
Strathprints Institutional Repository

Dombi, Erzsébet R. and Hartmann, Miklós (2015) Automatic semigroup

acts. Journal of Algebra, 435. 286–307. ISSN 0021-8693 ,

http://dx.doi.org/10.1016/j.jalgebra.2015.03.032

This version is available at http://strathprints.strath.ac.uk/56618/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42594012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

Automatic semigroup acts

Erzsébet R. Dombia, Miklós Hartmannb,∗

aDepartment of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, U. K.
bDepartment of Mathematics, University of York, Heslington, York YO10 5DD, U. K.

Abstract

To give a general framework for the theory of automatic groups and semigroups, we intro-
duce the notion of automaticity for semigroup acts. We investigate their basic properties
and discuss how the property of being automatic behaves under changing the generators
of the acting semigroup and under changing the generators of the semigroup act. In par-
ticular, we prove that under some conditions on the acting semigroup, the automaticity
of the act is invariant under changing the generators. Since automatic semigroups can be
seen as a special case of automatic semigroup acts, our result generalizes and extends the
corresponding result on automatic semigroups, where the semigroup S satisfies S = SS.
We also give a geometric approach in terms of the fellow traveller property and discuss the
solvability of the equality problem in automatic semigroup acts. Our notion gives rise to a
variety of definitions of automaticity depending on the set chosen as a semigroup act and
we discuss future research directions.

Keywords: semigroup acts, automaticity, change of generators
2000 MSC: 20M10, 20M30

1. Introduction

Building on the theory of automatic groups, researchers proposed the development of an
analogous theory for semigroups in [5]. One of the main purposes of [5] was to investigate
whether group theoretic results generalize. It was found that some properties do: for
example the word problem in automatic semigroups is also solvable in quadratic time,
but it became clear that automatic semigroups do not enjoy the many pleasant properties
automatic groups enjoy. For example, it is not known whether the so-called uniform word
problem is solvable (see [16]). Furthermore, the beautiful geometric theory that provides
the backbone of the theory of automatic groups does not work in the semigroup theoretic
case as the so called fellow traveller property does not characterize automatic structures
for semigroups. This lead to an example showing that being automatic does depend on
the choice of the generating set in the semigroup theoretic setting.

∗Corresponding author
Email addresses: e.dombi@strath.ac.uk (Erzsébet R. Dombi), hartm@math.u-szeged.hu (Miklós

Hartmann)

Preprint submitted to Elsevier January 7, 2015

These negative results opened new doors in the theory of automatic semigroups. On
one hand semigroup classes related to groups have been investigated ([1], [2], [6], [8], [11],
[9]). For example, in [6] it is proved that automatic completely simple semigroups are
characterized by the fellow traveller property, that they are finitely presented and that
automaticity does not depend on the choice of the generating set. In [9], it is proved
that for semigroups satisfying that S = SS, the property of being automatic does not
depend on the choice of the semigroup generating set. On the other hand, the research
community experimented with alternative definitions ([13], [20], [19]). For example, in [19],
the notion of a prefix-automatic monoid is introduced and is proved that this property does
not depend on the choice of the semigroup generating set.

Our aim is to give a general framework for the theory of automatic semigroups and
groups by introducing the notion of automatic semigroup acts, or S-acts. Both groups
and semigroups can be viewed as S-acts, where the set on which S acts is S itself. Our
motivating examples for the initiation of this theory are free inverse semigroups. Free
inverse semigroups have solvable word problem [18] but they are not automatic [7]. By
choosing a suitable set closely related to a given semigroup such as an R-class or S/R on
which an action of S can be naturally defined, we envisage that this framework will be
useful in investigating various properties of S given that the S-act is automatic.

The purpose of this paper is to lay the foundations of the theory of automatic S-
acts. We verify that our notion is indeed a generalization of the semigroup and group
theoretic notion and we investigate basic properties. The behaviour of automaticity with
respect to changing the generators has been intensively investigated. It was shown that
automaticity is invariant under changing the generators for groups ([12]), for monoids ([11]),
for semigroups with local right identities ([10]) and for semigroups satisfying S = S2 ([9]).
In case of S-acts, there are two types of generators: one for the S-act and one for S. We
show that automaticity is invariant under changing the generators of the S-act and we show
that if S is a semigroup satisfying that SN = SN+1 for some N ∈ N, then automaticity is
invariant under changing the generators of S. Next, we discuss the equality problem for
automatic S-acts. In particular we show that the equality problem is solvable in quadratic
time. By introducing the fellow traveller property for S-acts, we show that automaticity
of an S-act implies that the fellow traveller property holds in the graph associated to the
S-act. The results of Sections 5, 7 and 8 are from the first author’s PhD Thesis ([10]). We
close the paper by discussing future research directions.

2. Preliminaries

In this section we introduce the notation, definitions and results we need. For back-
ground reading on automata and formal language theory we refer the reader to [14] and
[17].

For any finite set X, we let X+ denote the set of all non-empty words over X and let X∗

denote the set of all words over X (including the empty word ǫ). Let u = x1 . . . xn ∈ X∗.
We let l(u) denote the length of u, namely n, and for t ≤ l(u) we let u(t) = x1 . . . xt denote

2

the prefix of u whose length is t. For any t > l(u) we let u(t) = u. Let N ∈ N. We let
XN = {w ∈ X+ | l(w) = N} and we let X≤N = {w ∈ X∗ | l(w) ≤ N}.

Consider the alphabet X = {x1, x2, . . . , xn−1, xn} and let < be a total order on the
alphabet X. We define the shortlex order on X+ by

u < v if and only if

{

l(u) < l(v), or
l(u) = l(v) and u precedes v in the lexicographical order.

Let X be a finite set, and let $ be a symbol not contained in X. We define

X(2, $) = ((X ∪ $)× (X ∪ $)) \ {($, $)}.

Throughout the paper we will often think of elements of X(2, $)∗ as being pairs of words
over X ∪ {$} having the same length, that is, (x1, y1) . . . (xn, yn) ≡ (x1 . . . xn, y1, . . . yn)
where (x1, y1), . . . , (xn, yn) ∈ X(2, $). Let u = x1 . . . xn and v = y1 . . . ym be words over X.
Define δX : X∗ ×X∗ → X(2, $)∗ by

(u, v)δX =

ǫ if m = n = 0,
(x1, y1) . . . (xn, yn) if n = m > 0,
(x1, y1) . . . (xn, yn)($, yn+1) . . . ($, ym) if n < m,
(x1, y1) . . . (xm, ym)(xm+1, $) . . . (xn, $) if n > m

Throughout the paper, if ϕ : X → Y is a map, then we will also use ϕ to denote the
map

ϕ : X ×X → Y × Y, (x, y) 7→ (xϕ, yϕ).

For any X we define ιX : (X ∪ {$})∗ → X∗ to be the homomorphism which fixes elements
of X and sends $ to ǫ.

The following useful notion was introduced in [4]:

Definition 2.1. Let M,L ⊆ (X∗ ×X∗)δX . The padded product of M and L is defined to
be the language

M ⊙ L = {(u1v1, u2v2) | (u1, v1)δX ∈M, (u2, v2)δX ∈ L}δX .

A regular language L over X is a subset of X∗ such that there is a finite state automaton
accepting L. A finite state automaton A consists of a finite non-empty set Q called a set of
states, a finite set X called an alphabet, an element q0 ∈ Q called an initial state, a partial
function δ : Q × X → Q called a transition function and a subset T of Q called final
states or accept states. We write A = (Q,X, δ, q0, T). We recall the following properties of
regular languages:

Proposition 2.2. Let X and Y be finite sets. Then the following hold:

(1) X+, X∗ and finite subsets of X∗ are regular languages.

(2) If K ⊆ X∗ and L ⊆ X∗ are regular languages, then K ∪ L, K ∩ L, K − L,KL,K∗

and Krev = {x1 . . . xn | xn . . . x1 ∈ K} are regular languages.

3

(3) If K ⊆ X∗ is a regular language and ϕ : X+ → Y + is a semigroup homomorphism,
then Kϕ is a regular language.

(4) If L ⊆ Y ∗ is a regular language and ϕ : X+ → Y + is a semigroup homomorphism,
then Lϕ−1 is a regular language.

