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Hierarchy of efficiently computable and faithful lower bounds to quantum discord

Marco Piani1, 2

1SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
2Department of Physics & Astronomy and Institute for Quantum Computing,

University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

Quantum discord expresses a fundamental non-classicality of correlations that is more general than
entanglement, but that, in its standard definition, is not easily evaluated. We derive a hierarchy of
computationally efficient lower bounds to the standard quantum discord. Every non-trivial element
of the hierarchy constitutes by itself a valid discord-like measure, based on a fundamental feature
of quantum correlations: their lack of shareability. Our approach emphasizes how the difference
between entanglement and discord depends on whether shareability is intended as a static property
or as a dynamical process.

PACS numbers:

Correlations in quantum mechanics exhibit non-
classical features that include non-locality [1], steer-
ing [2], entanglement [3], and quantum discord [4], and
that play a fundamental role in quantum information
processing and quantum technologies [5], from quantum
cryptography [6] to quantum metrology [7]. While both
non-locality and steering are manifestations of entangle-
ment, quantum discord is a more general form of quan-
tumness of correlations that includes entanglement but
goes beyond it. In fact, almost all distributed quantum
states, including unentangled ones, exhibit discord [8].
The ubiquitousness of discord constitutes a motivation
to understand it as much as possible—including its rela-
tion with entanglement—and also a call to fully elevate
its study to an operational and quantitative level, since
just certifying its presence may be considered of limited
interest.

While several approaches to the quantification of dis-
cord have been proposed (see, e.g. [4, 9–22] and refer-
ences therein), in this Letter we push forward a meaning-
ful, reliable, and computationally friendly quantitative
approach to the study of discord. Conceptually speak-
ing, our approach offers a unifying way to understand
both entanglement and discord in terms of shareability
of correlations: entanglement is characterized by the im-
possibility of sharing correlations even in a static fash-
ion [23]; discord is instead related to the impossibility of
freely re-distributing correlations—a dynamical perspec-
tive. A unified view of quantum correlations based on a
general notion of shareability is relevant in several con-
texts that deal with the distribution of quantum states:
in quantum information processing, particularly in quan-
tum cryptography [24, 25] and in entanglement distribu-
tion [26, 27]; in quantum foundations, particularly in the
study of the classical-to-quantum transition [28, 29]; in
condensed-matter physics and quantum chemistry, par-
ticularly in relation to frustration phenomena [30–33] and
to the quantum marginal problem [34, 35].

Quantum discord was introduced as the minimum
amount of correlations, as measured by mutual informa-

tion, that is necessarily lost in a local measurement of a
bipartite quantum state [36, 37]. It is not easily evalu-
ated [38, 39], and even general computable lower bounds
are not known. In this Letter we provide a hierarchy of
lower bounds to quantum discord that can be reliably
computed numerically, and that have physical meaning,
since they are based on ‘impossibility features’ related to
the local manipulation of quantum correlations. Further-
more, our bounds satisfy the basic requests that should
be imposed on any reasonable measure of quantum cor-
relations [40, 41], hence they are valid discord-like quan-
tifiers themselves.

One ‘impossibility feature’ associated to quantum dis-
cord relates to local broadcasting [42, 43]: correlations
that exhibit quantum discord cannot be freely locally re-
distributed or broadcast, and discord can be interpreted
as the asymptotic loss in correlations necessarily associ-
ated with such an attempt [29, 44]. A very related ‘impos-
sibility feature’ of discord deals with the ‘local relocation’
of quantum states by classical means, that is, via classi-
cal communication. The relation between the above two
‘impossibility features’ is given by the fact that quantum
information becomes classical when broadcast to many
parties [29, 45–47]. Besides their foundational interest,
such features limit, for example, what a malicious eaves-
dropper can do in quantum cryptography [48, 49].

