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Abstract: Fast deconvolution is an essential step to calibrate instrument 

responses in big fluorescence lifetime imaging microscopy (FLIM) image 

analysis. This paper examined a computationally effective least squares 

deconvolution method based on Laguerre expansion (LSD-LE), recently 

developed for clinical diagnosis applications, and proposed new criteria for 

selecting Laguerre basis functions (LBFs) without considering the mutual 

orthonormalities between LBFs. Compared with the previously reported 

LSD-LE, the improved LSD-LE allows to use a higher laser repetition rate, 

reducing the acquisition time per measurement. Moreover, we extended it, 

for the first time, to analyze bi-exponential fluorescence decays for more 

general FLIM-FRET applications. The proposed method was tested on both 

synthesized bi-exponential and realistic FLIM data for studying the 

endocytosis of gold nanorods in Hek293 cells. Compared with the 

previously reported constrained LSD-LE, it shows promising results. 
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1. Introduction 

Fluorescence lifetime image microscopy (FLIM) has been showing great potential for 

visualizing biomolecules or physiological parameters (such as Ca2+, O2, pH, temperature) in 

fixed and living cells in biology and medicine [1�8]. It can localize specific fluorophores as 

usual fluorescence intensity imaging, but more importantly it can probe local environments 

around the fluorophores. It can be implemented in scanning confocal or multi-photon 

microscopes, or in wide-field microscopes and endoscopes [4�7]. In this paper we will focus 

on time-domain time-correlated single-photon counting (TCSPC) or time-gated FLIM 

techniques, where the measured fluorescence response from biological tissues to a laser 

excited pulse is a convolution of the intrinsic fluorescence impulse response function (fIRF) 

(emitted from tissues) with the instrument impulse response function (iIRF) (contributed by 

the distorted light pulse, detection mechanisms, instrument electronics and other delay 

components [9]). 

In FLIM experiments using Förster resonance energy transfer (FRET) techniques to study 

cellular protein interaction networks [10�12], fIRF can be modelled as a sum of two 

exponentials (or more than two if fluorophores have complicated fluorescence decay profiles). 

Accurately measuring lifetime components is very crucial for detecting protein-protein 

interactions and protein conformational changes inside living cells [13�17]. In this paper we 

will examine the applicability of the proposed approach for bi-exponential fluorescence 

decays, especially for those having a fast (sub-nanosecond) and a slow (nanosecond) 

components, common situations encountered when we use FLIM-FRET techniques to study 

the endocytosis of gold nanorods (GNR) in living cells. The study results will be valuable for 

exploring research in drug delivery or disease treatment. 

Deconvolution techniques used to recover the fIRF from the fluorescence histograms 

measured by TCSPC systems are very important and typical in FLIM analysis. Although tail-

fitting is widely used for fast analysis, scientists are still keen to know exact estimations. 

Numerous deconvolution techniques have been proposed [18�21], and among them least 

squares deconvolution based on Laguerre expansion (LSD-LE) has been proven effective 

showing superior sensitivity in disease detection [22�26]. There are, however, two mysterious 

factors to be chosen in order to use LSD-LE properly in diagnosis or parameter identification 

applications [27�31]. These LSD-LE methods using ordinary least squares analysis (OLSD-

LE) can easily cause �overfitting� (i.e. fitting the noise instead of the true signals), a serious 

problem especially when the acquisition has to be fast for diagnosis applications where the 

detected photon signal is contaminated by noise. Liu et al. presented a constrained LSD-LE 

(CLSD-LE) to avoid this problem, and they concluded that the chosen Laguerre basis 

functions (LBFs) should be mutually orthonormal [9] within the observation window (T) to 

perform CLSD-LE. To meet this condition, however, T needs to be much larger than the 

slowest decay to ensure that the LBFs, fIRF, and the derivatives of LBFs are �sufficiently 

close to zero� at t ~T (t being the time delay with respect to the laser pulse). This would 
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require shinning pulsed lasers with a low duty-cycle, reducing the efficiency of photon 

collection. 

