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ABSTRACT

Steam turbines are an important asset of nuclear power

plants (NPPs), and are required to operate reliably and ef-

ficiently. Unplanned outages have a significant impact on

the ability of the plant to generate electricity. Therefore,

predictive and proactive maintenance which can avoid un-

planned outages has the potential to reduce operating costs

while increasing the reliability and availability of the plant.

A case study from the data of an operational steam tur-

bine of a NPP in the UK was used for the implementation

of a Bayesian Linear Regression (BLR) framework. An

appropriate model for the deterioration under study is se-

lected. The BLR framework was applied as a prognostic

technique in order to calculate the remaining useful life

(RUL). Results show that the accuracy of the technique

varies due to the nature of the data that is utilised to esti-

mate the model parameters.

1. INTRODUCTION

Steam turbines are expensive and an important part of a nu-

clear power plant. The consequences of technical failure could

compromise the safe and economic operation of the plant. An

effective condition monitoring system ensures that the plant

is operating in acceptable condition by providing accurate in-

formation about the current health of the plant. This work
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investigates the use of prognostic techniques to predict future

health of steam turbine assets.

The main aim of prognostics is to estimate the remaining use-

ful life of the asset and provide decision support for mainte-

nance when the asset is in service. Prognostics have been

successfully applied to a wide range of maintenance and re-

liability applications in the industries of aerospace (Zaidan et

al., 2013; Qiancheng et al., 2011; Saha et al., 2009), power

networks (Catterson et al., 2016; Rudd et al., 2011), defence

(Hess & Fila, 2002), consumer electronics (Gu et al., 2009;

Zheng et al., 2014) and nuclear generation (Di Maio et al.,

2011; Coble et al., 2010). The main advantages of prognos-

tics are reduction in unplanned outages, increased reliabil-

ity and availability, and reduced life-cycle costs (Sun, Zeng,

Kang, & Pecht, 2012).

There are several prognostics techniques that have been im-

plemented to estimate the remaining useful life of pumps,

electric motors and turbines (Kan, Tan, & Mathew, 2015).

Different variants of data driven Bayesian regression frame-

works were implemented by (Zaidan et al., 2013) and (Gebraeel

et al., 2005) to estimate the RUL of a gas turbine engine and

bearings respectively. The main motivation for developing a

Bayesian Linear Regression (BLR) framework in this work

was to utilise engineering judgement in combination with a

single instance of the case study data (see Section 2).

This paper investigates the application of BLR to a particu-

lar case study of degradation within a nuclear steam turbine.

The focus is on a slow progressing fault resulting in increased

shaft vibrations introduced by an imbalance in the thermal ex-
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pansion between the turbine casing and the supports. When

investigating the fault, the broad engineering judgement was

that this fault manifested itself as a linear relationship and

hence the choice of a linear model. Subsequent analysis has

shown this assumption to be incorrect over the full span of the

degradation and an important outcome of this work is to rec-

ommend a more representative model of degradation be cho-

sen. However, this case study is still useful for explaining the

development and deployment of prognostic techniques within

a nuclear environment.

2. APPLICATION REQUIREMENTS

This paper focuses on a particular case study fault within the

High Pressure (HP) steam turbine of a nuclear power plant

in the UK. Figure 1 shows the general representation of the

arrangement for handling thermal expansion in a steam tur-

bine. The outer casing palms of the HP cylinder lean on

the transversal keys attached to the bearing pedestals. The

transversal keys guide the lateral thermal expansion of the

casing. The bottom of the bearing pedestals is attached to

the longitudinal keys allowing the bearing pedestal to slide

on the foundation frame when the metal temperature of the

turbine varies during the start-up (runup) and stop (rundown)

operating conditions (Leyzerovich, 2008).

Figure 1. General Steam Turbine Arrangement
(Leyzerovich, 2008)

The entire weight of the steam turbine rests on the bearing

pedestals, as a result of which substantial frictional forces

are produced which hinder the axial movement of the bear-

ing pedestal along the foundation frame. As a result, this can

manifest in an increased displacement of the HP shaft, and

in an increased level of vibration within the bearings. The

fault is slow and progressive, in that without intervention the

level of displacement increases over time which can result in

distortion of the casing, increased vibration, damage to the

turbine bearings and couplings etc. However, if the turbine is

taken offline or stopped and the casing cools sufficiently, the

displacement may reduce as well.

