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Quantum communication without a shared reference frame or the construction of a relational
quantum theory requires the notion of a quantum reference frame. We analyze aspects of quantum
reference frames associated with non-compact groups, specifically the group of spatial translations
and Galilean boosts. We begin by demonstrating how the usually employed group average, used to
dispense of the notion of an external reference frame, leads to unphysical states when applied to
reference frames associated with non-compact groups. However, we show that this average does lead
naturally to a reduced state on the relative degrees of freedom of a system, which was previously
considered by Angelo et al. [1]. We then study in detail the informational properties of this reduced
state for systems of two and three particles in Gaussian states.

I. INTRODUCTION

The central lesson of relativity is that all observable
quantities are relational: length, time, and energy, which
were once thought to be absolute, only have meaning
with respect to an observer. The same is true of a quan-
tum state. For example, when we write the quantum
state |↑〉, say up in z, what we mean is somebody in a
laboratory with an appropriately aligned measuring ap-
paratus will measure a specific outcome. This is the de-
scription of a quantum state with respect to a classical
object, in this example the macroscopic laboratory.
This state of affairs is not fully satisfactory, since a

quantum system is being described with respect to a clas-
sical system, that is, by mixing elements of conceptually
different frameworks. If we believe that our world is com-
pletely described by quantum mechanics, we should seek
a theory in which quantum systems are described with
respect to quantum systems. Much work has been done
on this subject, known as quantum reference frames [2],
and it has found applications in quantum interferometry
[3], quantum communication [4], and cryptography [5], as
well as offering an explanation of previously postulated
superselction rules [6, 7].
Additionally, treating reference frames quantum me-

chanically is a crucial step towards the goal of construct-
ing a relational quantum theory [8, 9]. By relational it
is meant a theory that does not make use of an exter-
nal reference frame to specify its elements. The main
motivation for this is general relativity, which does not
use an external reference frame in its construction. It is
believed that a theory of quantum gravity will inherent
this property, and thus, a theory of quantum gravity will
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necessarily include a theory of quantum reference frames
[10, 11].
The natural language of reference frames is that of

group theory, owing to the fact that the transformations
that describe the act of changing reference frames form
a group. Most discussion of quantum reference frames
revolves around reference frames defined with respect to
compact groups. For example, the relevant group used to
describe a phase reference in quantum optics is U(1) or
the group used to describe the transformation between
orientations of a laboratory is SO(3).
However, if we would like to apply the established for-

malism to more general groups, such as the Poincaré
group and more generally to systems in curved space-
times, we will need to understand quantum reference
frames that are associated with non-compact groups.
The purpose of this paper is to embark on such an in-
quiry.
We begin in Sec. II by introducing the G-twirl, which is

a group average over all possible orientations of a system
with respect to an external reference frame, and demon-
strate its failure when naively applied to situations in-
volving the non-compact groups of translations in po-
sition and velocity. However, we find that the G-twirl
over these groups naturally introduces a reduced state
obtained by tracing out the center of mass degrees of
freedom of a composite system. In Sec. III we examine
informational properties of this reduced state for systems
of two and three particles in fully separable Gaussian
states with respect to an external frame. Specifically, we
study the effective entanglement that “appears” when
moving from a description of the system with respect to
an external frame to a fully relational description, which
can alternatively be interpreted in terms of noise. This
study is motivated by the need to determine how best to
prepare states in the external partition in order to en-
code information in relational degrees of freedom, which
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will be useful for various communications tasks [12]. We
conclude in Sec. IV with a discussion and summary of
the results presented.

II. RELATIONAL DESCRIPTIONS

In constructing a relational quantum theory, one es-
sential task will be the description of a quantum system
with respect to another quantum system. We thus seek
a way in which to remove any information contained in a
quantum state that makes reference to an external refer-
ence frame. This is accomplished by the G-twirl, which
we introduce in Sec. IIA and apply to the group of trans-
lations and boosts1 in Sec. II B.

A. Relational description for compact groups

When the state of a system is described with respect
to an external reference frame, such that the transfor-
mations that generate a change of this reference frame
form a compact group, the relational description is well
studied [2].
Suppose we have a quantum system in the state ρ ∈

B(H), where B(H) is the set of bounded linear operators
on the Hilbert space H, described with respect to an ex-
ternal reference frame. Changes of the orientation of the
system with respect to the external frame are generated
by U(g) acting on ρ, where U(g) is the unitary represen-
tation of the group element g ∈ G, and G is the compact
group of all possible changes of the external reference
frame. The relational description of ρ, that is the quan-
tum state that does not contain any information about
the external frame, is given by an average over all possi-
ble orientations of ρ with respect to the external frame,
with each possible orientation given an equal weight

G(ρ) :=
∫

dµ(g)U(g) ρU †(g) , (1)

where dµ(g) is the Haar measure of the group G; this av-
eraging is referred to as the G-twirl. By averaging over all
elements of the group, the G-twirl removes any relation
to the external reference frame that was implicitly made
use of in the description of ρ. What remains is only in-
formation about the relational degrees of freedom within
the system. For example, if ρ ∈ B(H) describes a com-
posite system of two particles such that H = H1 ⊗ H2,
what remains in G(ρ) is information about the relational
degrees of freedom between the two particles. Notice that
the G-twirl is performed via the product representation
U(g) = U1(g) ⊗ U2(g), where U1 and U2 are representa-
tions of the group G for system 1 and system 2, respec-
tively.

