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Abstract: Terahertz wave propagation in marine protective coatings and its non-destructive testing (NDT) 

capability were studied by the finite difference time domain (FDTD) method. The FDTD model was used to 

calculate the propagation and reflection of THz radiation from marine protective coatings. The reflected 

terahertz waves could be employed in coating thickness analysis of the paint layers. In order to clearly identify 

the interface between antifouling and anticorrosive coatings, Stationary Wavelet Transform (SWT) approach 

was applied to decompose the obtained terahertz impulse functions into approximation and detail coefficients; 

SWT detail coefficients were used for the feature extraction of the coating thickness. SWT provides a more 

accurate identification of salient features in a signal, such as the weak feature between antifouling and 

anticorrosive coatings. We found that the developed model and SWT-based algorithms could be used to 

evaluate the occurrence of defects beneath the coatings (e. g., paint-off and corrosion defects). The proposed 

method provides the solution for coating thickness of marine protective coatings and it would benefit the 

effective maintenance to avoid coating failure and facilitate marine protective coating design. Therefore, non-

destructive testing and evaluation of marine protective coating system by terahertz waves with SWT could be 

recommended for engineering applications.  
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1£Introduction 

Protective coating is usually applied for marine structures and offshore plants as a corrosion protection. 

However, deterioration, aging or failure occurs in the harsh marine environment, especially the corrosion 

deterioration. During the corrosive process, the chemical and physical characteristics changes in the coating 

system and thus forms various defects, such as bubbling, rust, cracking, shedding etc. [1-4]. Severe 

corrosion degradation may lead to the replacement of a complete ship panel (deck, side, bottom, etc.). Thus 

the  monitoring  of  the  degradation  of  paint  layers  is  of  great  importance for  the  long  term  use  of  

the  marine protective coatings [5]. In addition to general (uniform) corrosion which reduces the plate 

thickness uniformly, there are other types of more localized corrosion, such as corrosion, pitting, and 

detachment, blistering, etc. A fast, reliable detection method to detect possible coating defects and to 

evaluate coating performance can provide timely and effective maintenance to avoid serious consequences 

due to coating failure. Corrosion processes beneath organic coatings are usually monitored by using 

conventional electrochemical techniques, such as electrochemical impedance spectroscopy (EIS), 

electrochemical noise measurements (ENM) and so on, which allow both the evaluation of corrosion rates 

and the identification of corrosion mechanisms [6-9]. EIS uses an external voltage or current source; for this 

reason, corrosion processes can be disturbed, and the results may not be perfectly reliable. Furthermore, it 

can only provide the assessment of uniform corrosion of interface, which was difficult to give the local 

corrosion inspection [10]. The application of ENM method does not involve the artificial disturbance of the 

system and data analysis could be performed in the electrochemical noise records to capture information 

about the type of corrosion damage. However, because of the very small voltages and currents involved, 

most systems are characterized by a high number of overlapped transients, thus ENM data can sometimes 

be affected by extraneous signals (although normally the results are changed by only a factor of two or less) 

which make it need to be performed using adequate mathematical tools and not so suitable for monitoring 

or quality control [11-12]. Other commercially available thickness measurement techniques for protective 
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coatings including ultrasonic testing [13] and eddy-current testing [14] etc. Furthermore, some optical 

probing methods such as eddy current pulsed thermography [15] and infrared thermography [16] are also 

adopted for the defect measurement of paint film. 

Time Domain Terahertz (TD-THz) technology provides the capability for standoff inspection of 

coatings that are otherwise opaque and cause strong scattering at visible and infrared wavelengths. Recent 

advances in TD-THz technology has been extensively used in the sensing and imaging fields because of its 

many merits such as non-contact, non-destructive and that many materials are relatively transparent to THz 

waves [17]."Besides, the  photon  energy  of  terahertz  radiation  is  in  the  range  of  a  few meV  (one  

thousand  times  smaller  than  that  of  UV  light  and  one million  times  smaller  than  that  of  X-ray)[17], 

which  makes  TPI  technology much safer than X-ray testing although X-ray can give high-precision and 

accurate measurement, regarding to the safe operating procedures[18].  When a terahertz pulse is incident 

on a multilayered medium, the reflected or transmitted signals would record information whenever there is 

a change in the refractive index or the optical absorption coefficient of the material (caused by either 

chemical or structural changes in the medium). The structural information can be ultimately extracted by 

analysis of the recorded terahertz wave in the time domain. So far, terahertz pulsed imaging (TPI) has 

become an established powerful non-destructive testing tool to characterize a range of multilayered samples, 

for example, pharmaceutical solid dosage forms [19], dental tissues [20], layered polymer composites [21] 

and other extensive investigation for industrial application such as detecting materials under coating layers 

[22-25], detecting defects within the sprayed on foam insulation [26], and detecting corrosion under metallic 

source material [27]."It showed that for thick samples such as the multilayer medium above, the detected 

echoes of the terahertz signal, which are caused by multiple reflections in the sample, can be time separated 

well. 

To our best knowledge, there were some researches about TPI technique testing for protective coatings. 