This fault was observed within one turbine, fully analysed

by the engineers, and corrective action taken by changing the

interface between the pedestal and foundation from injected

grease (which was inserted at first as a remedial solution to re-

duce friction) to a self-lubricating graphite-impregnated ma-

terial. However, there is a desire to develop an automated

system that can detect the presence of this specific fault, and

predict the time remaining until the displacement reaches a

level requiring intervention. The intervention threshold is de-

rived from ISO 7919-2:2009 (BSI, 2009), an industry stan-

dard which defines a warning threshold at 82.5um of dis-

placement. Therefore, the aim of the prognostic system is

to predict the RUL until displacement reaches 82.5um.

Since there is only a single case study instance of this fault

captured, the approach to developing the prognostic system

must utilise engineering judgement in combination with the

case study data. Expertise from the plant engineer suggested

that casing expansion was expected to increase linearly over

time without intervention. This broadly matched the pattern

seen within the case study data (see Section 3.1).

Another application requirement is that RUL prediction er-

rors should tend to be early rather than late. If the prediction

is late (ie failure occurs earlier than predicted), maintenance

may not be scheduled in time to prevent the failure. On the

other hand, if the prediction is early (ie failure occurs later

than predicted), maintenance may be scheduled earlier than

needed, leading to more interventions over time with associ-

ated higher costs and downtime. While the prediction should

be as accurate as possible, the consequences of a late predic-

tion are more significant than those of an early prediction, and

therefore early predictions are preferred.

BLR was selected as a technique which can meet these cri-

teria. The main advantage of using BLR is that it estimates

RUL in the form of a probability distribution to avoid the risk

of early failure. BLR updates the degradation model using

the degradation history and current degradation data, as a re-

sult of which uncertainty in degradation model parameters is

reduced.

3. DATA ANALYSIS

Data was captured from the turbine from various operational

states, including online, run down, and run up conditions.

For a typical day, data is usually recorded in a single file.

However, during fault conditions, the data logging system can

record multiple files within one day by changing the data log-

ging frequency. The dataset studied here consisted of 6685

files, containing measurement parameters such as bearing ve-

locity, shaft displacement, and generated power. The data was

then segregated based on the operational states.

For data analysis, online data was selected as this was the

largest dataset and it is anticipated that when operating in

online mode, the machinery response should be fairly con-

sistent and any unusual behaviour and degradation should be

easier to identify. Mean values for each parameter in each

file were calculated to allow this large volume of data to be

2
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summarised. In other words, each parameter in each file was

represented by one value. A window of the online profile of

mean power is shown in Figure 2.

Figure 2. Mean Online Power

Figure 2 shows the variation in mean power across a period of

approximately 15 months. The power fluctuates according to

the operational state of the turbine. Most of the time it oper-

ates at full power, 660 MW approx. During refuelling outages

the power is lowered to 70% of full power then dropped to

30% while fuel assemblies are exchanged. The data relating

to refuelling events was removed, as changes in power were

clearly seen to influence vibration data, and therefore made

it difficult to identify any pattern visually by considering this

full set of data across all power levels. From here on, this

dataset is referred as the Full Power dataset.

3.1. High Pressure (HP) Turbine Displacement

Through visual analysis of the Full Power dataset, three pat-

terns in HP displacement that are labelled with region num-

bers in Figure 3 were observed. In region 1, there is very low

displacement and after this region a step change is observed

which is due to a change in operational settings. In region 2,

displacement tends to remain relatively steady with fluctua-

tions towards the start. In region 3, a ramp up in displacement

can be observed. This behaviour has been investigated by the

diagnostic engineer, and is attributed to thermal expansion of

the casing of the steam turbine.

The gaps in the HP Displacement data are due to the removal

of the outages/stoppage durations, online data captured below

full power, and other vibration data captured during the state

of run up.

3.2. Change Point Analysis

Change point analysis is used to find the location of points

within a data sequence where there are significant changes.

The location of the change point is the maximum or mini-

mum point in a vector of the sum of differences between each

Figure 3. HP Displacement

data point and the mean of all data points. Additional change

points can be determined within a region by repeating the pro-

cess (Killick & Eckley, 2014).

Change point analysis was applied to the HP displacement to

identify points of deviation. This technique identifies change

points in iterations. For HP displacement, two iterations were

performed based on the observation of the online full power

HP displacement data. In the first iteration, the cumulative

sum of the difference of the online full power HP displace-

ment data from its mean was calculated, which resulted in the

change point 1 as shown in Figure 4. This change point is

the lowest cumulative sum of the difference between the data

points and their mean.