1 By boost it is meant Galilean boost, as opposed to Lorentz boost.

This relational description is used extensively in the
study of quantum reference frames involving compact
groups [2–4, 13, 14]. However, when the G-twirl oper-
ation is generalized to the case where the group G is
non-compact, and thus does not admit a normalized Haar
measure, it results in unnormalized states.
For example, let us consider theG-twirl of the state ρ ∈

B(H), where H ∼= L2(R), over the non-compact group
of spatial translations T generated by the momentum
operator P̂ . Expressing ρ in the momentum basis we
find

GT (ρ) =

∫

dg e−igP̂

(∫

dp dp′ ρ(p, p′) |p〉〈p′|
)

eigP̂

= 2π

∫

dp ρ(p, p) |p〉〈p| , (2)

where dg is the Haar measure associated with T and
in going from the first to the second line we have used
the definition of the Dirac delta function 2πδ(p − p′) =
∫

dg eig(p−p′). Although the averaging operation is math-
ematically well defined, the resulting state G(ρ) is not
normalized, as the trace of GT (ρ) is infinite. This is a
result of the Haar measure associated with T not being
normalized, i.e., the integral

∫

dg is infinite. This issue
does not arise when twirling over a compact group for
which there exists a normalized Haar measure. Thus the
relational description constructed by averaging a system
over all possible orientations of a reference frame fails
when the group describing changes of the reference frame
is non-compact.
One may try to remedy this problem by introducing

a measure p(g) on the group, such that
∫

dg p(g) = 1,
and interpreting p(g) as representing a priori knowledge
of how the average should be performed [15]. However,
in general there is no objective way to choose p(g)—if we
want a normalized measure it cannot be invariant.

B. Relational description for non-compact groups

We now construct a relational description of quantum
states suitable for systems described with respect to ref-
erence frames associated with the non-compact groups of
boosts and translations. We begin by twirling the state
of a system of particles ρ ∈ B(H), over all possible boosts
and translations of the external reference frame ρ is spec-
ified with respect to. The result of this twirling is an un-
normalized state proportional to ICM ⊗ρR, where ICM is
the identity on the center of mass degrees of freedom and
ρR = trCM ρ is a normalized density matrix describing
the relative degrees of freedom of the system. In doing so,
we connect two approaches to quantum reference frames
that have been studied in the past, specifically, the ap-
proach introduced by Bartlett et al. [2], which makes use
of the twirl to remove any information the state may have
about an external reference frame, and the approach of
Angelo et al. [1], in which they trace over center of mass
degrees of freedom to obtain a relational state.



3

Consider a composite system of N particles each with
mass mn. We may partition the Hilbert space H of the
entire system as H =

⊗

n Hn where Hn
∼= L2(R

3) which
spans the degrees of freedom defined with respect to an
external frame associated with the nth particle; we will
refer to this as the external partition of the Hilbert space.
We may alternatively partition the Hilbert space as H =
HCM ⊗ HR, where HCM

∼= L2(R
3) is associated with

the degrees of freedom of the centre of mass defined with
respect to an external frame, and HR

∼= L2(R
3N−3) is

associated with the relative degrees of freedom of the
system defined with respect to a chosen reference particle;
we will refer to this partition as the center of mass and
relational partition of the Hilbert space.

As was done in Sec. II A for reference frames associ-
ated with compact groups, to obtain a relational state
we will average the state of our system over all possible
orientations—intended in a generic sense, meant here to
be about translations and boosts—with respect to the
external frame. Here we consider the system to be de-
scribed with respect to an inertial external frame. Thus a
change of the external frame corresponds to acting on the
system with an element of the Galilean group, and the
average over all possible orientations of the system with
respect to the external frame will be an average over the
Galilean group.

The Galilean group, Gal, is a semidirect product of the
translation group T4, the group of boosts B3, and the
rotation group SO(3):

Gal ∼= T4 ⋊

(

B3 ⋊ SO(3)
)

. (3)

We will restrict our analysis to an average over spatial
translations T3, where T4

∼= T1 ⋊ T3, and boosts B3, as
averages over SO(3), the orientation of a system with
respect to an external frame, have been well studied in
literature [2], and we are primarily interested in issues
associated with non-compact groups. Further, we do not
average over time translations T1 as this would require
us to introduce a Hamiltonian to generate time transla-
tions, and for now we are interested only in a relative
description of the state at one instant of time and not its
dynamics. Suppose the state of a system was given with
respect to an external reference frame with a specific po-
sition and velocity. The operator that results from these
restricted averages is related to the state as seen from an
observer who is ignorant of both the position and velocity
of the external reference frame.