The following Lemma will be useful in the paper ([4, Lemma 5.3]):

Lemma 2.3. Let M,L ⊆ (X∗ × X∗)δX be regular languages. If there exists a constant
c such that for all (u, v)δX ∈ M we have that |l(u) − l(v)| ≤ c, then M ⊙ L is a regular
language. In particular, if M = (u, v)δX for some u, v ∈ X∗, then M ⊙ L = ((u, v)LιX)δX
is a regular language.

Next, we define the notion of an automatic semigroup:

Definition 2.4. Let S be a semigroup generated by a finite set X. Let L be a regular
language over X and ϕ : X+ → S a homomorphism. We say that (X,L) is an automatic
structure for S if

(1) Lϕ = S,

(2) L= = {(u, v) | u, v ∈ L, u = v}δX is a regular language,

(3) Lx = {(u, v) | u, v ∈ L, ux = v}δX is a regular language for all x ∈ X.

If a semigroup S has an automatic structure, then we say that S is automatic. If L maps
bijectively onto S, then we say that (X,L) is an automatic structure with uniqueness.

Let S be a semigroup. A (right) S-act is a set A together with a function f : A× S →
A, (a, s) 7→ a.s such that (a.s).t = a.(st) for all a ∈ A and s, t ∈ S. If S is a monoid with
identity 1 then we also assume that a.1 = a for all a ∈ A. A typical S-act is S itself with
action defined by s.t = st for all s, t ∈ S.

3. Operations on regular languages

The results of the paper rely heavily on certain operations on regular languages. In
this section we collect all these results. First we start with some basic results from [5].

Lemma 3.1. Let X be a finite set.

1. If w ∈ X∗ and L ⊆ X∗ is regular, then so is {u ∈ X∗ : uw ∈ L}.

2. If L,K ⊆ X∗ are regular then so is (L×K)δX ⊆ X(2, $)∗.

3. If U ⊆ (X∗ ×X∗)δX is regular, then so is

{u ∈ X∗ : (u, v)δX ∈ U for some v ∈ X∗}.

4. If L ⊆ X∗ is regular then so is {(w,w) : w ∈ L}δX ⊆ X(2, $)∗.

4

5. If U, V ⊆ X(2, $)∗ are regular then so is

{(u, w) : there exists v ∈ X∗ such that (u, v)δX ∈ U, (v, w)δX ∈ V }δX ⊆ X(2, $)∗.

6. If U ⊆ X(2, $)∗ is regular then so is

{u ∈ X∗ : if (u, v)δX ∈ U then u ≤ v}.

Definition 3.2. A deterministic finite state transducer (or just transducer) is a tuple
A = (Q,X, Y, q0, δ) where Q,X, Y are finite sets, Q is the set of states, X is the input
alphabet, Y is the output alphabet, q0 ∈ Q is the initial state and δ : Q×X → Q× Y ∗ is
the transition function.

We use transducers to rewrite nonempty words over X to words over Y : we simply
start at the initial state and traverse through the transducer as usual – the output word
is obtained by simply concatenating the output words from each step. For every w =
x1 . . . xn ∈ X+ we define q1, . . . , qn ∈ Q and w0, w1, . . . wn ∈ Y ∗ recursively by w0 = ǫ,
qi = δ(qi−1, xi)

(1) and wi = wi−1δ(qi−1, xi)
(2) for all 1 ≤ i ≤ n where (k) denotes the kth

component. The map defined by the transducer A is τA : X+ → Y ∗, w 7→ wl(w).

Lemma 3.3. [14] Let A = (Q,X, Y, q0, δ) be a transducer and let L ⊆ X+ be a regular
language. Then LτA is also regular.

Definition 3.4. A deterministic finite state transducer with final output (or just transducer
with final output) is a tuple A = (Q,X, Y, q0, δ, ρ) where B = (Q,X, Y, q0, δ) is a transducer
and ρ : Q → Y ∗. The map determined by A is τA : X∗ → Y ∗, w 7→ wτB · ρ(q) where q is
the state in which B finishes reading w. For future reference we define τ ′A = τB.

Lemma 3.5. Let A = (Q,X, Y, q0, δ, ρ) be a transducer with final output and let L ⊆ X∗

be a regular language. Then LτA is also regular.

Proof. Let X ′ = X ∪ {#} where # 6∈ X. Then L′ = L{#} is a regular language. Define
the transducer A′ = (Q,X ′, Y, q0, δ

′) where δ′ extends δ by δ′(q,#) = (q, ρ(q)). It is
straightforward to see that LτA = L′τA′ , finishing the proof.

When we try to check how the automaticity of an S-act (or just a semigroup S) behaves
with respect to changing the generators then it is very natural to use transducers to rewrite
the regular languages associated with the automatic structure. The languages L1, . . . , Ln

appearing in Definition 4.2 behave well with respect to transducing, however, one has to
impose extra conditions for the other languages L(i,j)= and L(i,j)x.

Definition 3.6. A transducer A is called linear if there exist constants A,B ∈ N such
that for every w ∈ X∗ we have

|l(wτA)− Al(w)| < B.

5

Definition 3.7. A transducer with final output A is called linear if there exist constants
A,B ∈ N such that for every w ∈ X∗ we have

|l(wτA)− Al(w)| < B, |l(wτ ′A)− Al(w)| < B.

Definition 3.8. Let X be a finite set and let (u1, u2) ∈ X∗ × X∗. Then the unilength
factorisation of (u1, u2) is the unique factorisation (u1, u2) = (ũ1, ũ2)(û1, û2) satisfying
l(ũ1) = l(ũ2) and either û1 = ǫ or û2 = ǫ (depending on whether u2 or u1 is longer).

Lemma 3.9. Let A = (Q,X, Y, q0, δ) be a linear transducer. Then there exists a transducer
with final output B = (Q′, X(2, $), Y (2, $), q′0, δ

′, ρ′) such that for every L ⊆ (X∗ ×X∗)δX
we have that LιXτAδY = LτB. As a consequence if L is regular then so is LιXτAδY .

Proof. The heuristic approach would be simply to double the transducer A: the transducer
B would have Q×Q as the set of states, and if it is at state (q1, q2) and reads (x1, x2) then
it simply outputs (δ(q1, x1)

(1), δ(q2, x2)
(1)), and moves to the state (δ(q1, x1)

(2), δ(q2, x2)
(2)).

The problem is that B has to output words in Y (2, $)∗ instead of Y ∗ × Y ∗: it is only
allowed to output pairs (y1, y2) where l(y1) = l(y2). To circumvent this problem, if the
output would be (y1, y2) at state (q1, q2), we only output the first min(l(y1), l(y2)) letters
of y1 and y2, and store the rest in the state itself – the linearity condition on τA is there
exactly to ensure that there are only finitely many ‘remaining parts’, so they can be stored
in states. So in the state corresponding to (q1, q2), we need to incorporate two extra
coordinates to store the remainder of the output (though in fact in those states which are
visited while rewriting words in (X∗ ×X∗)δX , one of the coordinates will always be ǫ).

The tedious mathematical definition of B is the following: let A,B be the constants
showing that A is linear and let Q′ = Q × Q × Y ≤2B × Y ≤2B, with q′0 = (q0, q0, ǫ, ǫ).
We extend the map δ to Q × (X ∪ {$}) by defining δ(q, $) = (q0, ǫ) for all q ∈ Q. Let
(q′1, q

′
2, s

′
1, s

′
2) ∈ Q′ and (x1, x2) ∈ X(2, $). For l = 1, 2, define ql = δ(q′l, xl)

(1). If xl = $ for
l = 1 or l = 2 and l(s′l) < l(s′3−lδ(q

′
3−l, x3−l)

(2)) then let

δ′
(

(q′1, q
′
2, s

′
1, s

′
2), (x1, x2)

)

=
(

(q1, q2, ǫ, ǫ), (s
′
1δ(q

′
1, x1)

(2), s′2δ(q
′
2, x2)

(2))δY
)

.

