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Abstract—The Model Predictive Controller is designed for
a 5MW variable-speed pitch-regulated wind turbine for three
operating points – below rated wind speed, just above rated wind
speed, and above rated wind speed. At each operating point, the
controllers are designed based on two different linear models of
the same wind turbine to investigate the impact of using different
control design models (i.e. the model used for designing a model-
based controller) on the control performance.

I. INTRODUCTION

A wind turbine converts the kinetic energy from the wind

into mechanical energy. It is then converted into electricity,

which is subsequently transmitted to a power grid [1]. This

paper is concerned with a 5MW variable-speed pitch-regulated

horizontal-axis wind turbine, having three blades.

The overall control design steps for designing a control

system for regulating variable-speed wind turbines, which are

often implemented and pursued in this study, can be briefly

summarised as follows:

1) Development of linear control design models at 4 oper-

ating points or modes (explained in more detail below)

2) Design of control synthesis based on the design models

from Step 1 at each mode

3) Design of control strategy (i.e., switching between the

controllers from Step 2, incorporation of a drive-train

damper, etc.) to obtain a full-envelope controller

4) Application of the full-envelope controller (from Step 3)

to the high-fidelity aero-servo-elastic model, developed

in DNV-GL Bladed (Bladed), from which the linear

models have been derived. This step tests the controller

in terms of all significant variables and loads and lifetime

equivalent fatigue load estimates.

5) Application of the full-envelope controller (from Step

4) to the real-life turbine that the aero-elastic model

represents by refining the controller.

This paper focuses only on Steps 1 and 2, and the following

steps are beyond the scope of this paper. The main objective of

this study is to investigate the effect of using different linear

control design models in Step 1 on the performance of the

control synthesis in Step 2.

The synthesis of the controller design in Step 2 is concerned

with designing single input single output (SISO) linear con-

trollers at different operating points. More specifically, linear

controllers are often designed at 4 operating points, in the

lowest wind speeds (mode 1), in intermediate wind speeds

(mode 2), in higher, but still below rated, wind speeds (mode

3) and in above rated wind speeds (mode 4). Note that the

rated wind speed is a pre-determined wind speed, at which

the limit on power output to the wind turbine (5MW in this

paper), is reached. When the wind speed exceeds rated, the

excess power in the wind is discarded to prevent the turbine

from overloading.

Operating in mode 4 and switching between modes 3 and 4

are more challenging, and thus this paper focuses on modes 3

and 4. In mode 3 one linear controller is designed at a mean

wind speed of 10 m/s, and in mode 4 two linear controllers

are designed at mean wind speeds of 12 and 14 m/s here.

The linear controllers can be designed using various control

methods. The most common one stems from PI control [2]

(usually with significant modifications to incorporate fatigue

reduction, anti-windup, etc.). In this paper, Model Predictive

Control (MPC) [3] is tested. Note that other control methods

such as Linear Quadratic Gaussian (LQG) control [4] or H∞

[5] could also be equally appropriate.

To design such model-based linear controllers in each mode,

a control design model [6] is required in each mode. To

investigate the effect of exploiting different control design

models on the control performance in Step 2, two different

control design models are developed and tested. Both control

design models are linear models of the Supergen Wind Energy

Technologies Consortium (Supergen) 5MW exemplar turbine.

The first linear models are obtained from the (nonlinear)

Bladed model of the turbine using its built-in linearisation tool.

The second models are obtained by linearising the nonlinear

model provided in [2], [7], with the parameters of the same

turbine, by the use of the standard linearisation technique

via symbolic differentiation. Both linearised models are im-

plemented in Matlab/SIMULINK R© to allow the controller

design to be performed therein. Throughout the paper, the first

linear models are referred to as “Models A”, and the second

linear models as “Models B”. These linearised models could

be provided by the authors upon request; please contact the

corresponding author.

When model-based controllers are designed based on a

model (from Step 1), the controllers are first tuned by applica-

tion to the controller design model itself. For the same reason

here, when Models A are exploited as the controller design

models, the controllers are tuned by application to Models

A, and when Models B are exploited as the controller design



models, the controllers are tuned by application to Models B.

Thus the controllers designed based on Models A (i.e. Mod-

els A-based controllers) and the controllers designed based on

Models B (i.e. Models B-based controllers) are independent,

and there is no direct connection between them. However,

for the purpose of comparing the performance of these two

controllers, Models A-based controllers are applied to Models

B in addition to Models A, and Models B-based controllers to

Models A in addition to Models B. The differences between

these models provide a degree of model-plant mismatch, which

would exist in real life, to test the robustness of design. The

results in [8] demonstrate that the application of Models A-

based controllers to Models A and Models B produce similar

results, and the application of Models B-based controllers

to Models A and Models B produce similar results. Hence,

this paper only presents the application of Models A-based

controllers to Models B and the application of Models B-based

controllers to Models A.

