':1,2] pyrido[4,3-b]indole 

2-Methyl-1,2,3,4,6,7,8,12c-octahydropyrazino[1',2':1,2]pyrido[4,3-b]indole 

was synthesised using general procedure 7.3f with slight modifications. A 

suspension of palladium catalyst 4.49 (6 mg, 8.46 µmols, 2 mol%), indole 

4.16e (102 mg, 423 µmols) and 1,4-benzoquinone (100 mg, 925 µmols, 

2.19 equiv.) in acetonitrile: water (5:1, 1 mL) was stirred for 3.5 hours at 

room temperature. The reaction grew black with time. The solvent was removed in vacuo 

and methanol (5 mL) was added and the reaction was cooled to 0 °C, sodium borohydride 

(63.1 mg, 1.66 mmols, 1.79 equiv.) was added and the solution stirred for one hour at room 

temperature. The reaction was poured into sodium hydrogen carbonate (saturated aqueous, 

50 mL) and the organics extracted with dichloromethane (3 x 50 mL). The combined 

organics were dried (magnesium sulfate), filtered and solvent removed in vacuo to give a 

black viscous oil. No reaction was observed via 
1
H NMR and LC-MS analysis.  
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7.4.6.9 Attempted formation of 2-Methyl-1,2,3,4,6,7,8,12c-

octahydropyrazino[1',2':1,2] pyrido[4,3-b]indole 

2-Methyl-1,2,3,4,6,7,8,12c-octahydropyrazino[1',2':1,2]pyrido[4,3-b]indole 

was synthesised using general procedure 7.3f with slight modifications. A 

suspension of palladium catalyst 4.49 (6 mg, 8.46 µmols, 2 mol%), indole 

4.16e (102 mg, 423 µmols) in acetonitrile: water (5:1, 1 mL) was sparged 

with air for 3.5 hours at room temperature. The reaction grew black with time. 

The solvent was removed in vacuo and methanol (5 mL) was added and the reaction was 

cooled to 0 °C, sodium borohydride (63.1 mg, 1.66 mmols, 1.79 equiv.) was added and the 

solution stirred for one hour at room temperature. The reaction was poured into sodium 

hydrogen carbonate (saturated aqueous, 50 mL) and the organics extracted with 

dichloromethane (3 x 50 mL). The combined organics were dried (magnesium sulfate), 

filtered and solvent removed in vacuo to give a black viscous oil. No reaction was observed 

via 
1
H NMR and LC-MS analysis. 

7.4.6.10 Attempted incorporation of ruthenium trichloride for cyclisation 

of N-benzyl-2-(1H-indol-2-yl)-N-methylethanamine  

Evaluation of ruthenium trichloride in the cyclisation of N-benzyl-2-(1H-

indol-2-yl)-N-methylethanamine was carried out using general procedure 

7.3f with slight modifications. Indole 4.16g (165 mg, 625 µmol, 1 equiv.), 

ruthenium trichloride monohydrate (8.8 mg, 39.3 µmol, 6 mol%), methanol 

(1.2 mL) and acetic acid (0.6 mL) were used. The reaction was heated to 

65 °C (hot plate) with an air sparge for 2 days. Solvent was removed in vacuo to give a 

brown oil. No reaction was observed via 
1
H NMR or LC-MS analysis. 
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7.4.7 Synthesis of 1,2,3,4,6,7,8,12c-Octahydroindolo[3,2-

a]quinolizine via a one-pot dehydrogenation-alkylation protocol 

 

 

A suspension of the indolyl alcohol 4.36 (181 mg, 1.12 mmol, 1.0 equiv.), 

pentamethyl-cyclopentadienyl-(5-trifluoromethyl-2-hydroypyridyl) iridium 

(III) dichloride 1.33 (13.2 mg, 22.9 μmol, 2 mol%) and piperidine 4.52 

(230 μL, 3.13 mmol, 2.79 equiv.) in xylenes (2.8 mL) was heated to reflux for 

2.5 days. The reaction was cooled to 0 °C dissolved in methanol (5 mL), sodium 

borohydride (25 mg, 658 μmol, 0.588 equiv.) was added portionwise to the reaction which 

was allowed to warm to room temperature and stirred for an hour. The reaction was 

quenched with water (20 mL) and the organics extracted with dichloromethane (2 x 20 mL) 

and ethyl acetate (2 x 20 mL). The combined organics were dried, filtered and the solvent 

removed in vacuo to give crude 1,2,3,4,6,7,8,12c-octahydroindolo[3,2-a]quinolizine
95

 4.17c 

as a brown oil.
 1

H NMR (500 MHz, 298 K, CDCl3): δ = 7.96 (1H, s, NH), 3.37 (1H, d, 

J = 8.4, C11' H), which was in agreement with those reported previously (vide supra). 

7.4.8 Reactions screened for the synthesis of 1,2,3,4,6,7,8,12c-

octahydroindolo [3,2-a]quinolizine via a one-pot dehydrogenation-

alkylation strategy 

General Procedure 7.3e  

A general procedure with slight modifications was used for the evaluation of various 

different conditions during the synthesis of 1,2,3,4,6,7,8,12c-octahydroindolo 
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[3,2-a]quinolizine via a one-pot sequential dehydrogenation-alkylation strategy. The 

procedure is described briefly below: 

 

A suspension of the iridium catalyst (2-3 mol%), indolyl alcohol (97.2 mg, 

604 μmol,1.0 equiv.) and piperidine (483-906 μmol, 0.8-1.5 equiv.) in solvent (1.5-2 mL) 

was heated for 3 days. Formation of 1,2,3,4,6,7,8,12c-octahydroindolo[3,2-a]quinolizine 

4.17c was not observed in all cases. 

Entry Solvent Base Catalyst 
Piperidine / 

Equiv. 

Yield of Product / 

% 

1 Xylenes No 4.14 0.8 0 

2 Xylenes No 4.14 1 0 

3 Xylenes No 4.14 1
a 

0 

4 Xylenes No 4.14 1.5 0 

5 Piperidine No 4.14 25.2 0 

6 PhCl No 4.14 1 0 

7 PhCl K2CO3 [IrCp*Cl2]2 1 0 

8 PhCl No [IrCp*Cl2]2 1 0 

9 PhCl K2CO3 [IrCp*I2]2 1 0 

10 PhCl No [IrCp*I2]2 1 0 

11 PhCl K2CO3 4.14 1 0 

12 PhCl No 4.14 1 0 

a Dropwise addition over 1 hour. 
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Entry Solvent Base Catalyst 
Piperidine / 

Equiv. 

