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 1 

Abstract — Chemical oxidation and the bactericidal 2 
capabilities of non-thermal plasma discharges can be used in 3 
different practical applications such as bio-decontamination, 4 
sterilisation of medical equipment, waste water treatment, syn-gas 5 
treatment and others. In this paper, the oxidation and bio-6 
decontamination effects of impulsive plasma discharges which 7 
propagate across a liquid sample/air interface (surface discharges), 8 
and through the bulk of a liquid sample (direct discharges), have 9 
been investigated. The oxidising capability was analysed by 10 
measuring the degree of decolourisation of indigo carmine dye in 11 
water solutions. Gram-negative and Gram-positive bacteria, 12 
E. coli and S. aureus, respectively, were used as model 13 
microorganisms in the investigation of the biocidal effects of 14 
plasma discharges. Surface and direct plasma discharges were 15 
generated by high-voltage impulses of both polarities, with 16 
magnitudes of 20 kV, 24 kV and 28 kV, the chemical oxidation and 17 
bio-decontamination capabilities of such discharges have been 18 
obtained and analysed. It has been established that the defining 19 
factor in the chemical and biological effects of plasma discharges 20 
is the normalised delivered charge (dose). The results obtained in 21 
this study show that surface discharges have greater bio-22 
decontamination capability as compared with direct transient 23 
plasma discharges. Also, it was shown that the decontamination 24 
rate of E.coli is more than double than that of S. aureus. 25 
 26 

Index Terms — Non-thermal plasma discharges, OH-radicals, 27 
Bio-decontamination, Oxidation. 28 

I. INTRODUCTION 29 

on-thermal plasma discharges have attracted the 30 

attention of researchers and engineers who are working 31 

on the development of novel methods for oxidation and 32 

bio-decontamination. It has been shown that atmospheric-33 

pressure plasma discharges produce significant oxidation and 34 

bactericidal effects [1]. As a result, multiple practical 35 

applications are now being developed, including non-thermal 36 

plasma discharges for gas treatment, water purification, bio-37 

decontamination and wound treatment [2-3]. However, the 38 

exact mechanisms of the chemical and microbiological effects 39 

of transient atmospheric plasma (TAP) discharges are still not 40 

fully understood. There are several factors which make a 41 

significant contribution to these processes: production of 42 

chemically-active oxygen and nitrogen species, emission of UV 43 

light and generation of a strong electric field. TAP discharges 44 

produce multiple chemically-active species including OH 45 

radicals, ozone, hydrogen peroxide, singlet oxygen, nitric 46 
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dioxide, peroxynitrites and others [4-7]. OH radicals have the 47 

highest redox potential of 2.7 V, amongst all oxygen-based 48 

reactive species [8], while the redox potential of superoxide 49 

anions is 2.42 V, ozone is 2.07 V and hydrogen peroxide is 1.78 50 

V [9]. In [10] and [11], it was shown that OH radicals have 51 

higher reaction rates than other species, including ozone: OH 52 

radicals are able to react with organic compounds significantly 53 

(106-1012 times) faster than ozone. Therefore, chemical species 54 

with high oxidizing capability play an important role in the 55 

chemical and microbiological activity of plasma discharges 56 

[12-14]. For example, it was suggested in [15] that OH radicals 57 

together with ozone produced by an underwater air plasma jet 58 

play a major role in the decomposition of methylene blue dye 59 

in water solution. Possible mechanisms of OH production at the 60 

plasma-water interface are discussed in [9], [16]; amongst these 61 

mechanisms are the disassociation of water molecules by 62 

energetic electrons and dissociative attachment of electrons to 63 

water molecules. Plasma discharges in water can produce other 64 

reactive oxygen species (ROS) with high redox potential such 65 

as superoxide anions, ozone and hydrogen peroxide [16], [17]. 66 

Different types of TAP discharges can result in different rates 67 

of production of these chemically-active species and, thus, can 68 

result in a different degree of chemical or microbiological 69 

activity. For further development of practical applications of 70 

TAP discharges, it is important to establish the optimal 71 

discharge topologies and, therefore, it is necessary to 72 

investigate the oxidation and microbiological efficacy of 73 

different types of discharges and their dependency on different 74 

discharge parameters, such as the magnitude and polarity of the 75 

applied voltage, the charge delivered during the plasma 76 

treatment and the discharge propagation path. 77 

In this paper, the chemical and biological effects of pulsed 78 

discharges in atmospheric air which propagate across the 79 

interface between the sample under test (water-based dye 80 

solution and water-based agar seeded with microorganisms) 81 

and air, or through the bulk of the sample under test, have been 82 

studied. This approach allowed comparison of the bio-83 

decontamination and oxidation efficacy of surface and direct 84 

plasma discharges. The oxidation capability of TAP discharges 85 

was investigated using a water-based solution of blue dye 86 

(indigo carmine), the degree of decolourisation of this dye was 87 

obtained for different voltages, specific charges, and for 88 

different discharge propagation paths. Also, the bio-89 
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inactivation capability of the TAP discharges was investigated 1 