The utility of time-domain terahertz technology for automobile paint thickness measurements has 
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previously been demonstrated in the laboratory by T. Yasui et al. [28-29]. T. Fukuchi et al. determined 

refractive index and thickness of the topcoat of a thermal barrier coating from the reflected waveforms of 

terahertz waves [30]. T. Kurabayashi and coworkers studied corrosion detection under paint films using a 

specific frequency of THz-wave in THz transmitted imaging system. They found the mechanical defects 

and thru holes were visualized, but corrosion areas were not [31]. David J. Cook and coworkers discussed 

the applicability of terahertz non-destructive testing for marine protective coatings and took a laboratory 

investigation to measure the dry film thickness of organic coatings. They were developing a standoff sensor 

for the real-time thickness measurement of wet (uncured) marine paints for the purpose of providing 

feedback to an automated system for painting ships in dry-dock [32-33]. The research showed that TPI 

technology could be an excellent complimentary means to the protective coating testing. 

So far, to our best knowledge, the above researches on TPI technique testing for protective coatings 

are focused on experimental aspects. However, there were few theoretical studies about terahertz radiation 

interacts with protective coatings numerically and theoretically. Advanced numerical modeling and further 

theoretical analysis of the interaction of terahertz radiation with marine protective coatings" will be 

extremely valuable for the better application of TPI technology in ship, especially for rapid hidden defect 

detection(such as peeling, blistering and corrosion, etc.) and quantitative analysis, which will provide timely 

and reliable information for ship maintenance work.  Indeed, some theoretical analysis have already been 

reported to study the propagation of terahertz radiation in various multilayered media. For terahertz pulsed 

imaging in which a transient terahertz pulse is used, a time-domain method, such as the finite difference time 

domain (FDTD) method, is more applicable than a frequency-domain method because a differential equation 

is simpler to solve than an integral equation. The FDTD algorithm is a proven numerical method to model 

electromagnetic scattering problems, which solves the Maxwell�s equations directly and obtains the solution 

of the electric field of electromagnetic waves [34]. It analyses continuous electromagnetic problems by using 

finite difference and obtains the electric field value at the sampling point. The FDTD method offers several 
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advantages, such as robustness and the ability to study dispersive, nonlinear, or anisotropic materials [35-36]. 

In our previous works, a theoretical model based on the FDTD method for pharmaceutical-coated tablets was 

investigated and the simulated results were found to be in good agreement with the experimental results [37-

38]. It has been demonstrated that FDTD- model could be capable of calculating the propagation and 

reflection of THz radiation from a multilayered flat or curved structure. 

In the present work, non-destructive testing of marine protective coatings was investigated by TPI 

technology with reflection-type detection mode using FDTD method combined with stationary wavelet 

transform approach. A FDTD-based three-dimensional (3D) model used to calculate and analyze the 

reflected THz wave from marine protective coatings was proposed. The numerical modeling and theoretical 

analysis of the interaction of terahertz radiation with marine protective coatings was investigated. This is 

not only valuable for the better application of TPI technology in marine protective coatings, but also for 

analysis of other non-metallic coatings on metal substrate. Current TPI technique provides few quantitative 

information (such as the thickness of paint layer) and possible defect testing of marine protective coatings, 

especially for the paint-off and corrosion defects which need to be detected when the ship was under period 

maintenance. We carried out theoretical analysis of coating thickness analysis for each paint layer of marine 

protective coatings and non-destructively evaluation of the occurrence of defects in the coatings. Different 

protective coating systems with different paint layer thickness were modeled and computed using the FDTD 

method with the broad-band terahertz radiation. Besides, multilayered samples to mimic the occurrence of 

various defects (paint-off defect and corrosion defect) in coating were investigated. Furthermore, stationary 

wavelet transform approach was used to terahertz impulse functions for quantitative coating analysis and 

defect identification of marine protective coatings. 

 

2. FDTD Modeling of Terahertz Wave Propagation in Marine Protective Coatings 
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FDTD is a direct solution of Maxwell�s time-dependent curl equations. It applies simple, second-order 

accurate central-difference approximations for the space and time derivatives of the electric and magnetic 

field directly to the differential operators of the curl equations. In a 3D Cartesian coordinate system, the 

time-dependent Maxwell�s curl equations are arranged in the following form as [39]: 

擢帳猫擢痛 噺 怠悌 岾擢張年擢槻 伐 擢張熱擢佃 伐 購継掴峇                                                                        (1) 

擢帳熱擢痛 噺 怠悌 岾擢張猫擢佃 伐 擢張年擢掴 伐 購継槻峇                                                                        (2) 

擢帳年擢痛 噺 怠悌 岾擢張熱擢掴 伐 擢張猫擢槻 伐 購継佃峇                                                                         (3) 

擢張猫擢痛 噺 伐 怠禎 岾擢帳年擢槻 伐 擢帳熱擢佃 峇                                                                                (4) 

擢張熱擢痛 噺 伐 怠禎 岾擢帳猫擢佃 伐 擢帳年擢掴 峇                                                                                (5) 

擢張年擢痛 噺 伐 怠禎 岾擢帳熱擢掴 伐 擢帳猫擢槻 峇                                                                                 (6) 

where Ex, Ey, Ez are components of electric field, Hx, Hy, Hz are components of magnetic field, i is the 

electric permittivity, u is the electric conductivity, o is the magnetic permeability and equivalent magnetic 

loss is ignored. With FDTD method, the model space is divided into small cubes called Yee cells by grid, 

with a grid size ッ捲 噺 ッ検 噺 ッ権 噺 絞 less than the size of relevant features, and the time is divided into small 

steps (time step ǻt) that are much less than the period of the relevant electromagnetic wave.  

