
Strathprints Institutional Repository

Westerberg, C. Henrik and Levine, John (2014) Optimising plans using

genetic programming. In: Proceedings of the Sixth European Conference

on Planning. AAAI Press, Palo Alto. ISBN 9781577356295 ,

This version is available at http://strathprints.strath.ac.uk/57184/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

Optimising Plans Using Genetic Programming

C. Henrik Westerberg and John Levine
CISA, University of Edinburgh,

80 South Bridge, Edinburgh, EH1 1HN
carlw,johnl@dai.ed.ac.uk

New address: John Levine, University of Strathclyde, john.levine@strath.ac.uk

Abstract

Finding the shortest plan for a given planning problem
is extremely hard. We present a domain independent ap-
proach for plan optimisation based on Genetic Program-
ming. The algorithm is seeded with correct plans cre-
ated by hand-encoded heuristic policy sets. The plans
are very unlikely to be optimal but are created quickly.
The suboptimal plans are then evolved using a genera-
tional algorithm towards the optimal plan. We present
initial results from Blocks World and found that GP
method almost always improved sub-optimal plans, of-
ten drastically.

Introduction

Finding any plan for planning domains is often a difficult
task, but we are often more interested in the even harder
task of finding optimal or near optimal plans. The current
fastest planning systems use heuristics and hill-climbing
techniques. However, no heuristic is perfect and plans found
in this way are often suboptimal, in the sense they use more
actions to achieve the goal state than are necessary.

We present a domain independent technique, based on
Genetic Programming (GP) that attempts to optimise lin-
ear plans. The system accepts a seed of plans from which
to optimise. This seed could be produced by a current plan-
ning system or plans made using heuristics. The amount of
computational effort to devote to the optimisation stage can
also be set by the user by setting various parameters of the
system. The GP algorithm also has anytime behaviour, and
could return the best current plan at any time during the run.

Using the Genetic Planning optimisation system, we ex-
perimented on two domains: Blocks World Domain, and the
Briefcase Domain (Muslea 1997). The Blocks World prob-
lems were kindly donated to us Jose Ambite. The results of
the Briefcase Domain have been omitted due to space re-
strictions. During the experimentation we were looking for
how much the initial plans could be shrunk depending on
the type of heuristics used, the behaviour of the system as
it operated, and what changes we could make to the current
system to improve its ability.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Plan Optimisation via Genetic Programming

We present here one possible implementation of using Ge-
netic Programming as a linear plan optimiser. We used
two different hand-encoded policy sets for the Blocks Do-
main in order to seed the initial population with correct but
overly long plans. We then used a generational algorithm
with standard genetic operators in order to optimise those
plan (Banzhaf et al. 1998). We based our work on a previ-
ously implemented generational algorithm for linear plan-
ning (Westerberg & Levine 2000).

The following implementational details have many alter-
natives, and are not fixed. One of the strengths of our ap-
proach is that the Fitness Function and Simulation stage can
be altered to look for different cost aspects besides the sim-
plistic plan length.

Plan Representation: Plans are represented as linear lists
of sequential, instantiated, atomic actions. Each atomic ac-
tion contains one operator and its arguments.

Simulation: The simulation stage takes an individual or
plan and then attempts to apply all the actions. During
the simulation stage various attributes of the plan can be
recorded such as how many actions there are in the plan and
what effect the plan had on the initial state. This information
can then be used as input by the fitness function.

Fitness Function: The fitness function takes the output
of the simulation stage and prescribes a iitness value to in-
dividual based on the information given to it. In the case of
this system the fitness function has two parts. The first part
says whether the plan achieves all the goals not. The second
part is the number of actions in the plan and is used as a
tie-breaker in tournament selection.

Genetic Operators

There is a large choice of genetic operators to be used during
the optimisation stage. We have taken the position of keep-
ing things simple and stochastic. One alternative is to imple-
ment domain specific operations, such as rewrite rules, for
optimising particular domains.

