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Abstract 

 

This paper presents a numerical study on vortex-induced vibration (VIV) of a vertical riser 

subject to uniform and linearly sheared currents. The model vertical riser tested at the 

MARINTEK by ExxonMobil is considered. The predicted numerical results are in good 

agreement with the experimental data. It is found that the dominant mode numbers, the 

maximum root mean square amplitudes, the dominant frequencies and the fatigue damage 

indices increase with the flow velocity. A standing wave response is observed for the single-

mode in-line (IL) and cross-flow (CF) vibrations. Dual resonance is found to occur at most of 

the locations along the riser. At some locations along the riser, a third harmonic frequency 

component is observed in the CF response and a frequency component at the CF response 

frequency is found in the IL response apart from the frequency component at twice the CF 

response frequency. The majority of the vortex shedding shows a clear 2S pattern, whereas a 

2P mode is observed near the position where the maximum vibration amplitude appears. The 

higher IL fatigue damage in the present study emphasises the importance of the IL fatigue 

damage especially in the design of low flow velocity or low mode number applications. 

 

Keywords: Vortex-induced vibration (VIV); Riser; Fluid-structure interaction (FSI); 

Computational fluid dynamics (CFD); 
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Nomenclature 

 

 Axrms/D, Ayrms/D Dimensionless in-line and cross-flow root mean square 

amplitudes 

max /xrmsA D , max /yrmsA D   Dimensionless maximum root mean square amplitudes 

 c Structural damping 

 D, Do Riser outer diameter 

 E Young’s modulus 

 fn Natural frequency of the oscillating mode 

 fn, beam nth eigenfrequency for a nontensioned beam 

 fn, string nth eigenfrequency for a tensioned string 

 fox, foy In-line and cross-flow oscillation frequencies 

 fz,İ  Zero-crossing frequency of the bending strain 

 I Moment of inertia of the beam 

 L Length of the riser 

 m Mass per unit length of the riser 

 m* = m/(ȡʌD2/4) Mass ratio 

 n Mode number 

 Re = VD/Ȟ Reynolds number 

 T Top tension 

 t Instant time 

 tw Riser wall thickness 

 V Uniform flow velocity 

 Vmax, Vmin Maximum and minimum velocity 

 Vprofile Velocity profile 

 x In-line displacement 

 xmean Mean in-line displacement 

 y Cross-flow displacement 

 İ Root mean square strain 

 ȡ Fluid density 

 Ȟ Kinematic viscosity of the fluid 
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1. Introduction 

 

Vortex-induced vibration (VIV) often causes the fatigue of offshore slender structures, such 

as risers, mooring lines and pipelines. Detailed understanding of this fluid-structure 

interaction (FSI) phenomenon and an efficient prediction of such self-excited and self-

sustained oscillations are required for the reliable estimation of the fatigue damage and the 

development of VIV suppression techniques (Bourguet et al., 2011a, 2013). 

 

Over the past few decades, VIV has been extensively studied. One may refer to the 

comprehensive reviews by Sarpkaya (1979), Bearman (1984), Williamson and Govardhan 

(2004), Gabbai and Benaroya (2005), Bearman (2011) and more recently by Wu et al. (2012). 

 

As riser pipes often possess a length-to-diameter ratio (L/D) of the order of 103 (Chaplin et al., 

2005), many experiments have been carried out on deepwater risers with large L/D 

(Tognarelli et al., 2004; Chaplin et al., 2005; Trim et al., 2005; Lie and Kaasen, 2006; 

Vandiver et al., 2006; Tognarelli et al., 2008; Vandiver et al., 2009; Huang et al., 2011b; Gu 

et al., 2013; Gao et al., 2015). These experiments investigated flexible riser VIV responses 

under different flow conditions and some also assessed the effectiveness of VIV suppression 

techniques, such as using helical strakes. Better insights into some important VIV aspects 

(i.e., response amplitude, dominant mode, dominant frequency and fatigue damage etc.) were 

obtained from these experiments, and thus provided some good benchmarks for verifying 

numerical prediction models.  

 

Apart from the various experimental investigations, there have been a number of 

computational fluid dynamics (CFD) studies on VIV of flexible cylinders. 

 

Willden and Graham (2001) used a quasi-three-dimensional (Q3D) method to simulate the 

transverse vibration of an L/D = 100 cylinder subject to a sheared inflow at low Reynolds 

numbers. A high tension was applied to the cylinder so that the fundamental mode would be 

excited. A maximum amplitude of 0.36D was found at L/D = 44 which was slightly below 

the midpoint of the cylinder span. The results also showed that the majority of the shedding 

frequencies along the cylinder were modified towards the natural frequency and a significant 

spanwise correlation was observed.  
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Meneghini et al. (2004) and Yamamoto et al. (2004) presented the numerical simulations of 

long marine risers with L/D up to 4600 with Q3D discrete vortex method (DVM). In their 

simulations, the riser tended to select a vibration mode which could keep the reduced velocity 

Vr = V/fnD in the range of 4 ≤ Vr ≤ 7 where the energy was transferred from the fluid to the 

structure. Visualisations of the wake indicated a hybrid mode of vortex shedding along the 

span with a 2S mode being found in regions of small amplitudes, changing to a 2P mode in 

regions of larger amplitudes. 