On the other hand, the central difference approximations are defined as 

擢庁韮岫沈┸珍┸賃岻擢掴 噺 庁韮岾沈袋迭鉄┸珍┸賃峇貸庁韮岾沈貸迭鉄┸珍┸賃峇ッ掴 髪 æø¸̋ø岫ッ捲態岻                                                             (7) 

擢庁韮岫沈┸珍┸賃岻擢痛 噺 庁韮甜迭鉄岫沈┸珍┸賃岻貸庁韮貼迭鉄岫沈┸珍┸賃岻ッ痛 髪 æø¸̋ø岫ッ建態岻                                                               (8) 

where i, j, k represent the nodes of the Yee cells, n represents the calculated time step, 岫件┸ 倹┸ 倦岻 噺岫件ッ捲┸ 倹ッ検┸ 倦ッ権岻, and 繋津岫件┸ 倹┸ 倦岻 噺 繋岫件ッ捲┸ 倹ッ検┸ 倦ッ権┸ 券ッ建岻. 
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Upon substituting the central-difference approximations (7)~(8) for the space and time derivatives into 

Maxell�s equations, six couple finite-difference time-stepping expressions arise for the electric field 

components which were located on the three edges at each Yee cell, and magnetic field components which 

were located in the middle of the three surfaces. These expressions permit a progressive time integration of 

the Maxwell�s equations suitable for the solution of an initial-value problem. The following is a sample 

time-stepping expression for an electric field component and the other components follow by analogy and 

can be found in our previous article [38]. 

磐な 髪 ッ建 ゲ 購に綱 卑 岫継掴岻岾沈袋迭鉄┸珍┸賃峇津袋怠  

噺 岾な 伐 ッ痛ゲ蹄態悌 峇 岫継掴岻岾沈袋迭鉄┸珍┸賃峇津 髪 ッ痛弟悌 峪岫茎佃岻岾沈袋迭鉄┸珍袋迭鉄┸賃峇津袋迭鉄 伐 岫茎佃岻岾沈袋迭鉄┸珍貸迭鉄┸賃峇津袋迭鉄 伐 盤茎槻匪岾沈袋迭鉄┸珍┸賃袋迭鉄峇津袋迭鉄 髪 盤茎槻匪岾沈袋迭鉄┸珍┸賃貸迭鉄峇津袋迭鉄 崋          
(9) 

Space and time discretizations are selected to bound errors in the sampling process and to insure 

numerical stability of the algorithm. With FDTD method, the stability criterion is of the form [39] 

F建~な 磐荒陳銚掴謬 怠
F掴鉄 髪 怠

F槻鉄 髪 怠
F佃鉄卑斑                                                 (10) 

where 荒max is maximum wave speed in the material. In the model of our paper, it would be the light�s 

velocity in the vacuum c. For the grid size 絞 噺 ッ捲 噺 ッ検 噺 ッ権, the following equation was obtained:" ッ建 判 絞 ヂぬ̊エ                                                               (11) 

On the other hand, according to the reference [39], the following equation was chosen to satisfy for 

controlling numerical dispersion,  

f"~n/10""                                                             (12)"

where そ is the wavelength in the considered material. Furthermore, in order to remove the reflections from 

the back boundary, absorbing boundary conditions should be imposed [34]. 
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Fig. 1 showed the simulation model of a terahertz pulse interacts with paint layers on a reflective (i.e., 

metal) substrate in reflection-type detection mode. The THz plane wave at an elevation angle theta and an 

azimuthal angle phi, is incident on the sample surface which is set at the Oxy plane. The azimuthal angle 

phi is referenced from the x axis and the elevation angle theta is referenced from the z axis. The FDTD-

based three-dimensional model can be used for any type of input signal, which will be either a Gaussian 

pulse or a Sine wave. We chose a Gaussian pulse in the model because it has the advantage over the use of 

a Sine wave and it contains a wide band of frequencies. The reflections from the air/coating interface, 

internal interfaces existing at different paint layers and the coating/steel interface are indicated. The 

chemical and structural information in the medium would be encoded into the reflected THz waveform 

because it causes changes in the refractive index or the optical absorption coefficient of paint layers. As a 

result, the structural information of a sample can be ultimately extracted by analysis of the recorded THz 

wave in the time domain. 

 

Fig. 1. Theoretical model of terahertz wave propagation in marine protective coatings 

 

Generally, different areas of the ship require specific anti-corrosive coating. Steel corrosion at and 

around the waterline is of considerable practical interest for ships. Higher corrosion often occurs below the 

waterline attributed to the sewage pollution and undesirable accumulation of microorganisms, plants, and 

animals, which would accelerate bacterial activity in that region of the steel ship hulls. On the other hand, 

fouling is the attachment and growth of marine organisms on immersed surfaces and will raise the power 

requirements of ships and thus their fuel consumptions [40]. Therefore the coating system in that region is 
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required to prevent corrosion and fouling, which is achieved by using an anticorrosive paint and an 

antifouling paint. The specific surface treatment method involves the application of organic coatings that 

exhibit high cavitation resistance and good erosion resistance [41], thus most paints are based on organic 

solvents. According to the reference [33], to mimic the marine protective coating below the waterline and 

the painting order, the coating system modeled in this paper contained: 1st and 2nd layer were anticorrosion 

paint layers, 3rd, 4th and 5th were antifouling paint layers, as shown in Fig. 1.  