Otherwise let (s′1δ(q
′
1, x1)

(2), s′2δ(q
′
2, x2)

(2)) = (o1, o2)(ŝ1, ŝ2) be the unilength factorisation,
and for l = 1, 2, let sl = ŝl(2B). We define

δ′
(

(q′1, q
′
2, s

′
1, s

′
2), (x1, x2)

)

=
(

(q1, q2, s1, s2), (o1, o2)
)

.

The function ρ′ is defined by

ρ′(q′1, q
′
2, s

′
1, s

′
2) = (s′1, s

′
2)δY .

Note that in the first case (when xl = $ and l(s′l) < l(s′3−lδ(q
′
3−l, x3−l)

(2))) we have that

δ′
(

(q′1, q
′
2, s

′
1, s

′
2), (x1, x2)

)(2)
· (s1, s2)δY =

(

s′1δ(q
′
1, x1)

(2), s′2δ(q
′
2, x2)

(2))δY , (1)

and this equation also holds in the other case provided s1 = ŝ1 and s2 = ŝ2.

6

Here is an example of a run of the automaton B – in the example we assume that A is
linear where B > 4. The actual states of A and B are not important for the demonstration
how δ′ works, so we ignore them - what matters is what the outputs of A are in both
components and what is stored in the state of B. The first line contains the output of the
automata A after having read the corresponding input letter, the second line the output
of B and the third line the stored remaining parts.

(y1y2y1y3, y1) (y2y3y1y2, y2) (ǫ, y2y1) (ǫ, y1y2) (ǫ, y2) (ǫ, y3y1y2)
(y1, y1) (y2, y2) (y1y3, y2y1) (y2y3, y1y2) (y1, y2) (y1$$, y1y2)

(y2y1y3, ǫ) (y1y3y2y3y1y2, ǫ) (y2y3y1y2, ǫ) (y1y2, ǫ) (y1, ǫ) (ǫ, ǫ)

An important property of B is that it outputs any $s only in the first case: if xl = $
and l(s′l) < l(s′3−lδ(q

′
3−l, x3−l)

(2)) for l = 1 or l = 2. However, if the input is an element of
(X∗×X∗)δX then in this case the subsequent xl’s all will equal $, and both words stored in
the state will equal ǫ, so B will not output elements of Y in the lth component any more,
only $’s. Furthermore, in this case B will never output any $’s in the 3− lth component,
showing that (u1, u2)δXτB ∈ (Y ∗ × Y ∗)δY if (u1, u2) ∈ X∗ ×X∗.

Now we prove by induction on max(l(u1), l(u2)) that (u1, u2)τAδY = (u1, u2)δXτB for
all (u1, u2) ∈ X∗ × X∗. If max(l(u1), l(u2)) = 0 then both sides are equal to ǫ. Let us
suppose that, for some N ≥ 0, the equation holds for all (u′1, u

′
2) ∈ X∗ × X∗ satisfying

l(u′1), l(u
′
2) ≤ N , and let (u1, u2) ∈ X∗ × X∗ be such that max(l(u1), l(u2)) = N + 1.

Then (u1, u2)δX = (u′1, u
′
2)δX(x1, x2) where max(l(u1)

′, l(u′2)) = N and (x1, x2) ∈ X(2, $).
Let (q′1, q

′
2, s

′
1, s

′
2) be the state of B after having read (u′1, u

′
2)δX . Then by the induction

hypothesis we have

(u′1, u
′
2)τAδY = (u′1, u

′
2)δXτB = (u′1, u

′
2)δXτ

′
B · ρ(q′1, q

′
2, s

′
1, s

′
2) = (u′1, u

′
2)δXτ

′
B · (s′1, s

′
2)δY (2)

We use Equation (1) to finish the proof - it holds if xl = $ and l(s′l) < l(s′3−lδ(q
′
3−l, x3−l)

(2)

for l = 1 or l = 2. In the other cases let (s′1δ(q
′
1, x1)

(2), s′2δ(q
′
2, x2)

(2)) = (o1, o2)(ŝ1, ŝ2) be
the unilength factorisation and let s1, s2 be as in the definition of δ′. If x1, x2 6= $ then
(u′1, u

′
2)δX = (u′1, u

′
2) and so

(u′1, u
′
2)τ

′
B · (o1, o2) · (ŝ1, ŝ2) =

(

(u′1, u
′
2)τ

′
B · (s′1, s

′
2)δY · (δ(q′1, x1)

(2), δ(q′2, x2)
(2))

)

ιY =

= [(u′1, u
′
2)τAδY · (δ(q′1, x1)

(2), δ(q′2, x2)
(2))

)

]ιY = (u′1τA, u
′
2τA) · (δ(q

′
1, x1)

(2), δ(q′2, x2)
(2)) =

= (u1τA, u2τA),

where we used the induction hypothesis, the fact that (u′1, u
′
2)τ

′
B does not contain $’s

(because u′1, u
′
2 don’t) and that δY inserts extra $’s, which are deleted by ιY . Altogether,

we conclude that (u1τA, u2τA) = (u′1, u
′
2)τ

′
B · (o1, o2) · (ŝ1, ŝ2) is the unilength factorisation.

As a consequence we have that

max(l(ŝ1), l(ŝ2)) = |l(u1τA)− l(u2τA)| ≤ |l(u1τA)− Al(u1)|+ |l(u2τA)− Al(u2)| < 2B

7

by the linearity of A. Thus, s1 = ŝ1 and s2 = ŝ2, so Equation (1) holds.
The third case to check is when xl = $ and l(s′l) ≥ l(s′3−lδ(q

′
3−l, x3−l)

(2) for l = 1 or
l = 2. In this case (s′1δ(q

′
1, x1)

(2), s′2δ(q
′
2, x2)

(2)) = (o1, o2)(ŝ1, ŝ2) implies that

2B > l(s′l) ≥ l(s′3−lδ(q
′
3−l, x3−l)

(2)) ≥ l(ŝ3−l), and 2B > l(s′l) ≥ l(ŝl),

so sl = ŝl for l = 1, 2, showing that Equation (1) indeed holds in all cases.
As a consequence

(u1, u2)δXτB = (u′1, u
′
2)δXτ

′
B · δ′

(

(q′1, q
′
2, s

′
1, s

′
2), (x1, x2)

)(2)
· (s1, s2)δY =

= (u′1, u
′
2)δXτ

′
B · (s′1δ(q

′
1, x1)

(2), s′2δ(q
′
2, x2)

(2))δY =(1)

= [(u′1, u
′
2)δXτ

′
B · (s′1, s

′
2)δY · (δ(q′1, x1)

(2), δ(q′2, x2)
(2))]ιY δY =

= [(u′1, u
′
2)τAδY · (δ(q′1, x1)

(2), δ(q′2, x2)
(2))]ιY δY =(2)

= [(u′1τA, u
′
2τA) · (δ(q

′
1, x1)

(2), δ(q′2, x2)
(2))]δY =(3)

= (u1τA, u2τA)δY ,

where (1) holds because (u1, u2)δXτB ∈ (Y ∗ × Y ∗)δY , so no $ is followed by elements of Y
in the product preceding δY , so if we apply ιY before the final δY , we can include any $’s
in the previous words. Equation (2) holds because the element before δY on the right hand
side does not contain any $’s, so ιY and the preceding δY can be removed. And finally,
equation (3) follows from the recursive definition of τA. The statement of the Lemma
immediately follows from this equation.

In some cases the transducerA in Lemma 3.9 needs to have final outputs. Incorporating
final outputs in the proof of that lemma would complicate it too much, instead we follow
the proof of Lemma 3.5.

Lemma 3.10. Let A = (Q,X, Y, q0, δ, ρ) be a linear transducer with final output and let
L ⊆ (X∗ ×X∗)δX be regular. Then LιXτAδY ⊆ (Y ∗ × Y ∗)δY is also regular.

Proof. Let X ′ = X ∪ {#}. Since A is linear, there exist A,B ∈ N such that

|l(wτA)− Al(w)| , |l(wτ ′A)− Al(w)| < B.

