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Abstract— High data rate communication demands the well 

compensated chromatic dispersion in the optical fibre 

communication. Generally dispersion compensated fibre (DCF) 

modules are utilized in the link with known fibre lengths. On the 

other hand, at ultra high data rates when a new user wants to 

access the network with a connecting cable of unknown length, 

automated dispersion compensation technique will ensure the 

error free communication with much greater flexibility to 

operate optical networks. An experiment was carried out to 

compensate the chromatic dispersion in an optical fibre network 

by passing the received data signal through an SOA. By 

controlling the SOA pump current, it was possible to easily 

compensate the chromatic dispersion without changing the 

lengths of DCF. 
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I.  INTRODUCTION 

  In high speed optical communication, chromatic 
dispersion is an inherent problem. The term dispersion is 
defined as a pulse spreading in an optical system. When a 
pulse of light passes through a fibre optic cable, the aperture, 
core diameter, wavelength, refractive index profile, laser 
linewidth properties etc. cause the optical pulse broadening 
[1]. This could be an immense drawback in optical 
communication. As the optical bandwidth gradually increases, 
the inter-bit distances also become smaller. It is well known 
that in the standard SMF-28 fiber with the increase of cable 
length, due to chromatic dispersion (CD), the data signal pulse 
width increases by a rate of 16ps/km. As a result, there is 
possibility for bits overlapping at the receiver end and will 
become difficult to distinguish between ‘1s’ and ‘0s’. This 
phenomenon is commonly known as inter symbol interference 
(ISI). This could be a big issue for a network traffic 
management. Network operators do not normally know the 
exact length of fibre cables and as such the CD value is also 
not up front known. For that reason, operators need to keep a 
large number of DCF modules for the necessary dispersion 
compensation of communication links. But for the data rates 
of more than 40 Gb/s, the threshold for accumulated 
dispersion is about 16 times smaller than that of 10 Gb/s. 
Because, when a bit rate increases by a factor of four, then the 
CD effect increases by a factor of 16 [2]. The important issue 
is this, if the compensating value does not matches a certain 

percentage of allowable CD, then the link may not operate at 
all due to ISI effects. Therefore, a preferable solution would 
be to develop an automatic dispersion monitoring [3] and 
compensating system [4, 5, 6] so that higher bandwidth 
requirements might be fulfilled without any occurrence of ISI 
effects without usage of additional DCF. A good number of 
researches presented different techniques of dispersion 
compensation. Dispersion compensation using AWG, FBG are 
important to note [7, 8]. Another technique of extending the 
signal transport distance of fiber optics link using the chirp 
control in SOA was shown in [9]. In this paper, the tunable 
chromatic dispersion management by SOA with changing  
SOA driving current will be described and experimentally 
demonstrated.  

II. THEORETICAL BACKGROUND 

By varying the SOA drive current i.e., the SOA gain, the 
carrier density inside of the SOA varies; as a result the 
refractive index of SOA also changes which subsequently 
broadens or compresses the passing signal pulse-width [10]. 
This is a result of changes of a real and imaginary part of a 
dielectric constant of the SOA (its waveguide medium) which 
are related by Kramers-Kronig (KK) dispersion relations [11]. 
The complex refractive index of SOA can be represented by: 

n = n0 + ∆n
’ 
+ i∆n

’’
       (1) 

Here, ∆n
’ 

+ i∆n
’
 represent the real and imaginary part of 

refractive index changes due to the carrier density changes by 
current injection; n0 is the real part of the SOA refractive index. 
Considering n0 as a constant, through Kramers-Kronig (KK) 
relation, we can mathematically show [11]: 

 ∆n
’
(E) = 

ଶగ P׬ ாᇲο௡ǯǯ൫ாᇲ൯ௗாᇱ ாᇲమ ି  ாమஶ଴ = 

      = - 
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Here, P denotes the principal value integral [12] and ο݃ is a 
gain change. 

From the above Eq. (2) we can find a relationship between 
SOA gain changes which then effect the refractive index 
changes of the SOA and thereby result in compression or 
expansion of optical pulse which passes through the SOA. 



III. EXPERIMENTAL RESULTS 

In our experiment we used a testbed setup in Fig. 1 
comprising of picosecond (ps) mode locked (ML) laser, 
erbium-doped fiber amplifier (EDFA), SOA, and a  
17 km long SMF-28 optical fiber link between University of 
Strathclyde and University of Glasgow which is dispersion 
compensated by using DCF. A fibre Brag grating (FBG) 
encoder generates four wavelengths (Ȝ1 = 1551.72 nm, Ȝ2 = 
1550.92 nm, Ȝ3 = 1552.52 nm, Ȝ4 = 1550.12 nm) by slicing the 
optical supercontinuum.  

