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Abstract. This paper focuses on the cure shrinkage and the thermomechanical properties of an 

amine cured epoxy resin system and its adhesion to glass fibre. The fibre-matrix interfacial shear 

strength (IFSS) was characterized using the microbond test over a range of test temperatures and a 

range of amine:epoxy ratios. The apparent IFSS in this glass-epoxy system was shown to be strongly 

dependent on the testing temperature and the matrix stoichiometry. High levels of cure shrinkage 

were measured in the IFSS microdroplets which resulted in internal stresses causing significant levels 

of droplet deformation. The results presented here can be interpreted as providing further support 

for the hypothesis that a significant fraction of the interfacial stress transfer capability in epoxy 

composites can be attributed to a combination of residual radial compressive stress and static 

friction at the fibre-matrix interface. 

 

1.  Introduction 

The performance of fibre-reinforced polymer composites is defined by a combination of the fibre 

and matrix properties and the ability to transfer stresses across the fibreʹmatrix interface. It is well 

recognised that optimization of the stress transfer capability of the fibre-matrix interface region is 

critical to achieving the required composite performance level. The ability to transfer stress across 

ƚŚŝƐ ŝŶƚĞƌĨĂĐĞ ŝƐ ŽĨƚĞŶ ƌĞĚƵĐĞĚ ƚŽ Ă ĚŝƐĐƵƐƐŝŽŶ ŽĨ ͚ĂĚŚĞƐŝŽŶ͛ ƚŚĂƚ ŝƐ Ă ƐŝŵƉůĞ ƚĞƌŵ ƚŽ ĚĞƐĐƌŝďĞ Ă 
combination of complex phenomena on which there is still significant debate as to their relative 

significance and their characterisation. Certainly, one of the generally accepted manifestations of 

͚ĂĚŚĞƐŝŽŶ͛ ŝƐ ƚŚĞ ŵĞĐŚĂŶŝĐĂůůǇ ŵĞĂƐƵƌĞĚ ǀĂůƵĞ ŽĨ ŝŶƚĞƌĨĂĐŝĂů ƐŚĞĂƌ ƐƚƌĞŶŐƚŚ ;IF““Ϳ͘ 

Despite the high level of attention commonly focused on chemical influences on glass fibre-epoxy 

adhesion, a number of authors have also commented on the role of shrinkage stresses contributing 

to the stress transfer capability at the fibre-matrix interface [1-7]. Recent work has shown that the 

level of apparent adhesion in glass fibre reinforced composites may be strongly influenced by the 

glass transition temperature (Tg), thermal expansion coefficient, and modulus-temperature 

relationship of the composite matrix (or interphase) [3-7]. In epoxy polymers these factors are 

known to be dependent on the ratio of curing agent to epoxy resin and the thermal history of the 

system. In addition to the thermal stresses at the interface caused by the heating-cooling cycle 

during composite production thermosetting matrices also undergo a volume change during their 

chemical reaction due to the phenomenon of cure-shrinkage. Since the epoxy matrix is shrinking 

while its Tg is simultaneously increasing due to the polymerisation it is possible for a proportion of 



this cure shrinkage to be frozen into the system causing additional stress at the fibre-matrix 

interface.  

It is also well known that the performance of the fibre-matrix interface is critically related to the 

nature of the surface coating (or size) which has been applied to the fibres during their manufacture. 

The sizings used on glass fibres used to reinforce epoxy resin polymers will nearly always contain 

epoxy molecules [8,9] although the exact nature of such glass fibre sizes is often kept an industrial 

secret. Consequently, there is a strong possibility of the stoichiometry of a composite matrix or, 

more likely a local interphase region around the fibres being different from that of the initial resin 

system preparation [10]. Clearly all of the above factors can be tied together with the local 

stoichiometry and the thermal history of the epoxy system. In this work a study was undertaken to 

characterise the effects of variation of the epoxy-curing agent ratio on the thermal and mechanical 

performance of an epoxy polymer. Furthermore, the effect of these chemical changes on the level of 

cure shrinkage and the apparent level of adhesion in glass fibre-epoxy microbond specimens was 

evaluated.  

