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Abstract. The background to this work was a prototype shadow sensor, which was designed for 

retro-fitting to an Advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-

mass/mirror suspension, in which 40 kg test-mass/mirrors are each suspended by four 

approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres.  The shadow 

sensor comprised a LED source of Near InfraRed (NIR) radiation, and a rectangular silicon 

photodiode detector, which, together, were to bracket the fibre under test. The aim was to detect 

transverse Violin-Mode resonances in the suspension fibres. Part of the testing procedure 

involved tensioning a silica fibre sample, and translating it transversely through the illuminating 

NIR beam, so as to measure the DC responsivity of the detection system to fibre displacement.  

However, an equally important part of the procedure, reported here, was to keep the fibre under 

test stationary within the beam, whilst trying to detect low-level AC Violin-Mode resonances 

excited on the fibre, in order to confirm the primary function of the sensor. Therefore, a 

tensioning system, incorporating a load-cell readout, was built into the test fibre’s holder. The 

fibre then was excited by a signal generator, audio power amplifier, and distant loudspeaker, 

and clear resonances were detected. A theory for the expected fundamental resonant frequency 

as a function of fibre tension was developed, and is reported here, and this theory was found to 

match closely the detected resonant frequencies as they varied with tension. Consequently, the 

resonances seen were identified as being proper Violin-Mode fundamental resonances of the 

fibre, and the operation of the Violin-Mode detection system was validated.  

PACS numbers: 04.80.Nn, 84.30.-r, 06.30.Bp, 07.07.Df, 07.57.-c 

1. Introduction 

A system of four shadow-sensors was designed to be retro-fitted to an Advanced LIGO (or 

aLIGO, where the acronym LIGO stands for Laser Interferometer Gravitational wave 

Observatory) test-mass/mirror suspension, in which a 40 kg test-mass is suspended by four 

fused silica fibres, the dimensions of the fibres being approximately 600 mm long by 0.4 

mm in diameter [1–8].  These shadow-sensors—one per suspension fibre—each comprised 

a ‘synthesized split-photodiode’ detector of shadow displacement, and a Near InfraRed 

(NIR:  = 890 nm) source of collimated illumination—this casting a shadow of the 

illuminated fibre onto the facing detector [9,10,11].  The principal purpose of the full 

detection system was to monitor any lateral ‘Violin-Mode’ resonances that might be excited 

on these fibres [12], such that this oscillatory motion then could be cold-damped, actively 

[13]. 

A characterization test-rig was constructed that could vary the tension in a short 

(~70 mm long) fused silica fibre test sample, in order that the main function of the optical 

shadow-sensing system could be tested at appropriate frequencies. The fibre was 

illuminated by the NIR source, and the Violin-Mode shadow-sensor’s output was monitored 

continuously, as the tensioned fibre sample was excited acoustically across a band of 

frequencies in the audio range, in order to flag-up any sympathetic VM resonances that 

might manifest themselves at the acoustic driving frequency.   

The silica fibre samples, being relatively short, were expected to behave dynamically, to 

some extent, as elastic rods—particularly when their applied tension was low. Nevertheless, 

it was expected that, as the tension was increased, they would begin to behave more like 

stretched, soft, pliable, strings, having (relatively speaking) negligible elasticity.  A theory 

of elastic, tensioned, fibres was developed (please refer to the Appendix to this paper), and 
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the detected resonant frequencies of the fibre under test were inter-compared with this 

theory, as a function of the fibre’s tension. 

 

 

Figure 1.  The fibre translation system, constructed on an optical plate (with 45° corners), this plate being 

separated from the—slightly larger—base of a steel screening case (measuring 500 mm  500 mm  330 mm 

high, with a 1.7 mm wall thickness) by four Sorbothane vibration-damping feet. The steel base was itself 

separated from the optical table by four additional Sorbothane feet.  The case also had steel lid, so as to seal it 

fully electrostatically (it was earthed), magnetically (being ferromagnetic), and optically—being light-tight.  

