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Abstract

Hierarchical models have a long history in empirical applications; recogni-
tion of the fact that many datasets of interest to applied econometricians are
nested; counties within states, pupils within school, regions within countries,
etc. Just as many datasets are characterized by nesting, many are also char-
acterized by the presence of spatial dependence or heterogeneity. Significant
advances have been made in developing econometric techniques and models
to allow applied econometricians to address this spatial dimension to their
data. This paper fuses these two literatures together and combines a hier-
archical random intercept model with the two general spatial econometric
models.

1. Introduction

Hierarchical econometric models have a long pedigree in applied economet-

rics, and several textbook treatments are available (see for instance: Rau-

denbush and Bryk (2002); Franzese (2005); Gelman and Hill (2007)). More

recently, attention has shifted to the development of hierarchical spatial

econometric models (see for instance: Corrado and Fingleton (2012); El-

horst (2014)). In this paper we develop two hierarchical spatial econometric

models; one representing a local spatial spillover process and the other a

global spatial spillover process. We explain the reason for focusing on these

two processes in more detail later in this paper. We develop these models
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in the Bayesian paradigm following in the footsteps of early pioneers (e.g.

Lindley and Smith (1972)) in this area.

Spatial econometric models have become increasingly popular in applied

econometrics and beyond in the past two decades, and with this popularity

has arisen challenges and evolutions in thinking about how best to incorpo-

rate spatial heterogeneity into econometric models. One influential school of

thought in this area is reflected in a recent paper (LeSage, 2014), in which

the author argues that the applied econometricians determining which cross

sectional or panel spatial econometric model to estimate has only to ask them-

selves whether the spatial process they are seeking to model is one which is

global or local.

Central to this discussion is the idea of spillovers. Following LeSage (2014)

we can think of a spillover being where the rth characteristic of the ith entity

(county say) Xr
i , has some influence upon the outcome Y of some neighbour-

ing entity j, Yj. A classic example would be that of cigarette taxes and the

impact of the tax rate of one state (e.g. Xr
i ) on the cigarette consumption

Yj of a neighbouring state j. A local spatial spillover process is where the

spatial spillovers do not exhibit endogenous feedback effects. The spillovers

in local models only affect the neighbouring observations as defined by the

spatial weight matrix. This is represented by the commonly used spatial

Durbin error model (SDEM). A global spillover in contrast is where there

are endogenous feedback effects, and thus there is an impact of Xr
i on an

outcome in all areas Yj where j now includes higher order neighbours to i

(i.e. neighbours to i’s neighbours, etc). In this way, a change in Xr
i leads

to system wide change and results in a new long-run equilibrium. This is

represented using the popular spatial Durbin Model (SDM).

LeSage (2014) reviews the available, and often discussed, spatial econo-

metric models to determine how the applied econometrician can best capture

either a global or local spatial process in their model. He concludes that global

spatial processes are best captured using the spatial Durbin model (SDM)
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and local spatial processes are best captured using the spatial Durbin error

model (SDEM). The central reason for this conclusion is that each of these

models nests within it the other local or global models that are often dis-

cussed or used in applied work. Estimating one of these two general models

allows the modeller to test the significance of the coefficients on the spatial

terms and thereby test whether it is appropriate to move from a general to

a more specific formulation (Elhorst (2014) neatly represents this general to

specific approach for these spatial models).

2. Material and methods

In this section we begin by motivating our focus on hierarchical spatial econo-

metric models, before extending the commonly used and recognised SDM and

SDEM models to the hierarchical case.

Both the SDEM and SDMmodel are well established econometric models.

Where little innovation has so far occurred is in developing these models in

a hierarchical context in the Bayesian paradigm as we do in this paper.

There are many reasons to believe that developing these models in this way

presages significant econometric improvements. Many of the applications of

the SDEM and SDM model in practice will involve using data that has some

degree of nesting within it; for instance counties nested within states, school

districts nested within counties, etc. The hierarchical extension of this class

of models can take into account of the nested structure of the data as well

as provide empirical estimates of spillovers.

One important advantage of hierarchical models is that they enable us

to control for unobserved heterogeneity at the upper level of the hierarchy

(which we refer to as Level 2) using indicator variables as well as including

covariate information at that level, something which is generally not available

in a standard fixed–effects model. Hierarchical models allow the researcher

to control for unobserved heterogeneity via the use of indicator variables for

each level 2 unit while also allowing for the use of covariates at this upper
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level as well. What these spatial hierarchical models add, is to model any

spatial spillovers in the covariates at this level in addition to the unobserved

heterogeneity. To take the example of county and state taxes, while state

level taxation is common across the lower level units (counties) nested within

the upper level unit (states), there is a sizeable literature demonstrating that

state level tax rates are not set and varied independently of the rates set

in neighbouring states. Now, if we believe that there might be endogenous

feedback in the setting of these state level taxes, i.e. a global spillover process,

then the SDM model is the appropriate model to consider, likewise if we

believe that the spillovers are not characterised by endogenous feedback then

a local model may be more appropriate.