Let us fix a word w ∈ Y ∗ such that l(w) = A. We define a linear transducer A′ =
(Q∪{F}, X ′, Y, q0, δ

′) the following way: δ′ extends δ by δ′(q,#) = (F, ρ(q)) and δ′(F, x) =
(F,w) for all x ∈ X ′ (this is necessary to ensure the linearity of A′ on words which contain
several #s). Then it is easy to see that A′ is also linear and that for any u ∈ X(2, $)∗ we
have

uτA = u#τA′ . (3)

We can think of L as being a regular language over X ′. Now let L′ = (LιX′(#,#))δX′ ,
which is regular by the dual of Lemma 2.3. Note that Equation (3) implies (LιXτA)δY =
L′ιX′τA′δY , which is regular by Lemma 3.9.

8

4. Definition(s) of automatic semigroup acts

In this section we introduce two different notions of automaticity, namely +-automaticity
and ∗-automaticity and investigate their relationship. The difference stems from the fact
that generation of subacts of an act is more complicated when the underlying semigroup
is not a monoid.

Definition 4.1. Let A be an S-act and let Ag ⊆ A. Then the subact +-generated by Ag

is 〈Ag〉+ = Ag.S. The subact ∗-generated by Ag is 〈Ag〉∗ = Ag.S ∪ Ag.

Note that for monoid acts, the two definitions coincide. For semigroup acts, the main
problem is that +-generated subacts may not contain the generating sets – actually, some
acts even cannot be +-generated at all. To avoid this problem we use ∗-generation through-
out the paper, except for this section, which is mainly dedicated to comparing the two
notions of automaticity arising from these two different definitions of generation.

For the remainder of the paper whenever S is an X-generated semigroup then we will
denote by ϕ the surjective homomorphism X+ → S which fixes elements of X. Note that
if A is an S-act then A can be considered an X+-act by defining a.u = a.uϕ for every a ∈ A
and u ∈ X+. Furthermore, though the homomorphism ϕ may not extend to the monoid
X∗, A can still be considered an X∗-act by defining furthermore a.ǫ = a for every a ∈ A.
In the sequel we will make use of this action of X∗ on A. Note that using this action we
have that S is +(∗)-generated by Ag ⊆ A if and only if A = Ag.X

+(A = Ag.X
∗).

Definition 4.2. Let S be a semigroup generated by X, let Ag = {a1, . . . , an} be a finite
+(∗)-generating set of A and let L1, . . . , Ln ⊆ X+(X∗) be regular languages. We say that
(Ag, X, L1, . . . , Ln) forms an +(∗)-automatic structure for A if the following hold:

1. A =
⋃n

i=1 ai.Li,

2. L(i,j)= = {(u, v) ∈ Li × Lj : ai.u = aj.v}δX is a regular language for all 1 ≤ i, j ≤ n,

3. L(i,j)x = {(u, v) ∈ Li × Lj : ai.ux = aj.v}δX is a regular language for all 1 ≤ i, j ≤ n
and x ∈ X.

We say that the automatic structure (Ag, X, L1, . . . , Ln) is with uniqueness if for every
1 ≤ i, j ≤ n, u ∈ Li and v ∈ Lj we have ai.u = aj.v =⇒ i = j, u = v.

As the following Lemma shows, letters in the definition of the languages L(i,j)x may be
replaced by words. We omit the proof, for it is essentially the same as that of Proposition
5.2 in [5].

Lemma 4.3. Let (Ag, X, L1, . . . , Ln) be a +(∗)-automatic structure for the S-act A. Then
for every word w ∈ X+ the language

L(i,j)w = {(u, v) ∈ Li × Lj : ai.uw = aj.v}δX

is regular.

9

If an S-act has a +(∗)-automatic structure (Ag, X, L1, . . . , Ln) then we say that S
is automatic with respect to the generating sets (Ag, X). We say that the S-act A is
+(∗)-automatic if it is +(∗)-automatic with respect to some generating sets. In the re-
maining part of this section we show that ∗-automaticity is a more general notion than
+-automaticity and that it generalizes the usual notion of automaticity for semigroups and
monoids.

Lemma 4.4. If A = 〈Ag〉+ then A is +-automatic with respect to (Ag, X) if and only if
A is ∗-automatic with respect to (Ag, X).

Proof. Note that the direct part is obvious: if (Ag, X, L1, . . . , Ln) is a +-automatic struc-
ture for A, then it is also a ∗-automatic structure. For the converse part let us suppose
that (Ag, X, L1, . . . , Ln) is a ∗-automatic structure for A. Since Ag is a +-generating set,
for every 1 ≤ i ≤ n there exists a word wi ∈ X+ and 1 ≤ ki ≤ n such that ai = aki .wi. For
any i, let Wi = {wl : kl = i} and L′

i = (Li \ {ǫ}) ∪Wi - note that these languages are all
regular. Furthermore, the choice of the words wi ensure that A =

⋃n

i=1 ai.L
′
i.

To see that the languages L(i,j)= are regular, first we define the languages

L̃(l,j) = {v ∈ X∗ : (ǫ, v)δX ∈ L(l,j)=}, L̃
d
(i,l) = {u ∈ X∗ : (u, ǫ)δX ∈ L(i,l)=}.

By Lemma 3.1 we have that these languages are regular, and so the languages

O =
⋃

wl∈Wi

({wl} × L̃(l,j))δX , O
d =

⋃

wl∈Wj

(L̃(i,l) × {wl})δX

are also regular by the same Lemma. For any 1 ≤ i, j ≤ n, we have that

L′
(i,j)= =

{(u, v) ∈ L′
i × L′

j : ai.u = aj.v}δX =
{(u, v) ∈ Li × Lj : u, v 6= ǫ, ai.u = aj.v}δX ∪

{(wl, v) : wl ∈ Wi, (ǫ, v)δX ∈ L(l,j)=}δX ∪
{(u, wl) : wl ∈ Wj, (u, ǫ)δX ∈ L(i,l)=}δX ∪

{(wl, wm) : wl ∈ Wi, wm ∈ Wj, ǫ ∈ L(l,m)=}δX =
O1 ∪O ∪Od ∪O2.

Note that O1 = L(i,j)= ∩ (X × X)X(2, $)∗, and O2 is finite, so they are regular, showing
that L′

(i,j)= is regular for all 1 ≤ i, j ≤ n.

The proof that the languages L′
(i,j)x are regular parallels this one, so (Ag, X, L

′
1, . . . , L

′
n)

is a +-automatic structure for Ag, showing that A is indeed +-automatic with respect to
(Ag, X).

As Lemma 4.4 shows, whenever +-automaticity makes sense (that is, whenever the gen-
erating set +-generates the act), it is equivalent to ∗-automaticity, that is, ∗-automaticity
extends the notion of +-automaticity. As a consequence we only use ∗-automaticity in the
rest of the paper, and to simplify notation we simply call it automaticity.

10

Lemma 4.5. A semigroup S is automatic with respect to a finite generating set X if and
only if S as a right S-act is automatic with respect to (X,X).

Proof. For the direct part, let (X,L) be an automatic structure for S whereX = {x1, . . . , xn}.
Then the languages L= and Lx are regular for all x ∈ X. For every 1 ≤ j ≤ n, let
Lj = {u ∈ X∗ : xju ∈ L}. By Lemma 3.1, the languages Lj are regular. Furthermore,
since Lϕ = S we have that S =

⋃n

i=1 xj.Lj. For every 1 ≤ i, j ≤ n we have (note that
(u, v) ∈ L= can equal ǫ)

L(i,j)= = {(u, v) ∈ Li × Lj : xi.u = xj.v}δX = {(u, v)δX ∈ X(2, $)∗ : (xi, xj)(u, v) ∈ L=},

and similarly

L(i,j)x = {(u, v) ∈ Li × Lj : xi.ux = xj.v}δX = {(u, v)δX ∈ X(2, $)∗ : (xi, xj)(u, v) ∈ Lx},

showing by Lemma 3.1, Part (1) that the languages L(i,j)= and L(i,j)x are regular.
For the converse part let (X,X,L1, . . . , Ln) be an automatic structure for the right

S-act S. Define the regular language L =
⋃n

i=1 xiLi ⊆ X+. Then Lϕ = S. Furthermore,

L= = {(u, v) ∈ L× L : uϕ = vϕ}δX =
⋃

1≤i,j≤n{(xiu
′, xjv

′) ∈ L× L : (u′, v′) ∈ Li × Lj}δX =
⋃

1≤i,j≤n(xi, xj)L(i,j)=

is a regular language. Similarly

Lx =
⋃

1≤i,j≤n

L(i,j)x

is a regular language for all x ∈ X, completing the proof.