In our experiment an add/drop AWG module is used to 
select a single wavelength Ȝ2 which is then transmitted down 
the optical fiber. The compensated optical data pulses having 
FWHM = 23 ps first pass a bandpass filter (BPF) and then 
enter an SOA for a final fine dispersion tuning. By varying the 
SOA drive current, we controlled the chromatic dispersion 
compensation i.e., optical pulse compression or expansion. 

 

Fig. 1. Experimental setup for a chromatic dispersion compensation in 
optical fiber by use of SOA.   

IV. OBTAIND RESULTS 

At the input of SOA (point D), the measured pulsewidth of 
the data pulse was 23 ps (Fig. 2). By adjusting the SOA drive  

 
                   (a)                                           (b) 

Fig. 2. (a) Frequency Domain representation of returned data at the SOA 

input (b) Time Domain representation of returned data at the SOA input 

current was found that the pulsewidth can be compressed to 
20 ps for the SOA drive current of 29 mA (Fig. 3). After 
changing the SOA drive current to 70 mA (Fig. 4), the 
pulsewidth of the data signal has reached again 23 ps (the 
same value of input data). But at this condition, the input 
signal has been amplified to -10 dBm level. This is an added 

advantage of this technique since it can also alter the received 
signal power level to compensate for the insertion loss in 
optical network [9]. At the SOA drive current of 70 mA there 
was no compression or expansion just a gain change of the 
passing signal. After further increase in SOA drive current to 
150 mA, the pulse-width was expanded to 25 ps (Fig. 5). 

 
                   (a)                                            (b) 

Fig. 3. (a) Frequency Domain representation of the compressed data pulse at 

the output for 29 mA SOA drive current (b) Time Domain representation of 
the compressed data at the output for 29 mA SOA drive current 

   
                      (a)                                           (b)  
Fig. 4. (a) Frequency Domain representation of the data pulse at the 

output for 70 mA SOA drive current (b) Time Domain representation of the 

data at the output for 70 mA SOA drive current 

        
                            (a)                                          (b) 

Fig. 5. (a) Frequency Domain representation of the broadened data pulse at 

the output for 150 mA SOA drive current (b) Time Domain Representation of 

the broadened data pulse at the output for 150 mA SOA drive current 

The graph showing the SOA gain vs SOA drive current is 
shown in Fig. 6a. The changes of output/input pulse width 
ratio vs SOA gain are shown in Fig. 6b. From Fig. 6a, it is 
seen that SOA gain saturates at the drive current of ~150 mA. 
Below SOA gain of 5 is the pulse compression region and 
above SOA gain of 5 is the data pulse expansion region (see 
Fig. 6b). The SOA gain of 5 is equivalent to SOA drive 
current of ~ 70 mA.  
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Fig. 6a. SOA Gain vs Drive Current, (b) output/input pulse width ratio  vs 

SOA gain 

V. DISCUSSION 

It is inportant to note that both, pulse compression and 
expansion are possible by varying the SOA drive current. This 
is important feature for fine tuning  of optical fiber dispersion 
and achieving compensation or expansion of optical pulses 
traveling in optical newtworks. This will enable us to fine tune 
chromatically dispersion compensated fiber optic networks for 
sudden small changes of dispersion. This simple approach 
demonstrates that by controlling the SOA drive current, a 
pulse compression or expansion can be achieved. This gives a 
great operational flexibility to network operators for managing 
high-speed optical communication systems to mitigate 
detremental efects of dispersion.  

In this experiment, the SOA drive current of 70 mA may 
be considered as the “neutral” setting point where there is 
neither compensation nor expansion of optical signal data 
pulses. By increasing or decresing the drive current around 
this value, we can expand or compress the signal pulse width. 
In such a way, we can fulfill the practical requirement of 
chromatic dispersion fine tuning needs in high speed 
communication networks.  

VI. CONCLUSION 

Continuous chromatic dispersion compensation in optical 
fiber network is import for achieving flexibility of data 
communication at ultra-high speeds of transmissions. The 

chromatic dispersion effect in optical fibers becomes severe for 
ultra-high data rates and/or for greater transmission distances in 
optical networks. The conventional method of chromatic 
dispersion compensation are often using matching lengths of 
DCF modules which is tedious and time consuming and 
becomes difficult to implement if the fiber lengths are not 
known before head or dispersion is changing due to 
environmental changing conditions. We have demonstrated 
chromatic dispersion compensation technique in SME-28 
optical fiber using an SOA by varying its drive current. This 
method for the chromatic dispersion compensation was tested 
in 17 km long optical fiber testbed. We have shown both, pulse 
compensation and expansion between 20 ps to 25 ps of the 
original 23 ps optical pulse. This method is simple the 
flexibility of achieving either compression or expansion of data 
pulse width. 
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