using the Gram-negative and Gram-positive microorganisms, 2 

E. coli and S. aureus, respectively. The results obtained in this 3 

study confirm that TAP discharges produce significant 4 

oxidation and bio-decontamination effects, which will aid in 5 

further development and optimisation of atmospheric plasma 6 

treatment systems for practical applications, including the use 7 

of such plasma discharges in environmental and medical 8 

technologies. 9 

II. EXPERIMENTAL SYSTEM 10 

The main aim of this study was to investigate the production 11 

of OH radicals in water-based solutions, and the chemical 12 

oxidation and microbiological decontamination capabilities of 13 

two types of TAP discharges: surface discharges which 14 

propagate along the sample/air interface, and direct discharges 15 

which propagate through the bulk of the sample. To conduct 16 

this study, a dedicated experimental system was designed and 17 

developed. This system includes a pulsed-power supply to 18 

generate transient plasma discharges, different test cells to hold 19 

water solutions and microbiological samples, diagnostic 20 

devices to monitor high-voltage and current waveforms, an air 21 

pump with a gas distribution board, and an ozone analyzer.  22 

A diagram of this experimental system is shown in Figure 1. 23 

A TG-01 trigger generator (Samtech Ltd, Scotland) was used as 24 

a pulsed-power source, and the output of the pulse generator 25 

was connected to the high-voltage (HV) needle electrode 26 

located inside the test cell. The trigger generator was capable of 27 

producing positive and negative HV impulses with a peak 28 

magnitude of 30 kV and a rise-time of 60 µs[18]. The pulse 29 

repetition rate used in the present study was 20 pulses per 30 

second (pps). 31 

 32 

 33 
 34 

Fig. 1.  Diagram of the experimental system used for decolorisation and micro-35 
biological inactivation. 36 
 37 

The transient voltage waveforms associated with the 38 

discharges generated were monitored by a Tektronix P6015A 39 

HV probe (1000:1 division ratio, 75 MHz bandwidth). The 40 

discharge current was monitored by a Pearson 6585 current 41 

monitor (250 MHz bandwidth). The HV probe and the current 42 

monitor were connected to the high-impedance inputs of a 43 

Tektronix TDS 2024 digitizing oscilloscope (200 MHz 44 

bandwidth, 2 GSample/s sampling rate). A 50-Ω coaxial cable 45 

was used to connect the Pearson monitor and the oscilloscope, 46 

this cable was terminated by a 50-Ω resistive load. 47 

A test cell, designed to house water-based dye solution and 48 

microbiological agar samples, was made of a Perspex cylinder 49 

(80-mm high) with an outer diameter of 150 mm. The ends of 50 

the cylinder were covered by two PVC flanges. Inside this 51 

cylinder, a gramophone needle with a tip radius of 36 ȝm was 52 

placed in a vertical holder fixed on the upper PVC flange, 53 

forming the HV electrode. The grounded electrode (an 54 

aluminium plate) was located on the lower PVC flange, inside 55 

the Perspex cylinder.  56 

Liquid and microbiological (agar) samples were placed in 57 

two different types of sample holder, as shown in Figure 2. 58 

These sample holders were located on the grounded aluminium 59 

plate inside the Perspex container and subjected to HV 60 

discharges. Transparent, non-conductive, plastic plates (55 mm 61 

diameter) were used for generation of interfacial discharges 62 

(Figure 2(a)); the same plates were lined with aluminium foil 63 

(Figure 2(b)) and used to generate discharges through the bulk 64 

of liquid samples. The volume of each liquid sample was 6 mƐ, 65 

therefore the depth of liquid in the sample holders was only ~2.4 66 

mm. Agar samples were ~2.5 mm thick. 67 

 68 

 69 
 70 
Fig. 2.Cross-sectional diagram of the sample dish held within the test cell (not 71 
to scale).  (a) Non-conductive plastic dish; (b) plastic dish lined with aluminium 72 
foil (conductive dish). The arrows indicate the paths followed by the generated 73 
transient discharges: (1) vertical path through the air towards the sample 74 
surface; (2) interfacial path in the case of non-conductive sample holder (a), and 75 
path through the bulk of liquid sample in the case of the conductive sample 76 
holder (b). 77 

 78 

When the non-conductive plastic dish was used, Figure 2(a), 79 

the discharge initiated at the tip of the needle HV electrode 80 

propagates vertically down towards the surface of the sample 81 

(path 1). The discharge continues its development across the 82 

sample/air interface towards the edge of the sample holder (path 83 

2), before reaching the grounded metallic plate. In the case of 84 

conductive sample holders, Figure 2 (b), the transient discharge 85 

produced at the tip of the HV needle propagates vertically down 86 

towards the sample surface (path 1), and the ionic current closes 87 

the circuit by flowing through the bulk of the sample towards 88 

the grounded aluminium foil. Therefore, in the case of the non-89 

conductive dish, a shorter path length is required to achieve the 90 

same breakdown voltage as in the case of the conductive sample 91 

holder, where the surface of the sample acts as a virtual ground.   92 

During the tests, an air pump (VP 1HV, KNF Neuberger 93 

Ltd.) was used to supply a gentle air flow (flow rate was 5 Ɛ/min) 94 

through the test cell, and the gas leaving the test cell was sent 95 

to an ozone analyzer. The air delivered to the test cell was 96 
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laboratory air at ambient temperature and humidity (20oC, 40% 1 

