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Abstract—The problem of target detection in a complex clutter envir-

onment, with Constant False Alarm Ratio (CFAR), is addressed in this

paper. In particular an algorithm for CFAR target detection is applied to

the context of FOliage PENetrating (FOPEN) Synthetic Aperture Radar
(SAR) imaging. The extreme value distributions family is used to model

the data and exploiting the location-scale property of this family of

distributions, a multi-model CFAR algorithm is derived. Performance
analysis on real data confirms the capability of the developed framework

to control the false alarm probability.

I. INTRODUCTION

Among the different applications of Synthetic Aperture Radar

Imaging, FOliage Penetration (FOPEN) is one of the most challenging

[1]. The fundamental characteristic of FOPEN Radars is the capability

to collect returns from scatterers under foliage. This goal is achieved

by using relatively low frequencies for typical radar systems (UHF

and VHF) that are able to penetrate the vegetating layer. The ability

to “see” through foliage canopies makes FOPEN radar a powerful

tool for military purposes, in particular, if SAR techniques are used a

FOPEN SAR sensor becomes capable to detect, track and recognize

vehicles hiding in forests [1].

However, due to the nature of the imaged scene, several issues are still

present for the complete and reliable exploitation of such a sensor.

In particular, canopies and hidden vehicles are not the only possible

reflecting targets in a forest scene; trunks are present and contribute

significantly to the intensity of the signal returned to the radar.

Reflections from trunks result in detection if an accurate strategy of

control of false alarms is not adopted. Solutions or partial solutions

to this problem have been provided in literature. In particular, clutter

modelling has been identified as a viable solution to mitigate tree

trunks detections: physical, statistical and the combination of the

two approaches were used to model forest clutter in FOPEN SAR

[2], [3], [4], [5], [6]. The models proposed in [2], [3], [4] consider

electromagnetic modelling of forests to extract deterministic clutter

models. These models are useful in terms of understanding of the

scattering phenomenology, but are not applicable in statistical detec-

tion frameworks. The model in [5], introduce statistical properties in

the model in [3], however this model is not robust with respect to

presence of tree trunks dominating a scene.

In [6] a model for VHF clutter generation was proposed, integrating

both background scatterers and large-amplitude discrete clutter (trees).

Despite the flexibility and the model proposed in [6], unfortunately, it

is not available in a closed form and is not suitable to derive detectors

with false alarm rate control.

Starting from a statistical modelling of the FOPEN SAR clutter, in this

paper we introduce a novel framework for CFAR detection in FOPEN

SAR images. In our approach, the clutter is statistically modelled

and exploits distributions that belongs to the location-scale family

of distributions. The heavy-tailed distributions are used due physical

considerations of the forest scene [1], [6], while the location-scale

(LS) family is a requirement of the CFAR detection algorithm [7]

that is exploited in this work.

After modelling the forest clutter as location-scale distributed, the

CFAR detection algorithm introduced in [8], [9] and applied to high

resolution SAR images in [7] can be embedded in a framework that

is able to select the best heavy-tailed location-scale distribution to

be used to compute the adaptive threshold and that will ensure the

Constant False Alarm Rate in the highly inhomogeneous FOPEN SAR

image environment.

The reminder of the paper is organized as follows, Section II

introduces the multi-Model CFAR detection framework, addressing

the specific cases of Gumbel Maximum and Weibull distributed

background. The performance in terms of distribution fitting of the

two above mentioned models are assessed and discussed in Section

III using real VHF FOPEN SAR data. Section IV discusses the CFAR

detection algorithm performance analysis on real data, demonstrating

the capability of the proposed approach to control the false alarm

probability.

II. MULTI-MODEL CFAR DETECTOR IN LS ENVIRONMENT

The architecture of the proposed algorithm is detailed, with par-

ticular focus on the amendments applied the algorithm in [7] to deal

with the specific FOPEN challenge. The selection of this algorithm is

motivated by the fact that it is flexible and reliable, allowing different

statistical models and using an adaptive threshold setting aimed to

control the false alarm probability.

