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Abstract 

This note aims to establish the fast switching condition with average dwell time satisfying 

an upper bound. Important results are obtained on the behaviour of switched nonlinear 

dynamical systems. In specific, this note contributes in the following three aspects:             

(1) establish the condition of fast switching of switched nonlinear systems; (2) obtain the 

condition of arbitrary switching stability of switched nonlinear dynamical systems using a 

weak Lyapunov functions approach; and (3) prove the necessity of the average dwell time 

condition associated with the conventional multiple Lyapunov functions� framework. 
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___________________________________________________________________ 

1. Introduction 

It is well-known that the behaviour of hybrid systems may have 

markedly different properties from each of their component, e.g., one 

switched system can be stable although all of its components are 

unstable, while an unfortunate switching signal may destabilize the 

switched system even though all of its components are stable. Most of the 

existing literature concerns the problem of stability under arbitrary 

switching and many important results have been obtained during the 

past decades (Morse [9]; Johansson & Rantzer [6]; Liberzon [7]; 

Hespanha [4]; Sun & Ge [11]). To guarantee stability under arbitrary 

switching, the common Lyapunov function method plays an important 

role. This is because the existence of a common Lyapunov function 

implies the global uniform asymptotic stability of the switched system. 

The importance of common Lypunov function is consolidated by a 

converse theorem, dictating that if the switched system is globally 

uniformly asymptotically stable, then all the subsystems share a common 

Lyapunov function (Molchanov & Pyatnitskiy [8]). 

Recently, multiple Lyapunov functions and the associated dwell time 

or average dwell time are recognized as another efficient tool to analyse 

stability (Branicky [2]; Hespanha & Morse [5]). The concept of average 

dwell time switching introduced in (Hespanha & Morse [5]) is more 

general than dwell time switching in stability analysis and related 

control design problems (Hespanha [4]; Sun et al. [10]; Vu et al. [12]). It 

implies that the number of switches in a finite interval is bounded from 

above, and the average time between consecutive switching is not less 

than a constant (Zhang & Gao [14]). The multiple Lyapunov function 

approach is believed to reduce conservatism than the common Lyapunov 

function method. In fact, when specialized to linear systems, some well-
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known design procedures for explicit construction of multiple Lyapunov 

functions have been developed, e.g., the S-procedure (Boyd et al. [1]) and 

the hysteresis switching (Liberzon [7]; Wicks et al. [13]). In multiple 

Lyapunov functions approaches, it is generally assumed that each 

Lyapunov-like function associated for each subsystem is decreasing with 

time. Allowing the Lyapunov-like function to rise to a limited extent is 

considered in (Ye et al. [3]). This is an interesting extension as it is 

intuitively appealing that may further reduce the conservatism than 

usual multiple Lyapunov functions, nevertheless than the common 

Lyapunov function approach. This observation forms the foundation of 

the paper, aiming to show how far it can proceed along this line of idea. 

In specific, it will be shown that both slow switching and fast switching 

can be studied within this framework; the implications are then worked 

out producing important results in the theory of stability of switched 

nonlinear systems. These collective results form the contribution of the 

paper. 

Notation. The notation used in this paper is fairly standard. N  

represents the N-dimensional Euclidean space; 1C  denotes the space of 

continuously differentiable functions; a function [ ] [ ]∞→∞ ,0,0:k  is 

called class ∞K  if it is continuous, strictly increasing and unbounded 

with ( ) .00 =k  

2. Preliminaries 

The concept of average dwell time is defined below: 

Definition (Hespanha & Morse [5]). For a switching signal σ  and any 

,012 ttt >>  let ( )21, ttNσ  be the number of switching over the interval 

[ )., 21 tt  If the condition ( ) ( ) attNttN τ−+≤σ /, 12021  holds for ,10 ≥N  

,0>τa  then 0N  and aτ  are called the average dwell time (ADT) and 

the chatter bound, respectively. 
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Then the following important result can be obtained: 