There are two major contributions in this paper. First, we introduce new criteria for 

selecting LBFs according to the residual level of Laguerre expansion instead of the mutual 

orthonormalities between LBFs. This will allows LSD-LE to be applicable even when T is 

comparable to the largest lifetime component. Second, the selection criteria are expanded to 

study bi-exponential decays for more general FLIM-FRET applications instead of only for 

diagnosis applications where single-exponential approximations might not produce enough 

contrast. To demonstrate the performances, we will test the proposed approaches on both 

synthesized data and realistic FLIM data. 

2. Theory and method 

In a time-domained FLIM experiment the measured fluorescence decay y(t) is the convolution 

of the fIRF h(t) and iIRF I(t): 

 ( ) ( ) ( ) ( ) , 0 ,y t I t h t t t Tε= ∗ + ≤ ≤  (1) 

where İ(t) is additive noise. For TCSPC based FLIM systems, the noise İ(t) follows a Poisson 

distribution [32�36] and Eq. (1) can be discretized to 

 ( ) ( ) ( ) ( )
1

, 1, 2, , .
k

i
y k I k i h i k k Nε

=
= − + =   (2) 

Assume h(k) is a bi-exponential decay, we have 

 ( ) ( ) ( ) ( ) 21exp 1 1 exp 1 ,D s D sh k Af k t A f k tτ τ= − − + − − −        (3) 

where A is the amplitude, fD (0 < fD < 1) the proportion, ts the bin width of the stopwatches (4 

~100ps in a state-of-the-art TCSPC system), and Ĳ1,2 the fluorescence lifetimes (Ĳ1 < Ĳ2). The 

fIRF can be expanded by an ordered set of discrete-time LBFs bl(k;Į) [22]: 

 ( ) ( )
1

; , 1, 2, , ,� L

l ll
h k c b k k Nα

=
= = …  (4) 

where bl(k;Į) is determined by the Laguerre dimension L and the scale Į, and cl is the lth 

expansion coefficient. It is well known that LBFs form an orthonormal basis set only when 

N→∞. Previous studies concluded that the parameters L and Į should be chosen such that the 

LBFs and their corresponding derivatives should be �sufficiently close to zero� at t ~T [9]. 

This condition would need a much larger T (compared to the largest lifetime component; Ĳ2 in 

this case) by using a pulsed laser with a lower duty cycle. In fact the expansion of fIRF with 

LBFs is simply a fitting problem where the optimal criteria should be the extent to which the 

sum of squared errors (SSE) can be minimized regardless of the orthonormalities between the 

LBFs used within the observation window 0 ≤ t ≤ T. Here, we define the normalized SSE 

(NSSE) for the fitting as: 

 
2 2� .hNSSE h h h= −  (5) 

Minimizing NSSEh would be a straightforward way to assess the performances for fitting an 

fIRF with different lifetimes by Laguerre expansion. 

The Laguerre scale Į determines the rate of the exponential asymptotic decline of LBFs. 

The fIRF with a small lifetime prefers a small Į, whereas the one with a larger lifetime prefers 

a larger Į. When the field of view contains fluorescence decays with a wide range of 

lifetimes, a strategy to find the optimized Į should be in place. To facilitate the discussions, 

we rewrite the LSD-LE equations here. Substituting Eq. (4) into Eq. (2), we can obtain 
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 ( ) ( ) ( ) ( ) ( ) ( )
1 1

, k;g .
L k

l l l ll i
y k c v k k v k I k i bε

= =
= + = −   (6) 

The deconvolution is to estimate cl, and Eq. (6) can be rewritten as 

 .= +y Vc İ  (7) 

With linear optimization, we have 

 T 1 T� ( ) .−
=c V V V y  (8) 

Equation (8) is called OLSD-LE. The main problem of OLSD-LE is that it causes overfitting 

easily when a higher L is applied [9]. To avoid this a smaller L was often suggested, however 

a smaller L is not able to resolve small lifetimes and therefore lowers the lifetime dynamic 

range. Liu et al. introduced a constrained LSD-LE called CLSD-LE to overcome this 

overfitting problem, and a higher L can then be applied [9]. Here only the conclusion is given, 

 ( )T 1 T T� ( �) ,−
= −c V V V D Ȝy  (9) 

where �Ȝ  is the solution to non-negative least square problem 

 ( )
3

2
T Tminmize ,subject to 0,

N −∈

− ≥
Ȝ R

C V y D Ȝ Ȝ    (10) 

where C is the Cholesky decomposition of the positive definite matrix (VT
V)−1 and D = D(3)