Figure 4. Cumulative Sum Of HP Displacement

In iteration 2, the lowest cumulative sum of the difference

between data points before the change point 1 and their mean

is calculated. The lowest cumulative sum in iteration 2 is

change point 2. The first change point is used to isolate the

online full power HP displacement data of region 3 as shown

in Figure 4. This dataset forms the HP ramp case study, which

is shown in Figure 5.

3
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Figure 5. HP Ramp Case Study

4. BAYESIAN LINEAR REGRESSION

Based on the broad engineering judgement, the fault mani-

fested itself as a linear relationship and therefore, first order

polynomial is selected as a degradation model (see Section

2). A first order polynomial function is a straight line which

has two parameters: the slope and the y-intercept which can

be expressed as w =

[

w0

w1

]

, where w0 is the intercept and

w1 is the slope. Bayesian Linear Regression (BLR) starts

with no knowledge about w, therefore, without any knowl-

edge of a straight line representing the degradation trend. If

predictions of RUL are made at this stage, the output will be

random. This belief about w before any data is observed can

be represented as a probability distribution. This probabil-

ity distribution is known as a prior or prior probability distri-

bution. As data is observed (i.e. measurements of HP Dis-

placement are made), the likelihood of the data can be calcu-

lated as a conditional probability of the data given the straight

line parameters. BLR uses observed data to update the prior

probability of w to form a posterior distribution of w. The

posterior distribution narrows down the set of likely straight

lines which best fit the degradation trend. After enough data

has been observed, the uncertainty in w (or the slope and the

y-intercept) has been reduced so that relatively few straight

lines are candidates for the “true” degradation trend. At this

point, predictions of the RUL cover a fairly narrow range of

values, since all candidate straight lines reach the threshold

around the same time.

Bayesian Linear Regression (BLR) uses Bayes theorem to

convert the prior probability of the model parameters (the

slope and the y-intercept) into posterior probability by incor-

porating the evidence provided by the data in the form of the

likelihood function. The Bayes theorem in generalised form

(Bishop, 2006) is expressed as:

p(w|D) =
p(D|w)p(w)

p(D)
(1)

where p(w|D) is the posterior probability distribution, p(D|w)
is the likelihood function, p(w) is the prior probability distri-

bution and p(D) is the probability of the data. Alternatively

according to (Gelman et al., 2004), given the above definition

of the likelihood function, Bayes theorem can be expressed

as:

posterior ∝ likelihood× prior (2)

4.1. Model Setup

According to (Murphy, 2012), before the application of BLR,

degradation is modelled as:

y = φ(x)Tw + ǫ (3)

where y is the degradation signal (HP displacement in our

case), ǫ is random error, w is vector of weights (the slope

and the y-intercept) and φ(x)T is first order polynomial ba-

sis with x denoting time. The first order polynomial basis

function in reduced form can be represented as: φ(x)Tw =
[

1 x1
]

[

w0

w1

]

.

4.2. Bayesian Linear Regression Framework

As shown in Figure 6, there are six parts in the Bayesian Lin-

ear Regression (BLR) framework. For the first three parts

of the BLR Framework, Bayes theorem is applied to update

the prior probability distribution of the model parameters to

form a posterior distribution with the likelihood of the ob-

servation data. Once the model parameters w (or the slope

and the y-intercept) are updated, they are used to get the pre-

dicted signal over the desired time as shown by “predictive

distribution” in Figure 6. In the final step of Figure 6, the

warning threshold breach time distribution is obtained to es-

timate warning threshold breach time T , in order to calculate

the remaining useful life.

Figure 6. BLR Framework
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The following subsections describe each step in more detail.

4.2.1. Prior Distribution

The weights are modelled as a multivariate normal distribu-

tion to capture the variable dependency. (In the case of a lin-

ear model there are two dimensions to the distribution, one

each for w0 and w1). Therefore, the prior distribution can be

specified as:

p(w) = N (w|m0, S0) (4)

For simplicity, the prior is modelled as a zero mean Gaussian

distribution so that m0 = 0 and S0 = α−1I with α → 0.

Therefore, when no data is observed the posterior distribu-

tion is the same as the prior distribution. Also, when data

points arrive sequentially, the posterior distribution acts as a

prior distribution for the subsequent data point. In zero mean

Gaussian distribution form, the prior can be expressed as:

p(w|α) = N (w|0, α−1I) (5)

The value of the parameter α selected is 2. Several initial

values of the parameter α were tested and it made little to no

difference to the output as its effect tends to diminish very

quickly.