relative humidity). 2 

The pH of the liquid and the agar samples was measured 3 

before and after plasma treatment, using a pH meter (Hanna 4 

Instruments PH 210) for the liquid samples, and using pH 5 

indicator strips (Johnson Universal pH 1-14) for the agar 6 

samples. The conductivity of the liquid samples was measured 7 

using a conductivity meter (Hanna Instruments HI 933000), the 8 

conductivity of the agar samples was measured in the test cell 9 

with two parallel electrodes using an AVOmeter model 8 Mk7.  10 

The presence of transient discharges in the test cell was 11 

detected by the collapse of the voltage waveform. The 12 

maximum voltage before the voltage collapse is called the 13 

breakdown voltage in this study. Figure 3 shows the voltage and 14 

current waveforms in the cases of non-conductive and 15 

conductive sample holders for water solution samples (similar 16 

waveforms were obtained for agar samples). It can be seen that 17 

in the case of non-conductive dishes (Figure 3(a) and (b)), a 18 

double voltage collapse and two current peaks were observed 19 

for both polarities. This is indicative of the two-stage discharge 20 

propagation process discussed above: vertical transient 21 

discharges propagating towards the sample surface (path 1 in 22 

Figure 2(a)), and surface discharges (path 2 in Figure 2(a)). 23 

However, in the case of the conductive sample holder, only 24 

single voltage collapse event and a single current impulse were 25 

observed, Figure 3(c) and (d). These processes correspond to 26 

the direct vertical discharge propagation path shown in Figure 27 

2(b), the current then dissipating via ionic conduction through 28 

the bulk of the sample.  29 

 30 

 31 

 
 

  

Fig. 3.  Voltage and current waveforms for 2 different sample holders: (a) 32 
+28 kV non-conductive dish; (b) −28 kV non-conductive dish; (c) +28 kV foil-33 
lined conductive dish; (d), −28 kV foil-lined conductive dish. 34 
 35 

The waveforms shown in Figure 3 are similar to transeint 36 

spark discharge waveforms [19], [20]. A transient spark 37 

discharge is characterised by the development of an initial 38 

streamer and its transformation into a transient spark which 39 

manifests itself via the appearance of a high-current impulse. In 40 

the case of transient sparks, the non-equilibrium plasma has a 41 

gas temperature in the range 500 K-1500 K [19], [20]. Thus, 42 

transient spark discharges differ from typical spark discharges 43 

in which significantly hotter plasma can be close to its local 44 

thermodynamic equilibrium. The plasma of transient spark 45 

discharges is highly reactive, such discharges producing OH 46 

radicals, ozone, excited ions, and atomic radicals and molecules 47 

[20], with application in chemical oxidation [21], and bio-48 

decontamination treatment [22]. 49 

The distance between the needle electrode and the sample 50 

surface was adjustable, and was used to obtain three different 51 

breakdown voltages: 20 kV, 24 kV and 30 kV. The distance 52 

between the HV needle electrode and the sample surface and 53 

corresponding breakdown voltages are shown in Table I. 54 

 55 
TABLE I 56 

DISTANCES FROM THE TIP OF THE HV NEEDLE ELECTRODE TO THE 57 
SAMPLE SURFACE AND CORRESPONDING BREAKDOWN VOLTAGES 58 
  59 

Breakdown 

voltage, kV 

Non-conductive 

sample holder, mm 

Conductive sample 

holder, mm 

Positive Negative Positive Negative 

+20 0.5 0.7 4.9 1.7 

+24 5.1 1.4 7.7 3.3 

+28 7.3 3.7 11.1 6.0 

 60 

 61 

As shown in Table I, the distance from the HV needle 62 

electrode to the sample surface to achieve the same breakdown 63 

voltage is much shorter for the non-conductive sample holders 64 

as compared with the conductive sample holders. This is due to 65 

the longer total discharge path in the case of the non-conductive 66 

sample holders as compared with the conductive dishes. Also, 67 

Table I shows that a shorter distance from the negatively-68 

energised HV electrode to the sample surface is required in 69 

order to achieve the same breakdown voltage  as for positive 70 

impulses. This reduction in the distance is required to 71 

compensate for the higher breakdown voltage of atmospheric 72 

air in the case of a negatively-energised sharp HV electrode, 73 

which is due to the electronegativity of air. 74 

III. OXIDATION CAPABILITY OF TRANSIENT DISCHARGES  75 

The oxidation capability of the impulsive atmospheric 76 

discharges generated was studied using indigo carmine dye 77 

(C16H8N2Na2O8S2, Sigma Aldrich Ltd) as a chemical probe. 78 

Samples of aqueous indigo carmine solution were treated in 79 

non-conductive and conductive sample holders, and their 80 

optical transmittance was measured. The chemical species 81 

produced by the transient  discharges can react with the dye 82 

and can convert indigo carmine molecules into isatin-5-sulfonic 83 

acid, resulting in the decolourisation effect. The difference in 84 

the optical transmittances of the treated and untreated samples 85 

allows a reduction in the dye concentration to be obtained. This 86 

reduction is an indicator of the chemical oxidation capability of 87 

the transient discharges, as the change in transmittance is a 88 

result of disintegration of chromogenic bonds in indigo carmine 89 

dye [23].  The optical transmittance of the dye solutions was 90 

obtained using a UV-Visible spectrophotometer (Biomate, 91 

Thermo-Spectronics Europe). Section III-A presents the results 92 

of the investigation into the oxidation effects of the surface 93 

(a) (b) 