The proposed framework has been designed in order to ensure a

major robustness and reliability of the results, with respect to the

single model approach performed in [7], by considering K possible

statistical distributions of the background. Hence, it has the capability

to automatically adapt with respect to the distribution that fits better

the real data in a specific reference window, introducing robustness

with respect to inaccurate a-priori knowledge of trees density in a

spatial window under test.

Its final goal is to perform the binary hypothesis test:







HB : X ′

i < T̂
(

γi, θ̂L,i, θ̂S,i
)

HT : X ′

i ≥ T̂
(

γi, θ̂L,i, θ̂S,i
) (1)

where HB is the hypothesis of no target present (background only)

and HT is the hypothesis of the presence of target, X ′

i is the set of

samples associated to i-th selected distribution and T̂
(

γi, θ̂L,i, θ̂S,i
)

is the threshold value function of the distribution parameters selected

on the statistical characterization stage. Finally i = 1, 2, . . . ,K,

identifies the output index of the distribution selected in the statistical

distribution stage. Moreover, a data transformation block is used in

order to consider both genuine Location-Scale (LS) distributions and



Figure 1: Architecture of the Multi-Model CFAR system in LS environment.

transformable into LS type. Without loss of generality the case K = 2
is considered in this work.

The algorithm architecture is illustrated in Figure 1.

• The starting point is a window under analysis, composed of

N ×N samples of intensity obtained from the complex SAR

image.

• the data are organized into a vector X then sorted and censored

obtaining the vector X̃ . The censoring consists in the removal

of r (censoring depth) pixels of data with the highest intensity

values from the set used to estimate the distribution parameters

representing the HB hypothesis. This is required in order to

avoid self masking of targets, meaning that the presence of

target pixels in the background parameters estimation would

lead to a higher threshold that would produce detection misses.

• the statistical characterization of the background starts with

the evaluation of the empirical cumulative distribution function

(ECDF) of the real censored data. The aim is to find a statistical

distribution that fits well the real data. To achieve this goal, a

test on the goodness of fit is required. Among the approaches

used to verify if a set of data is compatible with a design

distribution F (x), in this work the Kolmogorov Smirnov (KS)

test [10] is selected. The outcome of the KS test is defined by:

◦ H0: the selected distribution shows a good fit compared

to the real data;

◦ H1: the null hypothesis is rejected, hence the selected

distribution does not fit well the real data.

For the case in hand, data are extremely inhomogeneous due to

the presence of trees in the scenario [6]. Hence, distributions

with heavy tail characteristics are required. Several LS distribu-

tions have been considered, but for conciseness in this section

we discuss only the two distributions that resulted to provide

better performance in terms of goodness of fit on real data and

that are then exploited in this paper:

◦ the Gumbel for maximum distribution, with CDF

F (x; θL, θS) = exp

[

−exp

(

−
x− θL
θS

)]

with θL ∈ R θS > 0 (2)

which belongs to location-scale family;

◦ the Weibull distribution, with CDF

F (x;κ, λ) =

{

1− e−(
x

λ
)k , if x ≥ 0,

0, if x < 0.

whose natural logarithm is LS.

These two distributions are particularly suitable for the case in

hand as they provide good fitting on the tail and are LS, thus

allowing the application of the desired algorithm. Performing a

hypothesis test on a statistic, a p-value helps to determine the

significance of the results, exploiting a threshold value called

the significance level of the test and denoted as α. In other

words, if p-value is equal to or smaller than the significance

level α, it suggests that the observed data are inconsistent with

the assumption that the null hypothesis is true, and thus that

hypothesis must be rejected and the alternative hypothesis is

accepted as true.