 

The simulations described above were based on Q3D method with several two-dimensional 

(2D) strips over the length of the riser. However, Q3D simulations have many shortcomings, 

e.g., three-dimensional (3D) vortex structures cannot be treated correctly and straked risers 

and variations in the angle of attack cannot be studied directly. Therefore, a series of fully 3D 

numerical simulations emerged. 

 

Newman and Karniadakis (1997) simulated VIV of an infinitely long flexible cable at Re = 

100 and Re = 200 with a spectral/hp element method. Both the standing wave and travelling 

wave responses were realized. It was found that an interwoven pattern of vorticity was 

associated with a standing wave cable response while oblique vortex shedding was produced 

by a travelling wave cable response. A mixed standing wave/travelling wave response 

together with chevron-like vortex shedding was found to be related to a sheared inflow. 

 

Evangelinos and Karniadakis (1999) studied VIV of an infinitely long flexible cylinder at Re 

= 1000. The structure’s bending stiffness was varied to obtain different responses. The 

authors found that the modulated travelling wave motion of a free-free beam or cable led to a 

mixed response consisting of oblique and parallel shedding. In the case of structures with 

pinned endpoints a standing wave response was obtained with lace-like flow structures.  

 

Holmes et al. (2006) and Menter et al. (2006) investigated riser VIV with fully 3D finite 

element method (FEM) and finite volume method (FVM), respectively. Both of the 

simulations used relatively coarse meshes with high element aspect ratios and the results 

were in good agreement with the experimental data by Trim et al. (2005) and Chaplin et al. 

(2005), respectively. 
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Constantinides and Oakley (2008) compared their CFD results with the data obtained in the 

field experiments by Jhingran and Vandiver (2007). The results were able to match the 

experimental data. Both the first and third harmonic components were well captured. The 

authors emphasised the importance of the third harmonic component in fatigue damage 

analysis due to the fact that it produced strains of the same order of magnitude as the first 

harmonic component and had a frequency of three times the first harmonic component, which 

returned roughly three times more fatigue damage. 

 

Huang et al. (2009, 2011a) performed finite-analytic Navier-Stokes (FANS) simulations on 

three different risers with L/D ranging from 482 to 3350. The simulation results showed good 

agreement with the experimental data by Lehn (2003) and Trim et al. (2005) and the 

numerical results using other commercial software by Holmes et al. (2006). It was observed 

in their simulations that the VIV of a long riser tended to have more than one dominant 

modes. The dominant modes could be sensitive to the incoming flow velocity profile and the 

riser tension. The cross-flow (CF) VIV was influenced by the in-line (IL) deflection. Vortex 

shedding showed a 2S pattern and the CF VIV demonstrated higher harmonic responses.  

 

Bourguet et al. (2011a, b, c, 2012, 2013, 2015) did a series of fundamental studies on VIV of 

long flexible cylinders. Their research revealed some important flexible cylinder VIV 

mechanisms, such as the occurrence of lock-in, the orbital trajectories which dominate the 

wake-body resonance, the phasing mechanisms between the IL and CF VIV and the validity 

of the independence principle (IP) applied to VIV. 

 

Nevertheless, fully 3D FSI simulations of VIV of a vertical riser subject to various flow 

conditions are still quite limited. Past studies found that the dominant modes were related to 

the incoming flow velocity profile (Huang et al., 2011a) and the IL VIV should not be 

neglected in deepwater riser design (Tognarelli et al., 2004; Xue et al., 2015). However, most 

of the previous CFD studies on vertical riser VIV focussed on a single flow condition and the 

importance of the IL fatigue damage, especially at low flow velocities, was not fully 

addressed. Therefore, in this paper, combined IL and CF VIV of a vertical riser in uniform 

and linearly sheared currents is studied using a fully 3D CFD approach. A low flow velocity 

range is specially selected to cover the typical range where the IL fatigue damage is higher 

than the CF fatigue damage so that the importance of the IL fatigue damage can be addressed. 

The rest of the paper are organised as follows. The numerical methods are given in Section 2 
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and a detailed description of the problem is provided in Section 3. In Section 4, simulation 

results of VIV of a vertical riser in uniform and linearly sheared currents are presented and 

in-depth comparisons are made with the experimental data. Finally, the conclusions of this 

paper are summarised in Section 5. 

 

2. Numerical methods 

 

A commercial software package ANSYS MFX multi-field solver has been adopted to solve 

the FSI problem in this paper. The numerical methods are summarised as follows. 

 

2.1 Flow model  

 

The flow field around the riser is modelled by solving the unsteady, incompressible Navier-

Stokes equations in conjunction with the large eddy simulation (LES) wall-adapted local 

eddy-viscosity (WALE) model (Nicoud and Ducros, 1999). In this study, the Arbitrary 

Lagrangian-Eulerian (ALE) scheme is applied to deal with the moving boundary of the 

cylinder. The ALE form of the governing equations in the Cartesian coordinate system is 

expressed as 

 0i
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where (x1, x2, x3) = (x, y, z) are the Cartesian coordinates, an overbar denotes that the variable 

is a filtered variable, ui is the velocity component in the xi direction, ˆ
iu  is the grid velocity 

component in the xi direction, p is the pressure, t is the time, ȡ is the fluid density, Ȟ is the 

kinematic viscosity of the fluid and Ĳij is the subgrid-scale stress defined by 

 i jij i ju u u u     (3) 