Yield of Product / 

% 

13 AcOH No 4.14 1 0 

14 PhCl No 4.14 1 0 

15 Xylenes No [IrCp*I2]2 1 0 

16 Xylenes TMG 4.14 1 0 

17 Xylenes No 4.14 1 0 

Entry 1 Synthetic procedure 7.3e was followed. Xylenes (1.5 mL), catalyst 4.14 (11 mg, 

19.6 µmols, 3 mol%) and piperidine (47.5 µL, 483 mmols, 0.8 equiv,) were used. An 

insoluble black viscuous oil was formed, which was not characterisable, no evidence of 

cyclisation product was observed via 
1
H NMR or HPLC analysis. 

Entry 2 Synthetic procedure 7.3e was followed. Xylenes (1.5 mL), catalyst 4.14 (11 mg, 

19.6 µmols, 3 mol%) and piperidine (59.5 µL, 604 µmols, 1 equiv.) were used. An insoluble 

black viscuous oil was formed, which was not characterisable, no evidence of cyclisation 

product was observed via 
1
H NMR or HPLC analysis. 

Entry 3 Synthetic procedure 7.3e was followed. Xylenes (1.5 ml), catalyst 4.14 (11 mg, 

19.6 µmols, 3 mol%) and piperidine (59.5 µL, 604 µmols, 1.0 equiv.; added dropwise over 

one hour.). An insoluble black viscuous oil was formed, which was not characterisable, no 

evidence of cyclisation product was observed via 
1
H NMR or HPLC analysis. 

Entry 4 Synthetic procedure 7.3e was followed. Xylenes (1.5 mL), catalyst 4.14 (11 mg, 

19.6 µmols, 3 mol%) and piperidine (89 µL, 906 µmols, 1.5 equiv.) were used. An insoluble 

black viscuous oil was formed, which was not characterisable, no evidence of cyclisation 

product was observed via 
1
H NMR or HPLC analysis. 

Entry 5 Synthetic procedure 7.3e was followed. Catalyst 4.14 (6.8 mg, 12.1 µmols, 2 

mol%) and piperidine (1.5 mL, 15.2 mmols, 25.2 equiv.) were used. An insoluble black 

viscuous oil was formed, which was not characterisable, no evidence of cyclisation product 

was observed via 
1
H NMR or HPLC analysis. 

Entry 6 Synthetic procedure 7.3e was followed. Chlorobenzene (1.5 mL), catalyst 4.14 

(11 mg, 19.6 µmols, 3 mol%) and piperidine (59.5 µL, 604 µmols, 1 equiv.) were used. An 

insoluble black viscuous oil was formed, which was not characterisable, no evidence of 

cyclisation product was observed via 
1
H NMR or HPLC analysis. 
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Entry 7 Synthetic procedure 7.3e was followed. Chlorobenzene (1.5 mL), dichloro 

pentamethylcyclopentadienyliridium(III) dimer (15.6 mg, 19.6 µmols, 3 mol%), potassium 

carbonate (5.4 mg, 39.2 µmol, 6 mol%) and piperidine (59.5 µL, 604 µmols, 1 equiv.) were 

used. An insoluble black viscuous oil was formed, which was not characterisable, no 

evidence of cyclisation product was observed via 
1
H NMR or HPLC analysis. 

Entry 8 Synthetic procedure 7.3e was followed. Chlorobenzene (1.5 mL), dichloro 

pentamethylcyclopentadienyliridium(III) dimer (15.6 mg, 19.6 µmols, 3 mol%) and 

piperidine (59.5 µL, 604 µmols, 1 equiv.) were used. An insoluble black viscuous oil was 

formed, which was not characterisable, no evidence of cyclisation product was observed via 

1
H NMR or HPLC analysis. 

Entry 9 Synthetic procedure 7.3e was followed. Chlorobenzene (1.5 mL), diiodo 

pentamethylcyclopentadienyliridium(III) dimer (22.8 mg, 19.6 µmols, 3 mol%), potassium 

carbonate (5.4 mg, 39.2 µmols, 3 mol%) and piperidine (59.5 µL, 604 µmols, 1 equiv.) were 

used. An insoluble black viscuous oil was formed, which was not characterisable, no 

evidence of cyclisation product was observed via 
1
H NMR or HPLC analysis. 

Entry 10 Synthetic procedure 7.3e was followed. Chlorobenzene (1.5 mL), diiodo 

pentamethylcyclopentadienyliridium(III) dimer (22.8 mg, 19.6 µmols, 3 mol%) and 

piperidine (59.5 µL, 604 µmols, 1 equiv.) were used. An insoluble black viscuous oil was 

formed, which was not characterisable, no evidence of cyclisation product was observed via 

1
H NMR or HPLC analysis. 

Entry 11 Synthetic procedure 7.3e was followed. Chlorobenzene (1.5 mL), catalyst 4.14 

(11 mg, 19.6 µmols, 3 mol%) and potassium carbonate and piperidine (59.5 µL, 604 µmols, 

1 equiv.) were used. An insoluble black viscuous oil was formed, which was not 

characterisable, no evidence of cyclisation product was observed via 
1
H NMR or HPLC 

analysis* 

Entry 12 Synthetic procedure 7.3e was followed. Chlorobenzene (1.5 mL), catalyst 4.14 

(11 mg, 19.6 µmols, 3 mol%) and piperidine (59.5 µL, 604 µmols, 1 equiv.) were used. An 

insoluble black viscuous oil was formed, which was not characterisable, no evidence of 

cyclisation product was observed via 
1
H NMR or HPLC analysis. 

Entry 13 Synthetic procedure 7.3e was followed. Acetic acid (1.5 mL), catalyst 4.14 

(11 mg, 19.6 µmols, 3 mol%) and piperidine (59.5 µL, 604 µmols, 1 equiv.) were used. An 
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insoluble black viscuous oil was formed, which was not characterisable, no evidence of 

cyclisation product was observed via 
1
H NMR or HPLC analysis. 

Entry 14 Synthetic procedure 7.3e was followed. Xylenes (1.5 mL), dichloro 

pentamethylcyclopentadienyliridium(III) dimer (22.8 mg, 19.6 µmols, 3 mol%) and 

piperidine (59.5 µL, 604 µmols, 1 equiv.) were used. An insoluble black viscuous oil was 

formed, which was not characterisable, no evidence of cyclisation product was observed via 

1
H NMR or HPLC analysis. 

Entry 15 Synthetic procedure 7.3e was followed. Xylenes (1.5 mL), catalyst 4.14 (11 mg, 

19.6 µmols, 3 mol%), were used. An insoluble black viscuous oil was formed, which was 

not characterisable, no evidence of cyclisation product was observed via 
1
H NMR or HPLC 

analysis. 

