
Strathprints Institutional Repository

Campbell, L. T. and Martin, R. and McNeil, B. W. J. (2009) A fully 3D 

unaveraged non-localized electron, parallelized-computational model of 

the FEL. In: FEL 2009. JACoW, pp. 115-118. , 

This version is available at http://strathprints.strath.ac.uk/57113/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42594502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


A FULLY 3D UNAVERAGED NON-LOCALISED ELECTRON,

PARALLELIZED-COMPUTATIONAL MODEL OF THE FEL
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Abstract

A new unaveraged 3D parallelized numerical model has

been developed that will allow investigation of previously

unexplored FEL physics. Unaveraged models are required

to describe such effects as amplification of Coherent Spon-

taneous Emission and non-localised electron dynamics (see

e.g. [1] and refs therein). A previous parallelized 3D

model [2] was based upon a mixed finite element/Fourier

method, however, there were some limitations in the par-

allel algorithm and numerical routines. These limitations

are removed in the new model presented here by using only

transforms in Fourier space enabling more effective data or-

ganization across multiple parallel processors and therefore

allowing larger, more complex FEL systems to be studied.

Furthermore, unlike the previous 3D model, which uses

commercial numerical packages, the new simulation code

uses only open-source routines.

INTRODUCTION

As FEL’s continue to push boundaries of radiation wave-

length and pulse lengths, and with more complex FEL

schemes to achieve these being explored, it may become

necessary to extend the scope of what numerical FEL codes

can model. Most current codes average the equations gov-

erning the FEL interaction over a radiation period and con-

fine electrons to a localised region within one radiation pe-

riod of their initial conditions (in the electron beam rest

frame.) To describe the FEL interaction at the sub-radiation

period scale, and to model electron migration over dis-

tances greater than the radiation period (non-localised), a

numerical code that models the unaveraged equations gov-

erning the FEL interaction is required.

A 1D non-averaged model describing both sub-period

phenomena and non-localised electron propagation has

previously been developed [1, 3, 4]. More recently a 3D

parallel non-averaged model for a helical undulator was

developed in [2]. A substantially modified version of this

3D model, with significantly better parallel performance, is

presented in this paper.

The 3D FEL model of [2] uses a split-step Fourier

method [5]. This method separates a single numerical inte-

gration step, of the governing differential equations along

the undulator, into two separate half-steps. In the first

half step a Fourier transform method is used to solve for

the field diffracting in the absence of any electron source

terms. In the second half-step a Finite Element Galerkin

Method [6] is used to solve for the field being driven by the

electron sources, and in the absence of diffraction, while a

4th order Runge-Kutta method simultaneously drives the

electrons. When parallelized using MPI, the model re-

quires communication between three separate data sets dis-

tributed over multiple processors with each integration step

of the code. The amount of communication between pro-

cessors should be kept to a minimum if the run-time of a

parallel code is to scale well with the number of proces-

sors used, otherwise the run-time benefit of using multiple

processors can become significantly reduced [7].

The model presented here replaces the FEGM of the

above model with a Fourier method (using open-source

FFT routines [8]) similar to that described in [9]. The field

is therefore now solved entirely in a 3D Fourier space. The

method allows a reduction in communication between pro-

cessors and gives a better scaling of the run-time benefit

with increasing processor number. Furthermore, the com-

mercial routines used for the FEGM are not needed, im-

proving portability and allowing an open-source code when

released.

The model is also generalised to allow any undulator po-

larisation from planar to helical, variable along the FEL

interaction.

THEORETICAL MODEL

Starting from the 3D Maxwell wave equation and the

Lorentz force equation, the 3D FEL equations for an helical

undulator in the scaled dimensionless form of [2] may be

written:
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∂ȳ2

)

+
∂A

∂z̄
+ 2iρ

∂2A

∂z̄∂z̄2
=

γ

awn̄p
×

∂

∂z̄2

N
∑

j=1

p̄⊥je
iz̄2/2ρ

√

ǫQj(ǫQj + 2)

(1 + |p̄⊥j |2)
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where δ3(x̄j , ȳj , z̄2j) ≡ δ(x̄ − x̄j)δ(ȳ − ȳj)δ(z̄2 − z̄2j)
and all variables are as defined in [2]. The only approxi-

mations made are the neglect of space charge, the paraxial

approximation, and

∣

∣

∣

∣

∂E⊥

∂z̄

∣

∣

∣

∣

<<

∣

∣

∣

∣

β̄z

1 − β̄z

∂E⊥

∂z̄2

∣

∣

∣

∣

,

where E⊥ = ξ0e
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z̄2

2ρ and ξ0(z̄, z̄2) is the complex radi-

ation envelope. The latter approximation is made in [10]

where, expressed in the independent variables (z̄, z̄1), it
is shown to be equivalent to the neglect of any backward

propagating field. Focussing of the electron beam is de-

scribed by the final term of (2) corresponding to the ‘nat-

ural focussing’ of an helical wiggler. This term is easily

modified for other focussing systems.

