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ABSTRACT 
This paper aims to analyze the dynamic response of a 

floating offshore wind turbine (FOWT) in waves. Instead of 

modeling the incident random wave by the traditional wave 

spectrum and superposition theory, an impulse response 

function method was used to simulate the incident wave. The 

incident wave kinematics were evaluated by a convolution of 

the wave elevation at the original point and the impulse 

response function in the domain. To check the validity of 

current wave simulation method, the calculated incident wave 

velocities were compared with analytical solutions; they 

showed good agreement. The developed method was then used 

for the hydrodynamic analysis of the substructure of the 

FOWT. A direct time-domain method was used to calculate the 

wave-rigid body interaction problem. The proposed numerical 

scheme offers an effective way of modeling the incident wave 

by an arbitrary time series. 

INTRODUCTION 
Offshore wind energy is a promising alternative energy 

source to traditional energy. Fixed offshore wind turbines are 

widely operated in shallow water depth while floating wind 

turbines become increasingly popular in deep water. Designing 

an offshore wind turbine requires a fully coupled integrated 

analysis, incorporating the aerodynamic analysis, structural 

analysis and hydrodynamic analysis arising from a combination 

of environmental loadings. Wave loading, arising from the 

movement of seawater, is one of the most important aspects.  

In recent efforts to develop simulation tools for FOWTs, 

designing and analyzing of a FOWT have benefited from 

offshore oil & gas industry. The types of floating structures, 

methods of analysis, etc are almost the same as offshore 

platforms. Many researchers have investigated the contributions 

from different nonlinearities of wave-structure interaction (e.g. 

Roald, et al, 2013; Karimirad, 2013). However, the inherent 

coupling effects and the complexity of FOWTs requires a 

re-examination of the traditional methods and types of 

structures. Plus, less attention has been paid on the calculation 

of velocity potential using an arbitrary time history. To this 

end, this paper introduced a method for calculating wave 

potential using an arbitrary incident wave profile. For the 

substructure of the FOWT, a direct time-domain method was 

used to calculate the wave-rigid body interaction problem. This 

direct time-domain method solved the diffracted and radiated 

wave together, as a scattered wave, instead of dividing the 

velocity potential into diffracted and radiated parts, unlike the 

traditional impulse response function method. Based on the 

linear wave-structure interaction theory, solving the integral 

equation with HOBEM, the velocity potential was updated at 

each time step. Based on the numerical method described 

above, the wave forces and motion responses of the floating 

body were calculated in the time domain. Results of current 

study, including wave forces, motion responses and wave 
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profile around the floating body were compared to check the 

validity of current numerical modeling.  

NOMENCLATURE 
ω  Circular frequency 
w

Φ Incident potential 
s

Φ Scattered potential 

Φ  Velocity potential 

i Complex value 

ρ  Density of fluid 

η
 Wave elevation 

A Wave amplitude 

B Damping matrix 

BVP  Boundary Value Problem 

C Restoring matrix 

F Wave force 

FOWT Floating Offshore Wind Turbine 

g Acceleration due to gravity 

G Green function 

h Impulse response function 

H Transfer function 

HOBEM Higher order boundary element method 

K Stiffness matrix 

k Wave number 

M Mass matrix 

n Normal unit vector 

p Wave pressure 

r Radius between origin and calculated field 

r0 Radius between origin and inner damping layer 

r1 Radius between origin and outer damping layer 

Sb Body surface 

Sf Free surface 

t Time 

X Floating body motion response 

x,y and z Space coordinate 

α Floating body angular motion response 

α0, β0 and λ Damping coefficients 

β   Wave direction 

ξ    Floating body transverse motion response 

METHODOLOGY 
Mathematical modeling for the incident wave 

An impulse response function method was used to 

simulate the incident wave (King, 1986). Under linear system 

theory, the relationship between input x and output y for a 

system can be expressed as (Newland, 1978): 

y(t) = h(t)x(t −τ )dτ
−∞

∞

∫
(1)

Similarly, for the problem of wave propagation, wave 

potential and its derivatives in the field can be written as: 

Φ(t) = h(t)η(t - t)dt
-∞

∞

∫
(2) 

For linear wave theory, velocity potential and its 

derivatives have the following form: 

Φ(x, y, z,t) = Re{
igA

ω
e
kz
e
−ik (xcosβ+ysinβ )

e
iωt}

(3) 

( cos sin )( , , , )
Re{ }kz ik x y i tx y z t

gA e e
t

β β ω− +∂Φ
= −

∂ (4) 

and the corresponding wave profile 

η = Re{Aeiωt}   (5) 

where Re denotes the real part. The following parts will 

describe how the analytical solution of h is calculated. 