When we extend these hierarchical models to include spatial terms, we

must also ensure that we calculate the correct marginal effects in the model

in order to make sure that we are properly interpreting the marginal effects

estimates1. The models outlined in this paper allow the applied econome-

trician to capture either local or global spillover effects, correctly interpret

the marginal effects estimates, and to test for different spatial specifications

within a general to specific framework.

These models have been developed in the Bayesian paradigm because re-

cent evidence suggests that there are considerable advantages to be had in

estimating hierarchical models using Bayesian rather than frequentist meth-

ods. Stegmueller (2013) compared these two approaches and showed that

“under conditions considered in this study, Bayesian point estimates were

biased at most 5%, whereas ML estimates reached 10 or 15%” (Stegmueller,

2013, 759). There appear to be real estimation advantages to Bayesian esti-

mation methods, particularly where there are a small number of upper level

1It is well understood in the spatial econometrics literature that the partial derivatives
on the explanatory variables in a spatial regression model with a lagged dependent variable
are not equal to β and do not provide the true ‘marginal’ effects estimates given their
matrix structure, see LeSage and Pace (2009) for more on this.
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units and there is correlation between them. Having outlined the case for

extending the SDEM and SDM model to the hierarchical case, in a Bayesian

framework, we formally present the hierarchical SDM and SDEM models in

the next section.

3. Theory/Calculation

3.1. Hierarchical SDEM model

The standard SDEM model takes the form:

y = Xβ1 +WXβ2 + u

u = ρWu+ ǫ (1)

ǫ ∼ N(0, σ2

eIn)

where, y is the dependent variable, X are the covariates, W is the spatial

weight matrix and WX are the spatially weighted covariates (one can think

of these for each area i as the average value of each of the covariates in

neighbouring areas j, where i 6= j). The hierarchical SDEM model takes into

account potential spatial autocorrelation in the residuals of the upper (Level

2) model. The hierarchical SDEM model can be expressed as follows:

Level 1:

yij = αj + βxij + εij

εij ∼ N(0, σ2)
(2)

Level 2:

αj = Zjγ +WZjθ + δj

δj = λWδj + uj

uj ∼ N
(

0, τ 2
)

(3)

where Equation 2 represent the first level of the hierarchy and Equation 3
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represents the upper–level of the hierarchy. We can also write the hierarchical

SDEM model in matrix form as follows2:

y = Xβ +∆α + ε (4)

α = Zγ +WZθ + u (5)

Given the above information, we can now define the posterior distribution

as follows:

π (θ, α |y ) ∝ σ−N exp

{

−
1

2
(y −∆α−Xβ)′C−1

β (y −∆α−Xβ)

}

(6)

× |A| τ−J exp

{

−
1

2
(Aα− AZ∗γ)′C−1

γ (Aα− AZ∗γ)

}

(7)

× σ−1 exp

{

−
1

2σ2
Vσ2

0
S2

σ2

0

}

(8)

× exp

{

−
1

2
(β − c)′T−1

β (β − c)

}

(9)

× τ−1 exp

{

−
1

2τ 2
Vτ2

0
S2

τ2
0

}

(10)

× exp

{

−
1

2
(γ − d)′T−1

γ (γ − d)

}

(11)

× U

(

−
1

λmin

,
1

λmax

)

(12)

where C−1

β ≡ (σ2In)
−1
, C−1

γ ≡ (τ 2Ij)
−1
, A ≡ (In − λW ), λmin is the

smallest eigenvalue of the spatial weight matrix W , and λmax is the largest

eigenvalue of the spatial weight matrixW , which equals 1 if the spatial weight

matrix is row–normalized. The row–standardization of the spatial weight

2The ∆ term in the matrix form of the model is a matrix that assigns each Level 1 unit
to its corresponding Level 2 group. Another way of thinking about this matrix is that it
is the “dummy variable matrix” that one would use in a standard fixed–effects model.
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matrix W is usually performed which would render the prior distribution for

λ in equation (12) as U
(

− 1

λmin

, 1
)

.

