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Abstract

In this work, we show that by using a recursive random forest together with an

alpha beta filter classifier it is possible to classify radar tracks from the tracks’

kinematic data. The kinematic data is from a 2D scanning radar without Doppler

or height information. We use random forest as this classifier implicit handles the

uncertainty in the position measurements. As stationary targets can have an

apparently high speed because of the measurement uncertainty, we use an alpha

beta filter classifier to classify stationary targets from moving targets. We show

an overall classification rate from simulated data at 82.6 % and from real world

data 79.7 %. Additional to the confusion matrix we also show recordings of real

world data.

Keywords: Radar; Classification; Random forest; Alpha beta filter; Kinematic

1 Introduction

The increasing demand for protection and surveillance of the coastal areas requires

modern coastal surveillance radars. These radars are designed such that small ob-

jects can be detected. Therefore, there is an increasing amount of information for

the radar observer. Moreover, the number of false and unwanted objects increases as

the demand for seeing small objects makes the radar more sensitive. Generally, the

false objects can be avoided by using a reliable tracker. However, the tracker does

not exclude unwanted objects. The difference between false and unwanted objects

are that false objects do not originate from true objects but are mainly noise ob-

jects, whereas the unwanted objects originate from true objects but are unwanted in

the surveillance image. These objects depend on the purpose of the radar however,
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for coastal surveillance radars the unwanted objects are normally birds, wakes from

large ships etc.

It has been shown in [1] that it is possible to classify tracks by using a recursive

classifier where a Gaussian mixture model (GMM) is used to model the probability

distribution function (PDF) of targets kinematic behavior. However the classifier

does not handle the uncertainty in the measurements from the radar. In [2] the

position uncertainty is used as an input to the classifier. The classifier also use a

GMM to model the PDF of the kinematic behavior of the target. The problem

with this is that it is very computationally expensive. To obtain an easier way to

handle uncertainty, joint target tracking and classification can be used, as shown

in [3, 4, 5]. The problem with joint target tracking and classification is that it is

difficult to achieve a high degree of freedom in the filters to separate the classes.

For example a car driving 130 km/h on highway is not likely to accelerate but more

likely to decelerate. This is very hard to model with a tracking filter. A particle filter

can be used but this is computationally expensive. In [6] the authors are describing

a method to classify trucks and cars from GPS measurements. The classifier consists

of a support vector machine (SVM) and the features are primarily acceleration and

deceleration. The classifier is non-recursive, which means that the complete length

of the tracks is required. The measurements from a GPS device is generally more

accurate than the position measurements then a radar. In [7] a decision tree is used

for a recursive classification of four different target classes. The data are from a radar

with height information. The decision tree has the advantage that it in some way

implicitly handles the uncertainty. That is, features that do not separate the classes

will not be used as much as features, separating the classes. The disadvantage is

that the classifier has a high variance of the classification results. In [8] the random

forest classifier is introduced. The random forest is a bagging classifier[9] where

multiple decision trees are used to reduce the variance of the classification results.

For this reason random forest is selected in this work.

In this work we introduce a classifier which uses position measurements to clas-

sify radar tracks from a 2D scanning radar. The classifier consists of a alpha beta

filter[10] and a random forest classifier. The alpha beta filter is classifying station-

ary or moving and the random forest classifies the moving targets. The classify is

recursive such that the classification results is being updated for each scan of the
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radar. The classifier performance is shown by using simulated track data and real

world radar data.

In section 2.1 we will introduce the random forest classifier by describing the

training of a decision tree and then explain how this tree is used in the random

forest. In section 2.2 we will explain how we utilize the probability estimates from

the random forest in a recursive framework. In section 2.3 we introduce a alpha

beta filter classifier, which classifies targets as either stationary or moving. This is

introduced because stationary targets can have high speeds because of they fluctuate

in the position because of measurements uncertainty or the main scatter points is

moving i.e. wind turbine. In section 2.4 we combine the random forest and the alpha

beta filter to our proposed classifier. In 2.5 we describe, which features we use in

the random forest. The simulation study is shown in section 3 and in section 4 the

real world results are shown. We discuss the results in section 5 and conclude the

work in section 6.