5. An automatic structure with uniqueness

In this section we show that every automatic S-act has an automatic structure with
uniqueness. Part of the proof follows the semigroup case.

Theorem 5.1. Let A be an automatic S-act. Then there exists an automatic structure
with uniqueness for A.

Proof. Let (Ag, X, L1, . . . , Ln) be an automatic structure for A. We will achieve uniqueness
in two steps: first we will ensure that ai.L

′
i ∩ aj.L

′
j = ∅ for all 1 ≤ i 6= j ≤ n. This is quite

easy to achieve, namely, for every 1 ≤ i < n, let

L′
i = Li \ {u ∈ Li : ai.u = aj.v for some j > i and v ∈ Lj} =

= Li \
n
⋃

j=i+1

{u ∈ Li : (u, v)δX ∈ L(i,j)=},

11

which is a regular language by Lemma 3.1. We also define L′
n = Ln. The definition of L′

i

ensures that
⋃n

i=1 ai.L
′
i =

⋃n

j=1 aj.Lj, and that ai.L
′
i ∩ aj.L

′
j = ∅ for all 1 ≤ i 6= j ≤ n.

The next step is to replace the languages L′
i by L

′′
i such that ai.u = ai.v implies u = v

for all u, v ∈ L′′
i . For every 1 ≤ i ≤ n, let us define

L′′
i = {u ∈ L′

i : if (u, v) ∈ L′
(i,i)= then u < v in the shortlex order},

that is, for each a ∈ ai.L
′
i, we keep only the shortlex-minimal u ∈ L′

i such that a = ai.u
By Lemma 3.1 we have that L′′

i is a regular language. Furthermore, clearly ai.L
′
i = ai.L

′′
i ,

so A =
⋃n

i=1 ai.L
′′
i . The languages L′′

i now satisfy that whenever u ∈ Li, v ∈ Lj such that
ai.u = aj.v then i = j and u = v. As a consequence

L′′
(i,j)= =

{

∅ if i 6= j
{(u, u) : u ∈ Li}δX if i = j.

Thus L′′
(i,j)= is regular for all 1 ≤ i, j ≤ n by Lemma 3.1. Moreover, since L′′

i ⊆ Li for all
1 ≤ i ≤ n, we also have that

L′′
(i,j)x = L(i,j)x ∩ (L′′

i × L′′
j)δX ,

and hence is a regular language. We deduce that (Ag, X, L
′′
1, . . . , L

′′
n) is indeed an automatic

structure with uniqueness for the S-act A.

6. Change of generators

In this section we show that under some conditions on S, automaticity of S-acts is
independent of the choice of the generating sets. Note that for S-acts there are two types
of generators: one is for the act itself and one is for S. First we show that automaticity is
independent of the choice of the act generating set.

Lemma 6.1. Let S = 〈X〉, let A be an S-act and let Ag, A
′
g ⊂ A be two finite generating

sets for A. Then A is automatic with respect to the generating sets (Ag, X) if and only if
it is automatic with respect to (A′

g, X).

Proof. Let us suppose that A is automatic with respect to (Ag, X). Then there exists
an automatic structure (Ag, X, L1, . . . , Ln) for A where Ag = {a1, . . . , an}. Let A′

g =
{a′1, . . . , a

′
m}. Then for every 1 ≤ i ≤ n there exist 1 ≤ pi ≤ m and wi ∈ X∗ such that

ai = a′pi .wi. For any 1 ≤ p ≤ m we define the languages

L′
p =

⋃

i:pi=p

wiLi.

Clearly the languages L′
p are regular and by the definition of the indices pi we also have

that A =
⋃m

p=1 a
′
p.L

′
p. It only remains to check that the languages L′

(p,q)= and L′
(p,q)y are

regular. For this note that

L′
(p,q)= = {(u′, v′) ∈ L′

p × L′
q : a

′
p.u

′ = a′q.v
′}δX =

⋃

i:pi=p,j:pj=q{(wiu, wjv) ∈ L′
p × L′

q : ai.u = a′p.wiu = a′q.wjv = aj.v}δX =

=
⋃

i:pi=p,j:pj=v

(

(wi, wj)L(i,j)=ιX
)

δX .

12

Since the languages ((wi, wj)L(i,j)=ιX)δX are regular by Lemma 3.1, we conclude that
L(p,q)= is regular for all 1 ≤ p, q ≤ m. Similarly one can show that

L(p,q)x =
⋃

i:pi=p,j:pj=v

(

(wi, wj)L(i,j)xιX
)

δX ,

showing that (A′
g, X, L

′
1, . . . , L

′
m) is indeed an automatic structure for A, and finishing the

proof.

Changing the generators of the semigroup S is more complicated, one has to expect
some conditions, since in general, automaticity of semigroups does depend on the choice
of the generators (see [5]). In the sequel we aim to strengthen the most general result
currently existing, namely that of [9]. The main idea is to show that under a certain
condition, almost all words over one generators can be rewritten to words over the other
generators in both a short and a long way, which enables one to use Lemma 3.9. This idea
is captured in the following lemma.

Lemma 6.2. Let A = 〈Ag〉 be an S-act where S satisfies SN = SN+1 for some N ∈ N.
Let X and Y be finite generating sets of S. Then if A is automatic with respect to (Ag, X)
then A is automatic with respect to (Ag, Y).

Proof. Let ϕ : X+ → S and ψ : Y + → S be the homomorphisms fixing X and Y , respec-
tively. Since SN = SN+1 we have that if u ∈ X+ satisfies lX(u) ≥ N then for every
n ≥ N there exists v ∈ Y + such that lY (v) ≥ n and uϕ = vψ. For every u ∈ X≤N

let us fix p
(s)
u ∈ Y + (the superscript stands for ‘short’) such that uϕ = p

(s)
u ψ. Let

L ≥ max({lY (p
(s)
u) : u ∈ X≤N}) such that N divides L. For every u ∈ XN let us also fix

p
(l)
u ∈ Y + (the superscript stands for ‘long’) such that uϕ = p

(l)
u ψ and lY (p

(l)
u) > L. Let

B = max({lY (p
(l)
u) : u ∈ XN}). Summing up, for every u ∈ X≤N and v ∈ XN we have

that
uϕ = p(s)u ψ, vϕ = p(l)v ψ, 1 ≤ lY (p

(s)
u) ≤ L < lY (p

(l)
v) ≤ B. (4)

Let (Ag, X, L1, . . . , Ln) be an automatic structure for A where Ag = {a1, . . . , an}. We
are going to define a linear transducer with final output A = (Q,X,Y, q0, δ, ρ) such that
for every u ∈ X+ we have that uϕ = uτAψ. Then by making use of Lemma 3.10 we will
show that (Ag, Y, L1τA, . . . , LnτA) is an automatic structure for A. The transducer will
rewrite words in the following way: words u such that lX(u) ≤ N will be simply rewritten

to p
(s)
u . Longer words will be rewritten by rewriting blocks of length N to their short or

long counterparts over Y , depending on how far the length of the previous output is from
L
N
lX(u

′) where u′ is the previous input. The tedious definition of A is the following: let
Q = {−B, . . . , B} × X≤N−1, q0 = (0, ǫ). The transition function δ : Q × X → Q × Y ∗ is
defined by

δ((i, w), x) =

((i, wx), ǫ) if lX(w) < N − 1

((i+ lY (p
(l)
wx)− L, ǫ), p

(l)
wx) if lX(w) = N − 1, i ≤ 0

((i+ lY (p
(s)
wx)− L, ǫ), p

(s)
wx) if lX(w) = N − 1, i > 0,

13

and ρ : Q→ Y ∗ is defined by ρ((i, w)) = p
(s)
w . First of all note that δ is well-defined, because

if i ≤ 0 then i ≤ i + lY (p
(l)
wx) − L ≤ B − L ≤ B and if i > 0 then i ≥ i + lY (p

(s)
wx) − L >

−L > −B. Furthermore, it is clear that uϕ = uτAψ for every u ∈ X+.
The next step is to show by induction on lX(w) that if w = w1w2 . . . wkw

′ where
lX(w1) = . . . = lX(wk) = N and lX(w

′) < N then A finishes reading w in the state
(lX(wτ

′
A) − Lk,w′). If lX(w) = 0 then the statement is true. Let us suppose that there

exists O ∈ N such that the statement is true whenever lX(w
′) < O and let lX(w) = O.