Considering a sinusoidal wave with an amplitude of A 

(eq.5), the corresponding velocity potential is shown in eq 3. So 

the transfer function can be written as
 

( cos sin )( , , , ) kz ik x y

t

H x y z ge e β βω − +

∂Φ

∂

= −

     (6) 

Using Inverse Fourier Transform, the analytical solution 

of the impulse response function was calculated from linear 

wave transfer function (eq 6). The analytical equation for 

impulse response function can be written as: 

h
∂Φ

∂t

(t,x, y, z)

= H
∂Φ

∂t

(x, y, z)eiωt

−∞

∞

∫ dω

= −
g

2π
e
kz
e
−ik (xcosβ+ysinβ )

e
iωt

−∞

∞

∫ dω

(7) 

The final analytical form of the impulse response function h 

was given by King (1986): 

h
∂Φ

∂t

(t,x, y, z)

= −
g

2π

πg

−z + i(xcosβ + ysinβ)
w

t g

2 −z + i(xcosβ + ysinβ)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

(8) 

The derivation of h
∂Φ

∂x

and h
∂Φ

∂z

is the same as 
h
∂Φ

∂t

. 

where w is the error function for complex values (Abramowitz 

and Stegun, 1964). 

The incident wave kinematics and acceleration in the field 

were evaluated by a convolution of the wave elevation at the 

original point and the impulse response function in the domain 

(eq 2).  

Mathematical and numerical modeling for wave-structure 

interaction problems 

For wave-structure interaction problems, assuming 

non-viscous, non-rotational and incompressible flow, the 

velocity potential Φ satisfies the following equations in the 

fluid domain 

∇
2
Φ=0    (9) 

Unlike the indirect time-domain method (Cummins, 1962), 

the direct time-domain method deals with the diffracted and 

radiated wave (Isaacson and Cheung, 1992)  

Φ=Φ
w
+Φ

s
                            (10) 

For the scattered wave potential, the following Laplace 

equation has to be satisfied 
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2
=0
s

∇ Φ  (11) 

Figure 1 shows a sketch of calculation field and definition 

of coordinate. For linear wave-body interaction problems, the 

following boundary conditions have to be satisfied 

Figure 1 Definition of sketch 

Figure 2 Sketch of damping layer 

Free-surface condition 

Using Taylor Series Expansion to first-order, the kinematic 

and dynamic conditions on the mean free surface can be written 

as (Ferrant, 1993): 
s

s( )
z

s
r

t

η
ν η

∂ ∂Φ
= −

∂ ∂ (12) 

s( )
t

s

s
g rη ν
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= − − Φ

∂ (13) 

where 
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α
0
ω
r − r

0
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0
λ
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1
= r

0
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0
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Seabed condition 

Assuming infinite water depth, velocity potential becomes 

zero with the increasing of water depth, so the following seabed 

condition has to be satisfied:  

lim 0
zz→−∞

∂Φ
=

∂ (14) 

Body surface condition 

The kinematic condition on the mean wetted body surface

can be expressed as 

∂Φ
s

∂n
= −

∂Φ
w

∂n
+ ξ +α × X '( ) ⋅n (15) 

Radiation condition 

An artificial damping layer has been added to avoid wave 

reflection, which has the same form as eqs 12 and 13. Figure 2 

shows a sketch of damping layer. 