Theorem 1 (Hespanha & Morse [5]). Consider the switched system (1), 

and let α  and µ  be given constants. Suppose that there exist smooth 

functions ( ) ( ) ,,: A∈σ→σ tV N
t   and two ∞K  functions 1k  and 2k  

such that for each ( ) ,it =σ  the following conditions hold: ( ) ≤tx1k  

( ) ( ) ( ) ( ),,2 tititti xVxVxxV α−≤≤ �k  and for any ( ) ,,, jiji ≠×∈ AA  

( ) ( );tjti xVxV µ≤  then the system is globally uniformly asymptotically 

stable for any switching signal with ADT .
ln

α
µ=τ>τ ∗

aa  

Theorem 1 considers multiple Lyapunov functions with �jump� on 

switching boundary. An extension due to (Ye et al. [3]) and further 

exposed in (Zhang & Gao [14]) allows the Lyapunov-like function to rise 

to a limited extent, in addition to the jump on switching boundary. This 

is the so-called week Lyapunov functions, and it allows both the jump on 

the switching boundary and the increase over any interval. Now consider 

( ) it =σ  and within the interval [ ),, 1+ii tt  denote the unions of scattered 

subintervals during which the week Lyapunov function is increasing    

and decreasing by ( )1, +iir ttT  and ( ),, 1+iid ttT  respectively. Hence 

[ ) ( ) ( ).,,, 111 +++ = iidiirii ttTttTtt ∪  Further use ( )iir ttT −+1  and 

( )iid ttT −+1  to represent the length of ( )1, +iir ttT  and ( )1, +iid ttT  

correspondingly. Then the following important result can be obtained: 

Theorem 2 (Ye et al. [3]; Zhang & Gao [14]). Consider the switched 

system ( ),tt xfx σ=�  and let 0,0 >β>α  and 1>µ  are prescribed 

constants. If there exist smooth functions ( )  →σ
n

tV :  and two ∞K  

functions 1k  and 2k  such that for each ( ) ,it =σ  the following conditions 

hold: 

( ) ( ) ( ),21 ttit xxVx kk ≤≤   (1) 

( )
( ) ( )

( ) ( )





∈β

∈α−
≤

+

+

,,

,,

1

1

iirti

iidti

ti
ttTtoverxV

ttTtoverxV
xV�  (2) 
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( ) ( ) ( ) ( )( ),& jtitxVxV tjti =σ=σ∀µ≤ −  (3) 

then the system is GUAS for any switching signal with ADT 

( ) ( ) .,,max,
ln

1max
max ittTT

T
iir

s
aa ∀=

α
+β+α

=τ>τ −

µ
 (4) 

It is seen that the result above actually includes Theorem 1 as a 

special case, e.g., 0=β  implies no increase over the interval and hence 

,0max =T  then the ADT condition reduces to the ADT condition 

α
µ=τ>τ ∗ ln

aa  in Theorem 1. It is the generality of the weak Lyapunov 

functions that motives us to derive a fast switching rule below. 

3. Main Results 

Theorem 2 is a slow switching result in the sense that it is 

characterized by a lower bound on ADT. We shall now derive a fast 

switching result providing an upper bound on ADT. 

Theorem 3. Consider the switched system ( ),tt xfx σ=�  and let 0,0 >β>α  

and 1>µ  are prescribed constants. If there exist smooth functions 

( )  →σ
n

tV :  and two ∞K  functions 1k  and 2k  such that for each ( ) ,it =σ  

the following conditions hold: 

( ) ( ) ( ),21 ttit xxVx kk ≤≤   (1) 

( )
( ) ( )

( ) ( )





∈β

∈α−
≤

+

+

,,

,,

1

1

iirti

iidti

ti
ttTtoverxV

ttTtoverxV
xV�  (2) 

( ) ( ) ( ) ( )( ),& jtitxVxV tjti =σ=σ∀µ≤ −  (3) 

then the system is GUAS for any switching signal with ADT 

( ) ( ) .,,min,
ln

1min
min ittTT

T
iid

f
aa ∀=

β
−β+α

=τ<τ −

µ
 (5) 
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Proof. For [ ),, 1+∈ ii ttt  we have 