Based on the Boussinesq’s approximation 
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where įij is the Kronecker symbol. The isotropic part of the subgrid-scale stresses Ĳkk is not 

modelled, but added to the filtered static pressure. ijS  is the rate-of-strain tensor for the 

resolved scale defined by 
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The eddy-viscosity is computed by 
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The model constant Cw is chosen as 0.325. The filter-width is taken as the local grid size, 

i.e.,  1/3
x y z     . d

ijS  denotes the traceless symmetric part of the square of the velocity 

gradient tensor: 

  2 2 21 1

2 3

d

ij ij ji ij kkS g g g     (7) 

where 2

ij ik kjg g g , /ij i jg u x   . The tensor d

ijS  can be rewritten in terms of the strain-rate 

and vorticity tensors: 
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where the vorticity tensor is given by 
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  (9) 

 

The main advantages of the LES WALE model are the capability of reproducing the laminar 

to turbulent transition and the design of the model to return the correct wall-asymptotic y+3 

(ANSYS Inc., 2013). 

 

The governing equations are discretised using an element-based FVM. Rhie-Chow 

interpolation is used to obtain pressure-velocity coupling on collocated grids. A second-order 

backward Euler scheme is adopted for the temporal discretisation and a bounded central 

difference scheme is used as the convection scheme. 

 

2.2 Structural dynamic model 
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According to Huang et al. (2011a), a top tensioned riser can be simplified as a tensioned 

beam whose lateral motion is described as 

 
2 22

2 2 2

i i i i
i

x x x x
EI T m c F

z z z z t t

                    
  (10) 

where E is the Young’s modulus, I is the moment of inertia, T is the top tension, m is the 

mass per unit length, c is the structural damping, z is the undeflected riser axis, x1 and x2 

denote the IL and CF displacements, respectively and F1 and F2 are the hydrodynamic forces 

in the IL and CF directions, respectively. 

 

A finite element method is used to discretise Eq. (10) and the governing equation is given by 

           M q C q K q F     (11) 

where  q  is the nodal displacement vector and a dot denotes differentiation with respect to 

time. [M], [C] and [K] are the mass, damping and stiffness matrices, respectively.  F  is the 

hydrodynamic force vector. The governing equation is solved using the Hilber-Hughes-

Taylor (HHT) method (Chung and Hulbert, 1993) with the second order accuracy. 

 

2.3 Mesh deformation 

 

To accommodate the motion of the riser, the displacement diffusion model (Zhao and Cheng, 

2011 ; Zhao et al., 2014) for mesh motion is adopted. The displacements of the mesh points 

are calculated based on the following equation: 

   0iS     (12) 

where Si represents the displacements of the nodal points in the xi direction, Ȗ is the mesh 

stiffness. In this study, in order to avoid excessive deformation of the near-wall elements, the 

parameter Ȗ is set to be Ȗ = 1/2 where is the control volume size.  

 

2.4 Fluid-structure interaction 

 

A two-way explicit approach is utilised in the present FSI simulation, i.e., the fluid and solid 

equations are solved separately and there are no iterations between the fluid and solid fields 

within one time step. The flow chart of the two-way explicit FSI solution procedures for one 

time step is shown in Fig. 2. It can be seen that within one time step, the flow equations are 
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solved to obtain the forces on the riser. Then the forces are interpolated to the structural mesh 

using the conservative interpolation and the structural dynamic equation is solved to obtain 

the quantities of the riser motion. After that, the displacements are interpolated to the fluid 

mesh with the profile preserving interpolation and the positions of the mesh points are 

calculated and updated using the displacement diffusion model. The next time step begins 

with solving the flow equations on the updated mesh.  

 

3. Description of the problem 

 

3.1 Simulation parameters 

 

In the present study, two types of flow conditions are considered for VIV of a vertical riser, 

i.e., uniform flow and linearly sheared flow. The model vertical riser tested at the 

MARINTEK by ExxonMobil (Lehn, 2003) is considered. The main parameters of the model 

riser are summarised in Table 1. The model riser has a length-to-diameter ratio L/D = 481.5 

and a mass ratio m* = 2.23. The structural damping in this study is set to be zero. The 

physical configuration of a vertical riser subject to VIV is displayed in Fig. 1 (a). The flow 

direction is parallel to the global x-axis. A top tension T = 817 N is applied to the top end of 

the riser. The riser is pinned at both ends and it is free to move in the IL (x) and CF (y) 

directions. Simulations are performed for four different test cases in the experiment, namely # 

1103, # 1105, # 1201 and # 1205. The incoming flow velocity and other parameters of the 

four cases are summarised in Table 2 and the corresponding velocity profiles are displayed in 

Fig. 1 (b). Detailed descriptions of the flow velocity profiles of the four cases are given as 

follows.  

 

The case # 1103 and the case # 1105 have uniform velocity profiles with V = 0.2 m/s and 

0.42 m/s, respectively. Whereas the currents in the case # 1201 and the case # 1205 are 

linearly sheared with the maximum velocities at the bottom end of the riser (z = 0) being Vmax 

= 0.2 m/s and Vmax = 0.42 m/s, respectively. In both cases, the minimum velocity at the top 

end of the riser (z = L) Vmin = 0.14Vmax.  