The position and momentum operators associated with
the centre of mass, X̂CM and P̂CM , and relational de-
grees of freedom, X̂i|1 and P̂i|1, may be expressed in

terms of the operators X̂n and P̂n associated with the
position and momentum operators of each of the N par-
ticles with respect to the external frame as

X̂CM =
1

∑

n mn

∑

n

mnX̂n, (4a)

P̂CM =
∑

n

P̂n, (4b)

X̂i|1 = X̂i − X̂1 for i ∈ {2, N}, (4c)

and the relative momentum operators, P̂i|1, are con-
structed as linear combinations of the momentum oper-
ators P̂n, such that they satisfy the canonical commuta-
tion relations [X̂i|1, P̂j|1] = iδij and all other commuta-

tors vanish2. Without loss of generality we have chosen
to define the relative degrees of freedom with respect to
particle 1.
The action of a translation g ∈ R

3 ∼= T3 and boost h ∈
R

3 ∼= B3 of the external frame in the external partition
H =

⊗

n Hn is given by

UT (g) =
⊗

n

e−ig·P̂n , (5a)

UB(h) =
⊗

n

eimnh·X̂n , (5b)

and in the center of mass and relational partition HCM ⊗
HR is given by

UT (g) = e−ig·P̂CM ⊗ IR, (6a)

UB(h) = eiMh·X̂CM ⊗ IR, (6b)

where M =
∑

n mn is the total mass.
To carry out the average over T3 and B3, let us express

ρ in the HCM ⊗HR partition in the momentum basis

ρ =

∫

dpCM dp′
CM dpR dp′

R ρ(pCM ,p′
CM ,pR,p

′
R)

|pCM 〉〈p′
CM | ⊗ |pR〉〈p′

R| , (7)

where pCM and p′
CM denote the momentum vector of

the center of mass and pR and p′
R denote the N − 1

relative momentum vectors. Making use of Eq. (6a), we
may average over all possible spatial translations of the
external frame

2 This choice of operators on HR is not unique. We may have
alternatively defined a set of N−1 relative momentum operators
and defined the N − 1 relative position operators as those which
satisfy the canonical commutation relations. See [1] for more
details.
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GT (ρ) =

∫

dpCM dp′
CM dpR dp′

R ρ(pCM ,p′
CM ,pR,p

′
R)

∫

dgUT (g) |pCM 〉〈p′
CM |UT (g)

† ⊗ |pR〉〈p′
R|

= 2π

∫

dpCM dpR dp′
R ρ(pCM ,pCM ,pR,p

′
R) |pCM 〉〈pCM | ⊗ |pR〉〈p′

R| . (8)

The effect of averaging over all possible translations is to project ρ into a charge sector of definite center of mass
momentum. Now averaging Eq. (8) over all boosts, using Eq. (6b), yields

GB ◦ GT (ρ) = 2π

∫

dh

∫

dpCM dpR dp′
R ρ(pCM ,pCM ,pR,p

′
R)UB(h) |pCM 〉〈pCM |UB(h)

† ⊗ |pR〉〈p′
R|

= 2π

∫

dh

∫

dpCM dpR dp′
R ρ(pCM −Mh,pCM −Mh,pR,p

′
R) |pCM 〉〈pCM | ⊗ |pR〉〈p′

R|

=
2π

M

∫

dh

∫

dpCM dpR dp′
R ρ(h,h,pR,p

′
R) |pCM 〉〈pCM | ⊗ |pR〉〈p′

R|

=
2π

M

∫

dpCM |pCM 〉〈pCM | ⊗
∫

dpR dp′
R

(∫

dh ρ(h,h,pR,p
′
R)

)

|pR〉〈p′
R|

=
2π

M
ICM ⊗ ρR, (9)

where in the last line

ρR =trCM ρ

=

∫

dpR dp′
R

(∫

dh ρ(h,h,pR,p
′
R)

)

|pR〉〈p′
R| ,
(10)

and we have made use of the resolution of the identity
ICM =

∫

dpCM |pCM 〉〈pCM |.
From the appearance of the identity ICM in Eq. (9),

we see that GB ◦GT (ρ) contains no information about the
center of mass, and thus no information about the exter-
nal frame. As discussed earlier, since we have averaged
over a non-compact group, Eq. (9) is unnormalizable, and
thus GB ◦ GT (ρ) is not a physical state. However, all the
information about the relational degrees of freedom of
the system is encoded in ρR, which is normalized.