( ) ( ) ( ) ( )−
β+α−≤

ti
ttTttT

ti xVexV irid ,,
 (6) 

( ) ( ) ( ) ( ) ( )−
β+β+β−α−≤

ti
ttTttTttTttT

xVe irididid ,,,,
 

( ) ( ) ( ) ( )−
β+α−−β≤

ti
ttTtt

xVee idi ,
 

( ) ( ) ( )+−
β+α−−β µ≤

ti
Ttt

xVee i
1

min  

( ) ( )( ) ( ) ( ) ( )
0

00
min0

0
,,

t
ttNttNTtt

xVee σσ µ≤ β+α−−β
 

( ) ( )[ ] ( ){ } ( ),
0

0min0
0

ln,
t

ttTttN
xVe

−β+β+α−µσ≤  

where we have made the definition ( ),min 1min −−≡ iid
l

ttTT  that is the 

minimum decreasing interval over any switching sequence. Hence if 

( ) ( )[ ] ( ) ,0ln, 0min0 <−β+β+α−µσ ttTttN  then ( )ti xV  will be decreasing 

and the system will achieve GUAS. Now the condition ( )ttN ,0σ  

( )[ ] ( ) 0ln 0min <−β+β+α−µ ttT  is exactly the average dwell time 

defined by ( ) .
,0

0

ttN

tt

σ
α

−
≡τ  This completes the proof.   

Theorem 3 is very interesting as it can be combined with Theorem 2 

to prove a beautiful theorem stating that the average dwell time 

condition is �if and only if � and is thus an important progress in the 

stability theory of switched nonlinear systems. The fundamental idea 

comes from the following simple observation: a system will achieve 

arbitrary switching stability if the upper bound for fast switching is larger 

than the lower bound for slow switching. But before proving the result, let 

us first work on the implications of the fast and slow switching 

conditions. And then the proof will become �evident�. 
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Case 1. 1=µ  

Then the fast and slow switching conditions reduce to 

( ) ( ) ,,,max, 1max
max ittTT

T
iir

s
aa ∀=

α
β+α

=τ>τ −  (7) 

and 

( ) ( ) .,min, 1min
min A∈∀−=

β
β+α

=τ<τ − ittTT
T

iid
f
aa  (8) 

Hence if the value of the fast switching is greater than that of the slow 

switching, that is, ,f
a

s
a τ≤τ  or ,

min

max

β
α≤

T

T
 then the system will be GUAS 

under any switching signals. The situation here is that the minimum 

decreasing should be larger than the maximum increasing of the energy 

function over any interval. In the extreme case, that is ,0=β  which also 

implies ,0max =T  then the slow switching becomes 0=τs
a  while the 

fast switching is .∞=τ f
a  The system is GUAS under arbitrary switching! 

This actually becomes the case of usual multiple Lyapunov functions 

with exact matching on the switching boundary. To summarize, we have 

the following result: 

Theorem 4. Consider the switched system ( ),tt xfx σ=�  and let ,0>α  

0>β  are prescribed constants. If there exist smooth functions 

( )  →σ
n

tV :  and two ∞K  functions 1k  and 2k  such that for each 

( ) ,it =σ  the following conditions hold: 

( ) ( ) ( ),21 ttit xxVx kk ≤≤   (1) 

( )
( ) ( )

( ) ( )





∈β

∈α−
≤

+

+

,,

,,

1

1

iirti

iidti

ti
ttTtoverxV

ttTtoverxV
xV�  (2) 

( ) ( ) ( ) ( )( ),& jtitxVxV tjti =σ=σ∀= −  (3) 

then the system is GUAS for arbitrary switching signal if the following 

condition holds: 
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( ) ( ) .,,min,max, 1min1max
min

max ittTTandttTTwhere
T

T
iidiir ∀≡≡

β
α≤ −−  

(9) 

Proof. The correctness of the result is proved by collecting the above 

arguments.   

