

Kerr, William J. and Mudd, Richard J. and Owens, Philippa K. and Reid, Marc and Brown, Jack A. and Campos, Sébastien (2016) Hydrogen isotope exchange with highly active iridium(I) NHC/phosphine complexes: a comparative counter-ion study. Journal of Labelled Compounds and Radiopharmaceuticals, 59 (14). pp. 601-603. ISSN 0362-4803, http://dx.doi.org/10.1002/jlcr.3427

This version is available at https://strathprints.strath.ac.uk/56684/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

Hydrogen Isotope Exchange with Highly Active Iridium(I) NHC/Phosphine Complexes: a Comparative Counter-ion Study

William J. Kerr,^{a*} Richard J. Mudd,^a Philippa K. Owens,^a Marc Reid,^a Jack A. Brown,^b and Sebastien Campos^b

Herein we present a range of substrates that undergo hydrogen isotope exchange with an iridium(I) NHC/phosphine complex bearing the less coordinating tetrakis[3,5-bis(trifluoromethyl)phenyl]borate counterion, and compare these with labelling using the equivalent, more established hexafluorophosphate complex. The changes in reactivity and selectivity of these complexes in a series of solvents are examined.

Keywords: *ortho*-hydrogen isotope exchange; *N*-heterocyclic carbene; deuteration; iridium.

Introduction

The exchange of hydrogen in a C-H bond by deuterium or tritium, through the process of hydrogen isotope exchange (HIE), represents a direct and economical method of generating isotopically-labelled molecules.1 Furthermore, due to the growing demand for deuteriumtritium-labelled compounds for use in determining the pharmacokinetics active pharmaceutical ingredients and in mechanistic studies, there has been increased focus on the development of catalysts capable of facilitating HIE in a mild and efficient manner.2 Although a wide variety of metals can catalyse the HIE process, iridium complexes are the most widely utilised for directing-group assisted ortho-HIE (Scheme 1).3

Historically, this iridium-catalysed, directed HIE process has been commonly

Scheme 1. Iridium-catalysed ortho-HIE.

performed using Crabtree's catalyst.4 However, the necessity for a high, and, indeed, often stoichiometric, catalyst loading, has led to attention being turned to the use of alternative catalyst species in recent years. In this regard, studies within our laboratory have delivered a series of iridium(I) complexes which are highly effective HIE catlaysts,5 and which have proven applicable with a wider array of functional groups and reaction solvents Crabtree's catalyst.6 breakthrough in this latter regard was the synthesis of cationic NHC/phosphine complexes bearing alternative counterions to the traditional hexafluorophosphate (e.g. complex 3). Specifically, improved catalyst activity and more general solvent applicability was observed with Ir(I) NHC/phosphine complex **4**, containing the

^aDepartment of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow G1 1XL, Scotland, U.K.

^bGlaxoSmithKline R&D, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, England, U.K.

*Correspondence to Professor William J. Kerr, Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow G1 1XL, Scotland, U.K.; Tel: (+44)-141-548-2959; Fax: (+44)-141-548-4822; E-mail: w.kerr@strath.ac.uk.

$$\begin{bmatrix} PPh_3 \\ Ir \\ Mes \end{bmatrix} X \quad \mathbf{3}, X = PF_6 \\ \mathbf{4}, X = B \\ CF_3 \end{bmatrix}$$

Scheme 2. Ir(I)-NHC/phosphine complexes for HIE.

BArF (tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) counterion (**Scheme 2**).^{6b} Herein, we further expand upon this initial application of catalyst **4**, and extend the comparison of the PF₆ and BArF counterions, with particular attention to the selectivity within the HIE processes reported.

Experimental

For full details on all experimental procedures, including catalyst syntheses and HIE processes, see the *Supporting Information*.