(c) (d) 
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transient discharges which propagate along the sample/air 1 

interface (samples were treated in the non-conductive sample 2 

holders), and Section III-B presents the oxidation results 3 

obtained in the case of the direct discharges (treatment in the 4 

conductive sample holders). 5 

AˊOxidation capability of the surface transient discharges 6 

An indigo carmine aqueous solution with a dye concentration 7 

of 0.25 g/Ɛ was prepared using distilled water. A 5-mƐ sample 8 

of this solution was transferred to the non-conductive sample 9 

holder using a pipette. The sample holder was placed on the top 10 

of the metallic grounded plate inside the Perspex container and 11 

exposed to plasma discharges for four different treatment times 12 

(1, 3, 5 and 7 min) and for impulses of both polarities, all at 20 13 

pps. During the treatment, the Perspex container was flushed 14 

with ambient air, which then passed through the ozone analyser. 15 

The ozone levels in all tests were lower than 1 ppm. After each 16 

exposure, the optical transmittance of the sample was measured 17 

along with that of an unexposed control sample. The differential 18 

transmittance, T, at 550 nm was calculated using (1):  19 

 20 

%100
a

b

T

T
T                           (1)  

 

where Ta is the transmittance of the unexposed sample, and Tb 21 

is the transmittance of treated sample. Examples of the 22 

differential transmittance spectra for the dye samples treated for 23 

different time intervals are shown in Figure 4. 24 

 25 

 26 
 27 
Fig. 4.  Differential optical transmittance of indigo carmine aqueous solutions 28 
treated with surface discharges at +28 kV and untreated (control) solutions. 29 

 30 

Using the differential optical transmittance and the Beer-31 

Lambert law, the concentration of indigo carmine in water was 32 

obtained. The results of this analysis are shown in Figure 5; this 33 

graph represents a normalised concentration of the dye in water 34 

as a function of the total charge delivered during the plasma 35 

treatment, normalised by the surface area of the sample holder.  36 

The normalised charge (dose) was selected in this study to 37 

represent the oxidation capability of the transient plasma 38 

discharges. In the present study, the water-dye solutions and 39 

agar samples were treated with direct positive and negative 40 

plasma discharges in air. Therefore, the liquid and agar samples 41 

were subjected to the action of both charged and neutral chemial 42 

species generated by the transient plasma discharges. Such 43 

direct exposure is considered to be more efficient for bio-44 

decontamination as compared with exposure of bio-samples to 45 

the plasma afterglow by locating these samples outside the 46 

direct discharge zone [24]. It is known that the charged particles 47 

produced by the plasma discharges are  responsible for the 48 

generation of chemically-active neutral species and direct 49 

chemical oxidation [13], [25].  50 

Generation of charged particles (electrons, ions and clusters) 51 

in the discharge leads to the appearance of electric current in 52 

the circuit. The electrons and ions are involved in the formation 53 

of neutral chemical species, therefore it can be assumed that the 54 

current is a parameter which provides information not only on 55 

the presence of charged particles, but also correlating with the 56 

total amount of newly-developed chemical species. The 57 

charged, chemically-active species include nitrites, nitrates and 58 

oxygen anions which are negatively charged; positively-59 

charged species include protons, oxygen ions and positively-60 

charged NOx species. The neutral activated species include both 61 

reactive oxygen species (ROS) and reactive nitrogen species 62 

(RNS). Amongst the neutral ROS are singlet oxygen, ozone, 63 

hydrogen peroxide and hydroxyl radicals; neutral RNS include 64 

nitric oxide and nitrogen dioxide. A detailed description of the 65 

chemical processes involved in formation of neutral and 66 

charged species can be found in [24] and [25].   67 

It was established in [27] that in the case of corona discharges 68 

in ambient air, the “electrical” parameters which control the 69 

sample’s treatment area and the flux of neutral activated species 70 

are the voltage, the current and the exposure time. Moreover, it 71 

was found that in the case of fixed electrical parameters, the pH 72 

of water treated with corona discharges generated by a HV 73 

electrode located above the water surface in air is a linear 74 

function of the exposure time [27].  75 

The results obtained in this study, Figure 5, demonstrate that 76 

the variation in voltage does not significantly affect the bio-77 

inactivation and oxidation processes. Also, in this study, the 78 

distance between the HV electrode and the sample surface was 79 

variable, therefore different proportions of energy may be 80 

dissipated in the plasma above the sample. Therefore, it is 81 

reasonable to introduce the total normalised charge (dose) as a 82 

parameter which can be used for description of the kinetics of 83 

the plasma treatment process. It is expected that the dose-84 

dependent kinetic relationships will depend upon the disharge 85 

regime. The total charge in the present tests was calculated by 86 

integration of the experimentally-obtained current waveforms, 87 

and the dose was obtained by dividing the total charge by the 88 

surface area of the sample plate. This normalisation was done 89 

for both cases, surface and direct discharges. Although in the 90 

case of direct discharge treatment the actual cross-section of 91 

plasma interaction with the sample surface is smaller than in the 92 

case of surface discharges, this normalisation procedure helps 93 

to compare the efficacy of both types of plasma discharge in the 94 

present experimental conditions.   95 

 96 
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 1 
 2 

 3 
 4 

Fig. 5.  Concentration of indigo carmine as a function of the dose after treatment 5 
with: (a) positive surface discharges; (b) negative surface discharges. Solid 6 
lines, fitting by (3): (a)  = 0.013 m2/C and (b)  = 0.014 m2/C. 7 
 8 