4.2.2. Likelihood

The likelihood is the conditional probability of the observed

data x and the model parameters (w, β), and is given by:

p(y|x,w, β) = N (φ(x)Tw, β−1) (6)

where β is called the noise precision parameter. Similar test-

ing was performed for parameter β as for α, and the value for

parameter β selected is 25.

4.2.3. Posterior Distribution

According to Equation (5), the posterior distribution is pro-

portional to the product of the likelihood function and the

prior distribution. Mathematically it can be expressed as:

p(w|x, y, α, β) ∝ p(y|x,w, β)p(w|α) (7)

Due to the fact that the prior has been chosen to be a conjugate

normal distribution, the posterior distribution is also normal

and therefore can be expressed as:

p(w|x, y, α, β) = N (y|m(x), s2(x)) (8)

where s2(x)−1 = S−1

0
+βxTx and m(x) = s2(x)(S−1

0
m0+

βxT y). Since the prior has been modelled as a zero mean

Gaussian distribution, therefore, s2(x)−1 = αI + βxTx and

m(x) = βs2(x)xT y. As mentioned earlier, due to the choice

of prior, the posterior distribution acts as a prior distribution

for the subsequent data point when data points arrive sequen-

tially. The resulting posterior is also used to compute the pre-

dictive distribution.

4.2.4. Predictive Distribution

The posterior distribution results in update of the model pa-

rameters w, which can be used to make predictions of y at a

given future point in time. Therefore, the predictive distribu-

tion is evaluated using the following equation:

p(ynew|y, α, β) =

∫

p(y|x,w, β)p(w|x, y, α, β) (9)

This predictive distribution represents the predicted degrada-

tion signal ynew probabilistically. The predictive distribution

can also be expressed as:

p(ynew|x, y, α, β) = N (y|m(x)Tx, σ2

N (x)) (10)

where σ2

N (x) = 1

β
+ xT s(x)x. It should be noted that the

predicted values of ynew correspond to a Normal distribution

rather than one single value. This is fundamentally because

of the uncertainty in the model parameters w: there is uncer-

tainty in the slope of the linear trend w1 and in the intercept

w0. The distribution of ynew values is the result of combining

predictions from all linear trends within the envelope of pos-

sible parameters. This is one of the key benefits of the BLR

framework, i.e. that it can explicitly track the uncertainty in

the linear model itself.

4.2.5. Warning Threshold Breach Time Distribution

As discussed in Section 2, the application places two require-

ments on the handling of the displacement threshold. First,

the threshold itself is set to 82.5um, which is defined in ISO

7919-2:2009 as a warning limit. That means that when dis-

placement breaches this threshold, yThresh, there is still time

for the plant operator to intervene before more serious limits

are reached.

Within the case study data, the point of threshold breach has

been defined as the mean time of the first 20 data points to

breach yThresh. This was chosen because a single data point

may breach the threshold due to transient behaviour, but 20

data points represents a more consistent trend. This mean

time of threshold breach is considered the true end-of-life

point that the prognostic system should predict.

Secondly, early predictions are preferred over late predictions.

In order to reduce the chance of late predictions, a Warning

Threshold Breach Time Distribution is obtained by noting all

possible predicted threshold breach times t. The predicted

threshold breach time t is the predicted end-of-life point when

the mean of the predictive distribution ynew reaches or ex-

ceeds the threshold yThresh. Together, all values of t give a

distribution of predictions.

A final prediction, T , is chosen as the time two standard de-

viations below the mean of this distribution. If the mean of

5
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breach times t was chosen as T , there would be an equal

chance of early and late predictions. By selecting an earlier

point, late predictions should be less likely.

4.2.6. Remaining Useful Life

RUL is the remaining time before the degradation signal crosses

the threshold and can be calculated as:

RUL = T − xt (11)

where T is the warning threshold breach time and xt is the

current time or the time of the prognosis.

5. RESULTS & DISCUSSION

The HP displacement case study was used to assess the per-

formance of the developed algorithm. Figure 7 and Figure 8

show RUL estimates when 300 and 400 data points of the HP

displacement case study are used respectively. It can be seen

that the implemented algorithm estimates the future health of

the steam turbine using the case study data (blue dots).

Figure 7. RUL Predictions: 300 Data Points

Figure 8. RUL Predictions: 400 Data Points

The distributions of warning threshold breach times t for the

batch of 300 and 400 data points are shown in Figure 9 and

Figure 10.