Let ρi be p-value associated to i-th distribution Di, and α set to

5%, for each reference window the distribution selection rule

is:

Di : i = argmax
i=1,2,...,K

ρi (3)

• the Multi-Model CFAR algorithm is applied exploiting, for

each reference window, the parameters (γi, θ̂L,i, θ̂S,i) of the

specific i-th distribution. In this work, two kind of background

distributions will be analyzed in order to design the CFAR

detector, Gumbel for maximum distribution (i = 1) and Weibull

distribution (i = 2). If the first distribution belongs to the

Location-Scale family, the second one do not. In the latter

case, using a log-transformation, the Weibull distribution can

be transformed in a log-Weibull distribution, which belongs

to the Location-Scale family. For the case in hand the data

transformation block follows the following rule:

fi (·) =

{

1× (·) with i = 1
ln (·) with i = 2

(4)

Thus, the Best Linear Unbiased (BLU) estimates of the Loc-

ation and Scale parameters are used to obtain the distribution

parameters. By minimizing the variance, subject to the con-

straints of unbiasedness, the BLU estimators can be obtained

[9] as:
(

θ̂L,i

θ̂S,i

)

=
(

H
T
i C

−1
0,iHi

)

−1

H
T
i C

−1
0,i X̃

′

i (5)

where Hi = (1µ0,i), while µ0,i and C0,i are the mean vector

and the covariance matrix of the standardized vector X̃
′

0,i,

respectively. Letting G
(m)
i be the m-th order derivative of the

inverse cumulative distribution function Gi (·) = F−1
i (·), the

approximate expressions of mean and covariance matrix of the

ordered samples are [7]:

µ0(k),i ≈ Gk,i +
pkqk

2(n+ 2)
G

(2)
k,i +

pkqk
(n+ 2)2

×

(

1

3
(qk − pk)G

(3)
k,i +

1

8
pkqkG

(4)
k,i

)

,

C0(k,h),i ≈
pkqh

(n+ 2)
G

(1)
k,iG

(1)
h,i +

pkqh
(n+ 2)2

× [(qk − pk)G
(2)
k,iG

(1)
h,i + (qh − ph)G

(2)
h,iG

(1)
k,i

+
1

2
pkqkG

(3)
k,iG

(1)
h,i +

1

2
phqhG

(1)
k,iG

(3)
h,i

+
1

2
pkqhG

(2)
k,iG

(2)
h,i], k ≤ h

(6)



with pk = k/(n + 1) and qk = (1− pk) and Gk,i = G (pk).
The moments in (6) can be evaluated with reference to a specific

reduced distribution by direct substitution of the derivatives,

until the fourth order, of its quantile function (inverse CDF).

Let Gi=1(x) be the quantile function associated with the

reduced extreme value distribution of type I for maximum

(Gumbel for maximum), the set of equations to substitute in

(6), and containing the four derivatives under test include:

G1(x) = −ln (−ln(x)) ;

G
(1)
1 (x) = −

(

1

x ln(x)

)

;

G
(2)
1 (x) =

(

ln(x) + 1

x2 ln2(x)

)

G
(3)
1 (x) = −

(

2 ln2(x) + 3 ln(x) + 2

x3 ln3(x)

)

G
(4)
1 (x) =

(

6 ln3(x) + 11 ln2(x) + 12 ln(x) + 6

x4 ln4(x)

)

(7)

The same procedure has been done for the quantile function

associated to the reduced extreme value distribution of type I

for minimum (Log-Weibull) and the results are reported in (8).

G2(x) = ln (−ln(1− x)) ;

G
(1)
2 (x) =

(

1

(x− 1) ln(1− x)

)

;

G
(2)
2 (x) = −

(

ln(1− x) + 1

(x− 1)2 ln2(1− x)

)

G
(3)
2 (x) =

(

2 ln2(1− x) + 3 ln(1− x) + 2

(x− 1)3 ln3(1− x)

)

G
(4)
2 (x) =

−

(

6 ln3(1− x) + 11 ln2(1− x) + 12 ln(1− x) + 6

(x− 1)4 ln4(1− x)

)

(8)

It follows that, by using (6) with either (7) or (8), Location

and Scale parameters related to the specific distribution under

test can be estimated through (5). The adaptive threshold can

be computed as:

T̂
(

γi, θ̂L,i, θ̂S,i
)

= θ̂S,i(X̃
′

i) γi + θ̂L,i(X̃
′

i) (9)

However, the evaluation of the adaptive threshold in (9) re-

quires also the knowledge of the constant γi, called threshold

multiplier: this constant is evaluated according to the desired

false alarm probability.