Results & Discussion

Our studies commenced with comparison of our commercially-available catalyst 3, bearing the PF₆ counterion, with the equivalent catalyst 4, bearing the bulky, less coordinating BArF unit. The labelling of a range of substrates, featuring a variety of different directing groups (DG), was evaluated with low loadings of catalysts 3 and 4 (Figure 1). From our previous work, we had observed that both complexes performed excellently with a simple ketone directing group (substrate **5**).6b Pleasingly, upon extending these studies to the weaker ester DG in 6, high levels of deuterium incorporation were, again, observed with both catalysts. The amide DG in compound 7 delivered similar levels of HIE with both complexes 3 and 4. Importantly, nitrobenzene 8, which is known not to undergo HIE with Crabtree's catalyst,4b performed excellently with both

^aSubstrate (0.215 mmol), catalyst (0.01075 mmol; 5 mol%), DCM (1 mL), D₂, 1 h, 25 °C; ^bIsotope incorporation was determined by ¹H NMR spectroscopy; ^cIncorporation values are the average of two runs.

Figure 1. *ortho*-HIE with a series of directing groups. *a,b,c*

complexes, giving near quantitative incorporation with catalyst **4**.

We have previously reported on the utility of complexes 3 and 4 in a range of solvents.6a,b During these studies, in a single example of a substrate containing two competing DGs, a solvent-dependent variation in the selectivity of labelling was observed. To further develop understand this behaviour, a number of multi-functional aromatic compounds were selected for study, based upon our earlier substrate scope. Firstly, we applied 4nitroacetophenone 9 under our previously utilised conditions with complexes 3 and 4, in DCM, THF, and toluene (Figure 2). In DCM, both complexes performed similarly, with excellent levels of deuterium incorporation observed ortho to the ketone DG, and low levels observed ortho- to the nitro unit. Lower overall incorporation was observed in THF following the same regioselectivity trend. Complex 4 also delivered the same general ratio of labelling in toluene. However, a change in selectivity was observed in this solvent

Figure 2. HIE on bifunctional substrates 9 and 10.

with catalyst **3**. Specifically, enhanced levels of labelling were now observed adjacent to the nitro DG, indicating that, with the combination of a less coordinating solvent, and the less electrophilic catalyst **3**, both directing groups bind effectively, resulting in exchange at both sites.

Ethyl 4-nitrobenzoate 10 was next examined under the same protocol. In accordance with our earlier substrate scope study, elevated levels of deuterium incorporation were observed with complex 4 in DCM, with a slight preference for HIE ortho to the nitro DG with both catalysts. Notably, using THF as the solvent significantly reduced HIE at both positions. presumably due to solvent vs substrate competitive binding with these more weakly coordinating DGs.6a,b In toluene, a low incorporation was observed with complex 3; however, complex 4 proved more effective in this case, delivering moderate levels of HIE.

Next. we examined diethyl 4-11 nitrobenzamide under the same conditions. levels reaction High incorporation were observed at both positions, with complex 3 delivering a slightly increased deuterium incorporation compared to 4 (Figure 3). However, upon changing the solvent to THF, selectivity for HIE ortho to the amide DG

Figure 3. HIE on bifunctional substrates 11 and 12.

was significantly increased with both **3** and **4**. In toluene, moderate to good levels of deuterium incorporation were observed, with lowered selectivity relative to THF.

Finally, we applied this developed understanding to labelling of antiandrogen drug, Nilutamide 12. With complex 3 in DCM, complete labelling ortho to the nitro DG, via a 5-membered metallacyclic intermediate (5-mmi) was observed, in addition to a small amount of labelling directed by the amide through a 6-mmi. Pleasingly, the use of complex 4 suppressed this latter pathway, resulting in almost exclusive labelling ortho to the nitro DG. However, with THF as the solvent, the level of incorporation was negligible in all positions, in accordance with earlier observations that THF binds preferentially to the catalyst in place of weakly-directing substrates. In toluene, very low levels of labelling were observed; however, this is mainly attributed to the poor solubility of 12 in this solvent.

Conclusions

The studies reported herein have provided further evidence that complex **4**, bearing the less coordinating BArF counterion, is more reactive than catalyst **3** with less

coordinating directing groups, but that the combination of counterion and solvent is vital in delivering a site-selective HIE process. In conclusion, both catalysts 3 and 4 show excellent reactivity, with the specific choice of catalyst and solvent dependent upon the substrate in question and the required position of isotope incorporation.