 

To estimate the eigenfrequencies for a vertical riser, it could be simplified as a tensioned 

beam with moment-free supports at both ends (Lie and Kaasen, 2006). The nth 
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eigenfrequency for the tensioned beam, fn, t-beam can be expressed in terms of the 

eigenfrequencies for a tensioned string and a nontensioned beam (Weaver et al., 1974) 

 2 2

, , ,n t beam n string n beamf f f     (13) 

where n is the mode number, , 22
n string

n T
f

mL
  and 

2

, 42
n beam

n EI
f

mL


  are the 

eigenfrequencies for a tensioned string without bending stiffness and a nontensioned beam of 

equal length L and mass per unit length m. 

 

The eigenfrequencies of the foremost eight modes are calculated with Eq. (13) along with a 

modal analysis carried out using ANSYS software. The results are tabulated in Table 3. The 

eigenfrequencies from the modal analysis agree well with the corresponding theoretical 

values with all errors less than 0.1%.  

 

3.2 Fluid domain and boundary conditions 

 

Fig. 3 (a) shows the computational domain for the CFD simulation of VIV of a vertical riser. 

The origin of the Cartesian coordinate system is located at the centre of the bottom end of the 

riser. The length of the domain is 40D with the riser being located at 10D downstream the 

inlet boundary. The width of the domain in the transverse direction (y-direction) is 20D and 

the length of the riser is 481.5D. The computational mesh in the xy-plane and a zoomed-in 

view of the mesh around the cylinder are shown in Fig. 3 (b) and Fig. 3 (c), respectively. 

There are 180 nodes along the circumference of the riser and the minimum mesh size next to 

the riser surface in the radial direction is 0.001D. The non-dimensional mesh size next to the 

riser surface is found to be y+ < 1, where y+ is defined as y+ = ufy/Ȟ with uf being the friction 

velocity and y being the distance to the nearest wall. The riser starts with a straight 

configuration (see Fig. 3 (d)) and it deflects towards the current downstream after it is 

exposed to the different current profiles until its internal restoring force is sufficiently large to 

overcome the drag forces as shown in Fig. 3 (e). The boundary conditions for the governing 

equations are as follows. The surface of the cylinder is assumed to be smooth, where no-slip 

boundary condition is employed. Apart from the no-slip boundary condition, the cylinder 

surface is also regarded as a fluid-solid interface where the coupling data, i.e., forces and 

displacements are transferred. The inlet velocity boundary conditions are set to be the same 

as the freestream velocity. At the outflow boundary, the gradients of the fluid velocity in the 
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streamwise direction are set to zero and the pressure at the outflow boundary is given a 

reference value of zero. On the two spanwise and the two transverse boundaries, the velocity 

in the direction normal to the boundary is zero.  

 

3.3 Solid domain and boundary conditions 

 

Fig. 4 shows the computational mesh for the finite element analysis (FEA) of the present FSI 

simulation. The scale of the FEA model has been modified in order to clearly view the 

deflection of the model. Fig. 4 (a) is the initial FEA mesh without riser deflection and Fig. 4 

(b) is the FEA mesh with riser deflection. A 3D 20-node solid element SOLID186 which 

exhibits quadratic displacement behaviour is used for the discretisation of the finite element 

model. The spanwise direction of the riser finite element model is discretised using 250 

segments which is a typical resolution for riser global dynamic analysis (Huang et al., 2009). 

A top tension T= 817 N is applied to the top end of the riser. Both the top and bottom ends of 

the riser are pinned with zero rotational stiffness. The outer surface of the FEA model is also 

set to be a fluid-solid interface for data transfer. 

 

3.4 Mesh dependence study 

 

A multiblock structured mesh is used in the present CFD simulation. The meshing strategy is 

that a fine mesh is used in the xy-plane and a relatively coarse mesh is used in the spanwise 

direction. The reason why a relatively coarse mesh can be used in the spanwise direction is 

that  the vibration of the riser increases the spanwise correlation of the wake (Blevins, 1977). 

In other words, the three-dimensionality of the wake reduces as a consequence of the motion 

of the riser. Therefore, it is possible to obtain reasonable results with relatively coarse mesh 

in the spanwise direction at the cost of sacrificing the resolution of small scale axial flow 

features. In order to ensure that the numerical results are independent of the grid size, a mesh 

dependence test is carried out. Three different meshes are used to simulate the case # 1105 

and the results are compared with the experimental data by Lehn (2003) and the numerical 

results of Huang et al. (2011a). Table 4 shows the mesh characteristics, the maximum IL root 

mean square (rms) amplitude ( max /xrmsA D ) and the maximum CF rms amplitude (
max /yrmsA D ) 

computed using the three mesh systems. Comparing with the experimental data, max /xrmsA D  is 

slightly underpredicted while 
max /yrmsA D  is slightly overpredicted using the three meshes. The 
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maximum difference of 5.93% occurs in the value of max /xrmsA D  between Mesh 1 and Mesh 2 

whereas the difference between Mesh 2 and Mesh 3 reduces to only 2.4%. In the meanwhile, 

the differences in the value of max /yrmsA D  between Mesh 1 and Mesh 2 and between Mesh 2 

and Mesh 3 are 3.07% and 2.24%, respectively. It can be concluded that the difference in the 

results predicted by Mesh 2 and Mesh 3 is within the acceptable range. The variation of rms 

amplitudes along the riser span in the IL and CF directions is displayed in Fig. 5. The IL and 

CF rms amplitudes and vibration modes predicted by the three meshes are quite similar and 

the maximum CF rms amplitudes predicted by Mesh 2 and Mesh 3 are in agreement with the 

numerical results of Huang et al. (2011a) with the CF responses predicted by the two meshes 

showing better comparison with the experimental data in the upper part of the riser (z/L > 0.6) 

than the results of Huang et al. (2011a). Based on the discussions above and also taking into 

account the computational efforts, the simulations in this paper are conducted with Mesh 2. 