The velocity potential in the field can be calculated by 

solving the following integral equation: 
( )

( )0

0 0

, ( )
( ) ( ) ,s

s s

s

G x x x
x x G x x ds

n n
α

∂⎡ ⎤∂Φ
Φ = Φ −⎢ ⎥∂ ∂⎣ ⎦

∫∫
(16) 

where α denotes the solid angle and the Green function has the 

following form 

G x,x
0( ) = −

1

4π

1

x − x
o( )
2

+ y − y
o( )
2

+ z − z
o( )
2

A higher-order boundary element method (Bai and Teng, 

2001) was applied for solving the integral equation 

numerically: 

=1

( , ) ( , )
K

k k

k

hξ ς ξ ςΦ = Φ∑
(17) 

1

( , )
( , )
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k

k

h
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ξ ς
ξ ς

=

∂Φ ∂Φ⎛ ⎞
= ⎜ ⎟

∂ ∂⎝ ⎠
∑

(18) 

Motion equation of the floating body was solved in the time 

domain directly: 

M
i

⎡⎣ ⎤⎦X
••

i (t)+ B
i

⎡⎣ ⎤⎦X
•

i (t)+ K
i
+C

i

⎡⎣ ⎤⎦X i (t)
⎧
⎨
⎩

⎫
⎬
⎭i=1

6

∑ = F
i
(t)

(19) 

Velocity potential and wave profile were updated by a 

4
th

-order Runge-Kutta method. Only first-order forces were 

considered in current study. Wave forces acting on a floating 

body was evaluated by Bernoulli equation: 

p = −ρ(
∂Φ

∂t
+
1

2
∇Φ⋅∇Φ+ gz)

(20) 

VALIDATION OF THE IMPULSE RESPONSE 

FUNCTION METHOD 

For validation purpose, a surface-piercing cylinder with 

1m- draft and 1m- radius was selected (vertical center of 

gravity=-0.6). For validation purpose, here we choose the wave 

circular frequency=0.6 rad/s and wave amplitude=1m. To 

prevent the cylinder from drift away, an artificial stiffness 

matrix (10
9
 kN/m) was added into motion equation during 

simulation. Figures 3.1-2.3 show a comparison of incident 

wave potential between present impulse response method and 

analytical solution. Figures 4.1-4.3 describe a comparison of 

wave forces. From the comparison we can see that very good 

agreement has been found between the two methods, offering a 

good preparation for the following case studies. 
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Sb 
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Figure 3.1 Comparison of velocityΦ t 

Figure 3.2 Comparison of velocityΦ x 

Figure 3.3 Comparison of velocityΦ z 

Figure 4.1 Comparison of wave forces, surge 

Figure 4.2 Comparison of wave forces, heave 

Figure 4.3 Comparison of wave forces, pitch 

CASE STUDIES 
A TLP-type floating structure mainly relies on mooring 

tethers to provide restoring forces. It has been considered as the 

most promising type of substructures for FOWTs. In this 

section, a baseline FOWT-NREL/MIT TLP has been selected 

for current case study, as an example of current developed 

program. Table 1 shows main properties of the TLP-type 

FOWT. Spoke was not included in present model. Mooring 

tether was simulated by linear spring and the spring stiffness 

was given by Christopher (2001). An arbitrary incident wave 
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profile was shown in figure 5. Simulated wave forces and 

motion responses are show in figures 6.1-7.3. 

Table 1 Main properties of NREL/MIT TLP 

Parameters Values 

Platform radius (m) 18 

Platform draft (m) 47.89 

Displacement (m
2
) 12179 

Water depth (m) 200 

Number of mooring lines 8 

Figure 5 Incident wave profile 

Figure 6.1 surge wave force 

Figure 6.2 heave wave force 

Figure 6.3 pitch wave force 

Figure 7.1 surge motion response 

Figure 7.2 heave motion response 
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Figure 7.3 pitch motion response 

CONCLUSIONS AND FURTHER STUDIES 
A direct time-domain numerical code has been developed 

and its accuracy has been validated by a comparison between 

present results and analytical solutions. The developed 

numerical method represents an advance in simulating an 
incident wave by an arbitrary time history. This is an on-going 

research. Further study will include dynamic modeling of 

mooring line responses and aerodynamic loadings. Further 

validation of present method will be carried out by a 

comparison between numerical and experimental results. 

Guidance will be discussed about the suitability of different 

methods of analysis and advantages of different types of 

floating structures. 
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