B 

is the third-order forward finite difference matrix for the LBFs B = {bl|l = 1,2,�,L}. The 

recovered fIRF by Laguerre expansion can be derived after ƙ is obtained by either Eq. (8) or 

Eq. (9): 

 ( )
1

� �( ) ; .
L

D l ll
h k c b k α

=
=  (11) 

The recovered decay is the convolution of ƩD(k) and I(k) 

 
1 1

�� �( ) ( ) ( ) ( ).
k k

D l li i
y k I k i h i c v k

= =
= − =   (12) 

The parameters fD and Ĳ1,2 can be estimated (fըD and 1,2
�τ ) from ƩD(k) by using the least 

square estimator (LSE). To assess the performances, we define µx and ıx as the mean and the 

standard deviation of a random variable x, respectively. The normalized bias and normalized 

variance are defined as 

 ( )
22 2 2 2/ ,  / ,x r r x rBias x x Variance xµ σ= − =  (13) 

where xr is the real value of x. For the estimated parameters fըD and 1,2
�τ  in TCSPC-FLIM 

experiments, Variance > Bias2 means that the Poisson noise dominates the residual; 

otherwise, it means that the bias dominates the residual. The recovered fIRF obtained from fըD 

and 1,2
�τ  is 

 ( ) ( ) ( ) ( ) 21exp 1 1 exp� � � .� � �1  �
E D s D sh k Af k t A f k tτ τ= − − + − − −        (14) 

The deconvolutions and the computations of fըD and 
1,2
�τ  are all curve-fitting problems. As Eq. 

(5), to assess their performances, the NSSE of ǔ(k), ƩD(k) and ƩE(k) are defined as 

 
2 22 2 2 2� .�;� ; hD D hEy ENSSE y y y NSSE h h h NSSE h h h= − = − = − (15) 
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3. Theoretical simulations & analysis of realistic FLIM data (GNRs in Hek293 cells) 

Figure 1 shows the flow diagram summarizing how the performances of OLSD-LE and 

CLSD-LE on bi-exponential decays (0 < fD < 1, 0.1ns ≤ Ĳ1 ≤ 0.9ns and 2ns ≤ Ĳ2 ≤ 3ns) were 

assessed in four steps, highlighted in different colours. The flow diagram can also be 

applicable to realistic FLIM data by replacing the synthesized data with the measured data. 

 

Fig. 1. Flow diagram for testing LSD-LE on bi-exponential decays. 

3.1 Symthesized FLIM data analysis 

Firstly, LBFs were chosen to ensure that a given NSSEh, Eq. (5), can be met. We set 

log(NSSEh) < −10 (natural logarithm), and NSSEh was computed for two extreme cases (fD = 

0, Ĳ1 = 0.1ns, Ĳ2 = 3ns) and (fD = 1, Ĳ1 = 0.1ns, Ĳ2 = 3ns) as a function of L and Į. Figures 2 and 

3 show the NSSEh plots for OLSD-LE and CLSD-LE, respectively. The shadowed areas 

shown in Figs. 2(b) and 3(b) are where L and Į should be selected to meet log(NSSEh) < −10, 

and all other combinations (0.1ns ≤ Ĳ1 ≤ 0.9ns and 2ns ≤ Ĳ2 ≤ 3ns) surely meet this condition. 

To reduce instability (ill-conditioned VT
V deteriorates stability), computation and overfitting 

(for OLSD-LE), the smallest L within the shadowed area is suggested. Therefore, Fig. 2(b) 

shows that the optimal LBFs for OLSD-LE has L = 12 and Į = 0.924, whereas Fig. 3(b) 

suggests L = 16 and Į = 0.912 for CLSD-LE. Obviously CLSD-LE needs a larger L and is 

slightly more complicated computationally. 

 

Fig. 2. NSSEh for fitting the fIRF by OLSD-LE. 

#262750 Received 7 Apr 2016; revised 18 May 2016; accepted 8 Jun 2016; published 14 Jun 2016 

(C) 2016 OSA 27 Jun 2016 | Vol. 24, No. 13 | DOI:10.1364/OE.24.013894 | OPTICS EXPRESS 13899 



 

Fig. 3. NSSEh for fitting the fIRF by CLSD-LE. 