3. Stationary Wavelet Transform of Terahertz Impulse Functions 

The stationary wavelet transform (SWT) is a wavelet transform algorithm designed to overcome the lack 

of translation invariance of the discrete wavelet transform (DWT). Translation- invariance is achieved by 

removing the down samplers and up samplers in the DWT and up sampling the filter coefficients, which 

makes SWT as a redundant transform and provides a more accurate estimate of the variances at each scale 

and facilitates the identification of salient features in a signal, especially for recognizing noise or signal 

mutations. The SWT of the original data is not decimated, that is the size of the SWT data does not diminish 

after the transform, also known as undecimated wavelet transform [42-43]. The methodology based on SWT 

decomposition of terahertz impulse function into approximation coefficients 岫潔┘珍袋怠┸賃岻"and detail coefficients 岫穴寞珍袋怠┸賃岻"can be represented as follows:  

潔┘珍袋怠┸賃 噺 極血岫捲岻┸ h 岾 掴貸賃態岫乳甜迭岻峇 に岫乳甜迭岻鉄エ 玉 噺 デ 月岫健岻袋W鎮退貸W 潔┘珍┸賃袋態乳鎮                                                (13) 穴寞珍袋怠┸賃 噺 デ 月岫健岻袋W鎮退貸W 穴寞珍┸賃袋態乳鎮                                                                                           (14) 

where f (x) is the deconvoluted result of THz detected signal,  潔┘珍┸賃 噺 極血岫捲岻┸ h 岾掴貸賃態乳 峇 に乳鉄エ "玉┸ 
穴寞珍┸賃 噺 極血岫捲岻┸{ 岾掴貸賃態乳 峇 に乳鉄エ "玉"are the approximation coefficients and detail coefficients, respectively, integer j 

is decomposition step, h (x) is the scaling function, { (x) is the mother wavelet and h is the impulse response 

of low-pass paraunitary quadrature mirror filters [44].  The more detail on SWT can be founded in ref [44].  
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Fig.2 shows a typical 3-level stationary wavelet transform decomposition of terahertz impulse function. 

c1, c2, and c3 are the SWT approximation coefficients for decomposition level of 1, 2, and 3 whist d1, d2, 

and d3 are the SWT detail coefficients for decomposition level of 1, 2 and 3. An important point to be clarified 

is the difference between the SWT application in the field of image processing and the field of signal 

processing of THz impulse function discussed here. In the field of image processing, an image signal is first 

decomposed by SWT, and then the detail coefficients are threshold by the thresholding rule to obtain a new 

detail coefficient. This new de-noised detail coefficient is then reconstructed with the approximation 

coefficient to produce a new image signal, which is a signal filtered by wavelet transform to enhance the 

image quality [44]. However, the SWT procedure in THz impulse function only involved one step of 

decomposition. THz impulse function was decomposed by SWT into approximation and detail coefficient. 

The detail coefficient provided information for coating thickness analysis and internal defect characterization. 

The thresholding and signal reconstruction were not needed in the terahertz non-destructive testing 

application for marine protective coatings. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Staionary wavelet transform decomposition of terahertz impulse function 

    

4. Results and Discussions 

4.1 Thickness Coating Analysis of Marine Protective Coatings 

All FDTD simulations reported here are performed using the Remcom XFDTD commercial software 

package. In our model, the protective coating is treated as a linear isotropic homogeneous layer without 

THz Impulse Function

c1 d1

c2 d2

c3 d3
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magnetic field loss. For simplicity, the dispersive properties and the specific conductivity of coatings are 

negligible [33]. The parameters of the coatings were obtained from reference [33] which took an 

experimental investigation to measure the dry film thickness of organic coatings of marine protective 

coatings. The sample was taken as the simulated model in our studies and the paint thickness was set as 

theoretical thickness. A cylinder plate with thickness of 2mm and radius of 20mm was taken as steel 

substrate. To mimic the coating system below the waterline, two 152 μm thick layers of anticorrosive paint 

(Amercoat 235, whose refractive index is 1.74) and three additional 127 μm layers of antifouling paint 

(Interspeed 640, whose refractive index is 1.87) are successively coated on the steel substrate, as shown in 

Fig.1. The incident terahertz plane wave was set perpendicular to the sample surface (theta=0°, phi=0°).  A 

Gaussian profile of the amplitude distribution of the E-field was initiated in the incident plane with a peak 

amplitude of 1 V/m and with a spectral coverage range covering 0.1THz ~ 1THz and pulse width was 34 

time step. According to the stability criteria of the FDTD algorithm (as equations (11) and (12)), the 

simulation volume was divided into 0.03mm by 0.03mm by 0.03mm Yee cells and the time step was 

determined as ǻt =0.0577ps. According to the reference [45], the minimum detected thickness, that is the 

achievable depth resolution, is constrained to behalf the coherent length of the THz pulse in a sample. With 

a bandwidth of ~1THz, the corresponding coherence length in free space is about ~100 um [46]. The FDTD 

program was run for 4096 time steps with 8 perfectly matched layer (PML) absorbing boundary condition 

to remove the reflections from the back boundary. The far zone sensor and the planar sensor were employed 

to collecting the far-zone scatted field and the near-zone scattered fields.  

