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Abstract—The optimal experimental design (OED) for obser-
vation strategy is investigated in this paper to collect the most
informative experimental data for parameter estimation. The aim
is to determine the best sampling time points and also select the
most valuable measurement state variables through OED. The
two design objectives are integrated together as a single-objective
optimisation problem in which the variables and their sampling
times are weighted in an expanded time sampling framework.
Three optimisation methods, i.e., the Powell’s method, the sequen-
tial selection method, and the sequential quadratic programming
method, are employed to solve the optimisation problem. Their
computation efficiencies are compared using a biodiesel case
study system simulation. Simulation results demonstrate the
effectiveness of the proposed method in reducing parameter esti-
mation uncertainties as well as reducing parameter correlations.
It can also be observed that the integrated OED doesn’t cost
extra computation efforts when variable selection is considered
together with the time sampling task.

I. INTRODUCTION

Mathematical modelling is an essential tool to help under-

stand the behaviour of biochemical and biological processes.

The capability of a model to describe a system largely depends

on model parameters, the values of which need to be estimated

by comparing model prediction to real experimental data [1].

However, due to the complexity in system dynamics and

the limitations in experiment techniques, the measurement

data is usually sparse and heavily contaminated with noise.

This apparently hinders parameter estimation precision and

adversely affects further analysis of the established models.

Therefore, it is important to design necessary experiments

so that the most informative data can be obtained in order

to facilitate parameter estimation. The optimal experimental

design (OED) technique is one of the most widely used

methods during system identification [2]. The main purpose of

OED is to find the optimal experimental condition based on the

optimisation of scalar measure of Fisher information matrix

(FIM), which will lead to the most informative experimental

data that can reduce parameter estimation errors.

OED tasks generally include the following: input design,

sampling design and measurement set selection. The input

design is to decide the type, level and duration of input signals

[3, 4, 5]; the sampling design is to determine when and how the

samples should be collected [6, 7]; and the measurement set

design is to find the most valuable measurement state variables

[8, 9, 10].

In this work, the observation design of a biodiesel produc-

tion system is investigated because this system includes series

of parallel, consecutive, and competitive reversible reactions.

It contains considerable dynamic complexity and represents

a typical class of biochemical processes. In previous work,

researchers have mentioned the difficulty of determining dis-

tinctive parameter estimation values due to high correlations

between parameter pairs caused by parallel reactions [11]. An

OED method has been proposed aiming to reduce parameter

correlations [12]. However, this might not effectively reduce

the parameter estimation uncertainties. Our work will mainly

focus on reduction of parameter uncertainties through the

best observation strategy. Here the observation strategy design

includes both design targets on finding the best sampling time

points and determining the most useful measurement variables

among the available set. In addition, we will also examine

the effect of our method on reducing parameter correlations.

The rest of this paper is organized as follows. In Section

2, relevant preliminaries on OED are briefly introduced. The

observation design formulation and the numerical optimization

methods are described in detail in Section 3. Then the optimal

observation design for a biodiesel production system and

the analysis of simulation results are presented in Section

4. Finally, the conclusions and future work are discussed in

Section 5.

II. PRELIMINARIES

A. Local Sensitivity Analysis

In order to analyse the underlying dynamic behaviour of

biochemical systems, mathematical modelling is a basic and

essential method to describe dynamic systems. A general

model of biochemical system can be developed based on

energy and mass balance laws, as a set of ordinary differential

equations

Ẋ = fff (X,θ, t) , X(t0) = X0 (1)

Y = hhh (X,θ, t) + ξ (2)

where fff(·) is a set of nonlinear functions of states transition

which refer to the reaction mechanisms. hhh(·) is the vector



of measurement function. X = [x1, x2, · · · , xn]
T ∈ R

n is

the vector of n state variables with initial condition X0.

In biochemical reactions, the components in X denoted as

xi normally represent the concentration of reactants. θ =
[θ1, θ2, · · · , θp]

T ∈ R
p represents the vector of p model

parameters, the components of which denote kinetic reaction

rates. Y ∈ R
m stands for the measurement output vector

with m(m ≤ n) measurable variables. ξ is the measurement

noise vector which is assumed to follow a zero-mean Guassian

distribution in this work.