By twirling over all possible boosts and translations of
the system, we see from Eq. (9) that the reduced state
ρR naturally appears. We have thus connected the use
of ρR that is made in Angelo et al. [1] when analyzing
absolute and relative degrees of freedom, with the usual
quantum reference formalism [2].

In general, when transforming from the external par-
tition H =

⊗

n Hn, to the center of mass and relational
partition H = HCM ⊗HR, entanglement will appear be-
tween the center of mass and relational degrees of free-
dom, as well as within the relational Hilbert space HR.
Thus the state ρR will be mixed, reflecting the fact that
information about the external degrees of freedom has
been lost. This is analogous to information about the
external frame being lost in Eq. (1) when averaging over
all elements of a compact group.

III. GAUSSIAN QUANTUM MECHANICS AND

THE RELATIONAL DESCRIPTION

We now examine in detail the informational properties
of the reduced state ρR of the relational degrees of free-
dom given in Eq. (10), by examining systems of two
and three particles in one dimension distinguished by
their masses. As mentioned earlier, in general, entan-
glement will appear when moving from the external par-
tition H =

⊗

n Hn, to the center of mass and relational
partition H = HCM ⊗ HR. This entanglement is cru-
cial in determining how to describe physics relative to a
particle within the system [1]. For example, if there is
entanglement between the centre of mass and the rela-
tional degrees of freedom, an observer identified with the
reference particle, particle 1 as chosen in Eq. (4), will
describe the rest of the system as being in a mixed state.

As a concrete example of the entanglement that can
emerge when changing from the external partition to
the center of mass and relational partition of the Hilbert
space, we consider systems of two and three particles in
Gaussian states in the external partition. The advantage
of considering Gaussian states in the external partition is
that the transformation which takes the state from being
specified in the external partition to being specified in
the centre of mass and relational partition is a Gaussian
unitary, that is, a state which is Gaussian in the external
partition will also be Gaussian in the center of mass and
relational partition. Further, if we are interested in the
reduced state ρR defined in Eq. (10), and the state of the
particles in either partition is a Gaussian state, then the
trace over the centre of mass degrees of freedom also re-
sults in a Gaussian state. Thus, by considering Gaussian
states in the external partition we are able to make use
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of the extensive tools developed in the field of Gaussian
quantum information. We begin here by briefly review-
ing relevant aspects of Gaussian quantum information;
for more detail the reader may consult one of the many
good references on the topic [16–18].

A. The Wigner function and Gaussian states

Any density operator has an equivalent representation
as a quasi-probability distribution over phase space. To
see this, we introduce the Weyl operator

D(ξ) := exp
(

ix̂TΩξ
)

, (11)

where x̂ := (q̂1, p̂1, . . . , q̂n, p̂n) is a vector of phase space
operators, ξ ∈ R

2n, and Ω is the symplectic form defined
as

Ω =

n
⊕

i=1

ω, with ω =

(

0 1
−1 0

)

. (12)

A density operator ρ ∈ B(H) has an equivalent repre-
sentation as a Wigner characteristic function χ(ξ) :=
tr[ρD(ξ)], or by its Fourier transform, known as the
Wigner function

W (x) :=

∫

R2n

d2nξ

(2π)
2n exp

(

−ixTΩξ
)

χ (ξ) . (13)

where x := (q1, p1, . . . , qn, pn) is a vector of phase space
variables.
An n-particle Gaussian state is a state whose Wigner

function is Gaussian, that is

W (x; x̄,V) =
exp
(

− 1
2 (x− x̄)

T
V−1 (x− x̄)

)

(2π)
n √

detV
, (14)

where x̄ := (q̄1, p̄1, . . . , q̄n, p̄n) is given by a vector of av-
erages

x̄i := 〈x̂i〉 = tr [x̂iρ] , (15)

and V is the real 2n × 2n covariance matrix with com-
ponents

Vij :=
1

2
tr [{x̂i − x̄i, x̂j − x̄j} ρ] , (16)

where we have made use of the anticommutator
{A,B} := AB +BA.

B. Two particles

We begin our analysis by considering two particles with
masses m1 and m2 to be in a tensor product of Gaussian
states ρE = ρ1 ⊗ ρ2, where ρ1 ∈ B(H1) and ρ2 ∈ B(H2)
in the external partition H = H1 ⊗H2. Due to the ten-
sor product structure of ρE , the Wigner function of the

composite system is a product of the Wigner functions
associated with particles 1 and 2

W (x; x̄E ,VE) = W (x; x̄1,V1)W (x; x̄2,V2) . (17)