The threshold multiplier is the solution of the equation:

PFA = Pr

{

X̃ ′

i − θ̂L,i

θ̂S,i
> γi|HB

}

, (10)

which is the (1−PFA)-quantile of the normalized test statistic

((X̃ ′

i − θ̂L,i)/θ̂S,i). Obviously, if the statistical distribution

of the test statistic is known, then γi can be determined.

Unfortunately, this distribution cannot be evaluated in a closed

form because it requires the knowledge of the joint distribution

of the variable X̃ ′

i and of the location and scale estimators. In

order to overcome this problem, the value of the quantile γi
has been computed via Monte Carlo simulation, Np realizations

of the test statistic have been generated and the threshold

multiplier level has been estimated from the empirical CDF. In

order to improve the estimators reliability, a suitable number

of trials is needed. Precisely, it has been set to NP
∼= 102

PFA
.

Summarizing, once the location and scale parameters have been

estimated with (5), and the threshold multiplier, γi, has been

computed via Monte Carlo simulation, all the requirements to

extract the adaptive threshold in (9) are met.

• the decision rule is applied using the threshold value

T̂
(

γi, θ̂L,i, θ̂S,i
)

associated to the specific distribution;

We can conclude that the algorithm automatically adapts with respect

to the distribution that fits better the real data in a specific reference

window, independently from an a-priori knowledge of trees density.

Finally, exploiting the decision rule in (11), which compares each

data pixel with the adaptive threshold just extracted

X ′

i

HT

≷
HB

T̂
(

γi, θ̂L,i, θ̂S,i
)

(11)

the detection problem can be solved and the detector’s false alarm

rate can be assessed.

III. STATISTICAL CHARACTERIZATION OF BACKGROUND:

PERFORMANCE ANALYSIS

In this section we present the results obtained in terms of goodness

of fit to justify the selection of the statistical distributions for the HB

hypothesis. The dataset used in this work has been acquired using

the Swedish low frequency SAR system CARABAS-II VHF SAR [11].

The system transmits HH-polarized radio waves between 20-90 MHz,

corresponding to wavelengths between 3.3 m and 15 m. In the imaged

areas 25 military vehicles are concealed by forest, in four different

deployment (for reader’s convenience see [11]). Due to the presence

of trees in the scenario, we deal with extremely inhomogeneous

data. Hence, we have to consider different distributions, including

heavy tailed and also light tailed distributions. Among the several

distributions with these features, we have analyzed Log-Normal,

Weibull, Extreme Value Distributions, Gamma, as well as more usual

distributions like Rayleigh and Normal. However, not all result to

provide good fitting with the data. For example, the Log-Normal

distribution in low density forest results to be rejected in the 42.33%
of the cells analysed. Weibull Distribution and the Gumbel for

Maximum Distribution result to provide the best results for low and

high density forests respectively. For this reason, and for conciseness

of the paper, these two distributions have been selected and the results

will be discussed in this section.

In order to analyze the performance of statistical characterization

we consider an homogeneous area in forest 1 and 2 from Fredrik

and Sigismund set of acquisitions respectively [11]. For these areas,

a set of 29 × 29 reference windows is considered (841 in total),

each window is composed of 16× 16 pixels producing a set of 256
samples. For each reference window, it is performed a KS test of

the area under test to verify the compatibility of data into a cell

with a specific distribution. In high density forest cases the Gumbel

Maximum distribution is considered, while Weibull distribution is

selected for the low density case.