Case 2. 0=β  

The case 0=β  means no increasing over any interval and hence 

.0max =T  Then the slow and fast switching conditions become 

,
ln

α
=τ>τ

µ
s
aa  (10) 

and 

( ) .,min,
ln

& 1minmin A∈∀−=
α

≥∞=τ −

µ
ittTTT iid

f
a  (11) 

That is, the slow switching condition reduces to the ADT condition 

defined in (Hespanha & Morse [5]), while the fast switching rule implies 

that the minimum dwell time required for arbitrary switching stability 

with ADT is exactly the limit .
ln

α

µ
 This simple observation leads to the 

following important result: 

Theorem 5. Consider the switched system ( )tt xfx σ=�  and let ,0>α  

1>µ  be given constants. Suppose that there exist 1C  functions  

( ) ( ) ,,: A∈σ→σ tV N
t   and two ∞K  functions 1k  and 2k  such that 

( ) ( ) ( ) ( ) ( ) ( ),,, 21 titittit xVxVxxVxit α−≤≤≤=σ∀ �kk  and ( ) ,, AA ×∈∀ ji  

( ) ( ),, tjti xVxVji µ≤≠  then the system is GUAS for any switching signal 

if and only if the ADT satisfies the condition .
ln

α
µ=τ>τ ∗

aa  
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Proof. The sufficiency part has already been shown in Theorem 1 and we 

show the necessity part below. We do this by first considering the fast 

switching rule in Theorem 3. Then the above discussion has shown that 

the minimum dwell time among all the switching sequences is exactly 

.
ln

α
µ=τ∗a  This implies that the ADT condition ∗τ>τ aa  is in fact tight. 

That is, to guarantee the system to be GUAS for any switching signal, 

the ADT has to satisfy ,∗τ>τ aa  hence the necessity of the ADT condition 

is proved. To further explain the result without referring to the special 

cases discussed here, we proceed with another angle to look at the 

problem. 

Consider ,0=β  that is, over any interval [ )1, +ii tt  the Lyapunov-like 

function ( )ti xV  is non-increasing, then Theorem 3 tells that the only 

requirement for fast switching stability is the nominator 

( ) ,0lnmin ≥−β+α µT  that is, .
ln

min α
≥

µ
T  It can then deduce from the 

definition ( ) A∈∀−≡ − ittTT iid ,min 1min  that the minimum decreasing 

duration over any interval should satisfy .
ln

min α
=τ≥

µ
∗T  This is 

equivalently to say that the minimum dwell time over any switching 

sequence should be at least .
ln

α
=τ

µ
∗  

Now the case 0=β  is exactly the Lyapunov-like functions defined in 

Theorem 5. To recap, the sufficiency part says that the system is GUAS 

for any switching signal if the ADT satisfies the condition 

;
ln

α
µ=τ>τ ∗

aa  the analysis here shows that to guarantee GUAS, the 

minimum dwell time over any switching sequence should be at least 

.
ln

α
=τ

µ
∗  That is the estimation 

α
µ=τ>τ ∗ ln

aa  is actually tight, 

demonstrating the necessity of the ADT condition.   
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Case 3. 0=α  

The case 0=α  implies no decreasing over any interval, hence 

.0min =T  The two switching inequalities now reduce to ∞>τa  and 

,0<τa  which is obviously trivial. Hence no switching sequence exists to 

stabilize the system at all, conforming with the intuitive result. 

4. Conclusion 

This note has characterized the constrained switching of switched 

dynamical systems through slow switching and fast switching. These two 

types of switching provide low and upper bounds for stability of switched 

nonlinear systems. Of particular interest is the fast switching rule to 

guarantee GUAS and the condition for arbitrary switching stability of 

switched nonlinear dynamical systems. Based on this fundamental 

result, a series of important results have been obtained that provide 

information and insight into switched systems. Finally, the note has 

proved that the usual ADT condition associated with multiple Lyapunov 

functions is in fact IFF. These three results are the main contribution of 

the note. Based on the results, the effect of time delay and nonlinearity 

such as saturation on stabilizing property can be analysed. This is left for 

further investigation. 
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