Entry 16 Synthetic procedure 7.3e was followed. Xylenes (1.5 mL), catalyst 4.14 (6.8 mg, 

12.1 µmols, 2 mol%), 1,1,3,3-tetramethylguanidine (75.5 µL, 603 µmols, 1 equiv.) 

piperidine (59.5 µL, 604 µmols, 1 equiv.) were used. An insoluble black viscuous oil was 

formed, which was not characterisable, no evidence of cyclisation product was observed via 

1
H NMR or HPLC analysis. 

Entry 17 Synthetic procedure 7.3e was followed. Xylenes (1.5 mL), catalyst 4.14 (6.8 mg, 

12.1 µmols, 2 mol%), (piperidine (59.5 µL, 604 µmols, 1 equiv.) were used. An insoluble 

black viscuous oil was formed, which was not characterisable, no evidence of cyclisation 

product was observed via 
1
H NMR or HPLC analysis. 

7.4.9 Attempted formation of catalyst bound-(1H-indol-2-yl) 

ethanol 

 

A solution of indolyl alcohol 4.36 (4.8 mg, 31.1 μmols, 1.0 equiv.), 

dichloropentamethylcyclcopentadienyliridium(III) dimer (17.8 mg, 31.1 μmols, 1.0 equiv.) 

in CDCl3 (0.65 mL) was sonicated in an NMR tube for 30 minutes at room temperature. The 
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solvent was removed and the resulting orange solid was recrystallised from 

dichloromethane–petroleum ether to give the indolyl alcohol and 

pentamethylcyclcopentadienyl iridium (III) dichloride dimer complex 4.58.  

Crystallographic data complex 5.8 

Single crystals of 4.58 were grown by slow evaporation of a dichloromethane-petroleum 

ether solution. An orange block crystal of dimensions 0.31 x 0.26 x 0.17 mm was used for 

the data collection; T = 120(2) K, θ range = 3.5 ≤ θ ≤  60.5°, Crystals belong to Monoclinic; 

Space group P21/c; Formula = C31H43Cl6IrNO; Formula weight = 1042.76; a  = 9.1589(7) Å, 

b = 30.663(2) Å, c = 12.7932(10) Å, α = 90.00 °, β = 99.850(3) °, γ = 90.00 °; Volume = 

3539.9(5) Å
3
; Z = 4, D (calculated): 1.957 mg/mm

3
, μ = 7.989 mm

-1
, Reflections collected 

41353; Independent reflections 10467 [R(int) = 0.0308]; R value = 0.0217, wR2 = 0.0445.  

7.4.10  Synthesis of 3,4,6,7,8,12c-Hexahydro-1H-

[1,4]oxazino[4',3':1,2] pyrido[4,3-b]indole via a one-pot 

dehydrogenation-alkylation strategy 

 

A suspension of indolyl alcohol 4.36 (97.3 mg, 603 μmol, 1.0 equiv.), 

pentamethyl-cyclopentadienyl-(5-trifluoromethyl-2-hydroypyridyl) iridium (III) dichloride 

4.14 (12.8 mg, 22.2 μmol, 4 mol%) and morpholine, 4.53 (200 μL, 2.30 mmol, 3.81 equiv.) 

in xylenes (2 mL) was heated at reflux for three days. The reaction was cooled to 0 °C and 

dissolved in methanol (5 mL), sodium borohydride (78.5 mg, 2.07 mmol, 3.43 equiv.) was 

added portionwise to the reaction and the reaction was allowed to warm to room 

temperature and stirred for an hour. The reaction was quenched with water (20 mL) and the 

organics extracted with dichloromethane (2 x 20 mL) and ethyl acetate (2 x 20 mL). The 

combined organics were dried, filtered and the solvent removed in vacuo to give crude 

3,4,6,7,8,12c-Hexahydro-1H-[1,4]oxazino[4',3':1,2]pyrido[4,3-b]indole
95

 4.17d (15 mg, 
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65.8 µmols, 11%, crude material) as a brown oil. 
1
H NMR (500 MHz, 298 K, CDCl3): δ = 

8.19 (1H, s, NH), 4.68 (1H, dd, J = 11.0, 2.7, C10'H) which were in agreement with the 

literature
95

 (vide supra). 

7.4.11 Synthesis of (±)-Desbromoarborescidine A using a one-pot 

dehydrogenation-alkylation strategy 

 

A suspension of tryptamine 4.7 (104 mg, 650 μmol, 1.0 equiv.), 

pentamethylcyclopentadienyl-(2-oxy-(5-trifluoromethyl)-pyridyl) iridium(III) dichloride 

4.14 (11.4 mg, 20.3 μmol, 3 mol%) and 1,5-pentanediol 4.25 (60 μL, 499 μmol, 0.8 equiv.) 

in xylenes (2 mL) was heated to 100 °C for 4 hours, then reflux for 2 days. The reaction was 

acidified with 1M aqueous hydrochloric acid (20 mL) and the organics extracted with 

dichloromethane (2 x 20 mL). The aqueous was neutralised with aqueous saturated sodium 

hydrogen carbonate (20 mL) and the organics were extracted with dichloromethane 

(3 x 20 mL). The combined organics were dried (magnesium sulfate), filtered and the 

solvent removed in vacuo. Column chromatography [dichloromethane–methanol] gave 

impure (±)-Desbromoarborescidine A
95,28

 4.15 (10.7 mg, 47.3 μmols, 7%) as a dark brown 

solid. 
1
H NMR (500 MHz, 298 K, CDCl3): δ = 3.24 (1H, broad d, J = 10.7, C11' H), lit.