The far-zone scatted field of object was often useful. In this simulated model, the far zone sensor was 

set at the position theta=0° and phi=0°, which is responsible for collecting the electric fields of the reflected 

pulses caused by the interfaces existed between different media, similar to the reflection mode of a TPI 

system, and the results represented the raw terahertz detected signals and were used in the deconvolution 

processing to get the impulse functions. Fig.3 showed the FDTD results of the raw terahertz signal of coated 
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steel substrates, which were collected by the far zone sensor. The sample for Fig.3 (a) was a two 152 μm 

layers of anticorrosive paint coated on steel substrate whose material is Amercoat 235 with a refractive 

index of 1.74, whilst the one for Fig.3 (b) was a three 127 μm antifouling paint layers whose material is 

Interspeed 640 with a refractive index of 1.87 plus the above two 152 μm anticorrosive paint layers coated 

on steel substrate.  In order to mimic the real experiments, Gaussian white noise was added to the terahertz 

pulse resulting in a SNR of 64 dB [47]. As can be seen from Fig.3 (b), due to large differences of refractive 

indices (RIs) of air, coating and steel, reflections from air/coating surface and the coating/steel interface can 

be clearly resolved. However, the reflection associated with internal interface (antifouling/anticorrosive 

paint interface) was very small because the RIs of antifouling and anticorrosive paint are similar. There was 

no reflection from the three antifouling paint layers and also from two anticorrosive paint layers because 

the RIs are same for the layers with same materials. The oscillation after the strong reflection from the 

coating/steel interface was caused by multiple reflections inside the sample [48]. 

 

Fig. 3. Raw terahertz signal from coated steel substrates, which were collected by the far zone sensor from two samples: (a) two 

152 μm anticorrosive paint layers coated on steel substrate; (b) three 127 μm antifouling paint layers plus two 152 μm 

anticorrosive paint layers coated on steel substrate.  

(a) 

multiple reflections 

reflection from 
coating/steel  interface reflection from 

air/coating surface  

(b) 

reflection from 
air/coating surface

multiple reflections reflection from  antifouling /  
anticorrosive paint interface  
 

reflection from 
coating/steel  interface 
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In commercial software FDTD＄the planar sensor is one of near-zone sensors, and it defines an entire plane 

(within the boundaries of the simulation space) to collect the data at the space grid note in the FDTD 

algorithm directly. The planar sensor is used to record time-varied electric and magnetic fields during the 

whole calculation period. Generally, the planar sensor can be set at cross section of the sample. Fig.4 showed 

the FDTD simulation results (Fig.4 (a-2) ~ (b-2)) collected by the planar sensor from the marine protective 

coating models. The corresponding thickness profiles (Fig4. (a-1) ~ (b-1)). The colored regions represent 

the reflected waveforms caused by the inner interfaces between two different materials of the coating. The 

color in each figure represents the strength of the reflected signals. Dashed arrows indicate reflected 

terahertz waveform at the air/coating surface; solid arrows indicate the reflected waveform at the interface 

between protective coating and steel substrate; dotted arrow indicates the reflected waveform at the interface 

between antifouling paint and anticorrosive paint."As can be seen from the figure, the reflected waveforms 

caused by the interfaces can be recorded and identified. Also, there are some distortions at the edge of the 

sample. This is because scattering losses lead to significant distortion in the reflected terahertz pulse. Hence, 

the waveforms close to sharp edges are routinely removed before quantitative coating analysis [49]. 

Furthermore, as shown in Fig.4, the reflected waveform caused by antifouling/anticorrosive paint interface 

(dotted arrow in the Fig. 4(b-2)) was very weak due to the similar RIs of these two materials, which is match 

the raw detected signal obtained by far zone sensor shown as Fig.3(b). 
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Fig. 4. The thickness profiles (a-1), (b-1) and FDTD simulation results (a-2), (b-2)  for different marine protective coating models, 

which was collected by the planar sensor from two samples. (a) two 152 μm anticorrosive paint layers coated on steel substrate; 

(b) three 127 μm antifouling paint layers plus two 152 μm anticorrosive paint layers coated on steel substrate. The colored regions 

represent the reflected waveforms caused by the inner interfaces between two different materials of the coating. The color stripe 

in each figure represents the strength of the reflected signals. Dashed arrows indicate reflected terahertz waveform at the 

air/coating surface; solid arrows indicate the reflected waveform at the interface between protective coating and steel substrate; 

dotted arrow indicates the reflected waveform caused by antifouling/anticorrosive paint interface. 

 

In order to implement coating analysis and quantitative non-destructive evaluation (QNDE) of multilayer 

structures, terahertz impulse function is generally used. The impulse functions can be obtained in the 

frequency domain by deconvolution process, in which the raw terahertz waveform reflected off a coated 

structure is divided by the reference signal from a mirror [50]. In our model, the reference signal was collected 

from the reflections from a metallic surface. After deconvolution, the SWT approach was employed on the 

corresponding impulse function and, therefore, its detail coefficients were used for the coating thickness 

analysis.  