As the present FEA mesh is able to predict the riser response with reasonable accuracy, the 

FEA mesh dependence study is not discussed in this paper.  

 

4. Results and discussions 

 

Numerical simulations are performed for VIV of a vertical riser in uniform and linearly 

sheared currents. The velocity profiles considered are uniform velocities V = 0.2 m/s and 0.42 

m/s and linearly sheared velocity profiles which can be described as Vprofile = (1 – 

0.86z/L)Vmax where Vmax = 0.2 m/s and 0.42 m/s. Both the IL and CF VIV results are 

compared with the experimental data by Lehn (2003). 

 

4.1 Riser dynamic responses 

 

Fig. 6 shows the comparison of the envelopes of the IL and CF displacements between the 

present simulation and the experiment. It is clear that the present results are in good 

agreement with the experimental data in terms of the dominant modes. In the case # 1103, the 

IL and CF vibrations are dominated by the second mode and the first mode, respectively. 

When the uniform flow velocity increases to V = 0.42 m/s, the dominant modes in the IL and 

CF directions change to the third mode and the second mode, respectively.  
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Similar to the uniform flow conditions, the dominant modes in the IL and CF directions in the 

two linearly sheared flow cases also change with the maximum flow velocity. In the present 

simulation, the variation of the dominant modes in the two linearly sheared flow cases is the 

same as that in the two uniform flow cases, i.e., the second mode and the first mode in the IL 

and CF directions for Vmax = 0.2 m/s transfer into the third mode and the second mode when 

Vmax increases to 0.42 m/s. 

 

One discrepancy is observed in the IL dominant mode in the case # 1201. The present 

numerical simulation predicts a second mode, whereas the dominant mode is the third mode 

in the experiment. We believe that the present numerical results are more reasonable and the 

reasons behind are explained as follows. 

 

As an approximation, the IL response frequency may be estimated to be twice the CF 

response frequency. This implies that the IL mode number is twice the CF mode number for a 

tensioned string, whereas for a nontensioned beam it is lower, due to the quadratic 

relationship between n and frequency (Lie and Kaasen, 2006). According to Lehn (2003), the 

natural frequency of the riser is dominated by tension if T ≥ 4ʌ2n2EI/L2. For the case # 1201 

we discussed herein, the tension of the riser T = 817 N is larger than 4ʌ2n2EI/L2 for n = 1, 2, 

and 3, therefore the natural frequencies of the first three modes are dominated by tension. It is 

thus reasonable to expect that the behaviour of the riser would be similar to a tensioned string, 

whose IL mode number should be twice the CF mode number when the riser vibrates in low 

mode numbers (n ≤ 3). As both the experiment and the present simulated CF dominant modes 

exhibit the first mode, the expected dominant mode in the IL direction should be the second 

mode. 

 

The IL and CF motion evolution responses along the riser predicted by the present FSI 

simulation are analyzed in an effort to understand the riser dynamics. As is shown in Fig. 7, 

the variation of the dominant mode shapes with the flow conditions agrees with the 

observations from Fig. 6. Under the uniform flow condition, the IL dominant mode changes 

from the second to the third mode and the CF dominant mode shifts from the first mode to the 

second mode when V increases from 0.2 m/s to 0.42 m/s. The variation of the dominant 

modes in the two linearly sheared flow cases is the same as that in the two uniform flow cases 

when Vmax increases from 0.2 m/s to 0.42 m/s. In all the cases considered, a single-mode 

vibration and a distinct standing wave response indicated by definite nodes and antinodes are 
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observed in both the IL and CF directions. These phenomena agree with the general 

conclusion of Constantindes and Oakley (2009) that a single mode will yield a pure standing 

wave response. 

 

4.2 Root mean square amplitudes  

 

The rms amplitudes in the IL and CF directions (Axrms/D and Ayrms/D) are compared with the 

experimental data as shown in Fig. 8. The experimental data are plotted in dots for easy 

identification. In the case # 1103, the maximum IL rms amplitude is found near the top end of 

the riser with its value max / 0.13xrmsA D   being overpredicted in the present simulation. The 

numerical results in the CF direction are in good agreement with the experimental data. The 

maximum CF rms amplitude is 
max / 0.4yrmsA D  . When the uniform flow velocity increases to 

V = 0.42 m/s, the maximum IL rms amplitude increases slightly to max / 0.14xrmsA D   and 

appears near the bottom end of the riser at z/L = 0.22. In contrast, the maximum CF rms 

amplitude increases dramatically to 
max / 0.81yrmsA D   which is similar to the CF VIV 

amplitudes reported by Vandiver (1993) and Huera-Huarte and Bearman (2011). 