The normalised dose-dependent concentration, K(D), was 9 

obtained by (2): 10 

 11 

K(D)=C(D)/C0     (2) 12 

 13 

where C(D) is the actual concentration of the dye in water 14 

(mg/Ɛ), C0 is the initial concentration of the dye (250 mg/Ɛ in 15 

the present study), and D is the dose (C/m2). 16 

It is known from literature that time of plasma exposure can be 17 

used as an independent parameter for descripton of the 18 

decolorisation kinetics and a time-dependent (pseudo) first 19 

order kinetic process was used in the analysis of the plasma 20 

decolourisation rates of different water-soluble dyes subjected 21 

to pulsed dielectric barrier discharges [28], spark discharges 22 

[29] and glow discharges [30]. However, in the case of transient 23 

plasma regimes, it is important to consider not only time but 24 

also the total delivered charge. The area-normalised charge was 25 

therefore selected as an independent parameter for the kinetic 26 

analysis in the present paper.   27 

Figure 5 shows the normalised concentration of the dye as a 28 

function of the dose for positive and negative discharges (for all 29 

tested voltages). It was found that the concentration of indigo 30 

carmine in water reduces with an increase in the dose. The dye 31 

concentration is a function of the dose only and does not depend 32 

on the breakdown voltage. The change in the normalised 33 

concentration of the dye is relatively small, 15%, and it is 34 

problematic to establish the exact functional behavior of K(D): 35 

for example, several different functions can be used to fit the 36 

experimental data in Figure 5. To provide a quantitative 37 

comparison of the oxidation capability of the discharges, an 38 

exponential fitting function (3) was used, and this approach is 39 

consistent with the description of the decolourisation kinetic 40 

processes provided in [28], [30]:  41 

 42 

K(D) =  exp (− D)     (3) 43 

 44 

where  is the dose-dependence of the decolourisation process 45 

(m2/C). Values for  have been obtained using the fitting 46 

procedure in Origin Pro 8 graphing software package, and 47 

found to be 0.013 m2/C and 0.014 m2/C for the positive and 48 

negative discharges, respectively. The analytical fitting lines 49 

were plotted using the obtained values of , and these analytical 50 

lines are shown in Figure 5. Note that the normalised 51 

concentration axes in Figs. 5 and 6 are logarithmic. Thus, this 52 

analysis shows that the oxidation capability of surface 53 

discharges is similar for both positive and negative polarities.  54 

 55 
 56 

BˊOxidation capability of direct discharges  57 

The oxidation effects of direct transient discharges that 58 

propagate through the bulk of the sample were investigated. As 59 

with the surface discharges, a 6-ml sample of indigo carmine 60 

aqueous solution was placed into a conductive sample holder 61 

which was located on the top of the grounded aluminum 62 

electrode. The samples were again treated with impulsive 63 

discharges, under the same experimental conditions described 64 

in Section III-A. The differential transmittance of the treated 65 

and control samples obtained at 550 nm was used for 66 

calculation of the dye concentration. The results of this analysis 67 

are shown in Figure 6, which represents the normalised dye 68 

concentration obtained by (2) as a function of the dose, D, for 69 

direct positive and negative discharges.  70 

The electrical conductivity and pH of the water-dye solutions 71 

were measured before and after plasma treatment. For both 72 

types of treatment, surface discharge and direct discharge 73 

treatment, an increase in the electrical conductivity of the 74 

solutions was observed. However, this increase was not 75 

significant, the initial conductivity being 0.11 mS/m, and the 76 

largest change observed being for negative direct streamer 77 

discharge treatment, where the conductivity increased to 78 

0.15 mS/m. In all treatment cases, a decrease in pH of the 79 

water-dye solutions was observed, the pH decreasing from 5.5 80 

to a minimum value of 3.5 for surface discharge treatment, and 81 

to 3.5 - 4 for direct discharge treatment. A decrease in pH of 82 

water-dye solutions after plasma treatment was also observed 83 

in [16]. 84 

As in the case of surface discharges, the dye concentration is 85 

a dose-dependent parameter only, this concentration decreases 86 

with an increase in the dose. The decolourisation process can 87 

be described by function (3). Values of  have been obtained 88 

using the fitting procedure in Origin Pro 8 graphing software 89 

package, and found to be 0.019 m2/C and 0.012 m2/C for the 90 
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positive and negative discharges, respectively. Thus, the 1 

positive direct discharges resulted in a higher decolourisation 2 

rate as compared with the negative discharges, also this rate is 3 

higher than the decolourisation rate achieved by the surface 4 

discharges. 5 

 6 
 7 

 8 

 9 
Fig. 6.  Concentration of indigo carmine as a function of the dose after treatment 10 
with: (a) positive direct discharges; (b) negative direct discharges. Solid lines, 11 
fitting by (3): (a)  =  0.019 m2/C and (b)  =  0.012 m2/C. 12 
 13 