The field equation (1) is solved using the Fourier split-

step method by seperating it into diffraction-only and

source-only parts. For diffraction only in the absence of

sources the field equation is
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Defining the 3D Fourier transform
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for an arbitrary initial z̄0 and where the dependence of Ã
on (kx̄, kȳ, kz̄2

) is understood.
In the absence of diffraction, but with electron source

terms, the field equation becomes
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δ3(x̄j , ȳj , z̄2j).

(10)

In the previous code of [2], the field equation (10) was

solved simultaneously with the electron equations using a

4th order Runge-Kutta and FEGM. One integration step re-

quired 3 different sets of field data distributed across the

parallel processors: one for the Fourier transforms used in

the diffraction step, one for the finite element, and one for

the RHS of the source equation (10) plus the electron equa-

tions. The optimum form of the electron data distribution

also changes as they migrate across field elements.

The alternative solution presented here utilises a Fourier

description of the field source term, similar to the multi-

frequency FEL model of [9], so that the entire field equa-

tion may be solved in Fourier space. Fourier transform-

ing (10) using (8) gives
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Equation (11) describes how the electrons drive the field in

3D Fourier space and is relatively simple to solve numer-

ically. To obtain the field in real space, required for the

electron dynamic equations of (2. . . 6), the inverse trans-

form is all that is required and a finite element description

of the field in real space is unnecessary.

VARIABLE UNDULATOR POLARISATION

The general form of the radiation field definition and the

equation describing its evolution allows any field polarisa-

tion to be modelled. A relatively simple modification to the

undulator field then allows modelling of an elliptically po-

larised FEL. The transverse terms of the magnetic wiggler

field are re-defined as:

Bw =
Bw√

2
(fe−i z̄

2ρ + c.c.), (12)

where the new basis vector f = (Hx̂ + iŷ)/
√

2 and the

constant H has limits 0 ≤ H ≤ 1, where H = 1 cor-

responds to an helical undulator and H = 0 for a planar

undulator. For simplicity here, the axial terms of the wig-

gler field that give the natural focussing remain unchanged

from [2]. Note that f is not a unit vector and the scaling

of the equations is with respect to the y-component of the

undulator magnetic field. The scaling factor H appears ex-

plicitly in the equation of motion for p̄⊥j only:
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with all other equations in (1. . . 6) remaining unchanged.

Note that this form allows the undulator polarisation factor

to vary as a function along its length H(z̄).

NUMERICAL MODEL

The summation over real electrons is changed to a sum-

mation over macro-particles using the method of [1]. The

localised electron density over a volume element V̄k in the
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scaled space (x̄, ȳ, z̄2) containing Nk electrons may be de-

scribed as a by a fractional weighting factor 0 < χk ≤ 1 of

the scaled peak electron density in the pulse:

Nk

V̄k
= χkn̄p. (14)

Using (14), the sum over N real electrons, appearing in the

source term of (11), changes to a sum over k = 1 . . . Nm

macroparticles each of electron charge weight Nk as fol-

lows:

1

n̄p

N
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(· · · )j =
1
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∑
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Nk(· · · )k =

Nm
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k=1

χkV̄k(· · · )k (15)

Defining the normalized weighting χ̄k = χkV̄k, the final

form of the Fourier field equation (11) implemented in the

code is obtained:
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The Fourier field is discretized into nodes along each

axis (x̄, ȳ, z̄2) and wavevector k-values take the general

form k = 2πn/l, where the integer −M/2 ≤ n ≤ M/2
and M is the number of nodes spanning length l along the

axis. The numerical fast-Fourier transforms are taken us-

ing the parallel processor FFTW open-source package [8].

The macroparticles and fourier field nodes are initially dis-

tributed uniformly among the parallel processors with in-

creasing z̄2.