A result by Petz [50–52] implies that the ability to per-
fectly locally broadcast or transmit by classical means
distributed quantum states reduces to the ability to per-
fectly locally broadcast or classically transmit correla-

tions, as measured by mutual information [42, 43, 53], a
feat possible—by definition—only in absence of discord.
The consideration of the approximate classical transmis-
sion of an arbitrary quantum state, possibly exhibit-
ing discord, has recently received renewed attention also
thanks to a breakthrough result of Fawzi and Renner [54]
(see also [55–58]) that generalizes the result by Petz.
In [22] a discord-like quantifier was introduced, the sur-
prisal of measurement recoverability; it quantifies how
well—in terms of quantum fidelity—a distributed quan-
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tum state can be locally transmitted by classical means,
and, thanks to [54], it directly translates into a lower
bound to the standard quantum discord. Unfortunately,
it is not easily computable either. In this Letter, by con-
sidering how well a quantum state can be locally broad-
cast, we generalize the surprisal of measurement recover-
ability to obtain a hierarchy of numerically computable
bounds converging to it. The hierarchy exploits ideas
used in the characterization and detection of entangle-
ment via semidefinite programming (SDP) [59–61]. SDP
optimization techniques [62] have found many other ap-
plications in quantum information (see, e.g., [63–69]), and
recently have been used in the quantification of steer-
ing [70, 71]. Here we extend the use of SDP techniques
for the study of quantum correlations to quantum dis-
cord. This could be considered surprising, because the
set of non-discordant states is not convex, contrary to,
for example, the set of unentangled states. The key point
is that our operational approach focuses on the local ma-
nipulation of correlations, rather than on their direct de-
scription, and we consider constraints on such a manip-
ulation that are amenable to an SDP characterization.
Preliminaries.—We consider finite-dimensional sys-

tems. A quantum state corresponds to a positive semidef-
inite density matrix ρ belonging to the space L(H) of
linear operators on a Hilbert space H. The von Neu-
mann entropy of ρ is S(ρ) = −Tr(ρ log ρ). We indicate
by Tr\X a trace performed over every system except
X, and log ≡ log2. For the global state ρ of a bi- or
multi-partite system, we denote S(X)ρ = S(ρX), where
L(HX) ∋ ρX = Tr\X(ρ) is the reduced state of system X.

The fidelity F (σ, ρ) = Tr
√√

ρσ
√
ρ quantifies how simi-

lar two states ρ and σ are [5]. It holds 0 ≤ F (σ, ρ) ≤ 1,
with F (σ, ρ) = 1 if and only if ρ = σ. In our analysis
it will be important that the fidelity corresponds to the
SDP optimization [72, 73]

maximize
1

2
(Tr(X) + Tr(X†)), (1a)

subject to

(

ρ X

X† σ

)

≥ 0. (1b)

Physical transformations are described by completely-
positive trace-preserving linear maps—also called
channels—on operators [5].
Separability and symmetric extensions.—A bipartite

state ρAB is separable (or unentangled) if it admits the
decomposition

ρ
sep
AB =

∑

b

pb|αb〉〈αb|A ⊗ |βb〉〈βb|B , (2)

for {pb} a probability distribution, and |αb〉A and |βb〉B
vector states for A and B, respectively. The correlations
present in a separable state can be explained classically,
although they may exhibit a quantum behaviour, as we
shall see. A bipartite state that is not separable is deemed

entangled [74], and requires quantum communication or
interaction to be generated.

Let Bk = B1B2 . . . Bk, with B ≃ B1 ≃ B2 ≃ . . . ≃ Bk,
i.e., the Bi systems are ‘copies’ of the B system. We say
that ρABk is a k-symmetric extension of ρAB (on B) if:

(i) Tr\ABi
(ρABk) =: ρABi

= ρAB , for all i = 1, . . . , k;

(ii) ρABk = V ρABkV † for any unitary V that permutes
the Bk systems.

Because of the symmetry (ii), in (i) it is enough to con-
sider the trace over all systems Bi except one, e.g., B1.
If (i) and (ii) hold, it means the system A can simultane-
ously share the same bipartite state ρAB with k different
systems that are copies of B. If the stronger condition

(ii’) ρABk = Π+
BkρABkΠ+

Bk , with Π+
Bk the projector

onto the fully symmetric subspace Bk
+ of Bk,

holds, we say that ρABk is a k-Bose-symmetric extension
of ρAB (on B).

A very important result in the study of quantum cor-
relations is that only separable states like (2) admit k-
symmetric extensions for all k [61, 75, 76].