Write w = w1 . . . wkw
′ where lX(w1) = . . . = lX(wk) = N and lX(w

′) < N . If w′ 6= ǫ then
let w′ = w′′x where x ∈ X. In this case by the induction hypothesis we have that A is in
the state (lX(w1 . . . wkτ

′
A)− Lk,w′′) after having read w1 . . . wkw

′′, and then after reading
x, it will move to the state (lX(w1 . . . wkτA

′) − Lk,w′′x) by the definition of δ. On the
other hand if w′ = ǫ then let wk = w′

kx where x ∈ X. By the induction hypothesis A
finishes reading w1 . . . wk−1w

′
k in the state (lX(w1 . . . wk−1τ

′
A)− L(k − 1), w′

k). In the next

step, when reading x, A outputs u, which either equals p
(s)
wk or p

(l)
wk , and moves to the state

(lX(w1 . . . wk−1τ
′
A)− L(k − 1) + lX(u)− L, ǫ). Note that by the definition of τ ′A and δ we

have that w1 . . . wkτ
′
A = w1 . . . wk−1τ

′
A ·u, so certainly lX(w1 . . . wkτ

′
A) = lX(w1 . . . wk−1τ

′
A)+

lX(u), showing that A indeed finishes reading w in the state (lX(w1 . . . wkτ
′
A)−Lk,w

′). As
a consequence, for every w = w1 . . . wkw

′, lX(w1) = . . . = lX(wk), lX(w
′) < N we have

∣

∣lX(wτA)−
L
N
lX(w)

∣

∣ =
∣

∣

∣
lX(wτ

′
A) + lY (p

(s)
w′)− Lk − lX(w

′)
∣

∣

∣
≤

|lX(wτ
′
A)− Lk|+

∣

∣

∣
lY (p

(s)
w′)− lX(w

′)
∣

∣

∣
≤ B + L

and
∣

∣

∣

∣

lX(wτ
′
A)−

L

N
lX(w)

∣

∣

∣

∣

= |lX(wτ
′
A)− Lk − lX(w

′)| ≤ |lX(wτ
′
A)− Lk|+ lX(w

′) ≤ B + L,

so A is indeed linear with constants L/N and B + L+ 1.
For every 1 ≤ i ≤ n, let L′

i = LiτA. These languages are regular by Lemma 3.5, and
since uϕ = uτAψ for every u ∈ X+, they satisfy A =

⋃n

i=1 ai.L
′
i. Furthermore, we have

that for every 1 ≤ i, j ≤ n,

L′
(i,j)= = {(u′, v′) ∈ L′

i × L′
j : ai.u

′ = aj.v
′}δY =

= {(u, v)ιXτA : (u, v) ∈ L(i,j)=}δY = L(i,j)=ιXτAδY ,

and these languages are also regular by Lemma 3.10. Similarly we have that L′
(i,j)y =

L(i,j)wιXτAδY , where w ∈ X+ is a word such that wϕ = yψ. This shows by Lemma 4.3
that the languages L′

(i,j)y are also regular, so (Ag, Y, L
′
1, . . . , L

′
n) is an automatic structure

for A.

By combining Lemmas 6.1 and 6.2, one obtains the result of the section.

14

Theorem 6.3. Let S be a semigroup satisfying SN = SN+1 for some N ∈ N and let A be
an S-act. Then the automaticity of A is independent of the choice of the generators of S
and of A.

Corollary 6.4. Let S be a semigroup satisfying SN = SN+1 for some N ∈ N. Then the
automaticity of S is independent of the choice of the generators of S.

7. Equality problem

Let S be a semigroup generated by a finite set X. The word problem is said to be
solvable for S, if there exists an algorithm which decides whether given any two words
u, v ∈ X+ represent the same element in S or not. Automatic groups and semigroups have
solvable word problem in quadratic time. In this section we will introduce the concept of
the equality problem for S-acts, and show that the equality problem is solvable for the
right S-act S if and only if the word problem is solvable for the semigroup S. Moreover
we show that the equality problem for automatic semigroup acts is solvable in quadratic
time.

Let A be an S-act, generated by a finite set Ag ⊆ A. If there exists an algorithm
that decides whether for any (ai, aj) ∈ Ag × Ag and for any two given words u, v ∈
X∗, ai.u = aj.v holds, then we say that the equality problem is solvable for the S-act
A. Not surprisingly, the equality problem of the right S-act S is connected to the word
problem of the semigroup S.

Proposition 7.1. Let S be a semigroup generated by a finite set X. Then the word problem
is solvable for S if and only if the equality problem is solvable for the right S-act S.

Proof. Note that if S is generated by X, then the right S-act S is generated by X. Assume
that the word problem is solvable for S. Let xi, xj ∈ X, u, v ∈ X+ and u′ = xiu, v

′ = xjv.
By our assumptions, there exists an algorithm which decides whether or not xi.u = u′ϕ =
v′ϕ = xj.v, proving that the equality problem is solvable for the right S-act S.

For the converse, assume that the equality problem is solvable for the right S-act S.
Let u, v ∈ X+, and assume that u ≡ xiu

′ and that v ≡ xjv
′. By our assumptions, there

exists an algorithm that decides whether or not uϕ = xi.u
′ = xj.v

′ = vϕ holds in S or not,
proving that the word problem is indeed solvable for S.

To show that the equality problem is solvable for automatic S-acts, first we prove an
analogue of the well-known Pumping Lemma for regular languages.

Proposition 7.2. Let A be an automatic S-act. Let (Ag, X, L1, . . . , Ln) be an automatic
structure for A. Then, there exists a constant N such that for any ai ∈ Ag and u ∈ Li the
following hold for the elements a = ai.u or a = ai.(u · x) of A, where x ∈ X:

(i) There exists aj ∈ Ag and v ∈ Lj such that |v| ≤ |u|+N and a = aj.v.

(ii) If there exists aj ∈ Ag and v ∈ Lj, such that |v| > |u| +N and a = aj.v, then there
exist infinitely many w ∈ Lj such that a = aj.w.

15

Proof. (i) For all (aj, ak) ∈ Ag × Ag consider finite state automata A(j,k)=, A(j,k)x,
(x ∈ X) accepting the regular languages L(j,k)=, L(j,k)x respectively. Let N be greater
than the number of states in any of the automata defined.

Let ai ∈ Ag and u ∈ Li. If a = ai.u, then (i) is straightforward. Assume that
a = ai.(u · x), where x ∈ X. Since (Ag, X, L1, . . . , Ln) is an automatic structure for A,
there exists aj ∈ Ag and v ∈ Lj such that a = aj.v. If |v| ≤ |u|+N , then we are finished.
Assume that |v| > |u| + N . Clearly (u, v)δX is accepted by A = A(i,j)x . After reading
through all of u, we visit a state, say q, in A at least twice. Removing the subword of v
between successive visits to q, we get a shorter word v1, moreover (u, v1)δX is still accepted
by A(i,j)x . Repeating this procedure as many times as necessary, we obtain a word w,
which satisfies that |w| ≤ |u|+N and a = aj.w.

(ii) Assume that there exists aj ∈ Ag and v ∈ Lj, such that |v| > |u|+N and a = aj.v.
In particular we have that (u, v)δX is accepted by one of the automata defined; say by A.
After reading through all of u, we visit a state, say q, in A more then once. Inserting the
subword in between two successive visits to q in v in the appropriate place, we will get a
longer word v1 so that (u, v1)δX is still accepted by A. Repeating this process as many
times as we want, we get the desired result. �

Theorem 7.3. Let A be an S-act and let (Ag, X, L1, . . . , Ln) be an automatic structure for
A where Ag = {a1, . . . , an}. Then the equality problem for A is solvable in quadratic time.