Sensitivity analysis is used to investigate how model outputs

depend on model parameters and initial conditions. The local

parametric sensitivity matrix is defined as S = ∂X
∂θ

, and its

dynamics can be expressed as Ṡ = JS + F, where J = ∂f
∂X

is

the Jacobian matrix and F = ∂f
∂θ

is the parameter Jacobian

matrix. For most biochemical systems with several model

outputs and a large number of model parameters, there are

usually large differences of sensitivity values among parame-

ters across outputs. Performing sensitivity analysis can help to

find which parameters have large impacts on output variables,

and thus the parameter estimation only needs to be focused

on those selected key parameters. This will not only reduce

the computational load but will also increase the identifiability

level.

B. Fisher Information Matrix and Optimal Experimental De-

sign Criteria

In OED, FIM is used to measure the amount of data

information contained in the experimental data. It can be built

based on parametric sensitivity matrix and measurement error

covariance matrix as follows

FIM = ST Q−1S (3)

where Q represents measurement error covariance matrix. The

Cramer-Rao bound states that the inverse of the FIM provides

a lower bound of parameter estimation variance-covariance

matrix which is the fundamental support for FIM-based OED

[13].

The target of OED is to optimize a scalar measure of FIM

using different criteria. The objective function of OED can be

expressed as

ω∗ = argmin
ω∈Ω

Φ
(

(FIM (θ,ω))
−1
)

(4)

where ω is a vector representing design factors and Ω is the

possible space for ω. FIM is characterized by both the model

parameters θ and the design factors ω. Φ(·) denotes the design

criteria such as A-, D- and E- optimal design that will get

scalar features from FIM [14]. The choice of design criterion

is case dependent. In this work, the D-optimal and E-optimal

design will be compared in the simulation in order to find the

best design criterion for this biodiesel production model.

III. OPTIMAL OBSERVATION DESIGN METHOD

A. Problem Definition

An OED problem can be formulated as the optimization of

certain measure of FIM as represented in equation (4). The

design factors may include input levels, initial conditions and

observation strategies. Our interest in this work is to design the

best observation strategy. Observation design is to determine

the best sampling time strategy and the most valuable mea-

surement state variables that can provide the most informative

experimental data for parameter estimation. For continuous

time dynamic systems, the time sampling design problem is

hard to solve since it is an infinite dimensional non-convex

dynamic optimization problem. Thus, the observation design

problem is generally transformed into discrete optimization

problem by adding weighting factors to all available sampling

points for each measurable state variable.

ξ =

{

t1 · · · tN×n

ω1 · · · ωN×n

}

ξ∗ = argmin
ω∈Ω

Φ





(

σ2

N×n
∑

l=1

ωlS (tl)
T

S (tl)

)−1


 (5)

s.t. ωl ∈ {0, 1} ,1Tω = Nsp

where N is the total number of available sampling time points

of each state variable. With this formulation, when the weight-

ing factor ωl takes value of 1, it means the related sampling

time point should be selected; those sampling time points

with weighting factors of value of 0 will be ignored during

the measurement. Therefore, the optimization problem can

be considered as determining the best schedule of weighting

factors for all available sampling points across all variables.

The observation design problem can thus be transferred into

an integer optimization problem. When a biochemical system

contains large number of available sampling time points,

equation (5) is not easy to solve. An easy way is to relax

weighting factors in equation (5) to continuous variables and

the relaxed optimization problem can be described as:

ξ∗ = argmin
ω∈Ω

Φ





(

σ2

N×n
∑

l=1

ωlS (tl)
T

S (tl)

)−1


 (6)

s.t. ωl ∈ [0, 1],

N×n
∑

l=1

ωl = 1, ∀l

The solution of equation (6) will give all available sam-

pling points small weighting values between [0,1] rather

than selecting required number of sampling points which is

what (5) does. Within this solution, larger weighting factors

indicate the corresponding sampling time points are relatively

more important which should be selected in measurement and

sampling time points with small weightings will be ignored.