The reason for considering factorized states in the ex-
ternal partition, apart from their common usage in the
literature [4, 14], is that if we are to use the composite
system for communication, the tensor product structure
is easily prepared as it does not require an entangling op-
eration. Further, if one party wishes to communicate a
string of classical bits (or qubits), they can try to encode
one bit (or qubit) per physical qubit, and this string can
be decoded sequentially. The sender does not need to
know at the outset the entire message they wish to com-
municate, and the receiver does not need to store the
entire message before decoding it [4].
As we will only be interested in the entanglement gen-

erated in moving from the external partition to the center
of mass and relational partition, we may, without loss of
generality, set x̄1 = x̄2 = 0 as these averages can be ar-
bitrarily adjusted via local unitary operations in either
partition, and thus do not affect the entanglement prop-
erties under consideration.
Making use of Eq. (14), we find the covariance matrix

associated with ρE is given by VE = V1⊕V2; the direct
sum structure resulting from the fact the we chose ρE
to be a tensor product state in the external partition.
Using Williamson’s theorem [19], one can show that the
most general form of the covariance matrices V1 and V2

is given by

Vi =
1

µi
R (θi)S (2ri)R (θi)

T

=
1

µi

(

cosh 2ri−cos 2θi sinh 2ri sin 2θi sinh 2ri
sin 2θi sinh 2ri cosh 2ri+cos 2θi sinh 2ri

)

,

(18)

where the free parameter µi = 1/
√
detVi ∈ (0, 1] is the

purity, tr(ρ2i ), of the state ρi, R (θi) is a rotation matrix
specifying a phase rotation by an angle θi ∈ [0, π/4],
and S(2ri) is a diagonal symplectic matrix specifying a
squeezing of the Wigner function parameterized by ri ∈
R.

1. Transforming to the center of mass and relational

partition

For two particles in one dimension the transfor-
mation from the external degrees of freedom xE :=
(x1, p1, x2, p2), where xi and pi denote the position and
momentum of the ith particle with respect to an external
frame, to the center of mass and relational degrees of free-
dom xCMR := (xcm, pcm, x2|1, p2|1), where xcm, pcm are
the position and momentum of the center of mass with
respect to an external frame and x2|1, p2|1 are the position
and momentum of particle 2 with respect to particle 1,
is given by Eq. (4) with N = 2 and vectors of operators
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replaced by a single operator. Under this transforma-
tion the external covariance matrix VE transforms to
VCMR = M2VEM

T
2 , where M2 is given by

M2 :=









m1

m1+m2
0 m2

m1+m2
0

0 1 0 1
−1 0 1 0
0 − m2

m1+m2
0 1− m2

m1+m2









.

(19)

As both the external and center of mass and relational
position and momentum operators obey the canonical
commutation relations, it follows that M2 is a symplec-
tic transformation, i.e. it preserves the symplectic form
M2ΩMT

2 = Ω. Since M2 is symplectic, the associated
transformation preserves the Gaussianity of the state,
that is, if a state is Gaussian in the external partition, it
will also be Gaussian in the center of mass and relational
partition.
The relational state ρR given in Eq. (10), is a Gaus-

sian state whose covariance matrix V2|1 is obtained by
deleting the first and second rows and columns of VCMR;
taking the most general form of V1 and V2 yields

V2|1 =
1

µ1µ2

(

µ2f
−

1
+µ1f

−

2
−µ2m̃2g1+µ1m̃1g2

−µ2m̃2g1+µ1m̃1g2 µ2m̃
2
2f

+

1
+µ1m̃

2
1f

+

2

)

, (20)

where

f±
i := cosh 2ri ± cos 2θi sinh 2ri,

gi := sin 2θi sinh 2ri,

and m̃i := mi/(m1 +m2).

2. Entanglement between the center of mass and relational

degrees of freedom

As a measure of entanglement we will employ the log-
arithmic negativity [20]

EN (ρ) := log
∥

∥ρΓA

∥

∥

1
, (21)

where ΓA is the partial transpose and ‖·‖1 denotes the
trace norm, with log(·) denoting the natural logarithm.
The logarithmic negativity is a measure of the failure of
the partial transpose of a quantum state to be a valid
quantum state and is a faithful measure of entanglement
for 1×N mode Gaussian states [21].
For Gaussian states the logarithmic negativity is given

by

EN := −
∑

k

log ṽk ∀ ṽk < 1, (22)

where {ṽk} is the symplectic spectrum of the partially

transposed covariance matrix Ṽ, i.e. the eigenspectrum
of |iΩṼ|. The partial transpose of a covariance matrix is

Ṽ = θ1|2Vθ1|2, (23)

(a) θ = 0 (b) θ = π/32

(c) θ = π/8 (d) θ = π/4

0 0.5 1.0 1.5 2.0

FIG. 1. (Colour online) The logarithmic negativity, as a
measure of the entanglement between the center of mass
and relation degrees of freedom, of the state associated with
VCMR, when V1 = V2 and both ρ1 and ρ2 are pure, i.e.
detV1 = detV2 = 1, for different phase rotations θ = θ1 = θ2
as a function of the squeezing parameter r = r1 = r2 and the
ratio of masses m1/(m1 +m2).

where θ1|2 = diag(1, 1, 1,−1).