Acknowledgements

The authors are grateful to the University of Strathclyde (RJM), the Engineering and Physical Sciences Research Council (EPSRC) and GlaxoSmithKline (PKO), and the Carnegie Trust (MR) for funding.

References

- [1] For reviews on hydrogen isotope exchange, see: (a) J. Atzrodt, V. Derdau, T. Fey, J. Zimmermann, *Angew. Chem. Int. Ed.* **2007**, *46*, 7744-7765; (b) P. H. Allen, M. J. Hickey, L. P. Kingston, D. J. Wilkinson, *J. Labelled Compd. Radiopharm.* **2010**, *53*, 731-738.
- [2] E. M. Isin, C. S. Elmore, G. N. Nilsson, R. A. Thompson, L. Weidolf, *Chem. Res. Toxicol.* **2012**, *25*, 532-542.
- [3] J. R. Heys, *J. Labelled Compd. Radiopharm.* **2007**, *50*, 770-778.

- [4] (a) A. Y. L. Shu, W. Chen, J. R. Heys, J. Organomet. Chem. 1996, 524, 87-93; (b) G. J. Ellames, J. S. Gibson, J. M. Herbet, A. H. McNeill, Tetrahedron 2001, 57, 9487-9497; (c) W. J. S. Lockley J. Labelled Compd. Radiopharm. 2010, 53, 668-673; (d) R. Salter, J. Labelled Compd. Radiopharm. 2010, 53, 645-657.
- [5] (a) J. A. Brown, S. Irvine, A. R. Kennedy, W. J. Kerr, S. Andersson, G. N. Nilsson, *Chem. Commun.* **2008**, 1115-1117; (b) G. N. Nilsson, W. J. Kerr, *J. Labelled Compd. Radiopharm.* **2010**, *53*, 662-667; (c) J. A. Brown, A. R. Cochrane, S. Irvine, W. J. Kerr, B. Mondal, J. A. Parkinson, L. C. Paterson, M. Reid, T. Tuttle, S. Andersson, G. N. Nilsson, *Adv. Synth. Catal.* **2014**, *356*, 3551-3562.
- [6] (a) A. R. Cochrane, C. Idziak, W. J. Kerr, B. Mondal, L. C. Paterson, T. Tuttle, S. Andersson, G. N. Nilsson, *Org. Biomol. Chem.* **2014**, *12*, 3598-3603; (b) A. R. Kennedy, W. J. Kerr, R. Moir, M. Reid, *Org. Biomol. Chem.* **2014**, *12*, 7927-7931; (c) W. J. Kerr, R. J. Mudd, L. C. Paterson, J. A. Brown, *Chem. Eur. J.* **2014**, *20*, 14604-14607; (d) W. J. Kerr, M. Reid, T. Tuttle, *ACS Catal.* **2015**, *5*, 402-410; (e) J. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, P. Rojahn, R. Weck, *Tetrahedron*, **2015**, *71*, 1924-1929; (f) J. Devlin, W. J. Kerr, D. M. Lindsay, T. J. D. McCabe, M. Reid, T. Tuttle, *Molecules*, **2015**, *20*, 11676-11698.

$$\begin{bmatrix}
PPh_3 \\
IMes
\end{bmatrix}
X
D_2
D^b
D^a
D^a$$

$$X = PF_6 \text{ vs BArF comparative study}$$

$$D_2 \text{ solvent}$$

$$D_2 \text{ solvent}$$

$$D_3 \text{ point}$$

$$V = PF_6 \text{ vs BArF comparative study}$$

Hydrogen Isotope Exchange with Highly Active Iridium(I) NHC/Phosphine Complexes: a Comparative Counter-ion Study

William J. Kerr, Richard J. Mudd, Philippa K. Owens, Marc Reid, Jack A. Brown, and Sébastien Campos