 

Fig. 8 (c) and Fig. 8 (d) show the comparison of the rms amplitudes between the present 

numerical simulation and the experiment for linearly sheared flow. Similar to the uniform 

flow conditions, the maximum IL and CF rms amplitudes also increase with the maximum 

velocity Vmax in the two linearly sheared flow cases. However, the maximum rms amplitudes 

in the two linearly sheared flow cases are much smaller compared to those in the two uniform 

flow cases with max / 0.03xrmsA D   and 
max / 0.18yrmsA D   for Vmax = 0.2 m/s and max / 0.1xrmsA D   

and 
max / 0.31yrmsA D   for Vmax = 0.42 m/s. 

 

4.3 Displacement time histories and oscillation frequencies 

 

Fig. 9 shows the comparison of the displacement time histories at z/L = 0.22 between the 

present simulation and the experiment. In general, the numerical results are comparable with 

the experimental data. Because the onset of the vibration occurs randomly in the numerical 

simulation and the experiment, there are some phase differences between the numerical and 

experimental time histories.  
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Fig. 10 shows the comparison of the IL and CF oscillation frequencies at z/L = 0.22. The 

predicted results show good agreement with the experimental data. In the present simulation, 

the ratio of the IL oscillation frequency to the CF oscillation frequency is around two, which 

conforms to the scenario of dual resonance. It is also found from the present results that the 

IL and CF oscillation frequencies increase with the flow velocity. In the two uniform flow 

cases, the IL and CF oscillation frequencies increase from fox = 3.516 Hz and foy = 1.953 Hz 

to fox = 6.25 Hz and foy = 3.125 Hz when V increases from 0.2 m/s to 0.42 m/s. Similarly, in 

the two linearly sheared flow cases, the IL and CF oscillation frequencies increase from fox = 

3.125 Hz and foy = 1.563 Hz to fox = 5.469 Hz and foy = 2.734 Hz when Vmax increases from 

0.2 m/s to 0.42 m/s. The predicted IL and CF oscillation frequencies in the two linearly 

sheared flow cases are slightly lower than those in the two uniform flow cases. A quantitative 

difference in the IL oscillation frequency between the present results and the experimental 

data is observed in the case # 1201 (Fig. 10 (c)). The IL oscillation frequency in the present 

simulation is fox = 3.125 Hz while it is fox = 4.73 Hz in the experiment. The difference in the 

IL oscillation frequency leads to the discrepancy in the IL dominant mode as mentioned in 

Subsection 4.1. The possible reason for the difference in the IL oscillation frequency might 

be due to the fact that the displacements in the present simulation are obtained directly 

whereas the displacements in the experiment are derived from the accelerations, which may 

increase the uncertainties during the integration process.  

 

The predicted displacements and oscillation frequencies along the riser are further examined 

for all the cases. It is found that the motion at a single frequency and in a single mode shape 

is typical for the CF response of the riser, and a third harmonic frequency component at three 

times the first harmonic frequency is observed in the CF response at some locations along the 

riser. Fig. 11 (a) and Fig. 11 (b) show the predicted displacements and oscillation frequencies 

along the riser in the case # 1103. The IL and CF responses have consistent dominant 

frequencies around 3.516 Hz and 1.953 Hz along the riser which correspond to the structure’s 

second mode and first mode, respectively. The 2:1 IL to CF oscillation frequency ratio 

indicates the occurrence of dual resonance. In addition, a third harmonic frequency 

component is observed in the CF response at some locations along the riser. Fig. 11 (c) and 

Fig. 11 (d) are the predicted displacements and oscillation frequencies along the riser in the 

case # 1201. The CF response is also consistent along the entire riser at a frequency of foy = 

1.563 Hz and again a third harmonic frequency component is found in the CF response at 
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some locations along the riser. It is notable that in this case the IL response at some locations 

has appreciable contributions at both twice the CF response frequency and the CF response 

frequency itself. Similar IL response has been reported by Tognarelli et al. (2004).  

 

4.4 Orbital trajectories 

 

The predicted orbital trajectories at eight different positions along the riser span (z/L = 0.11, 

0.22, 0.33, 0.44, 0.55, 0.66, 0.77 and 0.88) are compared with the experimental data in Fig. 

12. The selected positions coincide with the locations of the accelerometers in the experiment. 

As is seen from Fig. 12, most of the orbital trajectories are of a figure-eight shape indicating 

the occurrence of dual resonance where the IL and CF vibration frequencies have a ratio of 

two (Dahl et al., 2010). Another interesting phenomenon is that most of the orbital 

trajectories are counterclockwise (CC), i.e., the cylinder motion is counterclockwise at the top 

of the figure-eight motion. The exceptional clockwise (C) trajectories are marked with letter 

“C” in Fig. 12. According to Bourguet et al. (2011b), the CC direction is the predominant 

orbit orientation in the lock-in region. The upstream motion of the cylinder in the CC 

trajectory leads to a closer proximity of the cylinder and the recently shed vortices and energy 

is transferred from the fluid to the body under a resonance condition (Dahl et al., 2007). On 

the other hand, clockwise orbits are associated with damping fluid forces (Bourguet et al., 

2011b). In the cases considered, most of the riser span is in the lock-in region regardless of 

the incoming flow conditions. According to the orbit orientations, it can be seen that the non-

lock-in regions in the two linearly sheared flow cases are larger than those in the two uniform 

flow cases.  