We will use the logarithmic negativity to quantify the
entanglement between the center of mass and relational
degrees of freedom in VCMR = M2VEM

T
2 , for VE =

V1 ⊕ V2, which corresponds to the two particles being
in a factorized state ρ1⊗ρ2 in the external partition. V1

and V2 will necessarily be of the form given in Eq. (18).

Plots of the logarithmic negativity of the state associ-
ated with VCMR for different choices of V1 and V2 are
given in Figs. 1 (identical state parameters), 2 (differ-
ing purity), and 3 (differing squeezing). Several trends
emerge from a perusal of these figures.

We first note that equal-mass systems suppress entan-
glement between center of mass and relational degrees
of freedom. When particles in the external partition are
prepared such that they have identical covariance ma-
trices we find vanishing entanglement in the equal mass
case regardless of the amount of squeezing and rotation.
This occurs for both pure and mixed situations, respec-
tively illustrated in Figs. 1 and 2. As one of the masses
gets larger, center of mass and relational entanglement
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(a) θ = 0 and µ1 = 0.6 (b) θ = 0 and µ1 = 0.2

(c) θ = π/4 and µ1 = 0.6 (d) θ = π/4 and µ1 = 0.2

0 0.5 1.0 1.5 2.0

FIG. 2. (Colour online) The logarithmic negativity, as a mea-
sure of the entanglement between the center of mass and rela-
tion degrees of freedom, of the state associated with VCMR,
when r = r1 = r2, θ = θ1 = θ2, and particle 2 is a pure state
µ2 = 1 and particle 1 is not, for different purities of particle
1 µ1 and phase rotations θ. Plots for θ = 0 and µ = 1 and
θ = π/4 and µ = 1 are shown in Figs. 1a and 1d respectively.

increases for any fixed value of the squeezing parame-
ter r.

The next trend we observe is that phase rotation, cor-
responding to squeezing along a rotated axis in phase
space, appears to play a more important role than squeez-
ing. For a phase rotation θ = 0 we find that cen-
ter of mass/relational entanglement is insensitive to the
amount of squeezing. As θ increases we see that squeez-
ing plays an increasingly important role, particularly as
the ratio of the masses increasingly departs from unity.
Not surprisingly, entanglement is greater for the pure
case, shown in Fig. 1, than for the mixed case, shown
in Fig. 2.

Asymmetric squeezing (r1 > r2), illustrated in Fig. 3,
modifies this situation somewhat. The zero-squeezing
case in Figs. 3a and 3b, shows vanishing entanglement
when the masses are equal. However there is increased
center of mass/relational entanglement as the lighter par-
ticle is more strongly squeezed (Fig. 3a), a trend that is
less pronounced as the differential squeezing decreases
(Fig. 3b). Vanishing center of mass/relational entangle-

(a) θ = 0 and α = 0 (b) θ = 0 and α = 0.5

(c) θ = π/4 and α = 0 (d) θ = π/4 and α = 0.5

0 0.5 1.0 1.5 2.0

FIG. 3. (Colour online) The logarithmic negativity, as a mea-
sure of the entanglement between the center of mass and rela-
tion degrees of freedom, of the state associated with VCMR,
when detV1 = detV2 = 1 for r2 = αr1, for different phase
rotations θ = θ1 = θ2 and values α. Plots for θ = 0 and
α = 1 and θ = π/4 and α = 1 are shown in Figs. 1a and 1d
respectively.

ment takes place for increasingly larger values of the mass
of the particle which is most squeezed. Again we see that
phase rotation plays a more significant role, restoring (in
the maximal θ = π/4 case) the symmetry present in the
equal mass case (Figs. 3c and 3d). Here we see that a suf-
ficient amount of differential squeezing can eliminate cen-
ter of mass/relational entanglement entirely (Fig. 3c).

Decreasing the purity of the states of the particles in
the external partition, shown in Fig. 2, indicates the same
trends as for the pure case (Fig. 1). The main effects
of decreased purity are to decrease the overall center of
mass/relational entanglement and to widen the range of
ratio of masses for which this entanglement vanishes.