No local broadcasting.—The no-local-broadcasting the-
orem [42, 43] states that there exists a broadcasting chan-
nel ΛB→B1B2

such that ΛB→B1B2
[ρAB ] is a 2-symmetric

copy of ρAB if and only if ρAB is quantum-classical, i.e.,
of the form

ρ
qc
AB =

∑

b

pbρ
A
b ⊗ |b〉〈b|B , (3)

with {|b〉} an orthonormal basis, and {pb} a probability
distribution [97]. We notice that quantum-classical states
form a strict subclass of the separable states (2); this
means that, while the correlations of separable states can
be explained in classical terms, their behaviour can be—
an in general is—non-classical.

If local broadcasting is possible, then it can be realized
with a symmetric broadcasting channel, whose output is
symmetric. More precisely, an arbitrary number k of ex-
tensions can be obtained, simply by |b〉 7→ |b〉⊗k, for |b〉
as in (3), i.e., with output in Bk

+ (see Fig. 1). Consider
then Bose-symmetric broadcast maps ΛB→Bk

+
, with out-

put in the fully symmetric subspace, and the induced

maps Λ
Sym+(k)

B = Tr\B1
◦ΛB→Bk

+
on B, where ◦ denotes

composition. We say that any map Λ
Sym+(k)

B that admits
such a representation is k-Bose-symmetric extendible.

A measure-and-prepare channel—also called
entanglement-breaking (EB)—acts according to [77]
ΛEB
B [·] =

∑

y Tr(MB
y ·)|βy〉〈βy|B , where {MB

y } is a
positive-operator-valued measure (POVM) associate to
a measurement, and the |βy〉B ’s are normalized vector
states, associated to a y-dependent preparation. As the
name suggests, entanglement-breaking maps are such
that (idA ⊗ ΛEB

B )[ρAB ] is separable for any ρAB .
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ρAB

ΛB→Bk
+

B1

B2
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ρAB1

?≈ ρAB

FIG. 1: Symmetric local broadcasting (colour online). A Bose-
k-symmetric broadcasting channel ΛB→Bk

+
has output in the

fully symmetric subspace of Bk = B1B2 . . . Bk. How well
ρAB1 = Tr\AB1

(ΛB→Bk
+

[ρAB ]) can approximate ρAB depends

on the classicality of correlations in ρAB .

For any k-Bose-symmetric extendible Λ
Sym+(k)

B there is
an entanglement-breaking map ΛEB

B close to it [47, 78].
On the other hand, any entanglement-breaking map is k-
Bose-symmetric extendible, for any k, since we can con-
sider ΛB→Bk

+
[·] =

∑

y Tr(MB
y ·)(|βy〉〈βy|⊗k)Bk

+
. One can

then argue that the class of k-symmetric extendible chan-
nels, which we denote LSym+(k), converges to the set of
entanglement-breaking channels, which we denote LEB,
for k → ∞ [47, 78].
Mutual information, recoverability, and discord—The

mutual information

I(A : B)ρ = S(A)ρ + S(B)ρ − S(AB)ρ,

is a fundamental measure of the total correlations present
between A and B [5, 79, 80]. The conditional mutual
information is defined as [5]

I(A : B|C)ρ = I(A : BC)ρ − I(A : C)ρ,

i.e., it quantifies the decrease of correlations due to the
loss of B. The strong subadditivity of the von Neumann
entropy [81] says that I(A : B|C)ρ ≥ 0. A state ρ = ρABC

such that I(A : B|C)ρ = 0 is said to form a Markov
chain. Indeed, a result by Petz [50–52] ensures that there
exists a ‘recovery channel’ RC→BC such that ρABC =
RC→BC [ρAC ]. Fawzi and Renner proved [54] that, more
in general, for any tripartite state ρABC , there exists a
recovery channel RC→BC such that (see also [55–58])

F (RC→BC [ρAC ], ρABC) ≥ 2−
1
2 I(A:B|C)ρ , (4)

that is, the smaller the decrease of correlations due to
the loss of B, the better—in fidelity terms—ρABC can
be recovered from operating on C alone.

The discord D(A : B)ρ of ρ = ρAB between A

and B with measurement on B is the minimal loss
of correlations that occurs when B is measured. Let
MB→Y [·] =

∑

y Tr(MB
y ·)|y〉〈y|Y be a generic measure-

ment map, where {My} is a POVM, and {|y〉} is an or-
thonormal basis. Then [36, 37]

D(A : B)ρ := min
MB→Y

(

I(A : B)ρ − I(A : Y )MB→Y [ρ]

)

.