IV. BIO-DECONTAMINATION EFFECTS OF TRANSIENT 14 

DISCHARGES 15 

This section is focused on investigation of the bio-16 

decontamination effects of the atmospheric plasma discharges 17 

which propagate across the sample/air interface and through the 18 

bulk of the samples. Again, two different sample holders (non-19 

conductive and conductive) were used to produce the surface 20 

and direct discharges. These sample holders were filled with 21 

nutrient agar and microorganisms were seeded onto this water-22 

based agar. The agar-filled bio-contaminated plates were 23 

located in the test cell under the HV needle electrode and treated 24 

with impulsive discharges of both polarities. The breakdown 25 

voltages, treatment time intervals and the pulse repetition rate 26 

used in this study were the same as in Section III. Two types of 27 

bacteria were selected for the bio-decontamination study: 28 

Gram-negative E. coli and Gram-positive S. aureus. These 29 

microorganisms were grown in 100-ml nutrient broth and 30 

incubated under rotary conditions (120rpm) at 37°C for 18 31 

hours. Bacterial cultures were then centrifuged (3939×g for 10 32 

min) and cells resuspended and serially diluted in phosphate 33 

buffered saline (PBS) to make bacteria suspensions with a 34 

population density of 103 colony forming units (CFU) per ml. 35 

Agar was prepared in non-conductive and conductive sample 36 

holders, 100 µl of bacteria suspension was evenly spread on the 37 

agar surface using an L-shaped spreader, providing a seeding 38 

population on the agar surface of 100–200 CFU/plate. After 39 

exposure to the positive or negative discharges for 1, 3, 5 and 7 40 

min (20 pps pulse repetition rate), the exposed samples were 41 

incubated at 37 °C for 24 h and then enumerated. 42 

  43 

AˊInactivation by surface transeint discharges 44 

Microbiological samples were exposed to the positive and 45 

negative discharges in the non-conductive sample holders, 46 

which ensure their interfacial propagation path across the 47 

agar/air interface. Following enumeration of the surviving 48 

bacteria, inactivation curves were plotted: the normalised 49 

population, S(D), is presented as a function of the dose, D. 50 

 51 

 52 

 53 
Fig. 7.  Normalised surviving population of (a) E. coli and (b) S. aureus, after 54 
exposure to positive surface discharges. Solid lines, fitting by (5): (a) 55 
 = 0.648 m2/C and (b)  =  0.281 m2/C. 56 
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 1 

The dose-dependent population of microorganisms was 2 

obtained using (4) for each test: 3 

 4 

S(D)=P(D)/P0       (4) 5 

 6 

where P(D) is the actual surviving bacterial population, P0 is 7 

the initial population of bacteria and D is the dose (C/m2). 8 

The normalised population as a function of the dose can be 9 

fitted with a pseudo first-order kinetic function (5) for all tested 10 

voltages and for both types of microorganisms: 11 

 12 

S(D) =  exp (− D)     (5) 13 

 14 

where  is the dose-dependence of the inactivation process 15 

(m2/C). 16 

 17 

 18 
 19 

 20 
Fig. 8.  Normalised surviving population of (a) E. coli and (b) S. aureus, after 21 
exposure to negative surface discharges. Solid lines, fitting by (5): (a) 22 
 = 0.476 m2/C and (b)  =  0.238 m2/C. 23 