Figure 9. Warning Threshold Breach Time Predictions: 300
Data Points

Figure 10. Warning Threshold Breach Time Predictions: 400
Data Points

As described in Section 4.2.5, a value of two standard devi-

ations from the mean was chosen as the warning threshold

breach time T .

The comparison of true RUL and predicted RUL is given in

Table 1. The results show that when 300, 350, 400 and 450

data points of the HP displacement case study are fed into

the BLR framework, early prediction of warning threshold

breach is observed which is due to increase in HP displace-

ment data just before the time of prognosis (represented as

solid green lines in Figure 7 and Figure 8). It should also be

noted that due to the slow and progressive nature of the fault,

large values of RUL predictions are observed.

As mentioned above, the BLR algorithm can provide predic-

tions of time remaining until displacement breaches the warn-

ing threshold. However, there are two crucial aspects to con-

6
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Table 1. Early Prediction: Comparison of True RUL and Pre-
dicted RUL

Set Of Data
Points

True RUL
(Days)

Predicted
RUL

(Days)

Prediction
(Early or

Late)

300 726 478 248 Early

350 676 396 280 Early

400 626 414 212 Early

450 576 502 74 Early

sider further.

First, the errors in Table 1 are generally large. If the error

is over 200 days, there is a significant amount of remaining

life that may be lost through early scheduling of maintenance.

While early predictions are preferred, overall accuracy is also

important.

Secondly, and more critically, the performance of the algo-

rithm tends to vary with different amounts of input data. For

instance, when batches of 500 and 900 datapoints are used,

the predictions are late as shown in Figures 11 and 12.

Figure 11. Late RUL Predictions: 500 Data Points

The comparison of true RUL and predicted RUL is given in

Table 2. The results show that the technique does generate

late predictions. When it may be expected that performance

improves with more data, in fact the predictions become later

and less accurate when derived from more data.

Table 2. Late Prediction: Comparison of True RUL and Pre-
dicted RUL

Set Of Data
Points

True RUL
(Days)

Predicted
RUL

(Days)

Prediction
(Early or

Late)

250 776 941 165 Late

500 526 559 33 Late

750 276 575 299 Late

900 126 745 619 Late

Reasons for this performance were considered in detail. The

Figure 12. Late RUL Predictions: 900 Data Points

original case study data was re-examined alongside the BLR

performance. It is clear that the technique is performing cor-

rectly, as the predicted linear trend updates as new data is

added. However, while the case study exhibits an overall lin-

ear trend, the short term behaviour captures some additional

process which causes deviations around the trend line. The

BLR predictions are highly dependent on the trend of the data

at the prediction time xt, and the technique has difficulty in

separating the long term and short term behaviour.

This suggests that a more appropriate technique for prognos-

tics of this case study would better handle the non-linearities

in the data, and more consistently produce only early pre-

dictions. As mentioned in Section 3, the raw data was trans-

formed into the Full Power dataset by removing the refuelling

data, outages/stoppage durations, online data captured below

full power, and other vibration data captured during the state

of run up which will almost certainly affect the degradation.

The turbine will have the chance to cool down and therefore,

a temporary reduction in vibration levels would be seen. In

addition, the fault was recognised during the case study time

period and remedial action was taken which may have intro-

duced non-linearities into the process. While BLR is able to

make predictions when this fault type occurs, specifics of the

application domain mean that an alternative technique must

be considered.

6. CONCLUSION & FUTURE WORK

In this paper, a BLR framework is presented as a prognostics

technique. The first order polynomial function was selected

as a degradation model based on broad engineering judge-

ment of the fault manifesting itself as a linear relationship.

The model parameters are updated by incorporating the evi-

dence provided by the data in the form of the likelihood. Up-

dated model parameters are then used to get the predictions

of HP displacement.

As early predictions are preferred to late predictions, the thresh-

7
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old breach time T was chosen to be at the earlier end of the

range of all possible predicted threshold breaches t. A value

of two standard deviations from the mean was chosen as a

balance between avoiding late warning while maximising as-

set life.

The results of the implementation show that the technique

is performing correctly. However, the short term behaviour

causes deviations around the linear trend line. The BLR tech-

nique currently suffers from its inability to separate the long

term and short term behaviour.

Future work will involve using alternative techniques for prog-

nostics of this case study in order to better handle the non-

linearities in the data, and more consistently produce only

early predictions.
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