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Abstract. A graph G = (V,E) is word-representable if there exists a word
w over the alphabet V such that letters x and y, x 6= y, alternate in w if
and only if (x, y) ∈ E. Halldórsson, Kitaev and Pyatkin have shown that a
graph is word-representable if and only if it admits a so-called semi-transitive
orientation. A corollary of this result is that any 3-colorable graph is word-
representable.Masárová

Akrobotu, Kitaev and Masárová have shown that a triangulation of a
grid graph is word-representable if and only if it is 3-colorable. This result
does not hold for triangulations of grid-covered cylinder graphs; indeed, there
are such word-representable graphs with chromatic number 4. In this paper
we show that word-representability of triangulations of grid-covered cylinder
graphs with three sectors (resp., more than three sectors) is characterized by
avoiding a certain set of six minimal induced subgraphs (resp., wheel graphs
W5 and W7).

Keywords: word-representability, semi-transitive orientation, triangulation,
grid-covered cylinder graph, forbidden induced subgraph

1 Introduction

Let G = (V,E) be a simple (i.e. without loops and multiple edges) undirected
graph with the vertex set V and the edge set E. We say that G is word-
representable if there exists a word w over the alphabet V such that letters
x and y alternate in w if and only if (x, y) ∈ E for any x 6= y. By definition,
each letter in V must appear in w.

The notion of word-representable graphs has its roots in algebra, where a
prototype of these graphs was used by Kitaev and Seif to study the growth
of the free spectrum of the well known Perkins semigroup [11].
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A number of results on word-representable graphs were obtained in the
literature [1, 2, 3, 5, 6, 7, 8, 10, 12, 13]. In particular, Halldórsson, Kitaev
and Pyatkin [8] have shown that a graph is word-representable if and only
if it admits a semi-transitive orientation (to be defined in Section 2), which,
among other important corollaries, implies that all 3-colorable graphs are
word-representable. We refer to [9] for the state of the art in the theory of
word-representable graphs.

Most relevant to our paper are [1, 2, 5], where triangulations and subdivi-
sions of certain graphs are studied with respect to word-representability. In
particular, Akrobotu, Kitaev and Masárová [1] proved that any triangulation
of the graph G associated with a convex polyomino is word-representable if
and only if G is 3-colorable. The method to prove this characterization theo-
rem was essentially in showing that such a triangulation is 3-colorable if and
only if it contains no wheel graph W5 or W7 as an induced subgraph (neither
W5 nor W7 are word-representable).

In this paper we extend the results of Akrobotu, Kitaev and Masárová [1]
to the case of grid-covered cylinder graphs, which is a cyclic version of rect-
angular grid graphs; see Subsection 2.2 for definitions. It turns out that in
this case, some of the graphs in question with chromatic number 4 are actu-
ally word-representable; for example, see the underlying graph in Figure 3.7.
Still, assuming that there are at least four sectors in a grid-covered cylinder
graph, word-representable triangulations of such graphs are characterized
by avoidance of W5 and W7 as induced subgraphs. On the other hand, we
can also characterize word-representability of triangulations of grid-covered
cylinder with three sectors as those avoiding the six graphs in Figure 4.11 as
induced subgraphs. Moreover, we show that our characterization results in
the case of more than three sectors hold even when some of cells (faces) of
grid-covered cylinder graphs are not triangulated.

The paper is organized as follows. In Section 2 we will provide all neces-
sary definitions and known results to be used. In particular, we will introduce
the notion of a triangulation of a grid-covered cylinder graph, the main con-
cern of this paper. Also, we will introduce the notion of a semi-transitive
orientation, the main tool to prove our results. Further, we classify word-
representable triangulations of the graphs in question depending on the num-
ber of sectors they have. Namely, in Sections 3 we will consider the case of
grid-covered cylinder graphs with more than three sections, and in Section 4
we will consider the case of grid-covered cylinder graphs with three sections.
Finally, in Section 5 we discuss a generalization of our results and state an
open problem.
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2 Definitions, notation, and known results

Suppose that w is a word and x and y are two distinct letters in w. We say
that x and y alternate in w if the deletion of all other letters from the word
w results in either xyxy · · · or yxyx · · · .