The strategy of the controller design (Step 3) is responsible

for switching between the linear controllers from Step 2 by

an appropriate switching method, yielding a global nonlinear

controller that covers the full operational envelop [9]. It is

related to nonlinear aspects of the plant dynamics, and an

investigation of the global behaviour of the system is required.

However, as mentioned previously, the work presented here is

only concerned with Steps 1 and 2. Therefore, the nonlinear

Bladed turbine model cannot be used as Step 3 has not been

performed. If it was used, when the nonlinear model requires

the linear controller to switch around at 12 m/s (the rated

wind speed), the operation would become unstable because

when switching, the nonlinear model would require the linear

controller to provide negative control action (pitch angle),

which is not physically feasible. Moreover, drive-train and

tower dampers [2] need to be designed during Step 3, or the

operation would again become unstable.

The main contribution of this paper is to investigate the

effect of the control design model on the performance of the

controllers, i.e. the effect of utilising Models A in comparison

to Models B when designing MPC controllers.

The wind speed model, which is required for simulations,

Models A, and Models B are reported in Section II. Section III

reports on the MPC controllers including some simulation re-

sults in Matlab/SIMULINK. Conclusions are drawn in Section

IV.

II. WIND SPEED AND LINEAR MODELS

A. Wind Speed Model

The wind is stochastically varying with time and continu-

ously interacting with the rotor. The effective wind speed is

wind speed averaged over the rotor area such that the spectrum

of aerodynamic torque remains unchanged. It can be obtained

by filtering the point wind speed. The power spectrum for the

point wind speed is the Von Karman spectrum [10]

Sv(ω) = 0.476σ2
v

Lt

V̄

(1 + (ωLt

V̄
)2)5/6

(1)

where Lt = 6.5h denotes the turbulence length of the

spectrum, h height, and V̄ mean wind speed. σv represents

turbulence intensity and is assumed to be 18.34, 17.03, and

16.10 % for mean wind speeds of 10, 12, and 14 m/s,

respectively.

The Von Karman spectrum can be approximated by the

following Dryden spectrum:

SD(ω) =
1

2π

b2d
ω2 + α2

d

(2)

The corresponding point wind speed is modelled by coloured

noise as follows:

vd =
V̄ bd
s+ ad

ξ (3)

where ξ denotes Gaussian noise.

For (3), the values of ad and bd, for which the Dryden

spectrum best approximates the Von Karman spectrum, are

ad = 1.14
V̄

Lt
(4)

bd = σv

√
2ad (5)

The effective wind speed is the wind speed actually expe-

rienced by the wind turbine. It can be modelled by spatially

filtering point wind speed using the following filter:

Sp(s) =

√
2(
√
2 + σ(V̂ )s)

(
√
2 +

√
ασ(V̂ )s)(

√
2 + σ(V̂ )s/

√
α)

(6)

α is set to 0.55 [11], and V̂ denotes the average wind speed

over a period of time equivalent to a small number of rotations

of the rotor. It can be derived by filtering the point wind speed

through the first order filter

Sf (s) =
1

τs+ 1
(7)

τ is the period over which the wind speed is averaged, and

σ(V̂ ) is given as follows:

σ =
γR

V̂
(8)

where γ denotes the turbulent wind field decay factor and is set

to 1.3. The result from filtering the point wind speed through

the spatial filter is shown for a mean wind speed of 10 m/s in

Fig. 1. The figure depicts the effective wind speed (in blue)

together with the point wind speed (in red). Similar results

can be obtained for mean wind speeds of 12 and 14 m/s. The

rotor radius (R) and the height of the Supergen 5MW turbine

are 60 m and 90 m, respectively.

Nonlinear rotational sampling [12] is subsequently added

to the effective wind speed. The equations for the rotational

sampling (∆ω) are summarised as follows:

∆ω =
1.25

s/(3Ωo) + 1.25
xr (9)

where Ωo denotes the operating rotor speed (i.e., 1.23 rad/s),

xr is given as

xr = ǫ1cos(3Ωot) + ǫ2cos(3Ωot) (10)
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Fig. 1. Point wind speed (red) vs effective wind speed (blue) vs effective
wind speed with linear rotational sampling (green) at a mean wind speed of
10 m/s.

and

ǫ̇1 = −aǫ1 + bξ1 (11)

ǫ̇2 = −aǫ2 + bξ2 (12)

ξ1 and ξ2 denote Gaussian white noise, and a and b are,

respectively, set to 0.4 and 3.