Discord vanishes only for the quantum-classical
states (3) [43, 53]. Like any other channel, a measure-
ment map can be seen as the result of the coherent
interaction with an environment, followed by the tracing
out of some subsystem [5], a ‘loss’ that one can try to
‘undo’ via a recovery channel. In the case of a (local)
measurement, the recovery correspond to a preparation,
and the combination of measurement and recovery is
an entanglement-breaking map ΛEB [22]. Thus, putting
together the result (4) of Fawzi-Renner with the defining
notion of discord, one arrives at [22]

sup
ΛEB∈LEB

F (ΛEB
B [ρAB ], ρAB) ≥ 2−

1
2D(A:B). (5)

Defining the surprisal of measurement recoverabil-
ity [22]

DF,LEB(A : B) := − log sup
ΛEB∈LEB

F 2(ΛEB
B [ρAB ], ρAB),

one can cast (5) as DF,LEB(A : B) ≤ D(A : B). The
quantity DF,LEB(A : B) measures the inevitable distur-
bance introduced by manipulating locally (on B) the
state ρAB , through measurement and (re-)preparation.
This can be generalized to any non-trivial (local) manip-
ulation (see also [20]), i.e., one can consider

DF,L(A : B) := − log sup
Λ∈L

F 2(ΛB [ρAB ], ρAB),

for a generic class of channels L. This corresponds to
quantifying the best fidelity that can be achieved in the
transmission of the B component of ρAB , through a chan-
nel that belongs to L. If LEB ⊆ L, it necessarily holds
DF,L(A : B) ≤ DF,LEB(A : B) ≤ D(A : B). In this

Letter we focus on L = LSym+(k), that is, we consider
the disturbance induced by channels that admit k exten-
sions. Equivalently, we can say we are considering how
well one can broadcast the B component of ρAB to k

receivers, which is a relevant problem in quantum com-
munication and in quantum cryptography, as this kind of
‘symmetric cloning’ (particularly for k = 2) is a typical
attack that an eavesdropper can perform [48, 49]. Since
LEB ⊆ LSym+(k), it follows

D
F,LSym+(k)(A : B) ≤ DF,LEB(A : B) ≤ D(A : B), (6)

for all k ≥ 2. Furthermore, one proves [78]
limk→∞ D

F,LSym+(k)(A : B) = DF,LEB(A : B).
An SDP hierarchy of discord-like measures.—The

Choi–Jamio lkowski isomorphism [82, 83] is a one-to-one
correspondence between linear maps and linear opera-
tors. Through the isomorphism, specific properties of
the linear maps are associated with specific properties
of linear operators. The computation of the surprisal of
measurement recoverability requires a difficult optimiza-
tion over entanglement-breaking channels. Relaxing the
problem, we maximize the fidelity between ρ = ρAB
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FIG. 2: A hierarchy of lower bounds to quantum discord
(colour online). Let ρAB(θ) = 1

2
|0〉〈0|A ⊗ |ψ0(θ)〉〈ψ0(θ)|B +

1

2
|1〉〈1|A ⊗ |ψ1(θ)〉〈ψ1(θ)|B , with |ψa(θ)〉 = cos(θ/2)|0〉 +

(−1)a sin(θ/2)|1〉, a = 0, 1, for θ ∈ [0, π/2]. From bottom
to top, we plot D

F,L
Sym+(k) for k = 2, 3, 4, 5 (dashed lines),

DF,LEB (line with circles), as calculated via SDP, and the
discord proper D (on B) (solid line) as calculated in [84, 85].
Any element in the hierarchy certifies quantitatively that the
state ρAB(θ) is classical on B only for θ = 0, π/2.

and σ = (idA ⊗ Λ
Sym+(k)

B )[ρAB ], where Λ
Sym+(k)

B is a
k-extendible map. Using the Choi-Jamiolkowski isomor-
phism and the SDP expression of the fidelity (1), this can
be cast as the SDP optimization [78]:

max
1

2
(Tr(X) + Tr(X†)) (7a)

s. t.

(

ρAB X

X† Tr\AB1
(WΓB

BBkρAB)

)

≥ 0 (7b)

WBBk ≥ 0, WB = 11B , WBBk = Π+
BkWBBkΠ+

Bk .