Figure 7 shows the normalised surviving fraction, S(D), of 24 

E. coli and S. aureus treated by surface discharges as a function 25 

of the dose. As the normalised population in this figure is shown 26 

in a semi-log scale, the vertical lines labeled “non-detected” 27 

indicate doses at which no CFU was detected in the majority of 28 

sample dishes after the treatment. The fitting procedure was 29 

implemented in Origin Pro 8 graphing software and the 30 

analytical fitting lines are shown in Figure 7. Values of  were 31 

found to be 0.648 m2/C and 0.281 m2/C for E. coli and S. aureus, 32 

respectively. These inactivation rates confirm that E. coli is 33 

substantially more sensitive to the plasma treatment than 34 

S. aureus. 35 

Figure 8 shows the normalised population, S(D), of E. coli 36 

and S. aureus as a function of the dose in the case of negative 37 

surface-discharge treatment. As in the case of positive surface-38 

discharge treatment (Figure 7), Figure 8 demonstrates that 39 

inactivation by negative surface discharges depends only on the 40 

dose, and is almost independent of the breakdown voltage. The 41 

experimental data in Figure 8 were fitted with the exponential 42 

function (5), and this fitting confirms that the inactivation 43 

process can be described by a pseudo first-order kinetic. The 44 

fitting procedure was implemented using Origin Pro 8 graphing 45 

software and the rates of inactivation, , were found to be 0.476 46 

m2/C for E. coli and 0.238 m2/C for S. aureus. Again, these 47 

results confirm that E. coli is more sensitive to the plasma 48 

discharge treatment than S. aureus. 49 

 50 

B. Inactivation by direct transient discharges 51 

The inactivation kinetics of E. coli and S. aureus were also 52 

studied using direct transient discharges: discharges which 53 

propagate through the bulk of the agar sample. To provide such 54 

a discharge path, aluminium foil lined sample holders were 55 

used. The results of this study allow for a comparison between 56 

the inactivation capabilities of surface and direct transient 57 

discharges to be made. 58 

Microorganisms were seeded onto agar which was placed on 59 

the conductive sample holders and exposed to the transeint 60 

discharges generated by the same voltages as in Section IV-A. 61 

In the case of the direct discharges, the cross-sectional contact 62 

area between the direct plasma channel and surface of the 63 

sample is (visually) small. However, the activated species 64 

produced by the transient plasma on and above the agar surface 65 

can move across the surface of the agar and reach the periphery 66 

of the plate, in the present tests the effects of the discharge on 67 

the bacteria were observed at the edges of the sample holders. 68 

After the direct discharge treatment, enumeration of the 69 

surviving microorganisms was conducted.  70 

Figure 9 shows the normalised population of E. coli and 71 

S. aureus as a function of the dose, S(D), after exposure to 72 

positive direct discharges. The experimental inactivation data 73 

presented in Figure 9 were fitted with the pseudo first order 74 

kinetic function (5). As in the case of the surface discharges, 75 

S. aureus demonstrated a higher degree of resistance to the 76 

plasma treatment; the rate of inactivation of E. coli (0.311 m2/C) 77 

is more than double the rate of inactivation of S. aureus 78 

(0.140 m2/C). 79 

 80 
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 1 

 2 
Fig. 9.  Normalised surviving population of (a) E. coli and (b) S. aureus, after 3 
exposure to positive direct discharges. Solid lines, fitting by (5): (a) 4 
 = 0.311 m2/C and (b)  =  0.140 m2/C. 5 

 6 

The results of the inactivation tests using negative direct 7 

discharges are represented in Figure 10. This figure shows a 8 

normalised surviving population as a function of the dose, S(D), 9 

and the experimental data were fitted with the pseudo first-order 10 

kinetic equation (5). The fitting procedure was implemented in 11 

Origin Pro 8 graphing software, and the inactivation rates for 12 

both microorganisms were obtained: again, the rate of 13 

inactivation of E. coli (0.16 m2/C) was found to be more than 14 

2-fold higher than the rate of inactivation of S. aureus (0.06 15 

m2/C). 16 

It can be seen that the negative direct transient discharges 17 

demonstrated lower inactivation capability for both 18 

microorganisms as compared with the positive direct discharges. 19 

 20 

 21 

 22 

 23 
Fig. 10.  Normalised surviving population of (a) E. coli and (b) S. aureus, after 24 
exposure to negative direct transient discharges. Solid lines, fitting by (5): (a) 25 
 = 0.164 m2/C, and (b)  = 0.061 m2/C. 26 

 27 

V. DISCUSSION & CONCLUSIONS 28 

The main objective of this paper was to investigate the 29 

oxidation and decontamination effects of surface and direct 30 

impulsive atmospheric discharges. This study helps to answer 31 

the important question: which type of transient plasma 32 

discharge (TAP) is more efficient for chemical oxidation and 33 

microbiological decontamination? The results of this study can 34 

be used in further optimisation of the energisation parameters 35 

of the impulsive discharges and of the topologies of plasma 36 

treatment reactors for different practical applications, as is now 37 

discussed. It has been confirmed in this study that impulsive 38 

transient discharges produce significant oxidation and 39 

decontamination effects, which is in line with previously-40 

published results [22], [31], [32]. Transient discharges of both 41 

polarities, with different peak voltage levels, were able to 42 

reduce the concentration of the dye in water and to inactivate 43 

microorganisms on agar surfaces. It has been shown that 44 

although both, surface and direct transient discharges resulted 45 

in chemical oxidation and microbiological decontamination, 46 
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there was a noticeable difference in the rates of these processes 1 

for these two types of discharge. 2 

Table II summarises the decolourisation rates obtained in this 3 

study: it can be seen that in the case of surface transient 4 

discharges, the difference in the decolourisation rates for 5 

positive and negative energisation is less than 10%. However, 6 

positive direct discharges resulted in a higher decolourisation 7 

efficacy as compared with negative direct discharges: the 8 

difference between these two decolourisation rates is 37%. 9 
 10 

TABLE II.  11 
DECOLORISATION RATE (m2/C) FOR SURFACE AND DIRECT DISCHARGES  12 

Surface discharge Direct discharge 

pos neg pos neg 

0.013 

(0.012 - 0.014) 

0.014 

(0.013 - 0.015) 

0.019 

(0.018 - 0.20) 

0.012 

(0.011 - 0.013) 

“Pos” for positive energisation, “neg” for negative energisation 

Values in brackets indicate a 95% confidence interval.  

 13 

The maximum energy efficiency of the decolourisation of the 14 

indigo carmine dye obtained in the present work is ~5 µmol/kJ 15 

for positive direct discharges. This value is higher than the 16 

efficiency of decolourisation of the indigo carmine dye 17 

achieved in [33], which is 3.7 µmol/kJ for the dye concentration 18 

of 0.05 g/Ɛ. This concentration is 5-fold lower than the 19 

concentration used in the present work, 0.25 g/Ɛ. It was also 20 

shown that the efficiency of decolourisation of the indigo 21 

carmine dye increases with an increase in the initial 22 

concentration of the dye in water [33]. The initial 23 

concentrations tested in [33] were in the range between 0.01 g/Ɛ 24 

to 0.05 g/Ɛ. However, no experimental data is provided for 25 

higher concentrations.  26 

The biological inactivation capability of impulsive 27 

discharges has been also investigated in this paper. E. coli and 28 

S. aureus were used as model Gram-negative and Gram-29 

positive microorganisms, respectively. The inactivation results 30 

demonstrated the strong bactericidal effects produced by both 31 

surface and direct discharges. In the decontamination tests, all 32 

surviving colony forming units on the whole plate surface were 33 

counted in order to obtain the inactivation rate. Therefore, this 34 

quantitative approach does not take into account non-35 

uniformities in decontamination on the plate surface, for 36 

example the most significant decontamination effect on the agar 37 

surface was obtained directly under the HV needle, however a 38 

decontamination effect was also observed at the edges of the 39 

plate surface. Table III summarises the inactivation rates 40 

obtained in the present study. 41 

 42 
TABLE III.  43 

INACTIVATION RATE (m2/C) FOR SURFACE AND DIRECT DISCHARGES   44 
Surface discharge Direct discharge 