1 2 3 4

Figure 2.1: The graph represented by the word w = 134231241

A graph G = (V,E) is word-representable if there exists a word w over the
alphabet V such that letters x and y alternate in w if and only if (x, y) ∈ E

for each x 6= y. We say that w represents G, and such a word w is called
a word-representant for G. For example, if the word w = 134231241 then
the subword induced with letters 1 and 2 is 12121, hence the letters 1 and 2
alternate in w, and thus the respective vertices are connected in G. On the
other hand, the letters 1 and 3 do not alternate in w, because removing all
other letters we obtain 1331; thus, 1 and 3 are not connected in G. Figure 2.1
shows the graph represented by w.

2.1 Semi-transitive orientations

A directed graph (digraph) is semi-transitive if it is acyclic (that is, it contains
no directed cycles), and for any directed path v1 → v2 → · · · → vk with
vi ∈ V for all i, 1 ≤ i ≤ k, either

• there is no edge v1 → vk, or

• the edge v1 → vk is present and there are edges vi → vj for all 1 ≤
i < j ≤ k. That is, in this case, the (acyclic) subgraph induced by the
vertices v1, . . . , vk is transitive.

We call such an orientation a semi-transitive orientation.

We can alternatively define semi-transitive orientations in terms of in-
duced subgraphs. A semi-cycle is the directed acyclic graph obtained by
reversing the direction of one arc of a directed cycle. An acyclic digraph is
a shortcut if it is induced by the vertices of a semi-cycle and contains a pair
of non-adjacent vertices. Thus, a digraph on the vertex set {v1, . . . , vk} is a
shortcut if it contains a directed path v1 → v2 → · · · → vk, the arc v1 → vk,
and it is missing an arc vi → vj for some 1 ≤ i < j ≤ k; in particular, we
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must have k ≥ 4, so that any shortcut is on at least four vertices. Slightly
abusing the terminology, in this paper we refer to the arc v1 → vk in the last
definition as a shortcut (a more appropriate name for this would be a shortcut
arc). Figure 2.2 gives examples of shortcuts, where the edges 1 → 4, 2 → 5
and 3 → 6 are missing, and hence 1 → 5, 1 → 6 and 2 → 6 are shortcuts.

Thus, an orientation of a graph is semi-transitive if it is acyclic and con-
tains no shortcuts. Halldórsson, Kitaev and Pyatkin [8] proved the following
theorem that characterizes word-representable graphs in terms of graph ori-
entations.

1 2 3 4 5 6

Figure 2.2: An example of a shortcut

Theorem 2.1. [6] A graph is word-representable if and only if it admits a
semi-transitive orientation.

Thus, in this paper, to find out if a graphG in question is word-representable,
we will be studying existence of a semi-transitive orientation of G.

An immediate corollary of Theorem 2.1 is the following result.

Theorem 2.2. [6] Three-colorable graphs are word-representable.

2.2 Grid-covered cylinder graphs

A grid-covered cylinder, GCC for brevity, is a 3-dimensional figure formed by
drawing vertical lines and horizontal circles on the surface of a cylinder, each
of which are parallel to the generating line and the upper face of the cylinder,
respectively. A GCC can be thought of as the object obtained by gluing the
left and right sides of a rectangular grid. See the left picture in Figure 2.3
for a schematic way to draw a GCC. The vertical lines and horizontal circles
are called the grid lines by us.

Any GCC defines a graph whose set of vertices is given by intersection
of the grid lines, and whose edges are parts of grid lines between the respec-
tive vertices. Vertical edges and horizontal edges are defined by vertical and
horizontal grid lines, respectively. Such a graph is necessarily planar, and
it is convenient to consider its edge-crossing-free embedding in the plane as
shown schematically in the right picture in Figure 2.3, where by convention,
the internal circle C0 corresponds to the top face of the respective GCC.
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Figure 2.3: Grid-covered cylinder

We next introduce some notions/notation related to a GCC graph (ab-
breviated GCCG) Gm,n defined by intersection of m vertical lines and n+ 1
horizontal circles. Let C0, C1, . . . , Cn denote the circles of Gm,n in order from
inside to outside. Further, let Ci, for 0 ≤ i ≤ n, have m equally spaced
vertices denoted by vi0, vi1, . . . , vi(m−1) in the counter-clock-wise direction, so
that for a fixed y and any x, vertices vxy lie on the same vertical grid line
labelled by Vy; see Figure 2.4 for an example of a proper labelling of a GCCG
with four sectors.