95
 

1
H NMR (500 MHz, CDCl3): δ = 7.71 (1H, broad s, NH), 7.47 (1H, d, J = 7.7, C4H), 7.29 

(1H, d, J = 8.1, C7H), 7.12 (1H, t, J = 7.3, C6H) 7.08 (1H, t, J = 7.3, C5H), 3.24 (1H, broad 

d, J = 10.7, C11' H), 3.10–2.97 (3H, m, C4' HAHB/C5' HAHB/C7' HAHB), 2.74–2.67 (1H, m, 

C7' HAHB), 2.63 (1H, td, J = 11.1, 4.4, C5' HAHB), 2.39 (1H, td, J = 11.1, 3.4, C4' HAHB), 

2.06 (1H, dd, J = 12.4, 2.1, C10' HAHB), 1.90 (1H, broad d, J = 12.4, C9' HAHB), 1.82–1.69 

(2H, m, C8' HAHB/C9' HAHB), 1.60 (1H, qd, J = 12.4, 3.4, C10' HAHB), 1.54–1.43 (1H, m, 

C8' HAHB). 
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7.5 Experiments discussed in Chapter 5 

7.5.1.1 Evaluation of potassium cyanide in the iridium catalysed 

dehydrogenation of amines 

Synthetic Procedure 7.5a 

A general synthetic procedure was used with minor modifications to assess the 

dehydrogenation of primary amines. The procedure is described briefly below: 

 

Cyclohexylamine was added to a suspension of the iridium catalyst, potassium cyanide in 

water and heated to reflux for 3 days. The resulting brown solution became colourless with 

time. The solution was cooled to room temperature. The mixture was poured into 

dichloromethane (20 mL), and the aqueous layer extracted with dichloromethane (3 x 

20 mL), extracted, dried and the solvent removed in vacuo. Isolation of the reaction 

products was not possible. Samples were taken at regular intervals by sampling 50 µL and 

diluting in 5 mL of acetonitrile. 2 mL aliquots of the resulting solution were analysed by GC 

and GC-MS. Dicyclohexylamine and potential analysis artefacts were observed via GC-MS 

analysis, α-aminonitrile formation was not observed via 
1
H NMR or GC-MS analysis. The 

eneamide 5.12 was observed via GC-MS: elution time: 5.2 min., m/z: 139. The 5.13 was 

observed via GC-MS: elution time: 5.6 min., m/z: 134. 

Entry 

Cyanide 

Source and 

quantity / 

equiv. 

Catalyst 

Catalyst 

Loading / 

mol% 

Overall 

Concentration of 

reactants in 

solution / N
 

Product 

Observed 

via GC-MS 

1 KCN, 0.79 5.1b 1 0.57 5.11
b 

2 KCN, 4 5.1b 1 2.09 5.12 or 5.13 

3 KCN, 4 5.1a 1 2.09 5.12 or 5.13 

4 KCN, 4 5.2 2 2.09 5.12 or 5.13 

5 KCN, 4 5.2 2 2.09 5.12 or 5.13 
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Entry 1 Synthetic procedure 7.5a was followed. Amine 5.9 (288 µL, 2.52 mmols, 

1.00 equiv.), diiodopentamethylcyclopentadienyliridium(III) dimer complex (23 mg, 

20.0 μmol, 1 mol%), water (8 mL) and potassium cyanide (135 mg, 2 mmol, 0.79 equiv.) 

were used. Dicyclohexylamine was observed by GC-MS analysis. 

Entry 2 Synthetic procedure 7.5a was followed. Amine 5.9 (576 µL, 5.04 mmols, 

1.00 equiv.), diiodopentamethylcyclopentadienyliridium(III) dimer complex (46 mg, 

40.0 μmol, 1 mol%), water (12 mL) and potassium cyanide (1.35 g, 20 mmol, 4.00 equiv.) 

were used. Eneamide and dinitrile were observed by GC-MS analysis.  

Entry 3 Synthetic procedure 7.5a was followed. Amine 5.9 (288 µL, 2.52 mmols, 

1.00 equiv.), diiodopentamethylcyclopentadienyliridium(III) dimer complex (16 mg, 

20.0 μmol, 1 mol%), water (6 mL) and potassium cyanide (675 mg, 10 mmol, 4.00 equiv.) 

were used. The products of the reaction were not isolated. Eneamide and dinitrile were 

observed by GC-MS analysis. 

Entry 4 Synthetic procedure 7.5a was followed. Amine 5.9 (288 µL, 2.52 mmols, 

1.00 equiv.), pentamethylcyclopentadienyl (2-hydroxy-

5-(trifluoromethyl)-pyridine)iridium(III) dichloride (19.8 mg, 40.0 μmol, 2 mol%), water 

(6 mL) and potassium cyanide (675 mg, 10 mmol, 4.00 equiv.) were used. Eneamide and 

dinitrile were observed by GC-MS analysis. 

Entry 5 Synthetic procedure 7.5a was followed. Amine 5.9 (288 µL, 2.52 mmols, 

1.00 equiv.), Fujita catalyst 5.2 (22.4 mg, 4.0 μmol, 1 mol%), water (6 mL) and potassium 

cyanide (675 mg, 10 mmol, 4.00 equiv.) were used. Eneamide and dinitrile were observed 

by GC-MS analysis. 

7.5.1.2 Evaluation of trimethylsilyl cyanide (TMSCN) in the iridium catalysed 

dehydrogenation of amines 

 

Amine 5.9 (458 µL, 4.00 mmols), diiodopentamethylcyclopentadienyliridium(III) dimer 

complex (46 mg, 40.0 μmol, 1 mol%) and trimethylsilyl cyanide (750 µL, 6 mmol, 
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1.50 equiv.) in toluene (8 mL) were heated to 100 °C. The eneamide 5.12 was observed via 

GC-MS: elution time: 5.2 min., m/z: 139. The dinitrile 5.13 was observed via GC-MS: 

elution time: 5.6 min., m/z: 134. 

7.5.1.3 The synthesis of a (s)-2-phenyl aziridine standard 

 

(S)-2-Phenyl aziridine was synthesised using the method of Xu with slight modifications.
170

 

(S)-2-Phenyl glycinol (550 mg, 4.01 mmol, 1.00 equiv.) was dissolved in toluene and cooled 

to 0 °C. Triphenyl phosphine (1.10 mg, 4.20 mmol, 1.05 equiv.) and toluene (9 mL) were 

added to the resulting solution. Diisopropyl azodicarboxylate (780 μL, mmol, equiv.) was 

slowly added to the resulting solution over 2 hours, which was slowly warmed to room 

temperature and then stirred at reflux for 24 hours. The resulting solution was yellow in 

colour which grew darker with time. The solution was poured into water (15 mL) and 

diethyl ether (15 mL). The solution was dried over magnesium sulfate and filtered. The 

solvent was removed in vacuo, diluted in diethyl ether (15 mL) and cooled to 0 °C for 

3 hours. The resulting suspension was filtered. Removal of the solvent in vacuo gave the 

crude product as a dark orange oil. Purification via column chromatography (eluting with 

petroleum ether [1% triethylamine]–ethyl acetate; 5:1) gave (S)-phenyl aziridine
170, 199

 (5.25) 

(161 mg, 1.35 mmol, 30%) as a yellow oil. Rf  0.25 (Petroleum ether [1% triethylamine]–

ethyl acetate 5:1); 
1
H NMR  (500 MHz, CDCl3) δ: 7.18–7.40 (m, 5 H), 3.02 (dd, J = 6.0, 

3.4 Hz, 1 H), 2.21 (d, J = 6.0 Hz, 1 H), 1.51 (br s, 1 H), 1.81 (d, J = 3.4 Hz, 1 H); 
13

C
 
NMR 

(75 MHz, CDCl3) δ:140.3, 128.4, 127.0, 125.6, 32.1, 29.2; GC-MS: elution time: 6.3 min, 

m/z; 118. 