In general, LSD-LE methods need to specify L and Į properly for robust analysis. Usually 

the lifetime range in the field of view can be known before experiments; this information can 

be used to obtain new residual plots similar to Figs. 2 and 3. For a given residual requirement, 

L is suggested to be as small as possible to ensure a faster analysis speed. On the other hand, 

to improve the resolvability for the smaller lifetime Ĳ1, it is required that L cannot be too 

small. The selection of L is a trade-off between the speed and the lifetime resolvability, 

whereas Į determines the accuracy of the fitting. For these reasons L = 16 and Į = 0.912 and 

L = 12 and Į = 0.924 are chosen for CLSD-LE and OLSD-LE, respectively. 

Secondly, the synthesized decays, y(k), were generated according to the paramters listed in 

Table 1. There are nine different h(k), with (fD, Ĳ1) = (0.8, 0.2ns), (0.8, 0.5ns), (0.8, 0.8ns), �, 

and (0.2, 0.8ns) respectively, generated from Eq. (3), and nine corresponding y(k) (k = 

1,2,�,9) were generated from Eq. (2). 

Table 1. Settings for the parameters 

fD Ĳ1 (ns) Ĳ2 (ns) FWHM of iIRF (ns) T (ns) N 

0.8, 0.5, 0.2 0.2, 0.5, 

 0.8 

2.5 0.3 10 256 

Thirdly, CLSD-LE (L = 16, Į = 0.912), OLSD-LE (L = 12, Į = 0.924 and L = 16, Į = 

0.912) were applied to y(k) to obtain the recovered fIRF, ƩD(k), and NSSEy and NSSEhD were 

used to assess the performances as shown in Fig. 4 where axis x corresponds to k in y(k). 

Being different from the previous analysis in Fig. 3 where Poisson noise was not included. 

This analysis shows how a larger L is more likely to cause overfitting after Poisson noise 

sources are included. In this analysis, 500 Monte Carlo simulations were performed for each 

y(k). Because of overfitting, µNSSE,y for OLSD-LE (L = 16) is larger than µNSSE,y for OLSD-LE 

(L = 12). Although µNSSE,y for OLSD-LE (L = 12) is almost equal to that for CLSD-LE, 

µNSSE,hD of OLSD-LE is in general larger than that of CLSD-LE, showing that CLSD-LE 

performs better and produces a ƩD(k) closer to h(k). 

 

Fig. 4. Performances of CLSD-LE and OLSD-LE 
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Finally, LSE is applied to ƩD(k) to obtain fըD and 1,2
�τ . Figure 5 shows NSSEhE for CLSD-

LE and OLSD-LE. Again, µNSSE,hE for CLSD-LE is smaller than that for OLSD-LE. It shows 

that all ƩE(k) obtained by CLSD-LE are closer to h(k), giving much better estimations. 

 

Fig. 5. Performances of estimations of � ( )
E

h k  

 

Fig. 6. Estimations (a), (c), and (e) and biases and variances (b), (d), and (f) of �
D

f  and 
1, 2

�τ . 
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Figure 6 shows the performances of the estimated fըD and 1,2
�τ . All µx (x = fըD or 1,2

�τ ) 

obtained by OLSD-LE and CLSD-LE are close to xr and all Variance are bigger than the 

corresponding Bias2, suggesting that both methods are effective. And ıx and Variance for 

CLSD-LE are smaller than those for OLSD-LE, indicating that CLSD-LE is more robust 

against the noise. Figure 6 shows the performances of fըD and 
1,2
�τ : (a) and (b) for fD, (c) and 

(d) for Ĳ1, and (e) and (f) for Ĳ2. Figures 6(a), 6(c), and 6(e) show that with a fixed fD a larger Ĳ1 
gives less precise estimations, and with a fixed Ĳ1 a reduced fD gives less precise Ĳ1 but more 

precise Ĳ2. These trends are reasonable. Figures 6(b), 6(d), and 6(f) show that although OLSD-

LE produces less biased results and each case is Variance-limited, CLSD-LE produces 

smaller variances and therefore performs better in all cases. 