Generally, the paint layers are successively coated on the steel substrate; also after each paint layer has 

been sprayed it need to be tested in the painting process. Thus, in order to mimic the painting process, we did 

a new FDTD simulation when a new paint layer was added since the painting worker will measure every 

paint layer coated. Fig.5 (a) and (e) showed normalized terahertz impulse functions (Fig.5 (a-1) ~ (e-1)), the 
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corresponding wavelet decomposition approximation coefficients (Fig.5 (a-2) ~ (e-2)) and detail coefficients 

(Fig.5 (a-3) ~ (e-3)) of different coated layers described above. When doing the deconvolution, a Gaussian 

band-pass filter was applied to remove high- and low- frequency components and also to produce a suitable 

time-domain response. A db2 wavelet was used to get appropriate time-frequency domain results in the SWT 

decomposition. As shown in Fig.5, the reflections caused by air/coating and coating/steel substrate interfaces 

can be easily determined in the impulse functions and the SWT decomposition coefficients. However, similar 

to the impulse functions obtained, the SWT approximation coefficients in Fig.5 are smooth curves, from 

which it is hard to identify the discontinuities, especially when the noise is presented. It can be noted that 

SWT detail coefficients have amplified the weak information for anticorrosive/ antifouling paint interface. 

The circles in Fig.5 (c-3) to (e-3) indicated the reflections from antifouling /anticorrosive paint interface. For 

example, Fig.5 (e-3) was the SWT detail coefficients of the simulated model for three 127um antifouling 

paint layer plus two 152 μm anticorrosive paint layers coated on steel substrate. The circle represented the 

reflections from antifouling /anticorrosive paint interface and would match the FDTD simulated result 

collected by the planar sensor of the same model (dotted arrow in the Fig. 4(b-2)). Although they were less 

obvious than the reflections from the air/coating and coating/steel substrate interfaces, it was enough for 

interface localization. SWT makes that the existing local features of the data are not suppressed by averaging 

but observed in their natural position and extension, and it facilitates the identification of salient features in 

a signal [44, 51-52]. This would be helpful to distinguish the weak features caused by interfaces between two 

different mediums with small difference of their RIs.  

With the knowledge of refractive index of coating materials, the angle of incidence, and the optical delay 

between two interfaces, the layer thickness of antifouling and anticorrosive layers can be characterized. When 

the terahertz wave is perpendicularly incident to the coated sample, the paint layer thickness can be obtained 

by using the equation as 穴賃 噺 潔ッ建岫健賃 伐 健賃貸怠岻 に券丹叩辿樽担エ                                                                        (12) 
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where dk represents the paint thickness of measured layer (k=1, 2, 3�, the case of k=1 refers to the first paint 

layer coated on the steel substrate); ǻt is time step of simulation; lk is the interval of two peaks representing 

the air/coating interface and coating/steel interface in the SWT detail coefficients; c is the speed of light in a 

vacuum and npaint is the group refractive index of the measured paint layer. Hence, the proposed method 

provides the solution for coating thickness analysis of marine protective coatings. 
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Fig. 5. Impulse functions (left column), SWT appproximation coefficients (middle column) and SWT detail coefficients (right 

column) of different coated samples. (a) one 152 μm anticorrosive paint layers coated on steel substrate; (b) two 152 μm 

anticorrosive paint layers coated on steel substrate; (c) one 127um antifouling paint layer plus two 152 μm anticorrosive paint 
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layers coated on steel substrate; (d) two 127um antifouling paint layer plus two 152 μm anticorrosive paint layers coated on steel 

substrate; (e) three 127um antifouling paint layer plus two 152 μm anticorrosive paint layers coated on steel substrate. Circle 

represented the reflection from anticorrosive/ antifouling  paint interface. 

     The detected data obtained by FDTD method was processed with the proposed algorithm to extract the 

measured thickness. Table 1 showed the relative error obtained from the theoretical thickness and measured 

thickness,  as mentioned above the value of theoretical thickness and refractive index of paint were obtained 

from reference [33]. As can be seen from Table 1, most the measured results of paint layer thickness were 

agreed well with the theoretical values. The maximum relative error was less than 9.25% ( 4th layer). The 

errors may be caused by the deconvolution process [51], which decreases in accuracy aspect due to the over-

smooth processed signal. 

 
Table 1 Coating thickness of each paint layer of marine protective coatings with three antifouling paint layers and two 

anticorrosive paint layers 

No. of layer

(k) 

Refractive 

index 

Theoretical 

thickness 

(um) 

Measured 

thickness 

(um) 

Relative 

error 

(%) 

1st 1.74 152 162 6.57 

2nd 1.74 152 154.09 1.38 

3rd 1.87 127 124.88 1.67 

4th 1.87 127 138.75 9.25 

5th 1.87 127 124.88 1.67 

 

It should be noted that, in the real application of TPI testing of protective coatings, several sources of 

random and systematic errors exist throughout the measurement process, which can affect the accuracy and 

uncertainty of testing method. These sources are, for instance, signal noise, sample misalignment, thickness 

measurement variation, etc [53]. Thus, the added Gaussian with noise in the simulated result could not 

accurately represent the actual interference in practice. Howevrer, it was often adopted for theoretical studies 

of THz test method[47].  
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4.2 Nondestructive Evaluation of Defects beneath Marine Protective Coatings 