7.5.1.4 General procedure for the synthesis of dimethylsulfoxoniummethylide 

Synthetic Procedure 7.5b 

A general synthetic procedure based upon the methods of Jones
200

 and Smith
169

 was used 

with minor modifications to form dimethylsulfoxoniummethylide. The procedure is 

described briefly below: 
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Under anhydrous conditions in a flame-dried round bottomed flask, sodium hydride (60% in 

mineral oil [145 mg, 5.00 mmol, 2.50 equiv.]) was washed 3 times with anhydrous THF 

(2 mL). Vacuum-dried sulfoxonium iodide salt 5.21 (444 mg, 2.00 mmol, 1.00 equiv.) was 

added to the dry mixture and anhydrous solvent (2 mL) was added slowly, the mixture was 

stirred at 20 °C to afford the ylide 5.20. The solvent was partially evaporated. The resulting 

mixture was used without further purification. 

Entry Solvent 
Time / 

hours 

1 THF 2 

2 DMSO 0.5 

3 Anisole 2 

Entry 1 Synthetic procedure 7.5b was followed. Anhydrous THF was the solvent used and 

the suspension was stirred for 2 hours.  

Entry 2 Synthetic procedure 7.5b was followed. Anhydrous DMSO was the solvent used 

and the solution was stirred for 0.5 hours.  

Entry 3 Synthetic procedure 7.5b was followed. Anhydrous anisole was the solvent used 

and the suspension was stirred for 2 hours.  

7.5.1.5 The evaluation of dimethyl sulfoxonium methylide in the iridium 

catalysed dehydrogenation of benzlyamine 

Synthetic Procedure 7.5c 

A general procedure with slight modifications was used for the evaluation of 

dimethylsulfoxonium methylide during benzyl amine dehydrogenation. The procedure is 

described briefly below: 
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Under anhydrous conditions, benzylamine 5.26 (225 μL, 2.00 mmol, 2.00 equiv.) was added 

to a suspension of diiodopentamethylcyclopentadienyliridium (III) dimer complex (23 mg, 

20.0 μmol, 1 mol%) and biphenyl (15.4 mg, 0.1 mmol, 0.10 equiv.) in solvent A (4 mL) and 

was stirred at reflux for 5 hours. The resulting brown solution rapidly became orange. 

Dimethylsulfoxonium methylide 5.20 dissolved in solvent B was added to the resulting 

solution via dropwise addition by syringe pump (2.03 mL min
-1

). The resulting solution 

became orange over time. Isolation of the reaction products was not possible.  Samples were 

taken at regular intervals by sampling 50 µL and diluting in 5 mL of acetonitrile. 2 mL 

aliquots of the resulting solution were analysed by GC and GC-MS. The formation of 

products 5.25 and 5.27-5.29 was observed via GC-MS analysis. Aziridine 5.25 was 

observed via GC-MS analysis: elution time: 5.1 min., m/z: 120 and comparison to a pre-

prepared standard (vide supra); over-oxidation product 5.27 was observed via GC-MS 

analysis: elution time = 4.9 min., m/z: 135; azetidine 5.28 was observed via GC-MS 

analysis: elution time: 6.4 min., m/z: 134: pyrrolidine 5.29 was observed via GC-MS 

analysis: elution time: 7.2 min., m/z: 147. GC yields were calculated by comparison to the 

biphenyl internal standard using Equation 7.1, but without an internal response factor. 

Entry Solvent A Solvent B Solvent C 
Proposed Main Product / 

N
o 

Product
b
 / % 

1 Xylenes THF n/a 5.28 14 

2 PhMe DMSO n/a 5.25 32 

3 PhMe THF n/a 5.29 20 

4 Xylenes THF DMF 5.25/ 5.27 21/23 

5 Xylenes Anisole n/a No reaction 0 

a Amine 5.26 (1.00 equiv.), iridium complex (1 mol%) in anhydrous solvent A (2 mL) were heated to reflux and 

a suspension of ylide 5.20 (1.5 equiv.) and solvent B (1 mL) were added slowly. 

b Calculated via comparison to a biphenyl internal standard. Yield calculated to the nearest percent, ±0.5%. 

Entry 1 Synthetic procedure 7.5c was followed. Xylenes (solvent A) and THF (solvent B) 

were used. The formation of azetidine 5.28 was observed via GC analysis GC conversion 

14%.   
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Entry 2 Synthetic procedure 7.5c was followed. Toluene (solvent A) and DMSO 

(solvent B) were used. Aziridine 5.25, GC yield 32%. Oxidation product 5.30, GC yield 

3%. 

Entry 3 Synthetic procedure 7.5c was followed. Toluene (solvent A) and THF (solvent B) 

were used. Pyrrolidine 5.29, GC conversion, 20%. 

Entry 4 Synthetic procedure 7.5c was followed. Xylenes (solvent A) and THF (solvent B) 

which was changed to DMF (2 ml, solvent C) were used. Aziridine 5.25, GC conversion 

21%. Oxidation product 5.27, GC conversion 23%. Azetidine 5.28, GC conversion 4%. 

Pyrrolidine 5.29, GC conversion < 1%.  

Entry 5 Synthetic procedure 7.5c was followed. Xylenes (solvent A) and anisole (solvent 

B) were used. The solution of ylide 5.20 was added in one portion. No reaction was 

observed via GC analysis. 

7.5.1.6 Synthesis of secondary amine hydrochloride salts 

Synthetic Procedure 7.5d 

The method of Abdel-Magid
186

 was followed with minor modifications for the synthesis of 

secondary amines through reductive amination, as described below: 

 

The amine (1.06 equiv.) was added to a solution of the ketone (1.0 equiv.) in anhydrous 

methanol (0.25M) and the reaction mixture was stirred under a nitrogen atmosphere at 20 °C 

for 4 hours. After complete consumption of the starting material by TLC analysis, the 

reaction was cooled to 0 °C. Sodium borohydride (1.6 equiv.) was added portionwise to the 

resulting mixture, which was subsequently allowed to warm to 20 °C and stirred for 1 hour. 