2 Method

When using a random forest, a feature vector is needed. We define our feature vector

as a set of kinematic and geographic features. The feature vector is derived from

the radar position measurements. We define this set of position measurements as

{Zn}k = {Zn · · ·Zn−k}, (1)

where Zn = [xn, yn]T , x and y is the position in a Cartesian coordinate system with

the origin at the location of the radar, n is the measurement number index and k

is the set size.

2.1 Random forest

In this section, we introduce the random forest classifier [8, 11]. Random forest is

a bagging algorithm, which means that the random forest consists of a number of

weak classifiers [12], which has zero bias, but high variance of the true value. The

weak classifiers are decision tress [9]. We start this section by describing how to

grow a decision tree and then move on to the random forest.

A decision tree consists of a number of nodes e.g. (N1 · · ·N3) and a number of

leafs e.g. (N4 · · ·N7). This is shown in Fig. 1. A node is defined by more than one
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class existing in the node data, whereas a leaf only has one class. In every node a

decision must be made such that we either go left or right in the tree. The decision

must always be true or false. A leaf is defined as a node where all of the data in the

node only consists of one class therefore no more splits are required.

To train the tree we start with a feature vector F of size Ns ×D where Ns is the

number of samples and D is the number of features i.e. dimensions in the feature

vector. We now want to split the data such that we make the best separation of the

classes by choosing the best feature and feature value. To do this we need to find

the best feature to split and the best value to split at. To explain the algorithm we

assume that there are only 2 classes so it forms a binary classification problem and

that the values of the feature belong to a finite sample space. This is done to make

the explanation easier.

We start by assuming that a split already has been made and we want to evaluate

how good the split is. For this, we use a normalized the entropy measure to do

that[12]. An alternative to the normalized entropy is the more common Gini index

[13] however, for this work the normalized entropy as shown better results. We

define the set of samples in the parent node as s1 and the number of samples in

the set as |s1|. Similarly we define the set of samples in the children as s2 and s3

and the number of samples as |s2| and |s3|. Further we index the samples belonging

to class ℓ by the superscript ℓ such as sℓ
1, where ℓ ∈ {1, 2}. We can calculate the

empirical entropy for the children as

H(si) = −P (s1
i ) log2(P (s1

i )) − P (s2
i ) log2(P (s2

i )), i = {2, 3}, (2)

where P (s1
i ) = |s1

i |/|si| and P (s2
i ) = |s2

i |/|si|. It follows that P (s1
i ) = 1 −P (s2

i ). As

the entropy does not take into account how many samples there are in each child

we normalize the entropy as

Ĥ(si) =
|si|

|s1|
H(si), i = {2, 3}. (3)

We can now calculate the information gain from the split as

H̃ = H(s1) − (Ĥ(s2) + Ĥ(s3)). (4)
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From (4) we now have a measure for how good a split is, and now able to optimize

each split of the data such that we choose the best feature to split on and the

best value of the feature. We split the data and continue to split the data until

all data in a node is of the same class i.e. the node becomes a leaf. To prevent

over fitting a decision tree must be prone. However, an advantage of using random

forest is that it is not necessary to prune the decision trees. The random forest is

a bagging classifier[9]. This means that the random forest consist of a number of

trees Nt where each tree is trained with a random part of the samples and a random

part of the features. That is, we draw a random subset of the training data and

select a random subset of the features. We then train each tree with these random

subsets and we assume that the trees are statically independent of each other. A

decision tree classifies the data by following a path through each node. The path is

decided by the feature and feature value that made the best split in the training.

The data which must be classified follow the path until a leaf is met. The leaf has

a unique class and the data is classified as this class. The classification of the data

is a majority vote of the result from each of the individual decision trees. That is

each tree is a unique classifier which classifier the data individual.

In general the random forest is not a probabilistic classifier but a majority vote

between each of the tress. However, by counting the votes for each class and nor-

malizing with the total number of trees an empirical probability can be achieved.

P̂ (ci|{Zn}k) = ψi/Nt, (5)

where ψi is the the number of votes for class i.