In the present work, we also model the occurrence of defects in the marine protective coating, especially 

the defect beneath the coating surfaces. One of the common defects is the paint-off, which is the detachment 

of the paint from the substrate or between the different layers of paint and is caused by poor painting quality, 

contamination on the painting substrate, or deterioration by aging. The second kind is corrosion defect 

between the coating and substrate, probably caused by the residue of substrate before spraying, or the long-

term existence of seawater chemical corrosion through the porosity of coating. There is considerable need 

for nondestructive inspection of the paint-off area and corrosion since it is very difficult to detect with the 

conventional thickness meter. Both defects will cause either chemical or structural changes in medium and 

therefore cause changes in refractive index or absorbing coefficient of the material and can be detected by 

terahertz radiation technology. 

The paint-off defects existing between the different layers of paints were modeled. Two defects with 

curved shape were simulated by FDTD: 1) one defect with radius of 12 mm and thickness of 0.18 mm was 

embedded inside the three antifouling paint layers, which was located at a distance of 0.074mm from the 

coating surface; 2) the other defect with radius of 12 mm and thickness of 0.18 mm was embedded inside 

the two anticorrosive paint layers, which was located at a distance of 0.461mm from the coating surface. 

The corresponding thickness profiles (Fig.6 (a-1) ~ (b-1)) and FDTD simulation results (Fig.6 (a-2) ~ (b-2)) 

collected by the planar sensor were shown. From the figure, it can be clearly seen that all the paint layer 

interfaces and the defects can be identified. Besides, the curved shape of the defect can be also easily 

distinguished and its location within the coating can be determined.  
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Fig. 6. The thickness profiles ((a-1)~(b-1)) and FDTD simulation results ((a-2)~(b-2)) collected by the planar sensor for marine 

protective coating with different location of paint-off defect. (a) a defect with radius of 12 mm and thickness of 0.18mm was 

embedded inside the three antifouling paint layers; (b) a defect with radius of 12 mm and thickness of 0.18 mm was embedded 

inside the anticorrosive paint layers. The colored regions represent the reflected waveforms caused by the inner interfaces between 

two different materials of the coating. The color stripe in each figure represents the strength of the reflected signals. Dashed 

arrows denoted reflected waveform from the air/coating surface; solid arrows denoted reflected waveform from the interface 

between protective coating and steel substrate; dotted arrows denoted reflected waveform from the interface between antifouling 

paint and anticorrosive paint; dash dotted arrows denote the reflection from the defects.  

 

Furthermore, a far zone sensor was used to obtain the reflection terahertz raw data from the simulated 

coated steel substrates with defects. The terahertz raw data were deconvoluted with the reference signal to 

get the terahertz impulse functions, which were then decomposed by SWT into time-frequency domain. Fig.7 

showed the comparisons of SWT detail coefficients of intact marine protective coatings and with paint-off 

defects, where solid line denoted the SWT detail coefficient for intact coating; dashed line denoted the SWT 

detail coefficient for coating with paint-off defect.  The paint-off defect can be identified and the defect 

position can be exactly determined due to the advantage of local resolution of SWT approach. As shown in 

Fig.7(a), the reflection caused by paint-off defect was before the one caused by antifouling/anticorrosive 

paint layer interface, which means that the paint-off defect was located inside the antifouling paint layers. 
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Fig.7(b) shown the reflection caused by paint-off defect was after the one caused by 

antifouling/anticorrosive paint layer interface. It means that the paint-off defect was located inside the 

anticorrosive paint layers. The results could match the FDTD simulated result collected by the planar sensor 

of the same model (as shown in Fig. 6 (a-2) ~ (b-2)). It showed that the SWT decomposition detail coefficients 

provide a new methodology which is capable of revealing these hidden interface information and to facility 

the identification of the presence of defect, which is of significance in the quality control of painting process.  

 

Fig. 7. Comparisons of SWT detail coefficients for intact marine protective coatings and with for coatings paint-off defects. (a) 

a defect with radius of 12 mm and thickness of 0.18mm was embedded inside the three antifouling paint layers; (b) a defect with 

radius of 12 mm and thickness of 0.18 mm was embedded inside the anticorrosive paint layers. Solid line denoted the SWT detail 

coefficient for intact coating; dashed line denoted the SWT detail coefficient for coating with paint-off defect.  

 

The investigation about localizing corrosion on the metal substrate, which caused by rust residue before 

spraying or the long-term existence of seawater chemical corrosion through the porosity of coating, was 

also made in this paper. For simplicity, a cylinder shape with radius of 12 mm and thickness of 0.18 mm 
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was taken as corrosion defect to mimic the occurrence of rust residue before spraying. The corrosion defect 

was set beneath the coatings, whose surface was on the same plane with other part of steel substrate surface. 

That means that the corrosion medium was implanted between the anticorrosive paint and steel substrate. 