Proof. Let N be the number guaranteed by Proposition 7.2. That is, for every ai ∈ Ag, u ∈
X∗ and x ∈ X we have that there exist aj ∈ Ag and v ∈ Lj such that ai.ux = aj.v and
l(v) ≤ l(u) +N .

For every ai ∈ Ag, let us fix aki ∈ Ag and wi ∈ Lki such that ai = aki .wi. First
we show that for any ai ∈ Ag and u ∈ X∗ we can find aj ∈ Ag and w ∈ Lj such that
ai.u = aj.w in quadratic time. Let u = x1 . . . xl. First of all note that ai.u = aki .wiu. The
algorithm finding aj and w is as follows: first we search for ao1 ∈ Ag and v1 ∈ Lo1 such
that aki .wix1 = ao1 .v1.

This is done by scanning the regular languages L(ki,1)x1
, . . . , L(ki,n)x1

for an element
(wi, v1)δX satisfying l(v1) ≤ l(wiu) + N . This scanning is done by running first the au-
tomaton corresponding to L(ki,1)x1

- we start at the initial vertex, and check where the n+1

inputs (w
(1)
i , x′) lead us (where w

(p)
i is the pth letter of wi if p ≤ l(wi) and w

(p)
i = $ for

p > l(wi)) and x
′ runs through X ∪ {$}. We then check from the reached states where the

(at most) n+ 1 inputs (w
(2)
i , x′) lead us where x′ again runs through X ∪ {$} (note that if

we chose $ in the first step then we have to choose $ now). Since in every step we have at
most n+1 choices, we can decide in at most (n+1)(l(wiu)+N) = O(l) time whether such
a v1 ∈ L1 exists - if we reach a final state after having read all of wi, then we have found
vi, otherwise we stop after l(wiu) +N steps. So it takes O(l) time to decide whether there
exists v1 ∈ L1 such that aki .wix1 = a1.v1 satisfying l(v1) ≤ l(w1u) +N , and if there exists,
we can also find it. If such a v1 ∈ L1 does not exist, then we check for v1 ∈ L2, . . . , Ln - by
Proposition 7.2, we will find v1 in at most n ·O(l) = O(l) time.

16

So we can find v1 ∈ Lo1 in O(l) time. Similarly it takes O(l) time to find v2 ∈ Lo2

such that ak1 .wix1x2 = ao1 .v1x2 = ao2 .v2, l(v2) ≤ l(w1u) + N , and so on. Altogether we
need l steps, each step taking at most O(l) time, so to find vl ∈ Lol such that ai.u =
aki .wix1 . . . xl = aol .vl takes at most O(l2) time.

Now let a, a′ ∈ Ag, u, u
′ ∈ X∗ and let l = max(l(u), l(u′)). Then we can find ai, aj ∈

Ag, v ∈ Li and v
′ ∈ Lj such that a.u = ai.v and a.u′ = aj.v

′ in O(l2) time. After this, it
takes O(l) time to check whether (v, v′)δX ∈ L(i,j)=, showing that the equality problem is
solvable in quadratic time.

Remark 7.4. Note that Theorem 7.3 does not imply that the so-called uniform word
problem is solvable. It shows that for every automatic act A, there exists an algorithm
solving the equality problem, however, the algorithm uses more information about A than
is given by the automatic structure. In other words, we do not know currently if there exists
an algorithm which inputs the automatic structure (Ag, X, L1, . . . , Ln), the corresponding
automata for the regular languages L(i,j)=, L(i,j)x and elements ai, aj ∈ Ag and u, v ∈ X∗,
and decides whether ai.u = aj.v.

8. Fellow traveller property

In this section we first associate a directed labelled graph ΓX(A, S) to each S-act A and
introduce the notion of distance in ΓX(A, S). With these tools, we give the definition of
the fellow traveller property and claim that the introduced notion is a generalization of the
fellow traveller property given for semigroups and groups. Finally we prove in this section
that if A is an automatic S-act, then ΓX(A, S) possesses the fellow traveller property.

As before, S will denote a semigroup, X a finite generating set for S. We denote by
ϕ : X+ → S the homomorphism extending the identity map idX : X → S. If S is a group,
then we will assume that X is closed under taking inverses.

Intuitively we can think of an S-act A as a directed labelled graph ΓX(A, S), in which
the vertices are elements of A, the labels are elements of X and there is an arrow from
a to b with label x precisely when a.x = b. We write the arrows of ΓX(A, S) as ordered
triples (a, x, b) indicating that a.x = b. We let V(ΓX(A, S)) denote the set of vertices and
A(ΓX(A, S)) denote the set of arrows of ΓX(A, S). Clearly ΓX(A, S) is not necessarily a
connected graph.

We define a path between two vertices a and b of ∆ = ΓX(A, S) to be a sequence of
edges:

a = a0
x1 a1

x2 a2 . . . an−1
xn an = b

such that either (ai, xi, ai+1) ∈ A(∆) or (ai+1, xi, ai) ∈ A(∆), (0 ≤ i ≤ n − 1) and say
that the length of the path is n. For a, b ∈ V(∆), we define the distance d∆(a, b) between
a and b to be the length of the shortest path connecting a and b and say that the distance
is infinite if a and b belong to different components of ∆.

Example 8.1. If A is the right S-act S, then ∆ = ΓX(A, S) is the right Cayley graph
Γ = ΓX(S) of S. We have for all a, b ∈ S that d∆(a, b) = dΓ(a, b). If S is a group then ∆ is

17

a connected graph and (g, x, h) ∈ A(∆) if and only if (h, x−1, g) ∈ A(∆). In other words,
any two vertices are connected via a directed path.

Definition 8.2. Let L1, . . . , Ln ⊆ X∗ satisfy A =
⋃n

i=1 ai.Li. The graph ∆ = ΓX(A, S)
is said to have the fellow traveller property with respect to Li, Lj and ai, aj, if there exists
a constant k ∈ N such that whenever (u, v) ∈ Li × Lj with d∆(ai.u, aj.v) ≤ 1, then
d∆(ai.u(t), aj.v(t)) ≤ k for all t ≥ 1. We say that ΓX(A, S) possesses the fellow traveller
property with respect to L1, . . . , Ln and Ag, if it possesses the fellow traveller property with
respect to any two languages Li, Lj and corresponding generators ai, aj.

We have seen that if S is a semigroup then ΓX(S, S) is the Cayley graph of S. Now we
show that the fellow traveller property for S-acts is a generalization of the fellow traveller
property given for semigroups and groups.

Proposition 8.3. Let S be a semigroup generated by a finite set X = {x1, . . . , xn}. Then
the Cayley graph of S possesses the fellow traveller property with respect to some regular
language L if and only if ΓX(S, S) possesses the fellow traveller property with respect to
some regular languages L1, . . . , Ln and X.

Proof. (⇒) Assume that the Cayley graph Γ = ΓX(S) of S has the fellow traveller
property with respect to a language L. Then Lϕ = S and there exists a constant k ∈ N

such whenever dΓ(u, v) ≤ 1 with u, v ∈ L then dΓ(u(t), v(t)) ≤ k for all t ≥ 1. Clearly,
A =

⋃n

i=1 ai.Li for the languages Li = {u ∈ X+ | xiu ∈ L} (1 ≤ i ≤ n). Let ∆ =
ΓX(S, S). Choose languages Li, Lj and let (u, v) ∈ Li × Lj such that d∆(xi · u, xj · v) ≤ 1.
Bearing in mind that d∆(a, b) = dΓ(a, b) for all a, b ∈ S, (see Example 8.1) we have that
dΓ(xiu, xjv) ≤ 1, and hence dΓ((xiu)(t), (xjv)(t)) ≤ k holds for all t ≥ 1. In particular
we have that d∆(xi · (u(t)), xj · (v(t))) ≤ k for all t ≥ 1, proving that the fellow traveller
property holds in ∆ with respect to Li, Lj and xi, xj. Since Li, Lj were arbitrarily chosen,
we may deduce that ΓX(S, S) possesses the fellow traveller property.