In the next section we explain how we (5) obtained from the random forest to

achieve a recursive update of the probability for the class given all the measure-

ments.

2.2 Recursive update of the random forest probability

The empirical probabilities obtained from the random forest classifier are obtained

as the fraction of the number of trees which predicts ci divided with the total number

of trees. By this definition, the resolution of the probability estimates is given by

the number of trees in the random forest. To prevent that a class is assigned a zero
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probability, we modify it in the following way:

P (ci|{Zn}k) =
P̂ (ci|{Zn}k)(1 − 2/Nt) + 1/Nt

γ
, (6)

where γ is a normalization constant such that such that
∑

i P (ci|{Zn}k) = 1. By

this formula the probability never reaches zero for any of the classes.

Based upon the above, we have the probability for the class given the current set

of features P (ci|{Zn}k). However we want the probability given all measurements,

that is P (ci|{Zn}), where {Zn} = {Zn}n. We have, however, not been able to find

a simple way to recursively update P (ci|{Zn}) based on the previous P (ci|{Zn−1})

and which works for all n. Instead we propose the following recursive function

f(ci|{Zn}), which is everywhere non-negative and sum to one. Thus, f(ci|{Zn})

can be considered to be a probability mass function (PMF), which we will use as

an approximation for the true P (ci|{Zn}). In particular, we define:

f({Zn}k, ci) ,
P (ci|{Zn}k)w

φn

f({Zn−1}k, ci), (7)

where w is a weighting factor, P (ci|{Zn}k) is given by (6) and where φn is the nor-

malization constant such that
∑

ci
f({Zn}k = 1. The introduction of the weighting

by w is inspired by the weighted Bayesian classifier used in [14]. In particular, we

choose w = 1/k since the features of the random forest is given by a set of mea-

surements where only one out of k measurements is substituted at each update.

In the next section we describe our alpha beta tracking filter. This filter is used to

classify if a target is non moving or moving. The reason for applying such a filter is

to classify stationary targets, which have high apparent speed due to measurement

uncertainties.

2.3 Alpha beta filter

The alpha beta filter is a simple tracking filter [15]. By using the alpha beta filter,

we assume that we can describe the target movements with a first order Markov

chain. We have the state vector Xn = [x̂, ŷ]T and the measurement Zn. The alpha

beta filter is trying to predict Zn given the speed Vn−1 at time n− 1 and the state

Xn−1 as

X−

n = X+
n−1 + τV +

n−1, (8)
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where τ is the time between Zn−1 and Zn and the superscript − is the prediction

before the measurement are used and the superscript + is after the measurement

is used. The filter Assumes the speed is constant between n and n − 1 that is

Vn = Vn−1. The error can be calculated as

Rn = Zn −X−

n , (9)

with the residual we update the estimate of the V −
n and X−

n as

X+
n = X−

n + αRn

V +
n = V −

n +
β

τ
Rn,

(10)

where α and β are the constants in the alpha beta filter. To calculate the probability

for Zn given X−
n , α and β we use a multivariate normal distribution

Pαβ(Zn|X−

n , α, β) =
1

2π
√

|Σn|
exp

(

−
1

2
(Zn −X−

n )T Σ−1
n (Zn −X−

n )

)

(11)

where Σn is the covariance of the position, and the subscript αβ is to emphasize

that this is the probability for the alpha beta filter. The purpose of the alpha beta

filter is to separate nonmoving targets i.e. stationary targets from moving targets.

We therefore define two filters: a stationary filter with the parameters α = 0.1 and

β = 0.0, which allows the position part of the state to move slightly but force the

speed to be constant at zero. The possibility for a slight movement of the state is

because of the possibility for false starting measurements. As the parameters α and

β is given of the class cs we use the notation Pαβ(Zn|X−
n cs). Likewise We define

the moving alpha beta filter as Pαβ(Zn|cm, X
−
n ) with the parameters α = 1.0 and

β = 1.0 i.e. we hold the speed constant from update to update but allow both the

movement and the speed to change with the measured change. If we know {Zn−1}

which is the set measurement up to n − 1 and α and β we can calculate X−
n we

can therefore write Pαβ(Zn|ci, {Zn−1}) instead of Pαβ(Zn|ci, X
−
n ). For this work we

want the alpha beta filter to classify if the target is stationary or non-stationary,

we therefore recursively update the probability of the alpha beta filter.