The effective wind speed with and without the effect of

rotational sampling are depicted in comparison to the point

and effective wind speed for a mean wind speed of 10 m/s

in Fig. 1. Similar results are obtained for mean wind speeds

of 12 and 14 m/s. The linear wind turbine models exploit the

effective wind speed with rotational sampling throughout the

paper.

B. Wind Turbine Linear Models A (Bladed Linearisation)

Dynamic models are linearised from the (nonlinear) Bladed

model of Supergen 5MW exemplar turbine for three different

operating points, below rated wind speed (10 m/s), just above

rated wind speed (12 m/s), and above rated wind speed (14

m/s). The linear models are, in fact, identified as the Bladed

model generates input and state perturbations, and records the

resulting variations in the state derivatives and selected outputs

to finally derive a linearised model of the turbine in state-space

form [13]. In state space form, they have the following form:

∆ẋ(t) = A∆x(t) +B∆uT (t)

∆y(t) = C∆x(t) +D∆uT (t) (13)

where A, B, C, and D denote the state space matrices.

∆y(t) ∈ R
n, ∆uT (t) ∈ R

m and ∆x(t) ∈ R
r (where n and

m are respectively 10 and 3 at each mean wind speed, and r
is 30 at 10 m/s and 26 at 12 m/s and 14 m/s) are defined as

∆y(t) = y(t)− yop(t) (14)

∆uT (t) = uT (t)− u
T ,op(t) (15)

∆x(t) = x(t)− xop(t) (16)

y(t), uT (t), and x(t) represent the output, input, and states,

respectively, and yop(t), uT,op(t), and xop(t) are the operating

Fig. 2. Linearised wind turbine model.

points around which the models are linearised. The resulting

Matlab/SIMULINK simulation model is depicted in Fig. 2.

There are 10 outputs for the linear models: measured

generator speed, nacelle x-acceleration (also known as tower

acceleration), nacelle y-acceleration, generator torque, pitch

angle, blade pitch rate, nominal pitch angle, electrical power,

generator speed, rotor speed, blade flapwise bending moment,

and blade edgewise bending moment. The 3 inputs are wind

speed, pitch angle, and generator torque demand.

When designing a generator torque controller for the below

rated model, wind speed among the inputs, uT (t), is consid-

ered to be a disturbance, d(t) ∈ R
1, and pitch angle set to

zero modifying (13) as follows.

∆ẋ(t) = A∆x(t) +Bu∆u(t) +Bd∆d(t)

∆y(t) = C∆x(t) +Du∆u(t) +Dd∆d(t) (17)

where the input, u(t) ∈ R
1, is now generator torque (or

generator torque demand) only.

When designing pitch controllers for the just above and

above rated models, u(t) would be pitch angle only, wind

speed is treated as a disturbance, and generator torque is set to

a constant value. This is also manifested in Fig. 2. Therefore,

MPC controllers utilise the following SISO equations:

∆ẋ(t) = A∆x(t) +Bu∆u(t)

∆yg(t) = Cg∆x(t) +Du,g∆u(t) (18)

where yg(t) ∈ R
1 denotes generator speed, and Du,g zero.

To wit, the torque (at 10 m/s) and pitch (at 12 and 14 m/s)

controllers control generator speed by varying generator torque

demand and by active pitching, respectively.

As previously mentioned, these models are referred to as

Models A throughout the paper. The open-loop frequency

responses of these models for mean wind speeds of 10, 12,

and 14 m/s are depicted in Figs. 3 and 4, in comparison to

the open-loop frequency responses of the models introduced

in the following section (i.e. Models B).
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Fig. 3. Frequency responses of Model A and Model B at a mean wind speed
of 10 m/s.
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Fig. 4. Frequency responses of Models A and Models B at mean wind speeds
of 12 and 14 m/s.

C. Wind Turbine Linear Models B (linearisation via symbolic

differentiation)

The nonlinear model equations provided in [7] are linearised

via symbolic differentiation (Taylor series expansion) in this

section. The parameters of the same turbine as the one used to

derive Models A (i.e. Supergen 5MW exemplar turbine) are

exploited. Being only 12th order for at 10 m/s and 11th order

at 12 and 14 m/s, they are much simpler models than Models

A. As depicted in Fig. 2, in below rated wind speed (i.e., at

10 m/s) the control input (i.e. input to the turbine from the

controller) is torque demand, while in above rated wind speed

(i.e., at 12 and 14 m/s) the control input is pitch demand.