In the high density area the H0 hypothesis has been rejected 12
times, while the Gumbel Maximum distribution fits the data with

the percentage of PH0
= 98.57%. For the low density case, the

H0 hypothesis has been rejected 7 times; meaning that the Weibull

Distribution provide a fit percentage of PH0
= 99.17%.

Finally, similar analysis has been done changing the reference window

dimensions of both forests under test. These results are reported in

Tables I and II. In particular, increasing the number of pixels for

each cell a slight performance degradation was found. Specifically,

a reference window dimension 16× 16 provides the best fitting, for

both Weibull and Gumbel Maximum distributions.



Table I: KS test outcomes for high density forests: percentage of H0

hypothesis using Gumbel Maximum distribution.

Fredrik Mission Gumbel Maximum Distribution

16 × 16 98.57%

24 × 24 98.06%

32 × 32 95.92%

Table II: KS test outcomes for low density forests: percentage of H0

hypothesis using Weibull distribution.

Sigismund Mission Weibull Distribution

16 × 16 99.17%

24 × 24 98.06%

32 × 32 96.64%

Further performances improvement are achieved through the imple-

mentation of a multi model fitting approach, as described in Section

II.

For the high density case, from a percentage PH0
{GUM} =

98.57% of H0 hypothesis associated to the Gumbel Maximum single

model, the multi-model approach allows to achieve PH0
{MM} =

99.28%. Similarly, in the low density forest case, from a percentage

PH0
{WBL} = 99.17% of H0 hypothesis associated to the Weibull

single model, the multi-model approach provides PH0
{MM} =

99.89%.

In conclusion, for each reference window, the combination of Weibull

and Gumbel models enable to choose the statistical distribution that

fits better the data, providing robustness in the model selection.

IV. CFAR DETECTOR: PERFORMANCE ANALYSIS

In this section the performance of the proposed framework in terms

of false alarm control and detection are analysed. In order to assess

the performance of the CFAR detector, the variation of 3 parameters

is considered:

• dimension of the reference window;

• censoringh depth;

• type of statistical distribution.

The CFAR detector requires choosing the dimension of the reference

window and the depth of censoring. A reasonable rule is to take the

number of samples in the reference window much greater than the

maximum expected object dimension and, at the same time, to discard

a number of samples that is at least equal to the overall size of the

objects.

The algorithm’s efficiency has been tested for different reference

windows, censoring depth values and false alarm rates. For reader’s

convenience, among all the cases analyzed, the attention will be

focused on the flight pass number 1 of each flight mission/target

deployment [11] with design PFA=10−4, N = 16 and r =
[0 32 64 96 115 128].

A. False alarm rate performance

The main purpose of this section is to assess the false alarm rate

when the designed CFAR algorithm is applied to a specific area

within forests 1 and 2, in absence of targets. The single-model CFAR

detector for high density forest is performed using a Gumbel for

maximum distribution for forest 1 and Weibull distribution for forest

2.

Considering the same areas used for the distribution fitting, the multi-

model approach is also evaluated. False alarm probabilities for single

and multi-model CFAR detector are reported in Tables III and IV, for

a nominal false alarm rate equal to 10−4 and for different values of

the censoring depth. The estimated PFA after detection is compatible

with the design PFA, hence the CFAR property is ensured for both

From Table III, PFA values are comparable, even if the multi-model

approach ensures major robustness, hence a major reliability of the

results is obtained. Moreover, in the low-density case (Table IV), the

Multi-Model CFAR algorithm achieves better performance in terms

of false alarm probabilities then the Weibull CFAR algorithm, for

each of the considered censoring depths.

Table III: False alarm probabilities: single-model (Gumbel Max) vs

multi-model CFAR detector for various values of the censoring depth.