2.  Materials and methods 

Boron free E-glass fibres (OC-APS) with average ĚŝĂŵĞƚĞƌ ŽĨ ϭϳ͘ϱђŵ ĂŶĚ ĐŽĂƚĞĚ ǁŝƚŚ ɶ-

aminopropyltriethoxysilane were supplied by Owens Corning. Araldite 506 epoxy resin and 

Triethylenetetramine (TETA) curing agent were purchased from Sigma-Aldrich. The stoichiometric 

ratio (amine:epoxy ratio r=1) for this system was calculated at 12.0% by weight of TETA. The epoxy 

and TETA were thoroughly mixed in appropriate proportions and degassed under vacuum for 12 

minutes. Droplets were then deposited on a single glass fibre using a thin wire. Approximately 40 

droplets were placed on individual fibres before these samples were transferred into a convection 

oven, where they were heated first to 60 °C and held isothermally for 1 hour followed by another 2 

hours heating at 120°C. After heating, the samples were left in the oven to cool down. The 

configuration and development of the microbond test (MBT) and TMA-Microbond test (TMA-MBT) 

rigs has been reported previously [7,11]. Differential scanning calorimetry (DSC) was carried out in a 

TA Instruments Q2000 DSC under a nitrogen gas flow of 50 ml/minute. The pre-cured epoxy material 

was cut down to specimen sizes with a mass in the range of 15-20 mg. These samples were 

subjected to a DSC heat-cool-heat cycle from -10 °C to +150 °C at 10 °C/minute. The Tg values 

reported are mid-point values from the second heating ramp. 

The change in dimensions of the typical epoxy microdroplets during curing was observed in a 

Mettler Toledo FP90 hot-stage placed under a Olympus BX51 microscope. The hot-stage heating 

schedule was similar to the microbond samples oven curing, heat from 20 °C to 60 °C at 2 °C per 

minute, isothermal at  60 °C for 60 minutes, then further heating to 120 °C. Images of the samples 

were recorded at one minute intervals. These droplet images were approximated as ellipses and the 

major and minor dimensions of each was measured to obtain an estimate of the droplet volume. 

Ten droplets were measured at each of five amine:epoxy group ratios investigated. 

  



3.  Results and discussion 

3.1.  IFSS dependence on measurement temperature 

The results for IFSS obtained for an r=1 epoxy matrix, measured at test temperatures in the range 20 

°C to 150 °C, are summarized in Figure 1 that shows the average values with 95% confidence limits 

(between 10-20 samples per temperature). It can be clearly seen that there exists a significant 

temperature dependence of measured IFSS in this thermosetting system. The IFSS falls from 54 MPa 

measured at 20 °C to just 2 MPa when measured at 150°C. It is noticeable that the highest rate of 

change of IFSS with temperature is also in the region of the Tg of this epoxy system which occurs in 

the range 70-90 °C [7]. The magnitude of the IFSS with this fibre and an epoxy matrix (GF-EP) is much 

greater than for the same fibre in polypropylene (GF-PP) at any particular temperature [5]. This 

supports the general expectation that the stress transfer capability of the GF-EP interface is much 

greater than that of GF-PP. However, there is also a striking similarity in the form of the IFSS versus 

temperature dependence for these two very different composite systems. Both systems exhibit a 

significant step-change in the IFSS around the associated matrix Tg [5,7].  

 

Figure 1. Glass Fibre-Epoxy (r=1) IFSS versus temperature compared to residual radial compressive 

stress at the interface [7] 

 

Figure 1 also shows the maximum potential contribution to the interfacial radial compressive stress 

from thermal and cure shrinkage where a 6% volumetric cure shrinkage had been employed [7]. 