 

4.5 Vortex shedding modes 

 

Fig. 13 shows the vortex shedding at five different planes along the riser, i.e., z/L = 0.11, 0.3, 

0.49, 0.68 and 0.88 under different current profiles. It can be seen from the vorticity contour 

plots that the majority of the vortex shedding shows a clear 2S pattern (two single vortices 

per cycle), whereas a 2P mode (two vortex pairs formed in each cycle of the body motion) is 

observed in the case # 1105 at z/L = 0.3 near the position z/L = 0.22 where the maximum 

vibration amplitude appears. The present observation agrees with the conclusions of 

Meneghini et al. (2004), Yamamoto et al. (2004) and Sun et al. (2012) for VIV of flexible 
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risers that a 2S mode is found in regions of small amplitudes and a 2P mode is observed in 

regions of larger amplitudes.  

 

4.6 Fatigue damage indices 

 

One of the objectives to study flexible riser VIV is to assess the fatigue damage caused by the 

vibration, thus the fatigue damage index as defined by Tognarelli et al. (2004) is evaluated in 

this subsection with available numerical modelling results. The damage index is defined as 

DI = fz,İİ3 where fz,İ is the zero-crossing frequency of the bending strain and İ is the rms strain. 

In the present simulation, the strain data in the IL and CF directions are obtained from 

ANSYS software. The calculated fatigue damage indices are compared to the experimental 

data in Fig. 14. The comparison shows that the present numerical results are generally in 

good agreement with the experimental data. As is shown in Fig. 14, the IL and CF fatigue 

damage indices increase with the flow velocity in all the cases considered. According to 

Subsection 4.3, the response frequencies in the case # 1105 are slightly higher than those in 

the case # 1205, however, the fatigue damage indices in the case # 1105 are considerably 

higher than those in the case # 1205 in the lower part of the riser. That is because the large-

amplitude vibration associated by the 2P vortex shedding mode produces significantly larger 

strains in the IL and CF directions. According to Tognarelli et al. (2004), the fatigue damage 

index is determined by the mode number, the response frequency and the response amplitude. 

As there are discrepancies in the IL dominant mode number and response frequency in the 

case # 1201 between the present numerical results and the experimental data, a discrepancy is 

also observed in the IL fatigue damage index. It is noteworthy that in all the four cases 

considered in the present simulation, the IL fatigue damage is in fact higher than CF fatigue 

damage in the two low flow velocity cases, i.e., # 1103 and # 1201. It is only when the flow 

velocity or maximum flow velocity increases to 0.42 m/s that the CF fatigue damage reaches 

the same order of magnitude as the IL fatigue damage. This finding agrees with the 

conclusion of Tognarelli et al. (2004). Although the present numerical simulation does not 

cover as many velocities as the experiment did, the available results have already suggested 

that, from a design point of view, the IL fatigue damage is not negligible especially for low 

flow velocity or low mode number applications such as pipeline spans or some drilling and 

production riser. 
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 5. Conclusions 

 

VIV of a vertical riser in the uniform and linearly sheared currents is numerically studied 

using a fully 3D FSI simulation methodology. The results of a total of four cases are 

presented for two uniform flow profiles with V = 0.2 m/s and 0.42 m/s and two linearly 

sheared flow profiles with Vmax = 0.2 m/s and 0.42 m/s at the bottom end and Vmin/Vmax = 0.14. 

The predicted numerical results are in good agreement with the ExxonMobil vertical riser 

model test results. The overall comparison indicates that the present numerical method is 

reliable and capable of predicting reasonably accurate VIV responses of long risers subject to 

uniform currents and linearly sheared currents. In addition, with our numerical modelling, 

flow visualisation results which are hard to obtain in the experimental tests are provided. The 

main findings of the present paper can be summarised as follows. 

 

The dynamic response of the riser is studied by examining the dominant modes, rms 

amplitudes, displacement time histories, dominant frequencies and orbital trajectories. It is 

found that the dominant mode numbers in the IL and CF directions increase with the flow 

velocity. The variation of the dominant modes in the two linearly sheared flow cases is the 

same as that in the two uniform flow cases. A single-mode vibration and a distinct standing 

wave response are observed in both the IL and CF directions. In terms of the rms amplitudes, 

the maximum IL and CF rms amplitudes are found to increase with the flow velocity under 

both flow conditions. However, the maximum rms amplitudes in the two linearly sheared 

flow cases are much smaller than those in the two uniform flow cases. In general, the IL 

response has a dominant frequency twice the CF response frequency. Both the IL and CF 

oscillation frequencies increase with the flow velocity. In the meanwhile, the IL and CF 

oscillation frequencies in the two linearly sheared flow cases are slightly lower than those in 

the two uniform flow cases. The motion at a single frequency and in a single mode shape is 

typical for the CF response of the riser. A third harmonic CF frequency component is found 

at some locations along the riser. In certain cases, the IL response at some locations has 

appreciable contributions at both twice the CF response frequency and the CF response 

frequency itself. As for the orbital trajectories, most of the orbital trajectories are of a figure-

eight shape indicating the occurrence of dual resonance and most of the riser span is in the 

lock-in region characterised by counterclockwise orbits. Judging from the orbit orientations, 

the two linearly sheared flow cases have larger non-lock-in regions than the two uniform flow 

cases. 
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As vortex shedding is an important aspect of flexible riser VIV analysis, the vortex shedding 

modes at different slices along the riser span are studied. Two different vortex shedding 

modes are observed in the present simulation, i.e., 2S and 2P modes. A 2S mode is widely 

observed in all the cases considered, whereas a 2P mode is found to be associated with the 

maximum amplitude. 