C. Three particles

We consider now a similar analysis for a system of three
particles with masses m1, m2, and m3. When trans-
forming a fully factorized state in the external partition
H = H1 ⊗H2 ⊗H3, to the center of mass and relational
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partition H = HCM ⊗HR, there will again be entangle-
ment generated between the center of mass and relational
degrees of freedom. In addition, there will be entangle-
ment generated among the relational degrees of freedom,
a new feature not possible for the two particle system
considered above.
The center of mass position and momentum operators,

along with the relative position and momentum operators
are again defined via Eq. (4). The transformed covariance
matrix is given by VCMR = M3VEM

T
3 , where

M3 :=















m1

M 0 m2

M 0 m3

M 0
0 1 0 1 0 1
−1 0 1 0 0 0
0 −m2

M 0 1− m2

M 0 −m2

M
−1 0 0 0 1 0
0 −m3

M 0 −m3

M 0 1− m3

M















. (24)

The relational state V23|1 of particles 2 and 3 as de-
scribed by particle 1 is obtained by deleting the first and
second rows and columns of VCMR. We observe that in
the limit when m3 vanishes and the columns and rows
of M3 associated with particle 3 are deleted, that is the
last two rows and columns, M2 as defined in Eq. (19) is
recovered.
We assume the state of the three-particle system in the

external partition is a fully factorized Gaussian state with
the covariance matrixVE = V1⊕V2⊕V3. For simplicity
we restrict ourselves to the case whenV1 = V2 = V3 and
detVE = 1, in other words a pure state, with each of the
three particles identically squeezed in the same direction.
In Fig. 4 the logarithmic negativity as a measure of en-

tanglement between the center of mass and relational de-
grees of freedom in VCMR is plotted for different choices
of VE . In Fig. 5 the logarithmic negativity between the
relational degrees of freedom in V23|1is plotted for differ-
ent choices of VE .
We see similar trends for the center of mass/relational

entanglement as for the two-particle case, but qualita-
tively different behaviour of the internal-relational en-
tanglement, i.e., the entanglement generated among the
relational degrees of freedom—in the case at hand, the
entanglement between particle 2 and 3 as described by
particle 1.
The internal-relational entanglement, illustrated in

Fig. 5, shows strikingly different behaviour. Such en-
tanglement is maximized in the equal mass case, shown
in Figs. 5b and 5d provided there is some phase rotation.
In the absence of phase rotation, this effect vanishes. For
all values of the (equal) phase rotation parameter, we
observe that as the mass of the reference particle m1

becomes infinite, the entanglement between particles 2
and 3 vanishes. This is as expected, since this limit cor-
responds to particle 1 behaving as a classical reference
frame with a large mass. Indeed, we notice that in the
limit m1 → ∞, the 4 × 4 lower-right submatrix of M3

becomes the identity matrix, and the only effect of the
change of coordinates is that of redefining the origin in
space for the coordinates of the second and third particle.

(a) θ = 0 (b) θ = π/4

(c) θ = 0 (d) θ = π/4

0 0.5 1.0 1.5 2.0 2.5

FIG. 4. (Colour online) The logarithmic negativity is plotted,
as a measure of the entanglement between the center of mass
and relation degrees of freedom, of the state associated with
VCMR describing three particles. In (a) and (b) the loga-
rithmic negativity is plotted for the case when m2 = m3, for
various equal phase rotations θ1 = θ2 = θ3 = θ, as a func-
tion of the ratio m1/(m1 + m2 + m3) and equal squeezing
parameter r1 = r2 = r3 = r. In (c) and (d) the logarith-
mic negativity is plotted as a function of the two mass ratios
m1/(m1+m2+m3) and m2/(m1+m2+m3) for various equal
phase rotations θ, with the equal squeezing parameter fixed
at r = 0.7.

IV. DISCUSSION AND OUTLOOK

We have highlighted issues involving quantum refer-
ence frames associated with non-compact groups. We
began in Sec. II A by introducing the usually employed
G-twirl as a relation description between quantum sys-
tems and demonstrated how it leads to unnormalized
states when applied to non-compact groups. In Sec. II B
we saw how the G-twirl over the group of translations
and Galilean boosts leads to the appearance of the re-
duced state on the relational degrees of freedom previ-
ously considered by Angelo et al. [1]. We then examined
the consequences of this relational description in Sec. III
by studying the entanglement that emerges between the
center of mass degrees of freedom and the relational de-
grees of freedom, as well as the entanglement among the
relational degrees of freedom, for a system of particles,
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(a) θ = 0 (b) θ = π/4

(c) θ = 0 (d) θ = π/4

0 0.5 1.0 1.5 2.0 2.5

FIG. 5. (Colour online) The logarithmic negativity of the
relative state of particles 2 and 3 described byV23|1 is plotted,
characterizing the entanglement among the relational degrees
of freedom. In (a) and (b) the logarithmic negativity is plotted
for the case m2 = m3, for various equal phase rotations θ1 =
θ2 = θ3 = θ, as a function of the ratio m1/(m1 + m2 + m3)
and equal squeezing parameters r1 = r2 = r3 = r. In (c)
and (d) logarithmic negativity is plotted as a function of the
mass ratios m1/(m1 + m2 + m3) and m2/(m1 + m2 + m3)
for equal squeezing parameter r = 0.7 and for different equal
phase rotations θ.