The reaction was quenched with 1M sodium hydroxide solution. The organic phase was 
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extracted with diethylether (3 x 150 mL) and washed with saturated sodium chloride 

solution (100 mL) and dried over anhydrous magnesium sulfate. The crude product obtained 

after the removal of solvent in vacuo was diluted in ether and isolated as hydrochloride salt, 

by acidification with 2M ethanolic hydrochloric acid solution and recrystalisation of the 

resulting solid. 

3.2.3.1.2. N-Benzyl cyclohexylamine hydrochloride salt
201-203

  

Synthetic procedure 7.5d was followed. Benzylamine (2.38 mL, 21.2 mmol, 

1.06 equiv.); cyclohexanone (2.06 mL, 20 mmol, 1.0 equiv.); anhydrous 

methanol (80 mL); sodium borohydride (1.22 g, 32.0 mmol, 1.6 equiv.). 

The crude product obtained was a yellow oil (4.00 g). Acidification and 

recrystallisation from acetonitrile gave the title compound as colourless crystalline plates 

(3.31 g, 15.7 mmol, 79%).
201-203

 m.p. (acetonitrile-ethanol): >230 °C (lit. 283-284 °C)
202

.  

1
H NMR (300 MHz, 298 K, CDCl3): δ = 9.76 (2H, s, NH2), 7.63 (2H, d, J = 7.2 Hz, C2H), 

7.39 (t, J = 7.3 Hz, 2H, C3H), 7.34 (d, J = 7.3 Hz, 1H, C1H), 3.97 (s, 2H, C5H2), 2.74 (1H, 

tt, J = 11.0, 3.3 Hz, C6H), 2.16 (1H, d, J = 10.7 Hz, C9Ha), 1.79 (1H, d, J = 12.8 Hz, C9Hb), 

1.67-1.54 (4H, m, 2C7H2), 1.32-1.02 (4H, m, 2C8H2). 
13

C NMR (75 MHz, 298 K, CDCl3): 

δ = 130.9 (C2), 130.5 (C6), 129.5 (C2), 129.3 (C1), 55.4 (C6), 47.4 (C5), 29.1 (C9), 25.0 

(C8), 24.7 (C7). ESI-MS (ES+ mode): m/z = 190.1 [(M-Cl)
+
, 100%]. HRMS (ES+ mode): 

m/z = 190.1590 [M-Cl
-
, 100%]; calculated for C13H20N [(M-Cl)

+
]: m/z = 190.1596. IR 

(solid): ν = 3200, 3050-2400, 2448, 1945, 1590, 1452, 1380, 997, 748, 692, 504 cm
-1

. 

3.2.3.1.3. N-Benzyl-α-methyl-benzylamine hydrochloride salt
201

 

 Synthetic procedure 7.5d was followed. α-methyl benzylamine 

(1.35 mL, 10.5 mmol, 1.05 equiv.); benzaldehyde (1.02 mL, 

10.0 mmols, 1.0 equiv.); anhydrous methanol (40 mL); sodium 

borohydride (646 mg, 17.1 mmol, 1.71 equiv.). Acidification and 

recrystallisation from acetonitrile–petroleum ether gave the title compound as yellow 

crystalline needles (2.45 g, 9.87 mmols, 99%). m.p. (acetonitrile-petroleum ether) 

165-168 °C. 
1
H NMR (500 MHz, CD3OD) δ 7.62 – 7.51 (m, 5H, CArH), 7.51-7.31 (m, 5H, 

CArH), 4.49 (q, J = 6.8 Hz, 1H, C5H), 4.17 (d, J = 13.1 Hz, 1H, C7Ha), 3.95 (d, J = 13.2 

Hz, 1H, C7Hb), 1.76 (d, J = 6.9 Hz, 3H, C6H3). 
13

C NMR (75 MHz, CD3OD) δ: 135.8 (C8), 

130.6 (C4), 129.4 (CAr), 129.2 (CAr), 128.2 (CAr), 128.0 (CAr), 127.5 (CAr), 127.4 (CAr), 

70.5 (C6), 49.1 (C7), 16.3 (C5). ESI-MS (ES+ mode): m/z = 212 [(M-Cl)
+
, 100%]. HRMS 
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(ES+ mode): m/z = 212.1106 [M-Cl
-
, 100%]; calculated for C15H18N [(M-Cl)

+
]: 

m/z = 212.1439. IR (solid): ν = 3405, 2940, 2720, 1598 cm
−1. 

7.5.2 Attempted deprotection of secondary amines 

Synthetic Procedure 7.5e 

A general synthetic procedure was followed with slight modifications for the attempted 

deprotection of secondary amines. The procedure is described briefly below: 

 

The amine hydrochloride salt was dissolved in solvent, the free base formed using a 

carbonate base and the resulting organics were extracted with ethyl acetate and or diethyl 

ether (50 mL). The combined organics were washed with water and then concentrated in 

vacuo to give the crude free amine, as a yellow oil. The crude free amine was added to a 

suspension of the solvent, ammonia source and iridium catalyst and heated either open to air 

or under pressure in a sealed tube for 1-7 days. The reaction was then poured into water 

(50 mL) and the organics extracted with dichloromethane (3 x 50 mL). The combined 

organics were then dried (magnesium sulfate), filtered and the solvent removed in vacuo to 

give the crude reaction mixture, which was then analysed by 
1
H-NMR and/or LC-MS 

analysis to monitor the conversion to the desired primary amines. No primary amine was 

observed during 
1
H-NMR or LC-MS analysis. 
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Entry Amine Nucleophile Source 
Temp / 

°C 
Solvent 

Sealed 

Tube 

Yield of 

deprotected 

amine / % 

1
 a
 5.40

 NH4OAc 110 PhMe No 0 

2 5.40 NH4OH 55 MeCN Yes 0 

3 5.40 NH4OAc 82 MeCN No 0 

4 5.40 NH4OAc 90 iPrOH Yes 0 

5 5.41 NH4OH 90 iPrOH Yes 0 

6 5.41 NH3 40 iPrOH Yes 0 

7 5.40 NH2OH•HCl, Na2CO3 Reflux MeOH No 0 

8 5.41 NH2OH(aq) Reflux CH2Cl2 No 0 

9 5.40 
NH2OH•HCl, Na2CO3 

(in CH2Cl2)
b
 

Reflux xylenes No 0 

10 5.40 NH2OH•HCl Reflux PhMe No 0 

11 5.40 NH2OH•HCl Reflux MeCN No 0 

12 5.40 NH2OH•HCl Reflux THF No 0 

13 5.40 NH2OH•HCl Reflux 
n
BuOAc No 0 

14 5.40 NH2OH•HCl Reflux H2O No 0 

15 5.40 
NH2OH•HCl, Na2CO3 

(in CH2Cl2) 
Reflux xylenes No 0 

16 5.40 
NH4OH, Na2CO3 

(in MeCN) 
Reflux xylenes No 0 

a Formed in situ from iridium complex 5.1a and KI. 

b Dropwise addition of amine to reaction. 