            

Figure 2.  Left: Schematic of the fibre mount and tensioning system. As the tension-adjustment screw was 

rotated, the tension in the fused-silica fibre sample was altered, via the tensioning arm. The load-cell attached 
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to the base of the fibre responded to the applied tension, and the load-cell interface (seen in Figure 3) provided 

a voltage analogue of the tension in the fibre.  Right: photo of the mounted fibre sample positioned between 

the NIR emitter (at right) and its facing shadow sensor—located in a dual ‘split-photodiode’ detector housing. 

The detected resonant frequencies of the test fibre were found to follow quite closely the 

theory developed here, over a range of fibre tension spanning 43.5 grammes weight 

( 0.427 N)–1.005 kg.wt. ( 9.86 N).  Consequently, the resonances seen were deemed to 

have been proper fundamental VM resonances of the test fibre, thereby validating the 

function of the Violin-Mode detection system. 

2. The load-cell based fibre monitoring system   

2.1. The Violin-Mode detection system 

VM resonances of the actual aLIGO suspension fibres were known to have fundamental 

resonant frequencies ~500 Hz, and the shadow-sensors themselves, including the 

transimpedance amplifier connected to each ‘synthesized split-photodiode detector,’ were 

required to have an AC Violin-Mode bandwidth which extended from below this frequency 

up to above 5 kHz, in order to cover (at least) the 10th harmonic. The bandwidth of the as-

built detection system was measured to extend from 226 Hz to 8.93 kHz (at its 3 dB 

points), in fact.  In addition, the transimpedance amplifier possessed two ancillary DC 

outputs—one coming from each of the two photodiode (PD) elements in its ‘split-

detector’—and these assisted in the initial alignment of the fibre’s shadow onto the centre 

of the shadow-sensing detector [14,15]. 

2.2 The fibre positioning (and scanning) system 

The scanning system, which has been described elsewhere, is shown in Figure 1 [16]. Here, 

it was used only for the initial positioning of the fibre.  The fibre test sample, orientated 

vertically, was mounted into its holder, as shown in Figure 2, such that it was kept under 

tension.  The fibre, in this holder, then was attached to the sliding carriage of the scanning 

system shown in Figures 1 and 2.  This carriage allowed for controlled movement of the 

fibre in a direction orthogonal to that of the illuminating NIR beam, the position of the fibre 

being sensed with a resolution of ±1 m by a linear magnetic encoder.  In this way, the 

fibre’s lateral position was adjusted relative to the fixed illuminating beam, so that the 

fibre’s shadow fell accurately onto the centre of the detector. 

2.3 The fibre tensioning system 

The fibre’s ‘bespoke’ tensioning apparatus is shown in Figures 2 and 3.  Figure 2 shows 

how a mechanical tensioning arm could be adjusted via a knurled screw, this having a fine-

pitched thread, and an asymmetric lever-arm, in order to make fine adjustments to the 

tension in the fibre.  The lower end of the fibre was attached to a temperature-compensated 

TEDEA HUNTLEIGH single-point Model 1022 load-cell, this having a 10 kg.wt. 

( 98.1 N) Full Scale—consequently tensions will be expressed here in kg.wt. force units. 

2.4 Tension conditioning electronics 

A circuit was designed and built in order to interface with the load-cell, such that the test 

fibre’s tension could be monitored, and adjusted, in situ.  The load-cell itself was supplied 

with an output calibration of 1.9165 mV/V (of the bridge supply) at Full Scale, where Full 

Scale = 10 kg.wt.  Here, the circuit was intended to produce an output proportional to 

tension in the fibre of 1.0 volt/kg.wt. i.e., a Full Scale output reading of 10 volts. The load-

cell interface (amplifier) is shown in Figure 3: with a mean differential gain of 521.8 for 

IC1, this interface would give an expected Full Scale output of 10.00 volts for the 10.00 V 

bridge supply used, i.e., a nominal calibration of 1.00 volts/kg.wt. of tension in the fibre 

under test, as required.  The series/parallel arrangement of components connected between 

pins 1 and 8 of instrumentation amplifier IC1 consisted of 5 fixed resistors, plus one 100 , 
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25-turn, potentiometer—connected here as a variable resistor.  This arrangement allowed 

the voltage gain of IC1 to be trimmed with high precision (±1.4% about its nominal mid-

value of 521.8), as indicated. Similarly, the bandgap-derived voltage input from the wiper 

of the 10 k, 25-turn, potentiometer, connected to IC2, allowed the voltage offset of the 

interface to be adjusted with high precision (and stability), over a narrow range of ±49 mV. 