These are maximum values since it has been assumed that no relaxation of the stresses occurs 

below the matrix Tg. Furthermore the buildup of the stress values have been calculated using a  

temperature step of 5 °C reducing from a Tg value of 80 °C and using temperature dependent 

measured input values of the epoxy matrix modulus (by DMA) and expansion coefficient (by TMA) 

[7]. It can be seen that the residual radial interfacial stress obtained from such a level of cure 



shrinkage is significantly greater than the residual thermal stress. This result appears to be well 

aligned with the results of other researchers [12]. It is clear from the data in Figure 1 that the sum of 

thermal and cure shrinkage related residual radial interfacial stress is of an appropriate magnitude in 

order for acceptable values (<1) of the coefficient of static friction to deliver an interfacial stress 

transfer contribution of similar magnitude to the measured IFSS. Previous work has indicated that a 

large fraction of the IFSS in thermoplastic composites can be attributed to residual radial 

compressive stresses at the interface [5,6]. It appears from the current results that it is also possible 

to make a case for residual stress combined with static friction being a major contributor to the 

apparent IFSS in a thermoset system. 

However, a major challenge to this hypothesis is the weight of opinion that the chemistry and 

chemical reactions in the system must in some way play a role in the stress transfer capability of the 

interface. In order to maintain the primary hypothesis of residual compressive stress being a major 

contribution to the apparent IFSS it becomes necessary to investigate how the chemistry of the 

polymerising matrix system could affect the major drivers of this residual stress. Hence it is pertinent 

to investigate parameters such as IFSS, matrix Tg, expansion coefficient, modulus, and cure 

shrinkage as a function of temperature and the stoichiometry of the epoxy matrix.  

 

Figure 2. IFSS and matrix Tg versus amine:epoxy group ratio in matrix 

 

3.2.  IFSS room temperature dependence on matrix stoichiometry 

Figure 2 presents the IFSS results (from two different operators) obtained for the OC-APS fibres as a 

function of the matrix r value (amine/epoxy group ratio). Each data-point represents an average of 

approximately 40 individual successful microbond measurements. The line in this Figure is added 

purely as a guide to the apparent trend. The primary observation in this Figure is that the IFSS 

exhibits a broad peak about the stoichiometric value (r=1) for this epoxy matrix system. 



Consequently, a reasonable conclusion could be that small local variations in the matrix composition 

around the fibre (in the interphase if one exists) due to epoxy or amine groups present in the fibre 

sizing may not lead to significant variations of the IFSS. It appears that local variations in the value of 

r of greater than ±0.5 from the stoichiometric ratio would be necessary to significantly change the 

level of IFSS. Nevertheless, a second important observation from Figure 2 is the extremely steep 

drop in IFSS observed when the r ratio drops below approximately 0.5. It can be seen that if for any 

physical reason r<0.5 it would have serious consequences for the apparent adhesion in this system 

and presumably also for the further mechanical performance of a composite. It will be interesting to 

see if these trends are maintained when the IFSS is measured at higher temperatures. 

In terms of the modelling of the residual compressive stresses (from both thermal and cure 

shrinkage) at the fibre-ŵĂƚƌŝǆ ŝŶƚĞƌĨĂĐĞ͕ ƚŚĞ ƚĞŵƉĞƌĂƚƵƌĞ Ăƚ ǁŚŝĐŚ ƐƵĐŚ ƐƚƌĞƐƐĞƐ ĂƌĞ ͞ĨƌŽǌĞŶ-ŝŶ͟ ĂŶĚ 
cannot easily relax away is an important parameter. In epoxy based systems it is accepted that the 

characteristic temperature at which this occurs is the matrix Tg. The results for the DSC determined 

cured polymer Tg are also shown in Figure 2 as a function of the system stoichiometry. The 

maximum Tg for this epoxy system appears to be in the range 1<r<1.2 close to the calculated 

stoichiometric ratio. Samples with either an excess of epoxy or an excess of hardener gave a much 

lower Tg value. This Tg dependence of stoichiometry has been observed in epoxy resins by other 

researchers [13ʹ15].  