v01

v02
v03

v00

v11

v12

v13

v10

v21

v22

v23

v20

Figure 2.4: Labelling of a GCCG

We say that the vertices on a circle Ci are on the ith level. Also, we
say that Gm,n has n layers and m sectors. For 1 ≤ i ≤ n, the ith layer
Li is the induced subgraph of Gm,n formed by the vertices on Ci−1 and Ci.
For 1 ≤ j ≤ m − 1, the jth sector Sj is the induced subgraph formed by
the vertices on the (j − 1)th and jth vertical grid lines (i.e. Vj−1 and Vj);
the mth sector Sm is the induced subgraph formed by the vertices on the
(m − 1)th and 0th vertical grid lines (i.e. Vm−1 and V0). For example,
referring to Figure 2.4, the layer L2 is the induced subgraph formed by the
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vertices {v10, v11, v12, v13, v20, v21, v22, v23}, while the sector S3 is the induced
subgraph formed by the vertices {v02, v12, v22, v03, v13, v23}.

Figure 2.5: A triangulation of a GCCG

Intersections of grid lines define GCCG’s cells all of which are 4-cycles.
Note that in the case of m = 4, the vertices and edges on C0 and Cm form 4-
cycles, but we do not call these cells. Thus, by definition, Gm,n has mn cells.
A triangulation T of Gm,n is the graph obtained from Gm,n by triangulating
each cell in it. The total number of (possibly isomorphic) triangulations of
Gm,n is 2mn. The subdivision edges in T that are used to subdivide cells into
triangles are called diagonal edges.

3 Word-representable triangulations of GC-

CGs with more than three sectors

For n ≥ 3, a wheel graph Wn is obtained by adding to the cycle graph Cn an
all-adjacent vertex (apex). It is known [9, 10] that for odd n ≥ 5, Wn is not
word-representable. In particular, W5 and W7 shown in bold in Figure 3.6
(each twice) are not word-representable.

In this section we will prove the following theorem.

Theorem 3.1. A triangulation of a GCCG with more than three sectors
is word-representable if and only if it contains no W5 or W7 as an induced
subgraph.

The proof of Theorem 3.1 will follow from Lemma 3.3 below, whose proof
is based on Lemma 3.2 giving the structure of GCCGs with more than three
sectors that contain no W5 or W7 as induced subgraphs.

Next, we introduce the notion of a type of a cell subdivision on layer Li

for i ≥ 2. We say that a cell C defined by vijv(i+1)jv(i+1)(j+1)vi(j+1), where
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1 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 2, in a triangulation T of a GCCG Gm,n

is of type A if its diagonal edge has no vertex in common with the diagonal
edge of the cell above defined by v(i−1)jvijvi(j+1)v(i−1)(j+1). We say that C is
of type B otherwise. The type of a cell in sector Sm is defined in the same
way. Note that the type of cells on L1 is not defined.

Li

Li−1

Sj Sj+1

Li

Li−1

Sj Sj+1

Li

Li−1

Sj Sj+1

Li

Li−1

Sj Sj+1

Figure 3.6: The bottom-left cells are of type A and the bottom-right cells
are of type B

Lemma 3.2. If a triangulation of a GCCG with more than three sectors
contains no W5 or W7 as an induced subgraph, then each cell on layer Li, for
i ≥ 2, must be of the same type.

Proof. If two cells on a layer Li, i ≥ 2, are of different types, then there must
be two adjacent cells on Li of different types. Suppose that these cells are in
the sectors Sj and Sj+1. Considering these cells together with two cells in the
same sectors on the layer Li−1 we will meet either W5 or W7 as an induced
subgraph, as shown in Figure 3.6 (where we assumed that the bottom-left
cells are of type A; the cases when these are of type B are obtained from those
in Figure 3.6 by reflection with respect to a vertical line). Contradiction.

By Lemma 3.2, each cell on a layer Li, for i ≥ 2, is of the same type, and
thus the notion of a layer type (starting from layer 2 upwards) is well defined
as the type of the layer’s cells.