 

Figure 3.  The load-cell amplifier interface.  At top: Photo of the interface (as constructed using a ground-

plane on a double-sided PCB measuring 64 mm  40 mm), mounted directly onto the sliding carriage, 

adjacent to the load cell (as shown in Figure 2).  At bottom: circuit diagram of the interface to the TEDEA 

HUNTLEIGH Model 1022 single-point load-cell (Full Scale = 10 kg.wt.).  A ±20 V bench PSU powered the 

interface unit.  Please refer to Figure 4 and the text for details of the gain and offset capabilities of this circuit. 

2.5 Calibration of and results from the tension conditioning interface 

At the outset of this work the tensioning-arm and the fibre sample were not mounted onto 

the apparatus shown in Figure 2, in order to facilitate the calibration of the tension 

monitoring system.  In fact, the apparatus was inverted (with the load-cell adjusted to be 

accurately horizontal), and a light pan to hold Class M1 standard brass ‘weights’ was 



LIGO-P1500235-v4    As finally submitted and accepted for publication. 

5 

 

suspended by fine nylon lines from the fibre attachment point on the load-cell. In this way, 

adding successive weights to the pan increased the applied—vertically downward—load 

applied to the load-cell.  Before being added to the loading pan (of known weight) the 

standard weights were each weighed accurately using a precision Sartorius balance, this 

having a 5.2 kg full scale, and a 10 mg resolution. Following small adjustments to its 

differential gain and offset, the slope of the best-fit calibration line for the Load Cell 

amplifier was found to be (1.00000 ± 8  106) volts/kg.wt., with an intercept of  0.0785 ± 

0.0184 mV (i.e., close to 0.08 grammes wt.). Please refer to Figure 4 for the actual 

calibration results. 

 

Figure 4.  Calibration of the load cell amplifier circuit shown in Figure 3, over the range 0–4.54 kg.wt.  A set 

of Class M1 standard brass weights were used for this calibration.  The slope of the best-fit calibration line for 

the Load Cell amplifier = (1.00000 ± 8  106) V/kg.wt., with an intercept =  0.0785 ± 0.0184 mV (i.e., close 

to 0.08 grammes wt.). Please see text for details of the calibration procedure. 

3. Detecting fibre resonances   

3.1 Acoustic excitation measurements: method 

In order to test the primary function of the optical shadow-sensing system, short 

(~70 mm long, effectively) silica fibre test samples were obtained, these having been drawn 

down to a controlled diameter of ~0.4–0.6 mm, yet with some variability in diameter along 

the thinned section of each fibre.  A fibre was selected from the samples, it was mounted 

into its holder, and the holder’s tensioning arm was adjusted in order to pre-tension the 

fibre. The tension was read from the output of the load-cell interface.  The holder with its 

vertically-orientated fibre were attached to the motorized fibre positioning system, so that 

the fibre could be located accurately in the centre of the illuminating beam of the ‘Violin-

Mode’ (VM) sensor, as described in §2.2.  The final alignment procedure, and the 

subsequent acoustic excitation, were both carried out with the lid and walls of the steel 

screening enclosure in place—mounted onto the steel base—the assembled enclosure being 

located on an optical bench, as seen and described in Figure 1, and its caption.   
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The fibre then was excited acoustically, using a Stanford Research Systems DS345 signal 

generator, driving a 4 7" diameter, loudspeaker (rated at 350 W, and placed at a distance 

of ~1.5 m from the fibre’s closed steel enclosure), via a SoundMaster VF 250 power 

amplifier.  However, a relatively low amplitude of sinusoidal signal was used to drive the 

loudspeaker, and the sound level in the vicinity of the steel enclosure was only ~75–80 dB.  