Pαβ(ci|{Zn}) =
Pαβ(Zn|ci, {Zn−1})Pαβ(ci|{Zn−1})

Pαβ(Zn|{Zn−1})
. (12)
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To reduce the computational complexity we assume that the positions are controlled

by a first order Markov chain i.e. Zn ↔ Zn−1 ↔ {Zn−2},∀n.[1]

Pαβ(ci|{Zn}) =
Pαβ(Zn|ci, Zn−1)Pαβ(ci|{Zn−1})

Pαβ(Zn|Zn−1)
, (13)

In the next section we describe how we combine the random forest classifiers and

the alpha beta filter classifier such that a classifier, which is a combination of the

two classifier are created.

2.4 Combining the alpha beta filter with random forest

In our work we let the alpha beta filter classify if the target is stationary or non-

stationary i.e. the alpha beta filter has two classes. The random forest has a sta-

tionary class and multiple non-stationary classes. We define for the random forest

c0 to be the stationary class and c1···nC to be the moving classes, where nC is the

total number of classes. For the alpha beta filter we have the two classes as cs and

cm for stationary and non-stationary classes respectively. We want the alpha beta

filter classifier to have a larger weight on the classification result of stationary vs.

moving then the random forest. We therefore use the recursive updated probability

from (13). We do this as described in(14), (15).

P̂ (c0|{Zn}) = f({Zn}k, c0)Pαβ(cs|{Zn}), (14)

P̂ (ci|{Zn}) = f({Zn}k, ci)Pαβ(cm|{Zn}), i = 1 · · ·nC (15)

We then normalize P̂ (ci|{Zn}) as

Pc(ci|{Zn}) =
P̂ (ci|{Zn})

ω̂
, (16)

where ω̂, is a constant such that
∑

i Pc(ci|{Zn}) = 1. By including the alpha beta

filter in this manner, we ensure that the alpha beta filter, classifies if a target is

stationary while the alpha beta filter classifier do not have influence on the different

moving classes.

[1]We denote the Markov chain by a ↔ b ↔ c, such that a is statistically independent

of c if we know b.
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In the next section we will describe the features we use for the random forest

feature vector, we will also describe how these are derived from the position. We

only utilize position dependent features such as speed, acceleration etc.

2.5 Features

For the feature vector, we draw inspiration from [16] for some of the features. In this

work, we set the number of position measurements k in (1) to 10. The number of

measurements used in the feature vector is a compromise between the time it takes

to get the number of measurements required for a full feature vector and the amount

of information contained in the feature vector. Larger k requires more measurements

i.e. more time before a classification results is made whereas for smaller k the first

classification result comes earlier albeit with a greeter uncertainty due to the smaller

amount of available information. The features and their descriptions can be seen in

Table 1. Remembering we defined {Zn}k to be {Zn · · ·Zn−k}. To make the notation

easier we index each measurement in {Zn}k by i such that i represent the i’th

element in the set of measurements {Zn}k, that is 0 ≤ i < k. Likewise we define the

set of time stamps of the measurements as {tn}k with the individual measurement

being observed at time ti. We start by calculating the vectorial distance between

the measurements as:

δi = Zi − Zi−1, (17)

with the scalar distance given by

∆i = |Zi − Zi−1|, (18)

and the time difference between the measurements as

τi = ti − ti−1. (19)

The 2-point velocity estimate is

vi =
∆i

τi

, (20)
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for 1 ≤ i < k and the 3-point acceleration estimate is

ai =
2(vi+1 − vi)

τi+1 + τi−1
, (21)

for 1 ≤ i < (k−1). The normal acceleration a⊥

i is given by the product of the speed

and angular velocity

a⊥

i =

(

vi+1 + vi

2

) (

2

ti+1 − ti−1

)

cos−1

(

δi+1 · δi

∆i+1∆i

)

. (22)

We also use land/sea as information These can be extracted from the SWBD

database from [17]. The database is a set of polygons describing the coastline.