when moving from a description of the quantum system
entirely with respect to an external frame, to a descrip-
tion in which only the center of mass is specified with
respect to an external frame and all other degrees of free-
dom are relational.
Two main observations emerged from studying the re-

duced state ρR on the relational degrees of freedom, in-
troduced in Eq. (10), for systems of two and three par-
ticles. First, for fully separable Gaussian states in the
external partition with identical second moments, entan-
glement between the center of mass degrees of freedom
and relational degrees of freedom is minimized when the
masses of the particles are the same. Second, again for
fully separable Gaussian states in the external partition
with identical second moments, in the limit when the
mass of the reference particle, that is the particle for
which the relational degrees of freedom are defined with
respect to, becomes infinite, the entanglement among the

relational degrees of freedom vanishes. This second ob-
servation suggests a meaningful way to interpret the ex-
ternal reference frame, with which we usually describe a
quantum state with respect to, as the limit of a physical
system, say a particle, in which its mass is taken to in-
finity [22]. The consequences of this second observation
will be explored in future work.

The primary motivation for examining quantum ref-
erence frames associated with non-compact groups is to
apply the quantum reference frame formalism to rela-
tivistic systems, in which the natural group associated
with changes of a reference frame is the Poincaré group.
It will be fruitful to explore to what extent the tools de-
veloped in this manuscript can be applied to the Poincaré
group; however, one immediate obstacle is the problem
of defining a covariant definition of the center of mass
[23].

Two other possible applications of the formalism in-
troduced come to mind. The first is in constructing a
relativity principle for quantum mechanics by studying
changes of quantum reference frames, which was first sug-
gested in Ref. [14]. The second is to construct a relational
quantum theory, similar to what was done in Ref. [10],
for the Galilean group using the relational description in
Eq. (10), and examine how the usual “non-relational”
theory emerges.
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Appendix: Purity of the relational state

The covariance matrices considered in sections III B 1
and III B 2 were of the form VE = V1 ⊕ V2, where
both V1 and V2 were given by Eq. (18). The purity
of VCMR = M2VEM

T
2 is given by

µCMR =
1√

detVCMR

= µ1µ2, (A.1)

where µ1 and µ2 are the purities associated with V1 and
V2 respectively.

The purity of the relational stateV2|1 in Eq. (20), that
is the state obtained from VCMR by taking the partial
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trace over the center of mass degrees of freedom, is

µ2|1 =
1

√

detV2|1

=µ1µ2

[

µ2
2m̃

2
2f

−
1 f+

1 + µ1µ2

(

m̃2
1f

−
1 f+

2 + m̃2
2f

+
1 f−

2

)

µ2
1m̃

2
1f

−
2 f+

2 − µ2
2m̃

2
2g

2
1 + 2µ1µ2m̃1m̃2g1g2

−µ2
1m̃

2
1g

2
2

]−1/2

, (A.2)

where we have introduced the notation m̃i = mi/(m1 +
m2).
If VCMR is pure, which corresponds to both V1 and

V2 being pure, then µCMR = 1 and µ2|1 is a genuine
measure of entanglement between the center of mass and
relational degrees of freedom. In this case, µ−2

2|1 simplifies
to

µ−2
2|1 =(m̃2 − m̃1)

[

sinh(2r1) cosh(2r2) cos(2θ1)

− sinh(2r2) cosh(2r1) cos(2θ2)
]

+ (2m̃1m̃2 + 1) cosh(2r1) cosh(2r2)

− sinh(2r1) sinh(2r2)
[

2m̃1m̃2 cos(2(θ1 + θ2))

+ cos(2θ1) cos(2θ2)
]

+ m̃2
1 + m̃2

2. (A.3)

If the mass of the two particles are equal m1 = m2,

µ−2
2|1 further simplifies to

µ−2
2|1 =

1

4

[

− 2 sinh(2r1) sinh(2r2) cos(2(θ1 − θ2))

+ cosh(2(r1 − r2)) + cosh(2(r1 + r2)) + 2
]

.

(A.4)

For the case when m1 6= m2, r1 = r2 = r and θ1 =
θ2 = θ, corresponding to Fig. 1, µ−2

2|1 becomes

µ−2
2|1 =2

m2
1 +m2

2

(m1 +m2)
2 + sin2(2θ)

×
(

m2
1 +m2

2

(m1 +m2)
2 sinh2(2r)− 2

m1m2

(m1 +m2)
2

)

.

(A.5)

From Eq. (A.5), we observe that when the masses of the
two particles are identical m1 = m2, the reduced state
V2|1 is pure, i.e, µ2|1 = 1, which corresponds to vanishing
entanglement between the center of mass and relational
degrees of freedom in VCMR. This agrees with the plots
of the logarithmic negativity in Fig. 1.
When the mass of either particle becomes infinite we

find

µ−2
2|1 =2 + sinh2(2r) cos2(2θ). (A.6)
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