The above expression for the posterior distribution of the parameters re-

sults from the multiplication of the likelihood times the priors for the various

parameters. Equation 8 is the prior for the level–one error variance σ2 while 9

is the prior distribution for the β parameters at level 1. Moving on to the level

2 priors, Equation 10 is the prior distribution for the level 2 error variance

τ while Equation 11 is the prior distribution for the regression parameters

at level 2, namely γ. Finally, Equation (12) is the prior distribution for the

spatial autoregressive parameter λ. The full conditional distribution for the

spatial autoregressive error parameter, λ, does not fall into any recognizable

distributional form and thus a random–walk Metropolis–Hastings algorithm

is utilized to obtain inferences for this parameter. Details regarding the use of

a random–walk Metropolis–Hastings algorithm to draw inferences for spatial

autocorrelation parameters is contained in LeSage and Pace (2009).

3.2. Hierarchical SDM model

The standard Spatial Durbin model (SDM) (see Elhorst (2014) or LeSage

and Pace (2009) for a textbook treatment) takes the form:

y = ρWy + αln +Xβ +WXθ + ǫ

ǫ ∼ N(0, σ2

eIn) (13)

where, y is the dependent variable, X are the covariates, W is the spatial

weight matrix and WX are the spatially weighted covariates. Extending this

to the hierarchical case gives:

Level 1:
yij = αj + βxij + εij

εij ∼ N(0, σ2)
(14)

Level 2:
αj = ρWαj + Zjγ +WZjθ + uj

uj ∼ N
(

0, τ 2
)

(15)
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This model can also be written in matrix form and the derivation of

the posterior distribution for the hierarchical SDM model follows closely the

derivation of the SDEM model previously outlined.

4. Results & Discussion

For space reasons we cannot present a fuller empirical example, however we

provide some evidence of the accuracy of our code. To test our code and

ensure that it is able to recover model parameters appropriately, simulated

data was generated for both the SDM and SDEM models. In the results

tables below we report in column two the values of the parameters used

to generate the data used in these estimations, column three reports the

estimates our model produced for each parameter.

Table 1 contains the values of the parameters generated for the SDEM

model. For the Level 1 explanatory variables, we generated random normal

variates and used two explanatory variables at this level with a value of 3

for each coefficient. The covariates at Level 2 (i.e. a constant term and

two regressors, X and WX) were generated from a normal distribution with

mean 0 and variance of 10 and were also given coefficient values of 3. The

error variance at Level 1 (i.e. σ2) was set to 1 and the error variance at

level 2 (i.e. τ 2) was set to 1. The spatial autoregressive parameter for the

SDEM model, λ, was set to 0.8 which is a moderate–to–high level of spatial

error correlation. This is the same as the value used for the autoregressive

parameter in the SDM model.

As can be seen from the results in Table 1 for the SDEM model and

Table 2-3 for the SDM model, the Gibbs sampling algorithm for both the

SDM and SDEM models recovers the parameters well, indicating that the

code works as expected. In the case of the SDM model, following LeSage and

Pace (2009), since we have a spatially lagged dependent variable we calculate

the scalar summaries for each of the covariates, these are reported in Table

3. The direct effect is the effect of the covariate in area i on the dependent
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variable in area i, while the indirect effect is the impact of the covariate in

neighbouring area j 6= i, on the dependent variable in area i.

Table 1: Simulation Exercise Results: SDEM Model

Parameter True Parameter Value SDEM Estimate

β1 3.00 3.0053
β2 3.00 2.9902
σ2 1.00 1.0182
τ 2 1.00 1.0657
λ 0.80 0.8045
γ1 3.00 3.0940
γ2 3.00 2.9844
γ3 3.00 2.8943
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Table 2: Simulation Exercise Results: SDM Model

Parameter True Parameter Value SDM Estimate

β1 3.00 3.0128
β2 3.00 2.9766
σ2 1.00 1.0000
τ 2 1.00 1.0216
ρ 0.80 0.8047
γ1 3.00 2.8230
γ2 3.00 3.1066
γ3 3.00 2.8229
γ4 3.00 2.9175
γ5 3.00 3.0038

Table 3: Simulation Exercise Results, Scalar Summaries: SDM Model

Effect True value Lower 95% Mean Upper 95%

γ4

Direct 5.7974 5.5306 5.8927 6.2579
Indirect 24.6840 22.7396 22.7396 27.4019
Total 30.4813 28.3403 28.3403 33.5965

γ5
Direct 5.7974 5.2056 5.5346 5.8580
Indirect 24.6840 22.5608 24.3228 26.1731
Total 30.4813 27.8539 29.8574 31.9322
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5. Conclusions

This paper has extended the traditional hierarchical regression model

to incorporate local and global spatial spillovers. These models have been

developed using Bayesian methods to take advantage of the estimation per-

formance advantages demonstrated in estimating hierarchical models in this

way. Space consideration have precluded an “real” empirical demonstration

of these models in this study, but future work will use these models in an

applied setting. Nevertheless, using generated data we have demonstrated

that these models are well coded, and we encourage applied researchers to

use these models in their studies using the MATLAB code available from the

authors.
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