Next, we describe an orientation O of a triangulation T of a GCCG Gm,n

with m ≥ 4, which will be shown by us in Lemma 3.3 to be semi-transitive.

• Orient the horizontal edges of T as follows: for 0 ≤ x ≤ n and 0 ≤
y ≤ m− 3, vx0 → vx(m−1), vx(m−1) → vx(m−2), and vxy → vx(y+1). Thus,
all horizontal edges in the same sector receive the same orientation. In
fact, we could pick any semi-transitive orientation of the cycle graph on
C0 and make the orientation of any other horizontal edge h be the same
as the orientation of the edge on C0 belonging to h’s sector. However,
we fixed a particular orientation, which is easy to deal with.
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• Each diagonal edge d is oriented in the same direction as the horizontal
edges of the cell d belongs to. Thus, each horizontal or diagonal edge
in a sector has the same orientation, which makes the orientation of a
sector to be a well-defined notion.

• Finally, orient vertical edges as follows: v0y → v1y for 0 ≤ y ≤ m − 1.
More generally, for 1 ≤ x ≤ n − 1 and 0 ≤ y ≤ m − 1, a vertical edge
vxyv(x+1)y has the same orientation as the edge v(x−1)yvxy if the layer
Lx+1 is of type A, and it is oriented in the opposite direction if Lx+1

is of type B. Thus, we can orient all vertical edges, layer by layer,
starting from layer L2 and following our rules, so that all vertical edges
on the same layer will be oriented in the same direction.

v00 v01

v02

v03

v04

v30 v31

v32

v33

v34

Figure 3.7: The semi-transitive orientation O on T5,4

In what follows, when we refer to C0, we mean the cycle graph induced
by the vertices on C0.

Lemma 3.3. The orientation O is semi-transitive.

Proof. First note that O is acyclic. Indeed, any cycle must involve horizontal
or diagonal edges, and since all such edges in a sector have the same direction,
existence of a cycle in O would force all sectors be oriented in the same
direction contradicting the definition of O.

Suppose now that there is a shortcut edge v1 → vk, which is defined by a
directed path P = v1 → v2 → · · · → vk, for k ≥ 4. Taking into account that
each horizontal or diagonal edge in a sector has the same direction, no more
than one (horizontal or diagonal) edge from each sector can be present in P

unless P goes around the entire cylinder (that is, visits each vertical line),
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which is not possible by the definition of O (in particular, in such a situation
C0 would be forced to be a directed cycle).

Further, note that each directed path in T induces a directed path on
C0 because each sector has the same orientation. In particular, steps on a
vertical line correspond to no step on C0. Clearly, P cannot be located on a
single vertical line. Thus, there are only two cases to consider, namely, when
P visits at least three distinct vertical lines, and when it visits two distinct
vertical lines.

• Case 1. P involves vertices from at least three (consecutive) different
vertical lines, say Vx, Vx+1 and Vx+2 for some x taken mod m, in order
P visits the lines; we also assume that v1 is on Vx. However, once P

reaches Vx+2, the vertices on Vx+1 are not reachable for P giving no
possibility for a shortcut unless P goes around the cylinder. But in the
latter case, C0 will be forced to have a shortcut or a cycle contradicting
the definition of O.

• Case 2. Only two (consecutive) vertical lines are involved in P . By
symmetry, only three subcases are possible for a shortcut, which are
shown in Figure 3.8.

Vx+1 Vx

v1

vk

Vx+1 Vx

v1

vk

Vx+1 Vx

v1vk

Figure 3.8: Three possibilities for Case 2

Subcase 2.1. Consider the leftmost picture in Figure 3.8. The ori-
entations of edges between vertical lines Vx and Vx+1 ensure that v2
cannot be on Vx+1. But then the presence of the edge v1 → v2 shows
that the cell containing {v1, vk, y} in Figure 3.9 is of type B, so that on-
ly two situations are possible here, both presented in Figure 3.9. Note
that in any case, v2 → vk cannot be an edge. But then, because of the
orientation of the sector defined by the lines Vx and Vx+1, the path P

can never reach vk. Contradiction.

Subcase 2.2. Note that v1 → v2 cannot be a horizontal edge. Since
k ≥ 4, we consider four possible situations presented in Figure 3.10.