Hence, it is a plausible outcome that the orders of the models

are different. These models are also in state space form, and

referred to as Models B throughout the paper, as previously

mentioned. The open-loop frequency responses for 10, 12, and

14 m/s are depicted in Figs. 3 and 4, in comparison to the

open-loop frequency responses of Models A from Section II-B.

The inputs are same as Models A, but there are 2 outputs

only: measured generator speed and nacelle x-acceleration.

III. MODEL PREDICTIVE CONTROL

MPC is briefly revised in this section and designed based on

both Models A and Models B to investigate the controllers’

dependence on the choice of linear models used during the

design process. The Models A-based controllers are applied

to Models B, and the Models B-based controllers to Models

A. The differences between these models provide a degree of

model-plant mismatch to test the robustness of design.

For the following state-space model, which can be obtained

by discretising the continuous model in (18),

xk+1 = Axk +Buuk (19)

yk+1 = Cgxk+1 (20)

the prediction equations for MPC can be derived as [14]

(note that the D state-space matrix is zero since no direct

feedthrough is allowed in MPC)

x
→

= Pxxxk +Hxxu
→

(21)

y
→

= Hxk+1 (22)

where Hxx, H and Pxx are the prediction matrices [14] and

u
→

is a column vector as follows:

[

uk+1, uk+2, . . . , uk+nu−1
, uk+nu

, uk+nu
, . . . , uk+nu

]T

(23)

MPC requires the prediction horizon, ny , not to be smaller

than the control horizon, nu; that is, nu ≤ ny .

The control solution can be attained with minimising the

following objective function:

J =
∥

∥

∥
r − Hu

→
− Px̂k − Ld

∥

∥

∥

2

2

+ λ
∥

∥

∥
u
→

∥

∥

∥

2

2

(24)

subject to the following constraints

ui ≤ ui ≤ ui (25)

∆ui ≤ ∆ui ≤ ∆ui (26)

where ui denotes the upper limit on ui, ui the lower limit, r
the reference signal, L a vector of ones, whose size is simply

dependent on the prediction horizon, and ∆ui the rate of

change of input. The offset d = y − ŷ is included to give

unbiased predictions and offset correction. The first ‖.‖2
2

term

is to reduce the reference tracking error and the second ‖.‖2
2

term to reduce the control action. Therefore, λ provides a

trade-off between these two conflicting problems. x̂k comes

from the internal model here, but a state estimator such as

the Kalman filter could also be utilised. For the optimisation,

the Matlab function, “quadprog” (the interior-point-convex

algorithm) is employed.

The MPC controllers designed based on Models A and

Models B at 10, 12 and 14 m/s are respectively applied to

Models B and Models A in Matlab/SIMULINK as previously

described. The measured outputs (i.e. generator speed) are
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depicted in Fig. 5. The time responses for the Models B-based

controllers at each mean wind speed are satisfactory as the

fluctuations remain well below 12 %, which is often within

the controller design specification. Although the fluctuations

remain well below 12 % for the Models A-based controllers

also, sustained oscillation (at frequency of around 5.5 rad/s)

can be observed at mean wind speeds of 12 and 14 m/s.

It would result in increased loads on the rotor that would

propagate down the power-train and impact on the drive train

components, e.g. gearbox and shaft. The cause of this is

explained with the frequency response in Fig. 8 below.

Torque demand and pitch angle (control inputs) are also

presented in Fig. 6. As mentioned previously, the turbine

operates in mode 3 at 10 m/s and in mode 4 at 12 and 14
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Fig. 7. MPC based on Models A and Models B for a mean wind speed of
10 m/s; open loop frequency responses; Ts=0.2 s (sampling time) for Models
A and Ts=0.02 s for Models B.

m/s. Generator speed is controlled by varying torque in mode

3 and by active pitching in mode 4. As such, fluctuation on

the control inputs is not as restricted as generator speed, the

output. Pitch angle ranges from -0.0873 to 0.6109 rad (-5◦ to

35◦) for the turbine considered in this paper.

The open-loop frequency responses for the Models A-based

controllers demonstrate poorer results in comparison to the

Models B-based controllers as depicted in Figs. 7 and 8. The

open-loop system of a controller in this paper is referred to

as the product of the process (i.e. the turbine model) and

the controller open-loop. With information obtained from the

open-loop responses, such as gain crossover frequency, phase

margin, etc, the response of the close-loop system, including

the size of the control action, sensitivity to uncertainty, and

stability, can be speculated.