B. Numerical Optimization Methods

Different optimization methods have been attempted to

solve the above optimal observation design problem.

• Powells method



This method is to try different combinations of sampling

points to find the best sampling strategy which is

used to solve problem (5) Firstly, the required number

of sampling points are randomly selected. Then, in

each step, one sampling point will be removed and

replaced by a non-selected measurement point. This

new combination will be tested and the measurement

point which leads to the optimal objective value will

be selected. This process will be iterated through all

selected sampling points until no improvement can be

found through the substitution of non-selected sampling

points.

• Sequential selection method

The basic idea of this method is to select the best

sampling points in a sequential manner until the required

number is achieved. This method is also suited for

the integer optimization problem (5). Firstly, select

the measurement point which contains the most data

information about key parameters. Then, select the next

measurement point which can make the best objective

value with the combination of the selected points. Repeat

the step until the required number of samples is selected.

• Sequential quadratic programming (SQP) method

This method is used to solve the continuous optimization

problem (6). The MATLAB tool fmincon with sequential

quadratic programming algorithm is applied here to solve

this problem. The solution of (6) can provide a lower

bound of the solution of (5). The optimal solution gives

every sampling points a small weighting to show their

importance. Based on the required number of sampling

time points Nsp, the time sampling points with the top

Nsp largest weighting values will be selected as the

measurement points.

IV. OBSERVATION DESIGN OF BIODIESEL PRODUCTION

SYSTEM

A. Parameter Significance Analysis

The proposed observation design is investigated using a

biodiesel production model proposed by Noureddini and Zhu

[15]. A brief introduction of the reaction mechanism and

mathematical model is given in the Appendix. This model

is chosen for simulation study mainly because there are OED

discussions on the same model in a previous work [16]. There

are 6 reactants and 6 parameters in this non-linear model.

In order to make the comparison properly, the initial condi-

tions and the experiment set-up used in this work are chosen

to be the same as in the previous work [16]. The initial

concentrations of the reactants, the kinetic parameter values,

the time-varying input density and the feeding rate of the time

varying input are listed in Table IV and V in the Appendix.

Fig. 1. shows the time profile of the 6 state variables

(concentrations of reactants).

Fig. 1. Time profile of output state variables

It can be seen that, during the reaction process, the amount

of oil (x1) continuously decreases while that of ester (x6)

is increased. The concentration of Methanol (x2) changes

significantly at 52 minute and 75 minute, respectively. Then,

sensitivity analysis is applied to identify the most important

parameters. In this system, ester is the main product and the

time profile of parametric sensitivities for x6 is shown in Fig.

2.

Fig. 2. Local parameter sensitivities of state variable x6

B. Optimal Observation Design

Three parameters, θ1, θ3 and θ2, have been identified as

crucial parameters through sensitivity analysis, the Fisher

information matrix can then be built based on those key

parameters for all available sampling points applied to all

6 state variables. Then the OED problem can be formulated

as the choice of optimal sampling points from the available

measurement data. Three different numerical optimization

methods introduced in Section 3 have been implemented to

this OED problem. The problem of how to select a proper



design criterion for this model is considered first. Table I

provides parameter pair correlations under nominal condition

where some parameters are highly correlated. Thus the A-

optimal design is not suitable for this case as it can only

handle OED problem with relatively low parameter corre-

lations. The modified E-optimal is mainly focused on the

reduction of parameter correlation which might not efficiently

improve parameter estimation precision. Therefore, D-optimal

and E-optimal design criteria are considered in this work.

The confidence intervals of parameter pair [θ1, θ2] with two

different design criteria by using Powell’s method for sampling

design are shown in Fig. 3.