In practice, the source of sound was swept in frequency slowly across the audio range, and, 

simultaneously, the spectrum of the amplified signal from the photodiode detector was 

monitored, using a Stanford Research Systems SR785 Dynamic Signal Analyzer.  The 

resulting spectrum was observed continuously, in order to flag-up any candidate VM 

resonances that might manifest themselves at the driving frequency.  Once a resonance was 

detected, the loudspeaker’s driving frequency was adjusted to match the peak of the 

resonance, and the spectrum was measured, and recorded.  Please note that upon sweeping 

the drive frequency no other peaks ever were seen, above the background noise level, in 

the vicinity of the main resonances. The fibre’s tension then was adjusted to a new value, 

and the procedure was repeated.  It was found in practice that the applied tension 

sometimes decreased slightly over time, and this was traced eventually to slippage in the 

fibre’s end fixings—for which a rigid epoxy would have been a better choice. 

 

Figure 5.  Power (amplitude) Spectral Density as a function of frequency, measured at the AC output of the Violin-

Mode (VM) amplifier, under different conditions of illumination, acoustic excitation, and fibre Tension.  Green/blue 

traces (63 dBVrms/Hz at 1 kHz): fibre’s shadow not falling onto the detector.  Black trace (64.4 dBVrms/Hz at 

1 kHz): fibre’s shadow falling over the centre of the ‘split-photodiode’ detector, but no acoustic excitation.  

Resonances of the steel enclosure are seen at frequencies below approximately 300 Hz.  Red trace: fibre excited 

acoustically by the loudspeaker at a frequency of 936 Hz, for a fibre tension of 0.436 kg.wt. Blue trace: fibre’s 

tension was increased to 0.712 kg.wt., and the fibre’s resonance was seen to increase in frequency to 1110 Hz. 

3.2 Results from the acoustic excitation measurements 

The green/blue traces (63 dBVrms/Hz at 1 kHz) in Figure 5 show no resonances, since here the 

shadow of the fibre fell slightly to one side of the detector. The roll-off towards low frequencies 

of the amplifier’s VM passband is apparent, however.  In contrast, the black trace in the Figure 

(64.4 dBVrms/Hz at 1 kHz) had the fibre’s shadow falling over the centre of the ‘split-

photodiode’ detector, and the slightly lower levels of photocurrent in the detector’s two 

(somewhat shaded) photodiode elements resulted in a slightly reduced level of shot noise at the 

transimpedance amplifier’s AC output.  Mechanical resonances of the steel enclosure, excited by 

background noise in the Lab, are now seen at frequencies below approximately 300 Hz. These 
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actually reached a peak of 36 dBVrms/Hz, at 48 Hz.  For the red trace in the Figure the fibre 

was excited acoustically by the distant loudspeaker, and an additional, clear, resonance is seen at 

a frequency of 936 Hz.  The tension in the fibre was measured here to be 0.436 kg.wt.  The 

fibre’s tension then was increased to 0.712 kg.wt. (blue trace), and the resonance is seen to have 

increased in frequency, to 1110 Hz: the resonances’ quality factor was Q > 500. The measured 

resonant frequencies have been plotted as a function of fibre tension in Figure 6. 

Figure 6 also shows the theory ‘Violin-Mode resonant frequency as a function of fibre 

tension,’ as outlined in the Appendix to this work.  The full (red) line is the closed-form 

result for non-zero Tension, T, and the single red point is from the same theory, but for 

tension T = 0.  In both cases, the fibre’s effective length L = 71 mm, and the density and 

elasticity of vitreous silica were taken to be  = 2.203  103 kgm3, and E = 71.7 GPa, 

respectively. The fibre’s diameter d was used as a fitting parameter, and the fit value used 

was d = 0.50 mm.  Also shown in the Figure (by the black dashed line) is the ‘stiff string’ 

closed-form theory from reference [17, eqn. 16.9], this being valid for tensions T > 0.1 kg.wt. 