E.coli S.aureus E.coli S.aureus 

pos neg pos neg pos neg pos neg 

0.648 

(0.565

 – 

0.731)  

0.476 

(0.416

 –
0.536) 

0.281 

(0.25

6–
0.306
) 

0.238 

(0.216

 –
0.260) 

0.311 

(0.280

 –
0.342) 

0.164 

(0.141

 –
0.187) 

0.140 

(0.125

 –
0.155) 

0.061 

(0.053

 –
0.069)  

“Pos” for positive energisation, “neg” for negative energisation 

Values in brackets indicate a 95% confidence interval. 

 45 

It was established that the inactivation capability of direct 46 

discharges is substantially lower than that of surface discharges: 47 

the inactivation rates associated with direct discharges are 2-48 

fold lower than the inactivation rates of surface dischares, for 49 

both microorganisms, and for both polarities. In the case of the 50 

non-conductive sample holders, the surface discharges treat a 51 

larger surface area as compared with the direct discharges 52 

(treatment in the conductive sample holders). As 53 

microorganisms were seeded onto agar surfaces, the treatment 54 

with surface discharges resulted in a higher degree of 55 

inactivation for the same dose as compared with the direct 56 

transient discharges. Thus, the surface discharges demonstrated 57 

substantially higher bio-decontamination rates. However, even 58 

in the case of direct discharges, transient plasma result in a 59 

notable reduction of the bacterial population on the agar 60 

surfaces. As in the case of dye solutions, the electrical 61 

conductivity and pH of agar was measured before and after 62 

plasma treatment. It was found that, as in the case of dye 63 

solutions, the conductivity of agar increased. However, this 64 

increase was not negligible, the maximum change being 65 

observed for negative surface treatment: the electrical 66 

conductivity of agar before plasma treatment was 1.1 mS/m, 67 

and the conductivity after such plasma treatment increased up 68 

to 1.5 mS/m.  69 

Using pH-sensitive strips, it was found that there was a 70 

change in pH of the agar beneath the HV needle electrode. The 71 

radius of the spot of the agar surface which differed from the 72 

initial pH value was ~3 mm. However, no change in pH was 73 

observed outside this localised spot on the agar surface (pH 74 

value was ~7). This change in pH on the agar surface beneath 75 

the point HV electrode depends on the polarity of the HV 76 

impulses. For positive impulses, an increase in pH was 77 

registered (up to ~8 based on analysis of the colour of the strip). 78 

For negative impulses, a decrease in pH was registered, down 79 

to ~5 based on analysis of the colour of the strips. This increase 80 

in pH on the agar surface may be a result of the chemical action 81 

of cations produced by positive discharges - this suggestion is 82 

supported by the results obtained in [27], where it was found 83 

that the cations produced by positive corona discharges in air 84 

above the water surface resulted in an increase in the pH of 85 

water. Therefore, the observed difference in pH tendencies may 86 

help to explain the higher inactivation and decolourisation rates 87 

for positive direct discharges obtained in the present study. 88 

However, further investigation into pH variations due to 89 

transient plasma discharges of both polarities is needed to 90 

provide more detailed information on the role of pH changes in 91 

plasma-induced inactivation and bio-decontamination 92 

processes.  93 

The higher decontamination efficiency for positive transient 94 

spark discharges was reported in [22], where S. typhimurium in 95 

water was treated with transient spark discharges, and it was 96 

found that positive transient sparks provided higher 97 

decontamination efficiency as compared with negative transient 98 

sparks. However, in the case of chemical oxidation capability, 99 

it was reported that the removal efficiency of cyclohexanone by 100 

the transient plasma spark discharges was ~50% for both 101 

polarities of transient spark discharges [19]. Further 102 

investigation is required to enable a more-detailed analysis of 103 

the bio-decontamination and chemical oxidation efficacies of 104 

transient atmospheric plasma discharges. 105 

Also, it was found that E. coli has a higher sensitivity to both 106 

types of plasma discharge than S. aureus: the inactivation rates 107 
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obtained for E. coli are more than 2-fold higher than the 1 

inactivation rates for S. aureus. This result can potentially be 2 

explained by the structural difference between Gram-negative 3 

and Gram-positive bacteria: the thicker peptidoglycan layer of 4 

Gram-positive bacteria may help to protect their cells from the 5 

lethal damage caused by transient discharges.  6 

The results obtained in this study will help in the further 7 

understanding of the oxidation effects and microbiological 8 

inactivation capability of impulsive atmospheric discharges. 9 

These results may be used in potential design and optimisation 10 

of plasma treatment systems based on transient discharges in 11 

atmospheric air.  12 
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