TABLE I
PARAMETER PAIR CORRELATIONS UNDER NON-DESIGNED CONDITION

parameters θ1 θ2 θ3 θ4 θ5 θ6

θ1 1 0.6835 -0.4679 -0.3145 -0.0691 0.1074
θ2 1 -0.3170 -0.0825 0.0271 0.2457
θ3 1 0.8043 0.1037 0.0558
θ4 1 0.3000 0.0800
θ5 1 0.8857
θ6 1

Fig. 3. Comparison of D-optimal and E-optimal

It can be observed that for the considered parameter pairs,

when using the Powell’s method to find the optimal solution,

the D-optimal design provides smaller confidence intervals

over the E-optimal design. Consistent results can be found

by using the other two numerical optimization methods. The

D-optimal results for sampling time design with different

numerical optimization methods are compared in Fig. 4. The

simulation results from the three optimization methods are

consistent in general. The simulation result based on Powell’s

method and SQP method is slightly better than the result via

sequential selection method.

Next the observation design to this biodiesel production

system is investigated using D-optimal design and Powell’s

method. In most biochemical experiments, the equivalent

sampling strategy is applied to all measurement variables. In

Fig. 4. Comparison of different numerical optimization methods

this work, we consider a more general situation that the time

sampling selection of different state variables are independent

to each other. This means the measurement data for different

output state variables can be collected at different sampling

points in time horizon. The observation design results is

provided in Table II, from which it can be seen that only three

state variables, x1, x3 and x5contain selected sampling points,

the other 3 state variables are not considered for sampling

according to the result of the OED. For comparison purpose,

the sampling strategy without OED design and the OED

strategy from a previous work [16] are also provided in Table

II in the last row, where in both cases all the 6 state variables

are sampled at the same time points as listed in the table.

The confidence intervals for parameter pair (θ1, θ3) under the

proposed OED are compared with the non-designed result

as shown in Fig. 5. It can be observed that, compared with

the non-design result, the proposed observation design clearly

improves the parameter estimation precision. The sampling

strategy results also implies that the state variables x1, x3

and x5 are the most valuable measurement state variables

as all measurement points are selected from these three state

variables.

TABLE II
OPTIMAL SAMPLING STRATEGY FROM OBSERVATION DESIGN

state variables sampling time points (unit: minute)

x1 119.1, 119.2, 119.3, 119.4, 119.5 119.6, 119.7,
119.8, 119.9, 120

x3 4.1, 5.6, 5.8, 5.9, 6.2, 6.3, 6.4, 6.5, 6.6, 7.3, 7.4, 7.5,
51.3, 51.4, 51.5, 51.6, 51.7, 51.8, 51.9, 52

x5 7.4, 7.5, 7.6, 7.7, 7.8 7.9, 8, 8.1, 8.2, 8.3, 8.4, 8.5

non-design 5, 30, 60, 80, 90, 100, 110

OED in [17] 3, 7.4, 9.5, 53.8, 55.9, 118, 120

We then compare the proposed design based on D-optimal

using Powells method with the non-designed condition and

also the result from a reference work [16], which is shown in

Fig. 6. Among the three observation strategies, the proposed



Fig. 5. Comparison of Independent sampling and traditional sampling strategy

method provides the minimum possible parameter estimation

uncertainty. This is mainly because the proposed design com-

bines both the time sampling design and the measurement set

selection together while in other works the sampling design is

assumed to apply to all variables in the same way.

Fig. 6. Comparison of our work and other researcher’s simulation result

It should be noted that correlation between parameter pairs

is another adverse factor that would reduce parameter iden-

tifiability since the change in one parameter will result in

proportional changes in another one or more parameters [17].

It is therefore useful to reduce correlations between parameters

to be estimated if possible. We next examine the impact

of OED to parameter correlations. The result without OED

is shown in Table I where the three largest parameter pair

correlation coefficients are highlighted with underlines. It has

been mentioned in previous work [16] that the upper bound of

parameter pair correlation coefficient is 0.75 for this biodiesel

system. In the non-designed case, two of these coefficients

exceed this set up bound and one of them nearly reaches 0.9

which is not acceptable. The parameter pair correlation matrix

from the proposed observation design strategy is given in Table

III. The three largest coefficients are significantly reduced and

all the correlation coefficients are under the bound limit.