Because of errors in the database a hard threshold cannot be used for land and sea.

We therefore proposed to use the distance to the coastline di for each measurement

as a feature. By using these polygons it is possible to calculate the distance from a

measurement to the coastline. However it is getting more and more computational

expensive to calculate the distance as the distance to the nearest coastline increases.

We therefore assign a maximum distance ξ to the coastline from the target. If the

target is farther away then ξ we assign ξ to the distance. the sign of the distance

decide if it is over land or sea. We set ξ = 700 meters to accommodate for errors in

the SWBD database.

In the next section we will show some simulation results of the classifier. We will

also show some real world results of the classifier.

3 Simulation study

We start by showing the performance of the algorithm versus the number of mea-

surements k which the extracted features is from. The size of the feature vector

change by k and the table shown in Table 1 for k = 10. The data we use are

simulated data from a controlled random walk. The controlled random walk con-

sist of a three state transition matrix which has a deceleration, steady state and

acceleration state. Parameters for maximum and minimum speed are incorporated

which changes the probability in the transition matrix if the speed is not within the

boundary of the permitted speed range. The data for different targets are generated

such that they have nearly the same support in speed and the main difference is

the acceleration support. The random walk creates position px
m and py

m which are
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extrapolated from some smooths speeds v̂x
m and v̂y

m described later.

px
m = px

m−1 + ∆tv̂x
m + Σx

m (23)

py
m = py

m−1 + ∆tv̂y
m + Σy

m, (24)

where ∆t is the time between the updates for m and m − 1 and Σx
m and Σy

m are

position uncertainty drawn from a distribution.





Σx
m

Σy
m



 ∼ N (0,Σe), (25)

where Σe is the position covariance and N denotes the normal distribution. The

smooth speeds are speeds vx
m and vy

m which are convolved with a 25 tap moving

average filter h. This is done to avoid to quick changes in the speed.

v̂x
m = h ∗ vx

m (26)

v̂y
m = h ∗ vy

m. (27)

The speeds (27) are extrapolated from accelerations ax
j (m) and ay

j (m), where j

denotes the depending upon the state j described in (32). The speeds are given as





vx
m

vy
m



 =





vx
m−1 + ∆tox

j (m)

vy
m−1 + ∆toy

j (m),



 (28)

where ox
j (m) and oy

j (m) are accelerations which is drawn from two normal distri-

butions given by

ox
j (m) ∼ N (µx,j , σ

2
x,j) (29)

oy
j (m) ∼ N (µy,j , σ

y
y,j) (30)

The parameters for the normal distribution µx,j ,µy,j ,σ2
x,j and σ2

y,j are given from

the function φj(v(m−1),Γ). This is done because we want to control the maximum

and minimum allow speed. We define this function as:

φj(v(m− 1),Γ) =































ψj(1) if vm−1 > ζmax,

ψj(2) if ζmin ≤ vm−1 ≤ ζmax

ψj(3) else,

, (31)
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where ψj(1), ψj(2) and ψj(3) is the set of parameters {µy,jµx,j , σ
2
y,j , σ

2
x,j} used in

(30) and Γ = {ζmin, ζmax}. The state machine consists of three states: deceleration

(d), constant (c) and acceleration (a) states, see Fig. 2. Further the state machine

is also controlled by the speed. We define the state transition probabilities as:

Pĵ,j(v(m− 1),Γ) =































Ψĵ,j(1) if vm−1 > ζmax,

Ψĵ,j(2) if ζmin ≤ vm−1 ≤ ζmax

Ψĵ,j(3) else,

, (32)

where ĵ is the previous state and Ψĵ,j is the transition probability. An example

of a track can be seen in Fig. 3 The speed PDFs can be seen in Fig. 4 and the

accelerations PDF can be seen in Fig. 5. The performance of the classifier versus the

number of measurement k can be seen in Fig. 6. Further we show the performance

of the classifier vs. the number of trees Nt used in the random forest, see Fig. 7.