 

Fig. 7. Bias performances (a) 〉fD/fD, (c) 〉Ĳ1/Ĳ1, and (e) 〉Ĳ2/Ĳ2 and F-value (b) F(fD), (d) F(Ĳ1), 
and (f) F(Ĳ2) of the proposed and Liu�s CLSD-LE for T/Ĳ2 = 4 or 3.3. 

Figure 7 shows the performances of the proposed and Liu�s CLSD-LE [9]. We included an 

analysis comparing the photon efficiency (F-value, F = NC
0.5ıx/x, ıx is the standard deviation 
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of x (x = fD, Ĳ1, or Ĳ2), NC is the photon count; it is used to characterize the photon efficiency of 

an algorithm [37]) and the bias (〉x/x) using Liu�s CLSD-LE and our CLSD-LE. Figures 7(b), 

7(d) and 7(f) shows that our CLD-LE has comparable or better F-value performances than 

Liu�s CLSD-LE for Ĳ2 = 2.5 (T/Ĳ2 = 4). However, Figs. 7(a), 7(c) and 7(e) shows our CLSD-

LE has superior bias performances. Liu�s CLSD-LE needs to meet the requirement that the 

LBFs should be orthonormal and therefore the largest Į they can use is 0.877 when L = 16 (in 

order to compare with our method). A lower Į usually contributes a larger bias. To 

demonstrate how the ratio T/Ĳ2 affects Liu�s CLSD-LE, we reduced T/Ĳ2 to 3.3 by setting Ĳ2 = 

3ns. Figure 7 shows that Liu�s CLSD-LE has worse bias performances in all parameters, 

whereas the proposed CLSD-LE has similar bias performances as the previous example (T/Ĳ2 
= 4). The F-value of Liu�s method seems smaller for Ĳ1 and Ĳ2, but this should not be misled to 

conclude that its photon efficiency is better [38]. Instead, it is due to the seriously biased 

estimations [38]. Compared with Liu�s approach, the proposed CLSD-LE performs more 

consistently. 

3.2 Real FLIM data analysis 

The proposed method was also tested on two-photon FLIM images of Cy5-ssDNA-GNRs 

labelled Hek293 cells. The images are for evaluating the endocytosis of gold nanorods (GNR) 

in living cells. The detailed synthesis of GNR-based RNA nanoprobes can be found elsewhere 

[39]. In brief, GNRs were functionalized with thiolated oligonucleotides (ssDNA) labeled 

with Cy5 through ligand exchange and salting aging process. After the incubation with Cy5-

ssDNA-GNRs, Hek293 cells were washed and fixed with paraformaldehyde. Two-photon 

FLIM experiments were performed on an LSM 510 confocal microscope (Carl Zeiss) using 

the SPC-830 TCSPC acquisition system (Becker & Hickl GmbH). A Ti:sapphire laser 

(Chameleon, Coherent) was used (at 800 nm) to generate laser pulses with a duration less than 

200 fs. The timing resolution of the TCSPC is 0.039ns, and measured histograms with 256 

time bins (T = 256 × 0.039 = 10ns) were recorded. 

Figure 8(a) shows the gray-scale intensity image of Hek293 cells. Figures 8(b) and 8(c) 

show the average lifetime, Ĳave = fDĲ1 + (1�fD)Ĳ2, and fD images, respectively, obtained by the 

proposed CLSD-LE (L = 16, Į = 0.912), where Ĳ1 is the lifetime of GNRs (usually less than 

100ps [39]) and Ĳ2 is the fluorescence lifetime of Cy5. Figures 8(a) and 8(b) demonstrate the 

superiority of FLIM imaging over intensity imaging in identifying the locations of GNRs. 

Figures 8(b) and 8(c) show that the fluorescence of Cy5 was largely quenched by GNRs due 

to the fluorescence energy transfer (FRET) arising from the hairpin structure of ssDNA [39]. 

Hybridization of nanoprobes with target RNA in cells opens the hairpin structure and results 

in significant increase in fluorescence intensity (the fD map can help locate GNRs; fD > 0.8 & 

Ĳ1 < 100ps) and decrease in Ĳ2. In the areas where the energy transfer appears, the fluorescence 

emission is a mixture of the fluorescent signals from both GNRs and Cy5, showing a bi-

exponential nature. 
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Fig. 8. (a) Intensity, (b) Ĳave, and (c) fD maps and (d) Ĳ2 histograms at GNRs, (e) lifetime 

histograms, and (f) fD histograms of Hek293 cells. 