 

The fatigue damage due to VIV is analysed in the consideration of its significance in practical 

applications. It is found that the IL and CF fatigue damage indices increase with the flow 

velocity as a result of the increased mode number, the increased response frequency and the 

increased response amplitude. The larger-amplitude vibration associated by the 2P vortex 

shedding mode in the lower part of the riser in the case # 1105 produces significantly larger 

strains in the IL and CF directions leading to considerably higher fatigue damage indices. The 

IL fatigue damage is higher than the CF fatigue damage at low flow velocities in the cases # 

1103 and # 1201. The CF fatigue damage reaches the same order of magnitude as the IL 

fatigue damage in the cases # 1105 and # 1205. The results emphasise the importance of the 

IL fatigue damage especially for low flow velocity or low mode number applications.  

 

As this paper mainly focusses on a low flow velocity range and only the uniform flow and 

linearly sheared flow cases are considered. Future research on riser VIV in a higher flow 

velocity range under more complex flow conditions is worthwhile. 

 

Overall, the present numerical method is able to reasonably predict VIV response of a 

vertical riser under uniform and linearly sheared flow conditions and can be used as an 

altenative to the existing prediction models for deepwater riser VIV prediction. 
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Table 1 Properties of the vertical riser model. 

Properties  Values SI units 

L 9.63 m 

Do 20 mm 

tw 0.45 mm 

E 1.025 × 1011 N/m2 

T 817 N 

m* 2.23 - 

L/D 481.5 - 

 

Table 2 Incoming flow velocity parameters of different cases. 

Case # Flow conditions Vmax (m/s) Vmin/Vmax 

1103 Uniform 0.2 1 

1105 Uniform 0.42 1 

1201 Linearly Sheared 0.2 0.14 

1205 Linearly Sheared 0.42 0.14 
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Table 3 Eigenfrequencies for the vertical riser model. 

Mode  fn, string fn, beam Theoretical Value FEA Error 

1 1.77 0.24 1.79 1.7904 0.022% 

2 3.55 0.94 3.67 3.6725 0.068% 

3 5.32 2.12 5.73 5.7309 0.015% 

4 7.1 3.77 8.04 8.0373 0.034% 

5 8.87 5.89 10.65 10.649 0.0094% 

6 10.64 8.48 13.62 13.61 0.073% 

7 12.42 11.55 16.96 16.952 0.047% 

8 14.2 15.08 20.71 20.698 0.058% 

 

Table 4 Mesh dependence test results. 

 
Nnode ǻz/D ǻr/D Nc 

max /xrmsA D  
max /yrmsA D  

Mesh 1 626040 0.332 0.001 180 0.118 0.781 

Mesh 2 1043400 0.197 0.001 180 0.125 0.805 

Mesh 3 2086800 0.097 0.001 180 0.128 0.823 

EXP - - - - 0.14 0.745 

Huang et al. (2011a) 1480100 0.197 ?? 182 ?? 0.833 
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(a) (b) 

Fig. 1 (a) Sketch of physical configurations and (b) Uniform and linearly sheared incoming 

flow velocity profiles. 
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Fig. 2 Flow chart of two-way explicit FSI solution procedures (for one time step). 
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(b) (c) 

  

(d) (e) 

Fig. 3 (a) Computational domain, (b) computational mesh in the xy-plane, (c) mesh around 

the cylinder, (d) initial mesh and (e) mesh with riser deflection. 
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Fig. 4 FEA mesh: (a) initial mesh and (b) mesh with riser deflection. 
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(a) (b) 

Fig. 5 Comparison of the rms amplitudes between different mesh systems with published data: 

(a) IL rms amplitudes and (b) CF rms amplitudes. 
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Fig. 6 Comparison of the riser response envelopes: (a) # 1103, (b) # 1105, (c) # 1201 and (d) 

# 1205. 
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Fig. 7 The IL and CF motion evolution responses along the riser: (a) # 1103, (b) # 1105, (c) # 

1201 and (d) # 1205. 
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Fig. 8 Comparison of the rms amplitudes: (a) # 1103, (b) # 1105, (c) # 1201 and (d) # 1205.
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Fig. 9 Comparison of the displacement time histories at z/L = 0.22: (a) # 1103, (b) # 1105, (c) 

# 1201 and (d) # 1205.
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Fig. 10 Comparison of the oscillation frequencies at z/L = 0.22: (a) # 1103, (b) # 1105, (c) # 

1201 and (d) # 1205. 
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 (d) 

Fig. 11 Displacements and oscillation frequencies along the riser: (a) displacement time 

histories (# 1103), (b) oscillation frequencies (# 1103), (c) displacement time histories (# 

1201) and (d) oscillation frequencies (#1201). 
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Fig. 12 Comparison of the orbital trajectories at various positions: (a) # 1103, (b) # 1105, (c) 

# 1201 and (d) # 1205. 
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Fig. 13 Vortex shedding under different current profiles: (a) # 1103, (b) # 1105, (c) # 1201 

and (d) # 1205. 



50 

 

 

  

(a) 

  

(b) 

 

 



51 

 

 

  

(c) 

  

(d) 

 

Fig. 14 Comparison of the fatigue damage indices: (a) # 1103, (b) # 1105, (c) # 1201 and (d) 

# 1205. 