The new split-step Fourier method consists of the fol-

lowing steps:

1. Field Diffraction Step: The Fourier field diffraction

equation (9) is solved. Data redistribution of the trans-

formed field is not required.

2. Field Driving and Electron Propagation Step: The

Fourier field source equation (16) is solved and the

macroparticle equations (2-6) are propogated using a

4th order Runge-Kutta method. Some macroparticle

data needs to be communicated between processors

to act as the source for all the Fourier field nodes

of (16). After the macroparticles drive the field in

Fourier space a backwards Fourier transform is re-

quired to calculate the real field for the macroparti-

cle equations (2-6). The macroparticle equations are

solved in parallel without need for communication of

field data between processors.

3. The latter two steps are repeated until the end of the

integration.

A summary of the differences between the previous FEGM

algorithm of [2] and the new method presented here is

shown in Fig. 1.

Figure 1: A schematic of the parallel algorithms show-

ing the differences between the previous Finite Element

Galerkin Method of [2] with the Fourier method presented

here.

PLANEWAVE APPROXIMATION

The field description can be altered to approximate a

plane wave by using only one node in the tranverse plane.

Only the constant, non-oscilatory term of the numerical

Fourier series then exists i.e. kx̄, kȳ = 0 and the field is

then only a function of z̄2. Note, however, that this plane

wave representation of the field still allows full 3D elec-

tron dynamic effects such as emittance and beam focussing

to be modelled correctly. For a ‘full’ 1D limit, only one

macroparticle, and so one value of the transverse variables,

is used for each position in z̄2. The model is therefore quite

flexible enabling a range of effects to be modelled, from a

relatively fast full 1D model, to the plane wave approxi-

mation while retaining complete 3D electron dynamics, to

the complete 3D model for both radiation field and electron

dynamics.

To make the plane wave approximation in the numer-

ical model the real-space field equation (10) is first inte-

grated over the transverse plane (x̄,ȳ). The equation is then
Fourier transformed to give:

∂Ã

∂z̄
=

γr

aw

Nm
∑

k=1

χ̄
(1D)
k p̄⊥k

√
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1 + |p̄⊥k|2
×

exp(−iz̄2k(kz̄2
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2ρ
)) (17)

where χ̄
(1D)
k = χklk and lk is the range of z̄2 initially occu-

pied by the kth macroparticle. Simulations using the code

in the full 1D limit give very good agreement with results

from [1] and [3].

EXAMPLE

A simple example is used to demonstrate first simula-

tion results using the code. Several high gain FEL schemes

operating at short wavelengths propose to use the exhaust
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Figure 2: Spectra in the 1D planar wiggler limit for a short

electron pulse generating CSR both with (green) and with-

out (blue) coupling to the radiation field.

electron bunches to generate long wavelength radiation via

Coherent Spontaneous Radiation, where the electron bunch

length is less than the resonant wavelength of a long period

undulator. While averaged FEL codes cannot model this

interaction the non-averaged code described here can. Pa-

rameters similar to that of the UK NLS proposal [11] are

used which in the scaling here are: ρ ≈ 0.24; aw ≈ 60 and

with a gaussian electron pulse σ ≈ 1/50th that of a reso-

nant radiation wavelength of λ ≈ 100µm. The code sim-

ulated a planar undulator with H = 0 and operating in the

1D mode over 10 undulator periods (without any waveg-

uide) of λw = 1m generates the spectra of Fig. 2 both with

and without electron coupling to the radiation field. It can

be seen that with electron coupling (green), the electron

energy loss to the field shifts the resonant wavelength to

longer wavelengths and significantly changes the spectrum

from that of the uncoupled case (blue) which shows the

usual CSR wiggler spectrum with odd harmonics clearly

visible.

Using the same parameters, the second simulation

demonstrates the code operating in 3D again with a planar

wiggler. The scaled field polarisation is plotted in the (x̄, ȳ)
plane in Fig. 3 as a vector field. This polarisation does not

change as a function of z̄2 so that it describes linearly po-

larised radiation and demonstrates the ability of the code to

model variable polarisations.

CONCLUSION

A parallel FEL simulation code able to model sub-

radiation wavelength effects and non-localised electron dy-

namics has been developed. This code algorithm signifi-

cantly reduces run-time from the previous version of [2].

More rigorous testing and benchmarking of the code will

be undertaken before release.
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