(7c)

Eqs. (7a) and (7b) directly correspond to Eqs. (1a)
and (1b); Eqs. (7c) constrain the Choi–Jamio lkowski
operator WBBk so that, in (7b), Tr\AB1

(WΓB

BBkρAB) =

(idA ⊗ Λ
Sym+(k)

B )[ρAB ], with Λ
Sym+(k)

B the k-extendible
channel isomorphic to WBB1 . We already know that
D

F,LSym+(k)(A : B) converges to DF,LEB(A : B), for
k → ∞. One further checks that it does so by increasing
monotonically with k [78]. The no-local-broadcasting the-
orem ensures that already the lowest non-trivial element
of the hierarchy (k = 2) is strictly positive for any state
that is not classical on B. Furthermore, each D

F,LSym+(k)

constitutes a well-behaved measure of the general quan-
tumness of correlations [40, 41].

We can choose to impose additional properties on the
class L of channels considered, so to, e.g., make them
better approximate entanglement-breaking channels, and
even calculate the exact numerical value for the sur-
prisal of measurement recoverability in the case where
the broadcast system is a qubit [78]. We implemented
(7) in MATLAB [86], making use of CVX [87, 88] and

other tools publicly available [89, 90]; see Figure 2 for
numerical results.

Discord, entanglement, and symmetric extensions.—
Our approach, based on an SDP hierarchy dealing with
symmetric extensions, is inspired by the one used to ver-
ify entanglement [59, 60] (see also [63] for applications
to the extendability of channels). It suggests an illumi-
nating and unifying point of view on entanglement and
discord in terms of symmetric extensions. Entanglement
limits how well a state can be approximated by a state
admitting a k-symmetric extension [61, 91]; only separa-
ble states admits such extensions for all k ≥ 2. Discord
instead limits how well a state can be locally transformed
into a k-symmetric extension of itself: only discord-free
states can be perfectly locally broadcast, for any k ≥ 2.
While entanglement can be exactly characterized only
in the limit k → ∞, discord already is in the case
k = 2—this is the content of the no-local-broadcasting
theorem [42, 43].

Conclusions.—We introduced a hierarchy of discord-
like quantifiers, based on how well a quantum state ρAB

can be locally broadcast. In the limit where we con-
sider infinite output copies of B, we end up address-
ing the question of how well the B part of ρAB can
be transmitted through a measure-and-prepare process.
Each non-trivial discord-like quantifier in our hierarchy
is non-vanishing for all the states that are not classical
on B, and corresponds to an SDP optimization problem.
It can be reliably and efficiently computed numerically,
because of the polynomial scaling of the parameters of
the SDP in the dimensions of the systems involved (for
fixed number of copies) and in the number of copies (for
fixed dimensions) [59, 60]. Each element of the hierarchy
has a clear physical meaning in itself and satisfies the
basic properties to be expected for a meaningful discord-
like quantifier, but it also constitutes a lower bound to
the standard quantum discord [36, 37]. In the case of a
qubit-qudit system, with measurement on the qubit, a
tailored SDP program outputs the surprisal of measure-
ment recoverability of Ref. [22], and thus the best possi-
ble lower bound to standard quantum discord based on
the breakthrough result about quantum Markov chains of
Fawzi and Renner [54]. Our approach sheds light on the
conceptual relation between entanglement, discord, and
shareability, with potential applications in diverse fields
like quantum information processing, quantum founda-
tions, and many-body physics. Two questions that we
leave open for future work regard the possible extension
of our approach to the multipartite case and to infinite-
dimensional systems; we point out that the consideration
of a discord-like quantifier with local measurements on
many parties [42] poses a challenge in approximating the
local measure-and-prepare channels in a way amenable to
an SDP, since it is naturally non-linear in the unknown
local operations [92].
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I. CONVERGENCE OF THE HIERARCHY OF DISCORD-LIKE MEASURES

A measure of similarity of states with an operational interpretation is the trace distance [1]

∆(σ, ρ) =
1

2
‖σ − ρ‖1,

where ‖ξ‖1 = Tr(
√

ξ†ξ). It holds 0 ≤ ∆(σ, ρ) ≤ 1, and 1 − F (σ, ρ) ≤ ∆(σ, ρ) ≤
√

1 − F 2(σ, ρ), where F is the
fidelity [2].