The material of corrosion defect was set as metal oxide and its refractive index was set as 3.01. The thickness 

profile and FDTD simulation result collected by the planar sensor for the detected sample with a corrosion 

defect were shown in Fig. 8 (a-1) and (a-2). Dashed arrow indicated reflected terahertz waveform at the 

air/coating surface; dotted arrow indicated the reflected waveform at the interface between antifouling paint 

and anticorrosive paint; solid arrow indicated the reflected waveform at the interface between protective 

coating and corrosion defect; Dash dot dot arrows indicated the reflected waveform caused by the surface 

of steel substrate under the corrosion defect. As can be seen from Fig.8 (a-2), due to large differences of RIs 

of anticorrosive paint and corrosion defect, reflections from anticorrosive paint/corrosion defect interface 

was strong and obvious. After this strong reflection, there was another clear reflection caused by the surface 

of steel substrate under the corrosion defect.  

Fig.8 (b) showed the corresponding SWT detail coefficients comparison of marine protective coating 

with and without corrosion defect. Solid line denoted the SWT detail coefficient for intact coating and 

dashed line denoted the SWT detail coefficient for coating with paint-off defect. From the figure, it can be 

clearly seen that all the reflection caused by paint layer interfaces. Compared to the sample without a 

corrosion defect, the maximum peak in the waveform of sample with corrosion defect represented the 

reflection from anticorrosion paint/corrosion defect interface. The peak was in the same position with the 

one representing the reflection caused by surface of steel substrate of sample without corrosion defect, 

because the corrosion defect surface was on the same plane with other part of steel substrate surface of the 

sample. After this strongest peak, another peak with smaller amplitude caused by the surface of steel 

substrate can be clearly identified, which match the FDTD simulated result collected by the planar sensor 

of the same model (Fig. 8 (a-2)). Besides, the strength of this reflection in sample with corrosion defect was 



23"
"

smaller because corrosion defect had reflected off lot of energy. When compared with the results of coating 

with paint-off defect, such as Fig.7(a), it was worthy to notice that the reflection strength of corrosion defect 

was larger than that of paint-off defect, which could be helpful to distinguish the two different kinds of 

defect, along with the defect formation reason and location. On the other hand, the spatial resolution of 

conventional terahertz imaging systems is given by the finite spot size of the terahertz focus and limited by 

the wavelength of the THz radiation (0.3 mm for 1 THz)[54]. This is enough for the application of marine 

protective coating detecting, regarding to the size of defect beneath the coating.  

 Therefore, the structural change caused by paint-off defect or corrosion defect in the marine protective 

coating can be detected and analyzed using terahertz wave with stationary wavelet transform. Compared to 

the expensive Terahertz pulsed imaging (TPI) measurement, FDTD simulation could be cheaper and more 

flexible to mimic terahertz signals from more multilayered samples. Using the FDTD simulation data of the 

reflected TPI system, we verified the application of deconvolution combined with SWT approach to 

improve the analysis precision, speed and also reliability. Using this approach it was possible to estimate 

the average coating thickness of every layer of paint coated on the steel substrate based on the reflection 

signal. Furthermore, it was able to provide much more detail information on the position of the defect 

beneath the coating, such as detachment of large areas where adhesion has failed, and corrosion beneath the 

coating. Therefore, the combined use of our FDTD simulation algorithms and THz imaging measurements 

will provide a powerful method for quantitative and non-destructive evaluation of marine protective 

coatings. Consequently, there is a need for fast data processing algorithms which extract a maximum amount 

of information out of the measured data in real time. As can be seen from Fig.4, our 3D FDTD model will 

make it possible to extract useful information from the THz signal measured at the edge of the sample thus 

allows the TPI map to cover the entire surface of a sample. 
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Fig. 8. The thickness profiles (a-1) and FDTD simulation results (a-2)  for a marine protective coating model with a corrosion 

defect, which was collected by the planar sensor: The colored regions represent the reflected waveforms caused by the inner 

interfaces between two different materials of the coating. The color stripe in each figure represents the strength of the reflected 

signals. Dashed arrow indicated reflected terahertz waveform at the air/coating surface; dotted arrow indicated the reflected 

waveform at the interface between antifouling paint and anticorrosive paint; solid arrow indicated the reflected waveform at the 

interface between protective coating and crossion defect; Dash dot dot arrows indicated the reflected waveform caused by the 

surface of steel substrate under the corrosion defect. (b) Comparison of the SWT detail coefficients for marine protective coating 

with and without metal oxide defect. Solid line denoted SWT detail coefficient for coating without defect; dashed line denoted  

SWT detail coefficient for marine protective coating model with a corrosion defect on the coating/steel interface, which is 

corresponding to (a-1). 

 

5. Conclusions 

In summary, a FDTD-based three-dimensional (3D) model was developed to simulate the reflected THz 

wave from marine protective coatings and a SWT-based algorithm was employed to characterize the 

thickness of coating layers and to evaluate the existence of defects. Terahertz impulse function obtained 
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from the raw reflected terahertz radiation recorded, is decomposed by stationary wavelet transform into 

approximation and detail coefficients. The SWT detail coefficient of terahertz impulse function has 

capability in thickness coating analysis and defect detection of marine protective coating. The proposed 

method would benefit the effective maintenance to avoid coating failure and facilitate marine protective 

coating design. Therefore, non-destructive testing and evaluation of marine protective coating system by 

terahertz waves with stationary wavelet transform could be recommended for engineering applications.  We 

believe that the combined use of the FDTD simulation model with the proposed processing algorithms and 

THz imaging measurements will provide a powerful method for quantitative and non-destructive evaluation 

of marine protective coating.  
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