TABLE III
PARAMETER PAIR CORRELATIONS UNDER OBSERVATION DESIGN

CONDITION

parameters θ1 θ2 θ3 θ4 θ5 θ6

θ1 1 0.4333 -0.5833 -0.3245 0.0299 0.0306
θ2 1 -0.2172 -0.0875 0.0287 0.3171
θ3 1 0.6220 0.1841 0.1346
θ4 1 0.1084 0.0452
θ5 1 0.7171
θ6 1

V. CONCLUSION

In this work, a new observation design strategy which

combines both sampling time design and measurement set

selection is proposed. The two design problems are integrated

into one single optimization problem which is convex and thus

can be easily solved by standard optimization algorithms. The

observation design method has been applied to a biodiesel

production system for the reduction of parameter estimation

uncertainties. Three different numerical methods are used to

solve this OED problem and all of them can generally make

consistent results in reducing parameter estimation uncertain-

ties. It can also be observed from the simulation study that the

correlations between parameter pairs can be reduced through

collected data with OED. This will increase parameter iden-

tifiability and therefore further improve the overall parameter

estimation quality.

The effectiveness of the proposed OED strategy and its

computational efficiency has been validated by the case study

biodiesel system. Further work will be conducted to expand

the integrated observation design to wider systems with higher

complexities. The robustness of this OED method by consid-

ering parameter uncertainties and non-Gaussian measurement

noise is another interesting topic which will be considered in

our future work.

ACKNOWLEDGMENT

This work is partially supported by Chinese NSFC project

no. 61473025.

APPENDIX

The following three reversible reactions are considered in

the bio-diesel production system:

TG + MeOH
k1−−⇀↽−−
k2

DG + E

DG + MeOH
k3−−⇀↽−−
k4

MG + E

MG + MeOH
k5−−⇀↽−−
k6

GL + E where TG, DG, and MG are

the tri-, di-, and monoglycerides. MeOH, GL, and E indicate

methanol, glycerol, and the mixture of methyl esters, which

form biodiesel. All the reactions follow second order kinetics.



By defining xi as variables representing species concentra-

tions, a set of ordinary differential equations can be written

to describe the concentration variations of the 6 components.

Here the subscript i = 1...6 corresponds to triglycerides,

methanol, diglycerides, monoglycerides, glycerol, and ester,

respectively.

dx1

dt
= −θ1

x1 · x2

vol
+ θ2

x3 · x6

vol
dx2

dt
= u− θ1

x1 · x2

vol
+ θ2

x3 · x6

vol
− θ3

x2 · x3

vol

+θ4
x4 · x6

vol
− θ5

x2 · x4

vol
+ θ6

x5 · x6

vol
dx3

dt
= θ1

x1 · x2

vol
− θ2

x3 · x6

vol
− θ3

x2 · x3

vol
+ θ4

x4 · x6

vol
dx4

dt
= θ3

x2 · x3

vol
− θ4

x4 · x6

vol
− θ5

x2 · x4

vol
+ θ6

x5 · x6

vol
dx5

dt
= θ5

x2 · x4

vol
− θ6

x5 · x6

vol
dx6

dt
= θ1

x1 · x2

vol
− θ2

x3 · x6

vol
+ θ3

x2 · x3

vol

−θ4
x4 · x6

vol
+ θ5

x2 · x4

vol
− θ6

x5 · x6

vol

vol =
x1

ρ1
+

x2

ρ2
+

x3

ρ3
+

x4

ρ4
+

x5

ρ5
+

x6

ρ6

TABLE IV
NECESSARY CONDITION FOR THE MODEL

state variables x1 x2 x3 x4 x5 x6
(mol/L) 0.5656 1.0034 0 0 0 0

Parameters θ1 θ2 θ3 θ4 θ5 θ6
(1/(mol · min)) 0.01039 0.03715 0.03161 0.398 0.7413 0.03548

densities ρ1 ρ2 ρ3 ρ4 ρ5 ρ6
(mol/L) 1.0233 24.5246 1.4732 2.6463 13.639 2.9230

TABLE V
FEEDING RATE OF TIME-VARYING INPUT SIGNALS

Time interval (min) 0-52 52-75 75-120

Feeding rate (mol/min) 0 0.0919 0.0061
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