(1) Suppose that v1 → v2 is as shown in the rightmost picture in
Figure 3.10. Since the cell defined by {v1, a, vk, c} is of type B,
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Vx+1 Vx

v1

vk

v2

y

Vx+1 Vx

v1

vk

v2

y

Figure 3.9: Possibilities for Subcase 2.1

the edges av2 and avk will receive opposite directions, so that
v1 → vk cannot be a shortcut in this situation.

(2) If v1 → v2 is an edge as shown in the second picture in Figure 3.10,
then we have also an edge a → b, and because of that, v2 → a

must also be an edge (otherwise, P has no possibility to reach
eventually vk). However, if a → b is an edge, the cell defined
by {c, v1, a, vk} is of type A, and thus vk → a is an edge, and P

cannot be a shortcut (the vertices v1, v2, a and vk do not define a
shortcut).

(3) Suppose that v1 → v2 and v2 → c are edges as shown in the third
picture in Figure 3.10. Then the cell defined by {v2, vk, b, c} is of
type A (which is reflected in Figure 3.10) and clearly P will not
reach vk. Contradiction.

(4) Finally, suppose that v1 → v2 and c → v2 are edges as shown
in the fourth picture in Figure 3.10. Then the cell defined by
{v2, vk, b, c} is of type B (which is reflected in Figure 3.10) and
clearly P will not reach vk. Contradiction.

Vx+1 Vx

v1

vk c

bv2

a

Vx+1 Vx

v1

vk c

v2

a

b

Vx+1 Vx

v1

vk

a

v2

cb

Vx+1 Vx

v1

vk

a

v2

cb

Figure 3.10: Possibilities for Subcase 2.2

Subcase 2.3. For the rightmost picture in Figure 3.8, we omit our
arguments since they are very similar to the arguments in Subcases 2.1
and 2.2.
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The lemma is proved.

4 Word-representable triangulations of GC-

CGs with three sectors

The goal of this section is to prove the following theorem.

Theorem 4.1. A triangulation of a GCCG with three sectors is word-repre-
sentable if and only if it contains no graph in Figure 4.11 as an induced
subgraph.

Our proof is organized as follows. In Subsection 4.1 we will provide all six
minimum non-word-representable graphs that can appear in triangulations
of GCCGs with three sectors (see Figure 4.11) and give an explicit proof
that one of these graphs is non-word-representable. Then, in Subsection 4.2,
we will give an inductive argument showing that avoidance of the six graphs
in Figure 4.11 is a sufficient condition for a GCCG with three sectors to be
word-representable. Note that the graphs in Figure 4.11 were obtained by an
exhaustive computer search on graphs on up to eight vertices. However, our
argument in Subsection 4.2 will show that no other non-word-representable
induced subgraphs can be found among all triangulations of GCCGs with
three sectors.

4.1 Non-word-representability of the graphs in Fig-

ure 4.11

Non-word-representability of the graphs in Figure 4.11 can be checked using
existing software [4]. However, there is a way to check this fact by hand
using the branching approach, which is rather space consuming, and thus we
will demonstrate this approach only on one example, the second graph in
Figure 4.11; the remaining cases can be checked similarly.

Note that for any of the partial orientations of the 3- or 4-cycles given
in Figure 4.12, there is a unique way of completing these orientations, also
shown in Figure 4.12, so that oriented cycles and shortcuts are avoided. This
stays true in the context of triangulated 4-cycles.

Below, we use the following terminology introduced in [1]. Complete
XYW(Z) refers to completing the orientations on a cycleXYW (Z) according
to the respective cases in Figure 4.12. Instances in which it is not possible
to uniquely determine orientations of any additional edges in a partially
oriented graph are referred to as Branching XY. Here, one picks a new, still
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Figure 4.11: All minimal non-word-representable induced sugraphs in trian-
gulations of GCCG’s with three sectors
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Figure 4.12: Unique semi-transitive completions of the partial orientations
of a 3-cycle or a 4-cycle

non-oriented edge XY of the graph and assigns the orientation X → Y ,
while, at the same time, one makes a copy of the graph, respectively, with
its partial orientations and assigns orientation Y → X to the edge XY . The
new copy is named and examined later on. Our terminology and relevant
abbreviations are summarized in Table 4.1.