(approximately);  and see also [18], which covers the full range of tension down to T = 0, 

albeit numerically.  The fit to the data was obtained using this theory with a fibre diameter of 

d = 0.51 mm. Both expressions are seen to be equally good fits to the measured data, 

however, over their respective regions of application. 

 

Figure 6.  Resonant (Violin-Mode) frequency of the test fibre in air, measured at the AC (VM) output of the 

amplifier as a function of applied tension in the fibre sample, as the fibre was excited acoustically by a distant 

loudspeaker (open circles).  The fibre’s tension was increased steadily from 43.5 grammes wt. (0.427 N) to 

1.0054 kg. wt. (9.863 N).  Theoretical traces: please refer to the legend in the Figure (and to the text).  The 

dashed ‘Asymptotic tangent to data’ line is a linear fit to the data for Tension > 0.75 kg.wt. 

4.  Conclusions 

The system for characterising the Violin-Mode (VM) shadow sensor functioned as 

desired—over a useful range of representative VM frequencies.  It allowed the measured 

resonances in the shadow-sensor’s output signal to be identified with proper VM resonances 

of the fibre sample—their frequencies changing with applied tension essentially as 

anticipated, theoretically.  Indeed—given the non-uniformity in each fibre’s diameter, and 

the slippage in tension—the measured resonant frequencies of the test fibre were found to 

be in good agreement with the theory developed in the Appendix, over a range of fibre 

tension spanning 43.5 grammes weight ( 0.427 N) – 1.005 kg.wt. (  9.86 N).  In this 

theory, no account was taken explicitly of the tapers at either end of the fibre samples; but 

we had short tapers, in fact (smaller than two diameters of the stock, i.e., < 6 mm), and our 
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results show that our model, which used simply an ‘effective length’ for the fibre, is 

appropriate, here.  Moreover, the theoretical resonant VM frequency of a full aLIGO fused 

silica suspension fibre also was calculated by means of the theory presented in the 

Appendix. This fibre was taken to be 600 mm long by 0.4 mm in diameter.  Using, once 

again, values for the fibre’s density and elasticity of  = 2.203  103 kgm3, and E = 71.7 

GPa, respectively, yielded in this case a fundamental resonant frequency of 500.9 Hz, under 

a tension of 10 kg.wt.—10 kg.wt. being the nominal (and high) tension experienced by each 

of the  aLIGO suspension fibres for the case of a 40 kg test-mass/mirror suspended by four 

such fibres. 

On the other hand, a simple ‘vibrating stretched-wire’ calculation of the fundamental VM 

frequency, 𝑓1, of such a fibre, where T = 98.1 N is the fibre’s tension (i.e., 10 kg.wt.), and  

is its mass per unit length (and 𝑓1 = (1 2L⁄ )√T μ⁄  ), leads to the slightly lower resonant 

frequency of 496 Hz. For comparison, the fundamental VM frequencies of aLIGO 

suspension fibres have been measured (subsequent to this work, and independently from the 

interferometers) on a test suspension at MIT, where a 40 kg dummy (aluminium alloy) test 

mass was suspended in air [19].  In this case, the actual VM frequencies of the four 

suspension fibres were found to be bounded by (499.6 ± 2.3) Hz.  Unfortunately, no 

meaningful error bars can be placed around the theoretical figure of 500.9 Hz, calculated 

here for such suspension fibres, because—for reasons of safety—the suspension fibres of 

the test-suspension could not be touched, and the values of L = 0.6 m, and d = 0.4 mm, 

whilst being nominally correct, could not be verified.  Although the closeness of the 

theoretical result to the actual measured resonant frequencies might be fortuitous, it is clear, 

nevertheless, that even in such highly tensioned fibres, where their lengths are very much 

greater than their diameters, the theory presented here predicts that their internal elasticity 

has increased their fundamental resonant frequencies by (an easily measurable) 1%.  

On the question of the instrumentation used in this work, the tension measuring system, 

which was developed specifically for monitoring fibre tension, performed well beyond 

expectations, with a linearity of (1.00000 ± 8  106) volts/kg.wt., and with an offset of  

0.0785 ± 0.0184 mV (i.e., close to 0.08 grammes wt.).  