Figure 8(d) shows the Ĳ2 histogram at GNRs (fD > 0.8 & Ĳ1 < 100ps), and it shows a 

reduced Ĳ2 around 2.1ns and 2.0ns for the proposed CLSD-LE (L = 16, Į = 0.912) and OLSD-

LE (L = 12, Į = 0.924), respectively. In order to show the advantages of the proposed CLSD-

LE, different CLSD-LE approaches were applied to the analysis. Figure 8(e) shows Ĳ1 and Ĳ2 
histograms obtained by the proposed CLSD-LE (L = 16, Į = 0.912), OLSD-LE (L = 12, Į = 

0.924), and Liu�s CLSD-LE (L = 16, Į = 0.877) and (L = 8, Į = 0.935), respectively. The inset 
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in the figure shows Ĳ1 histograms within (0, 0.5ns), and it explains why a larger L is required 

for resolving the lifetimes of GNRs (Ĳ1 < 100ps). The discrepancy in Ĳ2 histograms between 

the proposed and the Liu�s CLSD-LE is due to the fact that a large number of pixels show no 

energy transfer and contain a larger Ĳ2 around 3ns. For Liu�s CLSD-LE, the lower T/Ĳ2 (~3) 

limits its resolvability for Ĳ2 (unable to resolve Ĳ2 > 3ns) causing misinterpretation that there is 

energy transfer at these pixels. This observation is in good agreement with Fig. 7(e), T/Ĳ2 = 

3.3. In Fig. 8(d), there is a population of pixels showing Ĳ1 < 100ps, indicating that there is 

energy transfer between GNRs and Cy5. For Liu�s CLSD-LE, however, a smaller L (L = 8) 

results in biased estimations of Ĳ1, not able to allocate GNRs (green curve). The maximum Į 

can be applied is 0.877 (for L = 16) for Liu�s CLSD-LE to meet the orthonormality 

requirement (note that it is only quasi-orthonormal). This lower Į leads to a bigger bias in Ĳ2. 
For our methods, although there is a slight discrepancy between CLSD-LE and OLSD-LE, 

they are still be able to provide similar contrast. Compared with our previous report [37], the 

results show that considering the iIRF in the analysis would improve locating GNRs. The 

results also show that the proposed CLSD-LE and OLSD-LE produce similar results, and both 

work robustly even when the ratio T/Ĳ2 is less than 4. Unlike previously reported LSD-LE 

[22�29] and BCMM [37] requiring a much larger T/Ĳ2 or extra bias correction procedures (for 

BCMM), the proposed method can reduce the acquisition time per measurement. Figure 8(f) 

also shows that our CLSD-LE and OLSD-LE produce similar fD histograms, whereas for 

Liu�s CLSD-LE a smaller T/Ĳ2 causes biased fD estimations, see Fig. 7(a). The analysis results 

show that the proposed OLSD-LE and CLSD-LE are effective and have potential to be used 

to analyze FLIM-FRET data, with the latter showing better performances. 

4. Conclusion 

We presented new criteria to choose LBFs for LSD-LE based only on how close the Laguerre 

expansion can approximate the fIRF. Different from the conclusion suggested by previous 

studies, the proposed criteria do not need to consider the mutual orthonormalities between 

LBFs. The new criteria do not require that the LBFs and the corresponding derivatives to be 

close to zero at the end of the measurement window, and they allow using a smaller T/Ĳ2 ratio 

and therefore reducing the acquisition time per measurement. We applied this upgraded 

method to analyzing bi-exponential decays and its performances (on both CLSD-LE and 

OLSD-LE) were accessed and compared against the original CLSD-LE. The results show that 

both the upgraded CLSD-LE and OLSD-LE can be applicable to our studies, but the former 

performs slightly better. Both synthesized and realistic experimental FLIM data show that the 

proposed CLSD-LE has better performance than the original CLSD-LE when T/Ĳ2 is small 

and suggest that the proposed CLSD-LE can be an effective tool to analyze bi-exponential 

FLIM-FRET data. It can be further extended to study multi-exponential decays in the future. 

The proposed methods should be able to encourage wider applications of fast FLIM 

technologies and gold nanoparticles for cancer therapy [37, 39�41]. 
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