Censoring Depth r PFA MM PFA GUM

0 5.08 × 10
−5

5.55 × 10
−5

32 6.75 × 10
−4

0.97 × 10
−4

64 1.20 × 10
−4

1.20 × 10
−4

96 2.91 × 10
−4

1.66 × 10
−4

115 1.29 × 10
−4

1.99 × 10
−4

128 1.75 × 10
−4

2.40 × 10
−4

Table IV: False alarm probabilities: single-model (Weibull) vs multi-

model CFAR detector for various values of the censoring depth.

Censoring Depth r PFA MM PFA WBL

0 5.55 × 10
−05

1.11 × 10
−4

32 9.25 × 10
−05

3.00 × 10
−4

64 2.77 × 10
−04

4.53 × 10
−4

96 1.39 × 10
−05

5.87 × 10
−4

115 1.39 × 10
−05

4.81 × 10
−4

128 1.39 × 10
−05

5.97 × 10
−4

B. Detection Probability Performance

The detection capability of the CFAR detector is performed in

an area within forests 1 and 2 in the presence of targets. Precisely,

the Fredrik deployment has been tested in forest 1 while the Sigis-

mund deployment has been considered for forest 2. In both cases

the performance are evaluated for both the single and multi-model

approaches. The single-model CFAR detector performance have been

assessed setting the PFA to 10−4 and with different censoring depths,

in order to avoid self-masking problem. When no censoring is applied

the targets are not detected, due to a self-masking effect of the

targets. Increasing r up to 128 samples, the detection capability

of the algorithm improves remarkably. Further increasing the depth

of censoring does not introduce additional features to the targets

detection but, otherwise, generate underestimation of the distribution

parameters. In Table V the probabilities of detection for a single -

model CFAR Gumbel for maximum detector with PFA set to 10−4

are reported along with the probabilities of detection of a multi-model

CFAR detector referred to the same area under test. Precisely, they

have been extracted with respect to the target ground truth of Fredrik

deployment. From the results in Table V, the Multi-Model CFAR

algorithm achieves equivalent performance in terms of detection

probabilities to the Single-Model CFAR algorithm. In Table VI the

probabilities of detection for a single - model CFAR Weibull detector

with PFA set to 10−4 are reported along with the probabilities

of detection of a multi-model CFAR detector referred to the same

area under test. For both cases a good probability of detection is

achievable with both the single and multi-model approaches, with the

latter providing higher reliability in terms of PFA control. Finally, an

example detection maps for Multi-Model CFAR detector are reported

in Figure 2 together with the original SAR image and the considered



Table V: Detection probabilities for a single-model CFAR Gumbel for

maximum detector vs multi-model CFAR detector for Fredrik targets’

deployment.

Censoring Depth r PD GUM PD MM

0 0.076 0.068

32 0.124 0.122

64 0.170 0.236

96 0.209 0.225

115 0.220 0.221

128 0.233 0.233

Table VI: Detection probabilities for a single-model CFAR Weibull

detector vs multi-model CFAR detector for Sigismund targets’ de-

ployment.

Censoring Depth r PD WBL PD MM

0 0.045 0.101

32 0.121 0.169

64 0.277 0.281

96 0.396 0.359

115 0.434 0.373

128 0.468 0.397

Empirical Ground Truth.

In these results it can be appreciated that increasing r more detections

are obtained, moreover the capability of the algorithm to detect

extended targets as demonstrated in [7] is confirmed.

V. CONCLUSION

In this paper a novel framework for CFAR detection in FOPEN

SAR images has been proposed exploiting a multi-model approach.

The novel framework exploits a CFAR detection algorithm based on

location-scale and heavy-tailed distributions. The proposed framework

is able to control the False Alarm Probability in the FOPEN SAR

scenario, adapting the best heavy-tailed location-scale distribution

fitting the secondary data. The effectiveness of the proposed approach

has been demonstrated on real data, demonstrating that the framework

able to adapt both the model and the threshold provides a high

level of reliability. Future work will deal with the generalization

of the statistical model of the background, exploiting the existing

relationship between the extreme value distributions and the forest

densities.
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