At the time of writing the Violin-Mode amplifier and sensor system, which were tested 

here, have not been adopted for aLIGO, and, indeed, the need for separate VM sensing and 

damping has not yet been demonstrated.  The current baseline solution is to use aLIGO’s 

Arm Length Stabilization system as a VM sensor / damper [20]. In fact, the issue of vacuum 

compatibility remains unresolved for the VM sensor employed in this work, because the 

Hamamatsu photodiodes used for the detector elements had been encapsulated, using an 

unknown epoxy.  However, were it to become necessary, the issue of the epoxy for the 

photodiodes from this, or another, manufacturer probably could be resolved, and the LEDs 

and other components used are likely to prove vacuum compliant, or have vacuum-

compliant alternatives. 
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Appendix: Theory of Violin-Mode resonant frequency as a function of fibre tension 

 

 
Figure 7: Deflection of a silica fibre, of length L, 

as it is loaded by a uniform (along the x-axis, and 

in the y-direction) transverse acceleration, a.          

In Figure 7 a vertically-orientated silica fibre, 

of length L, is clamped at both ends (x =±L/2), 

whilst being under a tension, T. Here, the fibre 

experiences a static uniform transverse 

acceleration, a, causing it to bow- out in the 

negative-y direction, as indicated.  The 

(negative) potential energy of the fibre due to 

this acceleration can be written 

P.E.accel. =  
/2

/2
μ .a y dx


L

L
,              (1) 

where  is the mass per unit length of the 

fibre, and y its deflection. The curved fibre 

also stores (positive) elastic energy, such that 

P.E.elast. =   
/2 21

2/2
y dx


 EI

L

L
,       (2) 

where y  is the curvature of the fibre, E is its 

elasticity, and I is its area moment of inertia 

about its neutral bending plane [21]. 

              I 64/4
d    for a fibre of circular 

cross-section, and diameter = d. 

                               

In addition, the transverse deformation  y(x) of the fibre causes its length to be slightly greater 

than its un-deformed value, L, and this stretching of the fibre takes place against the tension 

force, T. Thus, a (positive ) tensional energy equal to  

P.E.tension =   
/2 21

2/2
y dx


 T

L

L
                                                           (3) 

is stored in the tensioned fibre.  The total P.E. of the system is therefore (from eqns. 1–3)       

P.E.Total =     
/2 2 21

2 /2
2μ .a y y y dx


  

L

L
EI T ,  where       .,1, 1 Lxyxyxy d   (4) 

The optimal shape y(x) of the fibre is that which minimizes P.E.Total, and this can be found 

using the Calculus of Variations [22], via the Euler-Poisson (E-P) equation—which is used 

where there are derivatives of order higher than the first (as here).  The E-P is 

  01...
2

2

  nyyyy F
dx

d
F

dx

d
F

dx

d
F

n

n
n

, 

http://iopscience.iop.org/0264-9381/28/24/245001
https://dcc.ligo.org/
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where Fy denotes partial differentiation of the integrand F of equation 4 with respect to y, etc.  

Applying the E-P equation to this integrand yields 

    0μ
2

2

 y
dx

d
y

dx

d
a EIT , which, upon rearranging, leads to 

  0
μ4 



















EIEI

T a
yy .                                              (5) 

Upon solving equation 5—for the particular case of T = 0—and by applying clamped-clamped 

boundary conditions to the fibre’s ends (x = ±L/2: y = 0, y= 0), along with the symmetry 

condition ( y= 0) at x = 0 (the centre of the fibre), the profile of the fibre can be found to be  

      
 

EI384

4
μ

222 x
axy




L
      (T = 0).                                                (6) 

Parenthetically, if y(x) is substituted back into equation 1—and (after differentiation with 

respect to x twice, and once, as appropriate), into equations 2 and 3—it can be shown that 

P.E.accel. ≡ 2  (P.E.elast. + P.E.tension),  or,  P.E.Total ≡ (P.E.elast. + P.E.tension).  In the case of 

equation 6,  P.E.tension = 0, of course, since T = 0; but  P.E.Total ≡ (P.E.elast. + P.E.tension) 

remains true even when T ≠ 0, P.E.tension ≠ 0, and y(x) is given by equation 9, below. 