The confusion matrix of the classification results for the four classes can be seen in

Table 2, where we have used k = 10 and Nt = 100.

4 Real world results

The data used for this work consist of Automatic Identification System (AIS), which

is a broadcast system used for large ships, Automatic Dependent Surveillance-

Broadcast (ADS-B) which is a broadcast system used for commercial aircrafts,

GPS logs and real world radar data. The classes for this work is typically classes

for coastal surveillance e.g. large ships, birds, small boats etc.

We show a confusion matrix for real world data in Table 3. As a confusion matrix

does not take into account how the probability develops over time we also show

some real world scenarios. For these scenarios extra classes are used. The scenarios

are images showing all tracks within a specific time period. The scenarios have both

known and unknown targets. It is therefore not possible to make a confusion matrix

of the scenario however, it is possible to have a good estimate of the performance

of the classifier in real world situations. The scenarios are recorded with different

radars and antennas, further the sampling rate can be different for the different

scenarios. We show two scenarios from coastal surveillance applications. The first

coastal surveillance scenario is recorded in Denmark where a rigid inflatable boat

(RIB) is sailing from west to east and zigzagging back. Towards the north of the
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RIB there are two unknown vessels, further there are some sea buoys present both

to the north of the RIB but also to the far south. The rest of the tracks are believed

to be bird. See the scenario at Fig. 8. The second scenario is also from Denmark

and shows two wind turbines farms. A commercial plane is flying in from the west

to the east and a small personal aircraft is circling over first the wind farm to the

north then the second wind farm and finally leaving towards the east. Three vessels

is present one to the east of the wind farm in the north (above the other wind farm)

the second vessel is sailing through the wind farm in the south. The last vessel is

sailing from west to east under the south wind farm. The rest of the tracks are

believed to be birds, see Fig. 9. As the majority of previously published results are

based on a joint tracking and classification approach, mostly on simulated data, it

is not directly possible to compare the obtained classification accuracy.

In the next section we will discus the results of the classifier.

5 Discussion

In Fig. 6 the performance of the classification results for the simulated data set

is shown, where we vary the number of measurements k, in (1), used to extract

the features. The performance is calculated as the mean of the diagonal in the

confusion matrix. It is clear the more measurement (longer feature vector) used the

better the classification results. This is clear as more information to the classifier

gives better estimation of the class and therefore it is more likely to classify correct.

The downside of increasing the number of measurements is that it takes longer time

from a track is seen until the first probability of the target is shown. For our results,

the sampling rate varies between 0.333 to 1 Hz. For 10 measurements this gives, a

maximum waiting time of 30 seconds, which we believe for the application in hand,

is acceptable. In Fig. 7 the performance can seen when varying the number of trees

used in the random forest. The plot is made with k = 10. It can be seen that the

performance does not get better after around 170 trees. The increase the number

of trees take longer time to train the random forest and is more computational

expansive and memory requiring when using the classifier for testing i.e. the purpose

of the classifier is to run in real time. The performance of k = 10 and nt = 100 can

be seen in Table 2. It is clear that type 2 and type 3 has the most confusion between

them. This is also natural if we look at the speed PDF’s and the acceleration PDF’s
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in Fig. 4 and 5 respectively as these is very similar. In general the of diagonal

numbers in the confusion matrix is at the left side. This is due to the fact the

large allowed acceleration still contains smaller acceleration which therefore will be

classified as a lower class type.

For the real world scenarios we use k = 10 and nt = 170. As it can be seen

the confusion matrix in Table 3 shows relative good performance. Nearly all of the

stationary sea targets and commercial aircrafts are classified correct. The helicopters

are confused with birds. This can be because of the helicopters can move as slow

as birds. The are some confusion between large ships, birds and RIBs. All of these

classes has kinematics which are close to each other.

In Fig. 8 one of the real coastal surveillance scenario is shown. The scenario shows

a RIB sailing out from a marina and zigzagging back again. The RIB is classified

as a small fast boat. The reason that it is not classified as a jetski/RIB is that

it sails more like a fast boat whereas jetski/RIB often makes turns, accelerate and

decelerate. The two slow moving vessels to the north of the RIB is classified correctly.