Entry 1 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (897 mg, 3.97 mmols, 1.00 equiv.), sodium hydroxide (aqueous, 2 N, 50 mL) and ethyl 

acetate (3 x 50 mL) were used to form the crude free amine as an oil. The crude free amine, 

dichloropentamethylcyclopentadienyliridium(III) dimer complex (37.1 mg, 46.5 μmols, 

1 mol%), potassium iodide (16.2 mg, 97.6 μmols, 2 mol%), ammonium acetate (1.33 g, 
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17.3 mmols, 4.36 equiv.) and toluene (8 mL) were used and heated to reflux for one day. 

The reaction was poured into water (50 mL) and the organics extracted with ethyl acetate 

(2 x 50 mL) and dichloromethane (3 x 50 mL), the combined organics were dried 

magnesium sulfate, filtered and the solvent removed in vacuo to give the crude reaction 

mixture as a light brown oil. The crude was analysed by 
1
H NMR and LC-MS and no 

reaction was observed. 

Entry 2 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (387 mg, 1.71 mmols, 1.00 equiv.), sodium carbonate (saturated aqueous, 125 mL), 

ethyl acetate (50 mL) and diethyl ether (2 x 30 mL) were used to form the crude free amine 

as an oil. The crude free amine, diiodopentamethylcyclopentadienyliridium(III) dimer 

complex (26.8 mg, 23.0 μmols, 1 mol%), aqueous ammonia (35% w/w, 1.13 mL, 10 mmol, 

5 equiv.) and acetonitrile (3 mL), were used and heated in a sealed tube by an oil bath 

(55 °C) for one day and a colourless precipitate formed for the attempted deprotection. The 

reaction was poured into water (50 mL) and the organics extracted with ethyl acetate 

(2 x 50 mL) and dichloromethane (3 x 50 mL), the combined organics were dried 

magnesium sulfate, filtered and the solvent removed in vacuo to give the crude reaction 

mixture as a light brown oil. The crude was analysed by 
1
H NMR and LC-MS and no 

reaction was observed. 

Entry 3 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (372 mg, 1.62 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

100 mL) and ethyl acetate (3 x 100 mL) were used to form the crude free amine as an oil. 

The crude free amine, diiodopentamethylcyclopentadienyliridium(III) dimer complex 

(27.4 mg, 23.6 μmols, 1 mol%), ammonium acetate (770 mg, 10 mmols, 6.17 equiv.) and 

acetonitrile (4 mL) were used and heated to reflux for five days for the attempted 

deprotection. The reaction was monitored by GC-MS and LC-MS. The reaction was poured 

into water (50 mL) and the organics extracted with ethyl acetate (3 x 150 mL), the combined 

organics were dried (magnesium sulfate), filtered and the solvent removed in vacuo to give 

a brown oil. The crude was analysed by 
1
H NMR and LC-MS and no reaction was 

observed. 

Entry 4 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (453 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

200 mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 150 mL) and water 

(150 mL) were used to form the crude free amine as an oil. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 
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1 mol%), ammonium acetate (800 mg, 10.4 mmols, 5. 2 equiv.) and isopropanol (2 mL) 

were used and heated in a sealed tube by an oil bath (90 °C) for one day, then the 

temperature was raised (100 °C) for a total of 3.5 days for the attempted deprotection. The 

reaction was poured into water (50 mL) and the organics extracted with dichloromethane 

(100 mL), then ethyl acetate–diethyl ether (1:1, 3 x 100 mL). The combined organics were 

dried (sodium sulfate), filtered and the solvent removed in vacuo to give a brown solid as 

crude. The crude was analysed by 
1
H NMR and LC-MS and no reaction was observed. 

Entry 5 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (453 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

200 mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 150 mL) and water 

(150 mL) were used to form the crude free amine as an oil. Ammonia was condensed and 

dissolved into isopropanol. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 

1 mol%), aqueous ammonia (35% w/w, 1.13 mL, 10 mmol, 5 equiv.) in isopropanol (2 mL) 

were used and heated in a sealed tube by an oil bath (90 °C) for one day. The reaction was 

poured into water (50 mL) and the organics extracted with dichloromethane (100 mL), then 

ethyl acetate–diethyl ether (1:1, 3 x 100 mL). The combined organics were dried (sodium 

sulfate), filtered and the solvent removed in vacuo to give a brown solid as crude. The crude 

was analysed by 
1
H NMR and LC-MS and no reaction was observed. 

Entry 6 Synthetic Procedure 7.5e was followed. N-benzyl-a-methyl benzylamine 

hydrochloride salt (424 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate 

(saturated aqueous, 200 mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 

150 mL) and water (150 mL) were used to form the crude free amine as an oil. Ammonia 

was condensed and dissolved into isopropanol. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 

1 mol%), ammonium dissolved in isopropanol (800 mg, 10.4 mmols, 5.2 equiv.) and 

isopropanol (2 mL) were used and heated in a sealed tube by an oil bath (90 °C) for one day. 

The reaction was poured into water (50 mL) and the organics extracted with 

dichloromethane (100 mL), then ethyl acetate–diethyl ether (1:1, 3 x 100 mL). The 

combined organics were dried (sodium sulfate), filtered and the solvent removed in vacuo to 

give a brown solid as crude. The crude was analysed by 
1
H NMR and LC-MS and no 

reaction was observed. 
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Entry 7 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (453 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

200 mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 150 mL) and water 

(150 mL) were used to form the crude free amine as an oil. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 

1 mol%), hydroxylamine hydrochloride (695 mg, 10.0 mmols, 5.00 equiv.), sodium 

carbonate (1.06 g, 10.0 mmols, 5 equiv.) and methanol (4 mL) were used and heated to 

reflux for one day. The reaction was poured into water (50 mL) and the organics extracted 

with dichloromethane (100 mL), then ethyl acetate-diethyl ether (1:1, 3 x 100 mL). The 

combined organics were dried (sodium sulfate), filtered and the solvent removed in vacuo to 

give a brown oil. The crude was analysed by 
1
H NMR and LC-MS and no reaction was 

observed. 