Theoretically, for r=1, all amine hydrogens react with all epoxide groups, giving a network of 

interconnected rings [15]. These rings consist of two or three epoxidic chains, which have reacted 

with the corresponding amine group. In the epoxy-rich systems (r<1) a fraction of the available 

epoxy groups remain unreacted. This results in a network with some less restrained, bulky groups 

situated at the end of the chains. This increase of the number of chain ends increases the free 

volume of the polymer, decreasing the Tg. In the systems with an excess of amine (r>1), the epoxy 

groups react initially with the primary amine groups, but there are unreacted secondary amine 

groups remaining. Under these conditions, the epoxy tends to give branched structures [16], and 

occasionally may give rings consisting of the partially reacted tri-amine molecules and the epoxide 

chain. These structures contribute to an increase of the free volume of the system and consequently 

exhibit a lower Tg [15]. It is observed that the presence of unreacted epoxy groups (r<1) has a more 

noted effect on the polymer Tg than the same amount of unreacted amine groups (r>1).  

Comparison of the general trends observed in Figure 2 for IFSS and matrix Tg as a function of the 

matrix stoichiometry reveal some similarity with a maximum value occurring around r=1 and both 

IFSS and Tg reducing as r moves away from unity (in either direction). A particularly interesting 

correlation is the position of the large step down in IFSS when r<0.5. It is also at this approximate 

value of r that the matrix Tg drops below room temperature. Consequently, the very low values of 

IFSS observed for r<0.5 in Figure 2 were measured at a temperature above the matrix Tg when 

presumably there is little build-up of residual radial interfacial stress to contribute to the apparent 

measured IFSS. This appears to be the same phenomenon observed in Figure 1 where the 

ĞǆƉĞƌŝŵĞŶƚ ĚĞƐŝŐŶ ŝŶǀŽůǀĞĚ Ă ĨŝǆĞĚ ŵĂƚƌŝǆ TŐ ;уϴϬ ΣC ĨŽƌ ƌсϭͿ ĂŶĚ ŵĞĂƐƵƌĞŵĞŶƚ ŽĨ IF““ Ăƚ 
temperatures above and below this value. In Figure 2 the experiment is designed with a constant 

IFSS measurement temperature but a changing epoxy matrix Tg. In both cases a similar effect can be 

observed of reduced IFSS when the measurement temperature is above the Tg of the matrix 



polymer. Further work to characterise the system IFSS as a function of both r value and temperature 

is planned. 

 

Figure 3. Normalised volumetric shrinkage of microbond droplets during curing 

3.3.  Droplet shrinkage during curing 

The results for the volumetric shrinkage normalised to the original droplet volume for different r 

ratio droplets are shown in Figure 3. Each data point is the average of the dimension change of ten 

different droplets. It is interesting to note that the over-riding change in volume is shrinkage, even 

during the first heating period (0-20 min) the cure shrinkage is greater than the increase in droplet 

volume due to thermal expansion with a volumetric shrinkage of 6-11% in this period depending on 

the droplet stoichiometry. The droplets continue to shrink during the isothermal period (20-80 min) 

at 60 °C and shrink even further during the final heating step (80-110 min) to 120 °C (again 

overcoming any thermal expansion during heating). The overall volumetric cure shrinkage during the 

droplet curing is in the range of 11-21% with a clear trend towards increasing cure shrinkage with 

increasing r ratio. These values are well in excess of the 6% volumetric cure shrinkage which was 

used in the modeling of the residual radial compressive stress at the fibre-matrix interface shown in 

Figure 1. There is a great deal more work required to fully quantify the effect of this cure shrinkage; 

however these results clearly indicate that there is potentially sufficient volume change in the 

preparation of microdroplets for IFSS measurement to explain the values of apparent adhesion using 

residual stresses alone. 

3.4.  Residual stress and microdroplet deformation 

An interesting result of the continual monitoring of the microdroplets during the epoxy curing was 

the observation of sudden deformations appearing in the droplet shape, frequently during the final 

heating step to 120 °C. Figure 4 shows an example of this phenomenon. Figure 4a shows a well 



formed droplet (typical of what is often seen in other microbond publications) before curing. A large 

deformation of the droplet after cure can be observed in Figure 4b.  