The Models A-based controllers are more sensitive to sam-

pling time, Ts, and 0.2 s needs to be chosen to improve the

results. The vertical lines that appear at 20 rad/s in the figures

are due to discretisation with this sampling time. However, the

Models B-based controllers are less sensitive to sampling time,

and a smaller sampling time, i.e. 0.02 s, could successfully be

exploited.

At a mean wind speed of 10 m/s, Fig. 7 depicts that the gain

crossover frequencies of the Model A and B-based controllers

are approximately 1 and 0.6 rad/s, respectively. Note that

Control System ToolboxTM in Matlab is exploited here for

producing open-loop frequency responses in bode plots. Due

to the characteristics of wind, the controllers should be tuned

to give a gain crossover frequency in the range of 0.6 to 2

rad/s [15]. Gain crossover frequencies over this range may lead

to large control action, hence actuator saturation, especially

in high wind speeds. Gain crossover frequencies below this

range could lead to too slow control action. Both controllers

are satisfactory in terms of the gain crossover frequency.

However, the peaks produced by the Models A-based con-

troller cross over 0 dB, indicating that the controller would
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be sensitive to uncertainty and noise. When the Models B-

based controller is employed, the magnitudes of the peaks

are reduced. The controllers should be tuned to ensure that

the peaks at high frequencies are kept as small as possible.

Moreover, phase margins for both controllers are some 90◦,

indicating that their closed-loop responses would be stable –

note that the MPC controllers incorporate a positive feedback.

For mean wind speeds of 12 and 14 m/s, Fig. 8 depicts

that the gain crossover frequencies are approximately 1 rad/s

for both controllers. However, the peaks from the Models A-

based controllers remain mostly above 0 dB, indicating that

the controllers would be sensitive to uncertainty and noise.

The peaks at around 5.5 rad/s in particular cause the sustained

oscillation that is observed in the time response in Fig. 5.

The responses of the Models B-based controllers demonstrate

significantly improved results keeping most of the peaks below

0 dB, hence no sustained oscillation at the specific frequencies

is visible in the time response. Phase margins are around 72◦

(12 m/s) and 82◦ (14 m/s) for the Models A-based controllers

and 11◦ (12 m/s) and 57◦ (14 m/s) for the Models B-based

controllers, indicating that their closed-loop responses would

be stable.

IV. CONCLUSION

Two linear dynamic models (including wind speed models)

of the Supergen 5MW exemplar turbine are constructed for

three operating points, below rated wind speed (10 m/s), just

above rated wind speed (12 m/s) and above rated wind speed

(14 m/s). One is obtained in Bladed using its linearisation

toolbox, and the other using the standard linearisation method

via the Taylor series expansion. In order to investigate the

MPCs’ dependence on the choice of linear model used during

the design process, the controllers are designed for the three

wind speeds using the latter and the performance achieved by

the controllers assessed using the former, and vice versa. The

differences between these models provide a degree of model-

plant mismatch to test the robustness of design.

The properties of the MPC controllers are highly dependent

on the choice of linear model used during the design process.

The simulation results demonstrate improved control perfor-

mance when the MPC controllers are tuned based on Models B

(the models linearised via the Taylor series expansion), which

are simpler models; recall that Models A are 30th order at 10

m/s and 26th order at 12 and 14 m/s, while Models B are 12th

order at 10 m/s and 11th order at 12 and 14 m/s. Models A,

being high-order, have a tendency to cause the controllers to

become over-aggressive, i.e. active at higher frequencies, and

to lack robustness. It is therefore recommended that the control

design models be kept as simple as possible when designing

MPC controllers for wind turbines.
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Control of Wind Energy Systems: Towards a Global Approach. Springer,
2007.

[13] Bladed User Manual v4.3.
[14] J. A. Rossiter, Model-Based Predictive Control: a Practical Approach.

CRC Press, 2005.
[15] D. J. Leith and W. E. Leithead, “Appropriate realization of gain-

scheduled controllers with application to wind turbine regulation,”
International Journal of Control, vol. 65(2), 1996.


	Introduction
	Wind Speed and Linear Models
	Wind Speed Model
	Wind Turbine Linear Models A (Bladed Linearisation)
	Wind Turbine Linear Models B (linearisation via symbolic differentiation)

	Model Predictive Control
	Conclusion
	References