Entry 8 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (453 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

200 mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 150 mL) and water 

(150 mL) were used to form the crude free amine as an oil. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 

1 mol%), aqueous hydroxylamine (50 wt %, 1 mL, 16.3 mmols, 8.15 equiv.) and 

dichloromethane (4 mL) were used and heated to reflux for one day. The reaction was 

poured into water (50 mL) and the organics extracted with dichloromethane (100 mL), then 

ethyl acetate–diethyl ether (1:1, 3 x 100 mL). The combined organics were dried over 

sodium sulfate, filtered and the solvent removed in vacuo to give a brown oil as crude. The 

crude was analysed by 
1
H NMR and LC-MS and no reaction was observed. 

Entry 9 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (453 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

200 mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 150 mL) and water 

(150 mL) were used to form the crude free amine as an oil. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 

1 mol%), hydroxylamine hydrochloride (695 mg, 10.0 mmols, 5.00 equiv.) in 

dichloromethane (0.5 mL, added dropwise over two hours once at temperature) and xylenes 

(2 mL) were used and heated to reflux for two days. The reaction was poured into water 

(50 mL) and the organics extracted with dichloromethane (100 mL), then ethyl acetate–

diethyl ether (1:1, 3 x 100 mL). The combined organics were dried (sodium sulfate), filtered 

and the solvent removed in vacuo to give a brown solid as crude. The crude was analysed by 

1
H NMR and LC-MS and no reaction was observed. 
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Entry 10 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (453 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

200 mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 150 mL) and water 

(150 mL) were used to form the crude free amine as an oil. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 

1 mol%), hydroxylamine hydrochloride (695 mg, 10.0 mmols, 5.00 equiv.) and toluene 

(2 mL) were used and to reflux for two days. The reaction was poured into water (50 mL) 

and the organics extracted with dichloromethane (100 mL), then ethyl acetate–diethyl ether 

(1:1, 3 x 100 mL). The combined organics were dried (sodium sulfate), filtered and the 

solvent removed in vacuo to give a brown solid as crude. The crude was analysed by 

1
H NMR and LC-MS and no reaction was observed. 

Entry 11 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (453 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

200  mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 150 mL) and water 

(150 mL) were used to form the crude free amine as an oil. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 

1 mol%), hydroxylamine hydrochloride (695 mg, 10.0 mmols, 5.00 equiv.) and acetonitrile 

(2 mL) were used and heated to reflux for two days. The reaction was poured into water 

(50 mL) and the organics extracted with dichloromethane (100 mL), then ethyl acetate–

diethyl ether (1:1, 3 x 100 mL). The combined organics were dried (sodium sulfate), filtered 

and the solvent removed in vacuo to give a brown solid as crude. The crude was analysed by 

1
H NMR and LC-MS and no reaction was observed. 

Entry 12 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (453 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

200 mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 150 mL) and water 

(150 mL) were used to form the crude free amine as an oil. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 

1 mol%), hydroxylamine hydrochloride (695 mg, 10.0 mmols, 5.00 equiv.) and THF (2 mL) 

were used and heated to reflux for two days. The reaction was poured into water (50 mL) 

and the organics extracted with dichloromethane (100 mL), then ethyl acetate–diethyl ether 

(1:1, 3 x 100 mL). The combined organics were dried (sodium sulfate), filtered and the 

solvent removed in vacuo to give a brown solid as crude. The crude was analysed by 

1
H NMR and LC-MS and no reaction was observed. 
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Entry 13 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (453 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

200 mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 150 mL) and water 

(150 mL) were used to form the crude free amine as an oil. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 

1 mol%), hydroxylamine hydrochloride (695 mg, 10.0 mmols, 5.00 equiv.) and n-butyl 

acetate (2 mL) were used and heated to reflux for two days. The reaction was poured into 

water (50 mL) and the organics extracted with dichloromethane (100 mL), then ethyl 

acetate–diethyl ether (1:1, 3 x 100 mL). The combined organics were dried (sodium sulfate), 

filtered and the solvent removed in vacuo to give a brown solid as crude. The crude was 

analysed by 
1
H NMR and LC-MS and no reaction was observed. 

Entry 14 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (453 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

200 mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 150 mL) and water 

(150 mL) were used to form the crude free amine as an oil. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 

1 mol%), hydroxylamine hydrochloride (695 mg, 10.0 mmols, 5.00 equiv.) and water (2 

mL) were used and heated to reflux for two days. The reaction was poured into water (50 

mL) and the organics extracted with dichloromethane (100 mL), then ethyl acetate–diethyl 

ether (1:1, 3 x 100 mL). The combined organics were dried (sodium sulfate), filtered and the 

solvent removed in vacuo to give a brown solid as crude. The crude was analysed by 

1
H NMR and LC-MS and no reaction was observed. 

Entry 15 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (453 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

200 mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 150 mL) and water 

(150 mL) were used to form the crude free amine as an oil. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 

1 mol%), hydroxylamine hydrochloride (695 mg, 10.0 mmols, 5.00 equiv.) in 

dichloromethane (0.5 mL) and xylenes (2 mL) were used and heated to reflux for two days. 

The reaction was poured into water (50 mL) and the organics extracted with 

dichloromethane (100 mL), then ethyl acetate-diethyl ether (1:1, 3 x 100 mL). The 

combined organics were dried (sodium sulfate), filtered and the solvent removed in vacuo to 

give a brown solid as crude. The crude was analysed by 
1
H NMR and LC-MS and no 

reaction was observed. 
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Entry 16 Synthetic Procedure 7.5e was followed. N-Cyclohexyl benzylamine hydrochloride 

salt (453 mg, 2.00 mmols, 1.00 equiv.), sodium hydrogen carbonate (saturated aqueous, 

200 mL), ethyl acetate (150 mL), ethyl acetate–diethyl ether (1:1, 2 x 150 mL) and water 

(150 mL) were used to form the crude free amine as an oil. The crude free amine, 

diiodopentamethylcyclopentadienyliridium(III) dimer complex (26.9 mg, 23.1 μmols, 

1 mol%), hydroxylamine hydrochloride (695 mg, 10.0 mmols, 5.00 equiv.) in acetonitrile 

(0.5 mL) and xylenes (2 mL) were used and heated to reflux for two days. The reaction was 

poured into water (50 mL) and the organics extracted with dichloromethane (100 mL), then 

ethyl acetate–diethyl ether (1:1, 3 x 100 mL). The combined organics were dried (sodium 

sulfate), filtered and the solvent removed in vacuo to give a brown solid as crude. The crude 

was analysed by 
1
H NMR and LC-MS and no reaction was observed. 
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