Crossover: This system implements l-point crossover.

Reproduction: This is the simplest operator and it copies
the selected parent into the next population.

Shrink Mutation: This type of mutation simply deletes a
randomly selected action from the parent.

Proceedings of the Sixth European Conference on Planning

272

Move Mutation: This type of mutation moves a ran-
domly selected action to a new randomly selected position.

Mutations occur on children created by either reproduc-
tion or crossover. The probabilities of the operators occur-
ing are set by the user. The implementation presented here is
based on an existing system and is by no means optimal for
generating optimal plans. Improvements that can be made to
it and some are suggested in a later section.

Policy Set Planning in Blocks World

The Blocks World Domain is important because it is one of
the benchmarking domains used to compare different plan-
ners. Blocks is also important historically as one of the orig-
inal planning problem domains. In addition, finding opti-
mal plans for Blocks World problems is known to be NP-
hard (Bylander 1994). We also chose the Blocks World Do-
main as a fast domain specific planning algorithm that pro-
duces optimal plans exists for it, called BVVOPT (Slaney &
Thiébaux 1995).

Our system uses hand-encoded policy sets to produce en-
tire populations filled with correct but suboptimal plans. A
GP optimising system probably works better if the initial
populations is diverse. To achieve this the policy sets were
interpreted non-deterministically.

The policy sets generally function like this. The rules
within each policy set are tested sequentially. For the cur-
rent rule the current world state is examined and all actions
that could operate on that state in accordance with the rule
are discovered. At that point, one of the actions is selected
randomly and added to the new plan. The current world state
is updated and the formation of the plan continues until all
goals in the goal state are achieved. If the rule allows for no
actions, the next rule in the rule set is used and if one rule
fires then the other rules are ignored.

There are several types of policy sets that can charac-
terised by how easy it is to optimise the resulting plan. The
three types we are interested in here are:

• Optimal Policy Sets: These policy sets always produce
optimal plans, for any problem in the domain.

• DM-Optimal Policy Sets: These policy sets always pro-
duce plans where the optimal plan can be discovered by
only deleting and moving actions:

– ∀c ∈ C → c∗ ∈ DM(c) where C is the set of all plans
constructed by the policy set, c∗ is the optimal plan and
DM(c) is the set of all plans which can be created by
only moving and deleting actions in c.

• Satisficing Policy Sets: These policy sets produce cor-
rect plans but may produce plans that are missing actions
which the optimal plan would need.

Policy Set 1

1. Discover all actions achieving well placed blocks or

2. Find all actions moving movable non-well placed blocks
to a new location

Policy Set 2

1. Discover all actions placing movable blocks onto the table
then

2. Discover all actions achieving well placed blocks

A well placed block is one which no longer has to move,
as it is in its target location and all blocks below it are well
placed. A movable block is one which is not underneath a
block or already on the table. Policy Set 1 does not scale
very well for larger problem instances: when the first rule
provides no actions, it “wanders” around at random until the
first rule starts to succeed. The first policy set belongs in
the class of Satisficing Policy Sets. The second policy set
unstacks all the blocks and then stacks the blocks back up in
the right order. This policy set belongs in the class of DM-
Optimal Policy Sets. This was the policy set Ambite used in
PbR (Ambite & Knoblock 1997).

Experimental Results

Each experiment was done using the parameters shown in
Table 1. We performed 25 runs for each problem, and again
for each policy set. We experimented using 50 Blocks World
problems. During the run we recorded the average number
of actions in the first best individual (from the seeding stage)
and the average number of actions in the last best individ-
ual.1 Each point on the x-axis represents a single problem.
The order of the problems is first by blocks size, and then by
average length of the first best individual.

Parameter Setting

Termination Max. number of generations is 1000
Population Size 20 plans
Initial Length Maximum 400 actions
Tournament Size 2
Maximum Plan Size 1000 actions
Genetic Operators 5% crossover and 95% reproduction
Shrink Mutation Applied to 5% of children, 1 delete
Move Mutation Applied to 5% of children, 1 move

Table 1: Parameter Settings.