(⇐) Assume that ∆ = ΓX(S, S) possesses the fellow traveller property with respect to
some regular languages L1, . . . , Ln and X. Then

⋃n

j=1 xjLjϕ = S and for any two chosen
languages Li, Lj and corresponding generators xi, xj, there exists a constant k ∈ N such
that whenever d∆(xi ·u, xj · v) ≤ 1 with (u, v) ∈ Li×Lj then d∆(xi · (u(t)), xj · (v(t))) ≤ k
for all t ≥ 1. We let L =

⋃n

j=1 xjLj. Then Lϕ = S. We claim that the Cayley graph
Γ = ΓX(S) has the fellow traveller property with respect to L. Let N ∈ N be a constant
such that for any two generators xi and xj that are connected via a path in ∆ the distance
d∆(xi, xj) ≤ N . LetM = max(k,N). Assume that dΓ(u, v) ≤ 1, (u, v ∈ L). Then u = xi·ũ
and v = xj · ṽ, where xi, xj ∈ X and (ũ, ṽ) ∈ Li × Lj. It follows that d∆(xi · ũ, xj · ṽ) ≤ 1
holds and we obtain that for all t ≥ 1, d∆(xi · (ũ(t)), xj · (ṽ(t))) ≤ k ≤ M holds. Since
d∆(a, b) = dΓ(a, b) for all a, b ∈ S, we have that for all t ≥ 1, dΓ(xi · (ũ(t)), xj · (ṽ(t))) ≤
k ≤ M . To finish the proof we need to verify that dΓ(xi, xj) ≤ M or equivalently that
xi and xj are connected in Γ = ∆. But the latter fact follows by our assumptions, since
xi · (ũ · x) = xj · ṽ holds for some x ∈ X ∪ {ǫ}. That is, we have the following path in ∆

xi
ũ

//xi · ũ
x

//xi · ũ · x = xj · ṽ xj
ṽ

oo

18

We may deduce that the Cayley graph of S possesses the fellow traveller property with
respect to L. �

Next we verify that if A is an automatic S-act, then ΓX(A, S) possesses fellow traveller
property. We follow the group and semigroup theoretical proofs.

Proposition 8.4. Let S be a semigroup generated by a finite set X. Let A be an auto-
matic S-act with an automatic structure (Ag, X, L1, . . . , Ln). Then ΓX(A, S) has the fellow
traveller property with respect to L1, . . . , Ln and Ag.

Proof. Let Ag = {a1, . . . , an}. For each regular language L(i,j)x, x ∈ X ∪ {=}, consider a
finite state automaton A(i,j)x accepting it and choose a constant N ∈ N, such that N is
greater then the number of states of any of the automata defined. Let ∆ = ΓX(A, S).

Choose regular languages Li, Lj and assume that d∆(ai.u, aj.v) ≤ 1 holds, where
(u, v) ∈ Li × Lj. Without loss of generality we can assume that ai.(u · y) = aj.v for
some y ∈ X ∪ {ǫ}. Then (u, v)δX is accepted by the automaton A(i,j)x, where x = y if
y ∈ X and x is the symbol = if y = ǫ. Start reading the word (u, v)δX in A(i,j)x and
assume that after reading the first t letters (u(t), v(t))δX , we are at state q. Let (ũ, ṽ)δX be
the shortest word over X(2, $) such that reading (ũ, ṽ)δX from state q, we arrive at a final
state of A(i,j)x. Clearly, the length of (ũ, ṽ)δX is less then N , since the number of states
of the considered automaton is less then N . Furthermore, since (u(t), v(t))δX(ũ, ṽ)δX is
accepted by A(i,j)x, we have the following diagram in ∆: That is,

d∆(ai.u(t), aj.v(t)) ≤ |ũ|+ |ṽ|+ |x| ≤ 2N + 1,

which proves that the fellow traveller property holds in ∆ with respect to Li, Lj and ai, aj.
Since Li, Lj were arbitrarily chosen, we may deduce that ∆ possesses the fellow traveller
property with respect to L1, . . . , Ln and Ag.

Corollary 8.5. Let S be an automatic semigroup. Then the Cayley graph of S possesses
the fellow traveller property.

9. Conclusions and future research directions

In this paper, we gave a general framework for the theory of automaticity by introducing
the notion of an automatic S-act. We proved that this notion is indeed a generalization of
the semigroup theoretic notion and that basic properties also generalize. If the S-act is S
itself, then we arrive at the usual notion of automaticity. If we choose the S-act to be a set
closely related to S, then we arrive at a wide variety of notions of automaticity. Indeed,
we may choose the S-act A to be an R-class of S or S/R or S/L to enable us to define
Schützenberger-automaticity, R-class automaticity or L-class automaticity and we may
combine these definitions. This leads to a plethora of interesting questions. For example
how different notions of automaticity relate to each other? Under what conditions (if any)
does automaticity of a semigroup imply Schützenberger automaticity of an R-class and
vica versa. If S is a regular semigroup, then how does Schützenberger automaticity of an

19

R-class relate to automaticity of a maximal subgroup within that R-class. Is it possible to
give a geometric characterization of Schützenberger automatic regular semigroups in terms
of the fellow traveller property? Under what conditions does Schützenberger automaticity
imply finite presentability? What can one say about the word problem of a Schützenberger
automatic semigroup? We propose these questions for further investigation to gain more
insight into the nature and properties of semigroups S given that the chosen S-act is
automatic.

10. Acknowledgement

The authors acknowledge the support of EPSRC grant no. EP/I032312/1. Research
also partially supported by the Hungarian Scientific Research Fund (OTKA) grant no.
K83219.

[1] A. J. Cain, Automatic semigroups and Bruck-Reilly extensions, Acta Math. Hungar.
47 (2010) 1–15.

[2] A. J. Cain, Automatic Clifford semigroups, preprint.

[3] A. J. Cain, Automatic structures for subsemigroups of Baumslag—Solitar semigroups,
Semigroup Forum 87 (2013) 537–552.

[4] I. Andrade, L.Desçalco, M. A. Martins, Automatic structures for semigroup construc-
tions, Semigroup Forum 76 (2008), 239–255.

[5] C. M. Campbell, E. F. Robertson, N. Ruskuc, R. M. Thomas, Automatic semigroups,
Theoret. Comput. Sci. 365 (2001), 365 – 391.

[6] C. M. Campbell, E. F. Robertson, N. Ruškuc and R. M. Thomas, Automatic
completely-simple semigroups, Acta Math. Hungar. 95 (2002) 201–215.

[7] A.Cutting, A.Solomon, Remarks concerning finitely generated semigroups having reg-
ular sets of unique normal forms, J.Aust.Math.Soc. 70 (2001) 293–309.

[8] L. Descalço and N. Ruškuc, On automatic Rees matrix semigroups, Comm. Algebra
30 (2002) 1207–1226.

[9] E. R. Dombi, A note on automatic semigroups Semigroup Forum 86 (2013) 555–570.

[10] E. R. Dombi, Automatic S-acts and inverse semigroup presentations, PhD Thesis.

[11] A. J. Duncan, E. F. Robertson and N. Ruškuc, Automatic monoids and change of
generators, Math. Proc. Cambridge Philos. Soc. 127 (1999) 403–409.

[12] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P.
Thurston: Word Processing in Groups, Boston, MA: Jones and Bartlett Publishers,
1992.

20

[13] M. Hoffmann and R. M. Thomas, Notions of automaticity in semigroups, Semigroup
Forum 66 (2003) 337–367.

[14] J. E. Hopcroft, J. D. Ullman, Formal languages and their relation to automata,
Addison-Wesley, 1969.

[15] J.M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford, 1995.

[16] M. Kambites, F. Otto, Uniform decision problems for automatic semigroups, Journal
of Algebra 303 (2006) 789 – 809.

[17] M. V. Lawson, Finite automata, Chapman & Hall/CRC, 2004.

[18] W. D. Munn, Free inverse semigroups, Proc. London Math. Soc. (3) 29 (1974), 385 –
404.

[19] P. V. Silva and B. Steinberg, A geometric characterization of automatic monoids, Q.
J. Math. 55 (2004) 333–356.

[20] P. V. Silva, B. Steinberg, Extensions and submonoids of automatic monoids, Theoret.
Comput. Sci. 289 (2002) 727–754.

21