Lemma 1. [3] Let ΛSym+(k) be a k-Bose-extendible channel acting on a space B of dimension |B|. There is an
entanglement-breaking channel ΛEB on B such that

sup
ρAB

∆
(

Λ
Sym+(k)

B [ρAB ],ΛEB
B [ρAB ]

)

≤ |B|
k
. (1)

Given also that every entanglement-breaking channel ΛEB
B is automatically k-Bose-extendible, Lemma 1 implies

that the class of k-Bose-extendible channels tends to the class of entanglement-breaking maps for k → ∞. Notice that
we are here interested in channels with the same (and fixed) input/output dimension |B|, but we let k vary.

Lemma 2. Consider any three mixed states ρ, σ, and τ . It holds,

|F (ρ, σ) − F (τ, σ)| ≤
√

2
√

1 − F (τ, ρ)

≤
√

2
√

∆(τ, ρ).
(2)

Proof. Fix an arbitrary purification |ψρ〉, and choose purifications |ψσ〉 and |ψτ 〉 such that 〈ψρ|ψσ〉 = F (ρ, σ) and
〈ψρ|ψτ 〉 = F (ρ, τ). This is always possible because of Uhlmann’s theorem [1, 4] and by choosing properly phases.

Then,

F (ρ, σ) = |〈ψρ|ψσ〉|
= | ((〈ψρ| − 〈ψτ |) + 〈ψτ |) |ψσ〉|
≤ |〈ψτ |ψσ〉| + | (〈ψρ| − 〈ψτ |) |ψσ〉|

≤ F (τ, σ) +
√

(〈ψρ| − 〈ψτ |) (|ψρ〉 − |ψτ 〉)

= F (τ, σ) +
√

2 − 〈ψτ |ψρ〉 − 〈ψρ|ψτ 〉

= F (τ, σ) +
√

2
√

1 − F (τ, ρ)

≤ F (τ, σ) +
√

2
√

∆(τ, ρ).

The first inequality is just the triangle inequality for the absolute value. The second inequality is due to the fact that
the fidelity between two states is the maximum overlap of any two purifications of the states [1, 4]. The last inequality
is due to the standard relation 1 − F (τ, ρ) ≤ ∆(τ, ρ) [1, 2].



2

We want to prove that limk→∞D
F,LSym+(k)(A : B) = DF,LEB(A : B). Given that

DF,L(A : B) := − log sup
Λ∈L

F 2(ΛB [ρAB ], ρAB),

for a generic class of channels L, and given that every entanglement-breaking channel is also k-Bose-extendible for
any k, it will be sufficient to prove the following.

Theorem 1. Let ρAB be an arbitrary state for AB. It holds

sup
ΛEB

F (ρAB ,Λ
EB
B [ρAB ]) ≥ sup

ΛSym+(k)

F (ρAB ,Λ
Sym+(k)

B [ρAB ]) −
√

2|B|
k

. (4)

Proof. Let ΛSym+(k) be a k-Bose-extendible channel. Lemma 1 says that there is an entanglement-breaking channel
ΛEB such that

sup
ρAB

∆
(

Λ
Sym+(k)

B [ρAB ],ΛEB
B [ρAB ]

)

≤ |B|
k
. (5)

This implies that, for any ρAB and for any ΛSym+(k) on B, there is ΛEB such that

∆
(

Λ
Sym+(k)

B [ρAB ],ΛEB
B [ρAB ]

)

≤ |B|
k
.

Thus, using Lemma 2, we obtain

F (ρAB ,Λ
EB
B [ρAB ]) ≥ F (ρAB ,Λ

Sym+(k)

B [ρAB ])

−
√

2

√

∆
(

Λ
Sym+(k)

B [ρAB ],ΛEB
B [ρAB ]

)

≥ F (ρAB ,Λ
Sym+(k)

B [ρAB ]) −
√

2|B|
k

.

(6)

Since this is valid for any ΛSym+(k), we can take the supremum on both sides over channels in the respective classes.

II. PROPERTIES OF THE HIERARCHY OF DISCORD-LIKE QUANTIFIERS BASED ON LOCAL

BROADCASTING

We argue that sup
ΛSym+(k) F (ρAB ,Λ

Sym+(k)

B [ρAB ]) can be expressed as

max
1

2
(Tr(X) + Tr(X†)) (7a)

s. t.