Referring to Figure 1, Policy Set 1 shows significant but
not complete improvement in plan length after 1000 genera-
tions. An additional termination criterion was implemented,
called “no change” which stops a run if there is no change in
fitness after X generations. We repeated the experiments set-
ting X to 5000. Taking the 30 block problems as an example,
these were shrunk down to the 50 action mark.

Referring to Figure 2, some improvement could be made
to the initial plan within 1000 generations even though
the initial plans were reasonably close to optimal. The no
change results managed to to shrink the plans a little more,
and taking the 30 block problems again, these were shrunk
down to around the 40 action mark. This difference between
the two policy sets is returned to in the conclusions.

Also included in Figure 2 are results from FF (Hoffmann
& Nebel 2001). We ran the 3 plans produced for the 30 block
problems using the no change setup. The results are indi-
cated with the triangles, and show significant shrinkage.

1CPU times are not considered as the system was implemented
using Java, and running on Solaris. System times can be dramati-
cally improved if written for C under Linux.

273

Figure 1:

Conclusions and Future Work

The most successful current planners use heuristics and hill-
climbing techniques. However, since no heuristic is perfect,
such techniques often produce suboptimal plans, as in the
case of FF. We have presented a linear plan optimisation
technique, based on GP, which attempts to optimise plans.
The system is domain independent, and can be used as ad-
dition to existing linear plan synthesisers. The system uses
simple operations like mutation and crossover in order to
accomplish this. The system could optimise plans to varying
degrees of success depending on where the plans came from.
A tentative conclusion is that plans made by DM-Optimal
policy sets can be optimised further towards the shortest plan
than those made by satisficing policy sets.

We want to improve on the Generational framework sug-
gested here for plan optimisation. There are a number of al-
ternatives, such as a steady state algorithm, that we could
adopt to decrease the length of the resulting plans. Also the
system could be redesigned to optimise single plans.

We also want to broaden the definition of optimal to mean
more than just plan length. More complicated domains with
time, plan execution by an agent, resources, and so on,
would make plan optimisation a multi-dimensional problem.
It seems plausible that a genetic technique would be suitable
for this kind of optimisation due to the way fitness functions
and simulation are used.

References

Ambite, J.L. and Knoblock, C.A. 1997. Planning by Rewrit-
ing: Efficiently Generating High-Quality Plans. In Proceed-
ings of the 14th National Conference on Artificial Intelli-
gence. Providence RI USA.

Banzhaf, W.; Nordin, P.; Keller, R.E.; and Francone, F.D.
1998. Genetic Programming: An Introduction. Morgan
Kaufmann Publishers, San Francisco CA.

Figure 2:

Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. In Journal of Artificial Intelli-
gence, 69(1-2), pp 165-204.

Hoffmann, J. and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14, pp 253-302

Koza, J. R. 1992. Genetic Programming. The MIT Press,
Cambridge MA USA.

Muslea, I. 1997. SINERGY: A Linear Planner Based on
Genetic Programming In Proceedings of the 4th European
Conference on Planning, pp 312-324. Toulouse, France,
Springer.

Slaney, J. and Thiébaux, S. 1995. BLOCKS WORLD
TAMED Ten thousand blocks in under a second Techni-
cal Report TR-ARP-17-95, Automated Reasoning Project.
Australian National University.

Westerberg, C.H. and Levine, J. 2000. “GenPlan”: Combin-
ing Genetic Programming and Planning. In Proceedings for
the UK Planning and Scheduling Special Interest Group.

Westerberg, C.H. and Levine, J. 2001. Investigation of Dif-
ferent Seeding Strategies in a Genetic Planner. In Applica-
tions of Evolutionary Computing, Proceedings of EuroGP,
pages 505-514. Lake Como, Italy, Springer.

274