Rayleigh’s method for finding theoretically (e.g.) a fibre’s natural resonant frequencies is 

particularly appropriate to finding the fundamental frequency.   It relies upon the complete 

conversion of potential into kinetic energy, and vice versa, in an oscillating conservative 

system.  For example: if, under a uniform transverse acceleration, a, the fibre were to take up a 

static deflection, y(x); and if the fibre then were to be released (a = 0), so that subsequently it 

oscillated symmetrically back-and-forth at its natural resonant angular frequency, ω1, about its 

un-deflected shape: then, with all parts of the fibre moving in phase at this frequency, the 

time-dependent deflection of the fibre could be written 𝑦(𝑥, 𝑡) = 𝑦(𝑥)cos (ω1𝑡), (say).  

Thus, the fibre will be at rest, periodically, with a deflection of ±y(x)—and with all of its 
energy stored as P.E.  Conversely, at some point in time the fibre will have no deflection 
(i.e., y(x,t) = 0,  x), but it will have, instead, a maximum transverse velocity 𝑣Max(𝑥), given 
by 𝑣Max(𝑥) ≡ �̇�(𝑥, 𝑡)|Max = ω1|𝑦(𝑥)|. Consequently, in this case the stored P.E. will be zero, 

whilst, the kinetic energy per length 𝑑𝑥 of the fibre will be 
1

2
𝑚𝑣Max

2 (𝑥), where 𝑚 = μ 𝑑𝑥 ( is 

the mass per unit length of the fibre).  Therefore, for the full fibre, the maximum K.E. will be  

K.E.Max  dxxy
L

L
2/

2/

2
2

1

2

ωμ
.                                                              (7) 

By equating this energy to (P.E.elast. + P.E.tension), i.e., to the total stored energy of the fibre at 

rest, e.g., ‘on release,’ the frequency of vibration for that particular y(x) can be found.  This 

frequency (ω1) is necessarily independent of the static driving amplitude, a, because a2 is a 

common factor in the expressions for both the K.E. and the stored P.E.  In this way, 

Rayleigh’s method leads to a fundamental resonant Violin-Mode frequency for the fibre of  

𝑓1 =
3√14

𝜋L
2 √

EI

μ
   [Hz],    (for T = 0), where ω1 = 2𝜋𝑓1.                        (8)                      

This frequency is marked by the single data point labelled ‘Strath. zero-Tension model’, in 

Figure 6. The numerical prefactor of 3√14 𝜋⁄  in equation 8 evaluates to 3.573. In comparison, 

an analysis of the fundamental frequency of a vibrating elastic bar [17, equation 15.11], gives 

an equation for 𝑓1with the same dependencies as equation (8), and with an almost identical 

numerical prefactor, as well (although expressed differently)—of 3.561, in that case. 

When the tension T ≠ 0, the solution to equation 5 can be ‘simplified’ to a rather unwieldly  
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     (9) 

where (−
L

2
≤ 𝑥 ≤

L

2
), and (T > 103 kg.wt.)—the inequality must hold, in practice, for 

numerical stability.  Ostensibly, y(x) calculated using equation 9, with T → 0, bears no relation 

to that given by equation 6; but, in fact, they are practically indistinguishable.  Once again, 

equating K.E.Max, from equation 7, with the total stored energy on ‘release’ (≡ P.E.accel./2)—

the energies being calculated now using equation 9—allows the fundamental resonant Violin-

Mode frequency to be found. This approach actually led to a closed-form solution for      

ω1(= 2𝜋𝑓1), but the consequential expression is too large to be included here.  However, the 

resulting values of 𝑓1have been plotted as a function of T (in kg.wt) in Figure 6, using this 

expression—the corresponding trace in the Figure being labelled ‘Strath. model.’ 