(

ρAB X

X† Tr\AB1
(WΓB

BBkρAB)

)

≥ 0 (7b)

WBBk ≥ 0, WB = 11B , WBBk = Π+
BkWBBkΠ+

Bk . (7c)

Two elements will be important in the argument: the expression of the quantum fidelity as SDP, and the Choi-
Jamio lkowski isomorphism.

We recall that the the fidelity corresponds to the SDP optimization [5, 6]

maximize
1

2
(Tr(X) + Tr(X†)), (8a)

subject to

(

ρ X

X† σ

)

≥ 0. (8b)

The Choi–Jamio lkowski isomorphism [7, 8] is a one-to-one correspondence between linear maps ΛX→Y from L(HX)
to L(HY ) and linear operators WXY in L(HX ⊗HY ). It reads

J(Λ)XY = (idX ⊗ ΛX′→Y )[ψ̃+
XX′ ],
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with inverse (defined by its action on an arbitrary ρX)

(J−1(WXY ))X→Y [ρX ] = TrX(WΓX

XY ρX).

Here ψ̃+
XX′ = |ψ̃+〉〈ψ̃+|XX′ , with |ψ̃+〉XX′ =

∑

x |x〉X |x〉X′ , for {|x〉} an orthonormal basis of HX , while ΓX denotes
partial transposition on X. The operator J(Λ) encodes all properties of the map Λ. In particular, the linear map
(J−1(WXY ))X→Y is a quantum channel from X to Y if and only if WXY ≥ 0 and WX = TrY (WXY ) = 11X . In
addition, (J−1(WXY ))X→Y is (i) an entanglement-breaking channel if and only if WXY satisfies the extra condition
of being proportional to a separable state, and (ii) a k-Bose-symmetric extendible channel if and only if WXY admits
k-Bose-symmetric extensions on Y .

The Choi–Jamio lkoski isomorphism allows us to write the fidelity between ρ = ρAB and σ = (idA⊗Λ
Sym+(k)

B )[ρAB ],

optimized over Λ
Sym+(k)

B ∈ LSym+(k), as an optimization over positive semidefinite operators WBBk isomorphic to

k-Bose-symmetric broadcasting channels, i.e., such that Tr\BB1
(WΓB

BBk) is isomorphic to a k-Bose-extendible channel.
Thus, adapting Eq. (8), we find that supΛ∈LSym(k) F (ρAB ,ΛB [ρAB ]), corresponds to the solution of the SDP (7). As
mentioned in the main text, Eqs. (7a) and (7b) directly correspond to Eqs. (8a) and (8b), respectively.

We already argued that D
F,LSym+(k)(A : B) converges to DF,LEB(A : B). To see that it does so monotonically,

i.e., that DF,LSym(k+1)(A : B) ≥ D
F,LSym+(k)(A : B), we notice that, if WBBk+1 is Bose-symmetric on Bk+1, then

TrBk+1
(WBBk+1) is Bose-symmetric on Bk. Thus, any feasible WBBk+1 for the k+ 1-th element of the SDP hierarchy

has a corresponding W ′
BBk = TrBk+1

(WBBk+1) that is feasible for the k-th element of the hierarchy, with equal
achieved fidelity. This proves that the fidelity of transmission at the k-th level can only be greater or equal to that at
the k + 1-th level.

Thanks to the monotonicity of the fidelity F under quantum operations, i.e., F (Λ[σ],Λ[ρ]) ≥ F (σ, ρ) [1], each
D

F,LSym+(k)(A : B) is invariant under local unitaries on B, and monotonically decreasing under general local operations

on A. A detailed proof for DF,LEB , which can be immediately adapted to D
F,LSym+(k) , is presented in [9]. Thus, each

D
F,LSym+(k) constitutes a well-behaved measure of the general quantumness of correlations [10, 11].

Simply by asking that WBBk in (7) is PPT with respect to the B : Bk partition, i.e., WΓB

BBk ≥ 0, we make the
corresponding k-Bose-extendible channel PPT binding [12], i.e., such that the state (idA ⊗ ΛB)[σAB ] is PPT for all
σAB . This is a non-trivial constraint even for k = 1, and, in the case B is a qubit, enough to make the channel
entanglement-breaking [13], so that the SDP provides exactly the surprisal of measurement recoverability.
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