 

 

Figure 4. Optical micrographs of epoxy droplet on glass fibre. (a) before cure. (b) after cure 

 

 

Figure 5. SEM micrographs showing various deformations of cured microbond samples 

The phenomenon was also captured on video in certain cases and it appears to be the result of a 

buildup, during the isothermal cure at 60 °C, of residual cure-shrinkage stress in the droplet. This 

residual stress becomes frozen in as the Tg of the reacting droplet rises above the isothermal cure 

temperature. However, on further heating, the droplet is again placed in the rubbery state and the 

local relaxation of some of the built up residual stress can apparently cause these deformations. 

These droplet deformations are not well resolved in optical microscopy however a broad survey of 

cured microdroplets in the scanning electron microscope (SEM) revealed the wide range of 



deformation types and sizes. A few examples are shown in Figure 5. A further attempt was made to 

semi-quantify this deformation effect. Every droplet produced for the microbond testing in this work 

had been photographed to estimate its dimensions. It appears that many of these droplet 

deformations are not clearly visible in optical microscopy ʹ unless you are specifically searching for 

them. It is certainly the case that there does not appear to be any reference to these deformations 

in the existing literature on microbond testing in epoxy systems.  

 

Figure 6. Observation of droplet deformations versus amine:epoxy group ratio in matrix 

 

Figure 6 shows the results of a review of all these droplet micrographs in terms of the fraction of 

droplets which exhibited deformations. As stated above, the data can only be considered semi-

quantitative at this time as there is clear evidence of an operator bias. However both datasets clearly 

indicate the same trend. At very low r ratios there is little evidence of deformations in the 

microdroplets. However, the fraction of deformed droplets rises rapidly as the r value is raised above 

0.5. As discussed above it is at this r value that the Tg of the droplet rises above room temperature 

and residual stress can start to build in the droplet. Once again this phenomenon clearly requires 

further investigation, not least as a source for the variability often obtained in microdroplet 

evaluation of IFSS in epoxy systems. However, the apparent correlation between the lack of residual 

stress in the droplets with r<0.5 (as evidenced by the low fraction exhibiting deformations) with a 

very low value of IFSS is very interesting in terms of the hypothesis that apparent adhesion may by 

explained by residual radial compressive stresses at the fibre-matrix interface alone ʹ even in 

reactive thermosetting systems. 

 

  



4.  Concluding remarks 

The results presented here can be interpreted as providing further support for the hypothesis that a 

significant fraction of apparent interfacial shear strength (IFSS) in fibre-reinforced epoxy composites 

can be attributed to a combination of residual radial compressive stress and static friction at the 

fibre-matrix interface. The temperature dependence of apparent IFSS of a glass fibre-epoxy system 

in the range 20°C up to 150°C showed a highly significant inverse dependence on testing 

temperature, with a major step change in the glass transition region of the epoxy matrix. This 

temperature dependence of the glass fibre-epoxy IFSS was compared to the change in residual radial 

compressive stresses at the interface as the test temperature is changed. The analysis indicated that 

the magnitude of the thermal residual stress due to mismatch in the thermal expansion coefficients 

of fibre and matrix was insufficient to explain the magnitude the of system IFSS. However, when the 

additional potential residual stress generated by a 6% cure shrinkage of the epoxy matrix was 

considered, then the magnitude of the residual stress at the interface could be found to be of the 

same order of magnitude as the measured IFSS. Results on the room temperature dependence of 

the IFSS in the same system as a function of the amine:epoxy group ratio (r ratio) in the matrix 

revealed a strong dependence of the IFSS and the matrix thermal and mechanical properties on the r 

ratio. At r<0.5 a correlation was observed between large reduction of IFSS with the lowering of the 

matrix Tg below room temperature. Direct optical measurement of the cure shrinkage of IFSS 

microdroplets revealed volumetric shrinkage in the range 11-21% during curing depending on the 

matrix r ratio. It was also observed that the resultant residual stress in the microdroplets was 

sufficient to cause severe deformations of the droplets during curing and the occurrence of these 

deformations was also shown to be dependent on the matrix r value and most likely on the matrix 

Tg. These observations are important to all researchers actively using the microbond technique to 

characterise fibre-matrix IFSS. 
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