Some of the sea buoys are classified correct as stationary targets. Only a few birds

are classified correctly. In Fig. 9 two wind farms can be seen and nearly all of the

wind turbines is classified as stationary, while a few are misclassified as small slow

moving boats. The commercial aircraft is between commercial aircraft and small

aircraft, however the target is primary classified as commercial aircraft. The small

aircraft circling the two wind farms is classified correctly even though the aircraft

is flying below stall speed. This can be due to the strong winds, and therefore the

real airspeed is much larger. The one sea vessel that is sailing between the wind

turbines is misclassified as a bird, while the other sea vessels are classified as small

slow boats, small fast boats and helicopters. Unfortunately, nearly all the birds are

misclassified as either unknown or as helicopter. We believe this is because that the

training data do not contain any birds at that distance and speeds (because of the

wind). Further the radar used to record this scenario is different from the radars

used for the training data.

6 Conclusion

We have shown that it is possible to use a recursive approach to classify radar tracks

from kinematic data. We have also showed that it is possible to use an alpha beta
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filter together with the random forest such that stationary targets are classified as

stationary. The study both use simulated data, which is simulated to behave as real

targets and real world data. We have shown both scenario and confusion matrix to

get an overview of the performance.
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Figure 1 An example of a decision tree where N1 to N3 is nodes where a decision must be made.

An example could be is the ball blue (True or False)
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Figure 2 The state machine used for the data generation of the simulated data. The state

machine has three states, an accelerating a, decelerating d and a constant speed c state. The

probability for jumping between the states is controlled with P
ĵ,j

which is change depending on

the speed.

Figure 3 An example of a simulated track

(a) Speed PDF of the the first class (b) Speed PDF of the the second class

(c) Speed PDF of the the third class (d) Speed PDF of the the fourth class

Figure 4 The speed PDFs of the four different classes

(a) Acceleration PDF for the first class (b) Acceleration PDF for the second class

(c) Acceleration PDF for the third class (d) Acceleration PDF for the fourth class

Figure 5 The acceleration PDF of the four classes

Figure 6 The overall performance of the algorithm given the number of measurement used in the

feature vector.

Figure 7 The performance of the classifier for the synthetic generated data vs. the number of

trees used in the random forest.

Figure 8 The scenario where a RIB is salling out and zigzagging back again, a big amount of

birds is present

Figure 9 Hornsrev
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Table 1 The feature vector used. The number of measurement has been chosen to be k = 10

Feature Feature description

std(∆i) Empirical standard deviation of sample-to-sample distances

v1

... 2-point speed estimate

vk

mean(vi) Empirical mean of the speed

std(vi) Empiricial standard deviation of the speed

a1

... 2-point acceleration estimate

ak−1

mean(ai) Empirical mean of the acceleration

std(ai) Empirical standard deviation of the acceleration

mean(a⊥
i ) Empirical mean of the normal acceleration

std(a⊥
i ) Empirical standard deviation of the normal acceleration

|zk − z0| Total distance moved

d0

... Distance to coastline

dk

mean(di) Empirical mean of the distance to coast line

Table 2 The confusion matrix of the simulated data

Predicted:

Actual: type 1 type 2 type 3 type 4

type 1 95.2 4.8 0.0 0.0

type 2 16.7 72.1 11.2 0.0

type 3 1.0 35.6 63.3 0.0

type 4 0.0 0.0 0.0 99.9

Overall performance 82.6

Table 3 The confusion matrix for real world data.

Predicted:

Actual: Birds RIBs Stationary sea targets Large ships Helicopters Commercial aircrafts

Birds 67.9 9.2 0.0 21.0 1.9 0.0

RIBs 6.4 62.4 0.0 31.2 0.0 0.0

Stationary sea targets 0.5 0.0 99.5 0.0 0.0 0.0

Large ships 21.4 5.1 0.3 61.5 11.6 0.0

Helicopters 12.2 0.0 0.0 0.0 87.8 0.0

Commercial aircrafts 0.8 0.0 0.0 0.0 0.0 99.2

Overall performance 79.7