Abbreviation Operation

B Branch
NC Obtain a new partially oriented copy
C Complete
MC Move to a copy
S Obtain a shortcut

Table 4.1: List of used operations and their abbreviations

Name A the first copy of the second graph in Figure 4.11 with the single
edge orientated as 1 → 3, and carry out the following operations, where the
partially oriented graphs A – L are given in Figure 4.13. We will show that
in case of any acyclic orientation of the graph, shortcuts are unavoidable.

• B 37 (NC B), C 137, C 1376, B 65 (NC C), C 1654, C 1764, C 4576,
C 3752, C 2564, C 2457, C 123, S 1324;
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• MC C, C 567, C 5672, B 45 (NC D), C 1654, C456, C 1452, C 452, C
2573, S 4132;

• MC D, C 1654, C 1452, C 2754, C 2413, S 5237;

• MC B, B 16 (NC E), C 6137, B 17 (NC F ), C 1764, B 45 (NC G), C
1452, C 6145, C 765, C 7652, C 2573, C 2564, S 1423;

• MC G, C 546, C 5417, C 6457, C 5732, C 1452, C 2564, S 1423;

• MC F , C 7165, B 25 (NC H), C 2567, C 273, C 2754, C 1654, C 2541,
C 456, S 4271;

• MC H, C 2573, C 132, C 732, C 1324, C 4125, C 4576, S 1642;

• MC E, C 7316, B 12 (NC I), C 6125, C 7652, C 6524, B 17 (NC J), C
1764, C 4125, C 5467, C 2573, S 1423;

• MC J , C 1764, C 4125, C 5467, C 3752, S 4132;

• MC I, C 213, B 14 (NC K), C 214, C 614, C 6145, C 7652, C 7325, C
7561, S 2714;

• MC K, C 4132, B 25 (NC L), C 5214, C 6145, C 7652, C 1427, C 1754,
S 2573;

• MC L, C 4125, C 6145, C 7652, C 5237, C 7541, C 4576, S 6427.

4.2 An inductive argument proving Theorem 4.1

To show that avoidance of the six graphs in Figure 4.11 as induced sub-
graphs is a sufficient condition for a GCCG with three sectors to be word-
representable, we use the following approach.

Each triangulation T of a GCCG having i layers and no graph in Fig-
ure 4.11 as an induced subgraph is obtained from a triangulation T0 of a
GCCG having i − 1 layers and no graph in Figure 4.11 as an induced sub-
graph by adding a new external layer Li. Since the graphs in Figure 4.11
involve vertices from three layers (that is, four levels), to obtain all possible
T , we need to control the two external layers (layers Li−1 and Li−2) in T0.
Further, if we assume existence of a semi-transitive orientation of T0, which
induces a semi-transitive orientation on Li−1 and Li−2, we could try to ex-
tend such an orientation to a semi-transitive orientation of T (making sure
that no cycles or shortcuts emerge).
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Figure 4.13: Partial orientations of the second graph in Figure 4.11
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The next step is to compare the directed graphs induced by the layers
{Li−1, Li} and {Li−2, Li−1}. If these are the same directed graphs, then an
inductive argument can be applied to extending the graph by new layers and
proving that in each case a semi-transitive orientation exists giving word-
representability by Theorem 2.1. On the other hand, if the graphs induced
by the layers {Li−1, Li} and {Li−2, Li−1} are different, we need to replace the
oriented layers {Li−2, Li−1} by {Li−1, Li} and repeat the procedure described
above again. Namely, we need to extend the graph by another layer Li+1,
then try to extend the existing semi-transitive orientation to this layer, and
compare two external layers {Li, Li+1} with already considered orientations
of two external layers with a hope to meet the same directed graph.

M N P

Figure 4.14: The extensions of the graphs M , N and P

The base for our inductive proof is the three graphs, M , N and P in
Figure 4.14, which are the only non-isomorphic triangulations of the GC-
CG on nine vertices containing no graph in Figure 4.11 as an induced sub-
graph. Each of these graphs can be semi-transitively oriented as shown in
Figure 4.15. Note that we provide two semi-transitive orientations for the
graphs N and P , which is essential in our inductive argument. Also, note
that each triangulation of a GCCG with three sectors on less than nine ver-
tices can be oriented semi-transitively (just remove the external layer in the
graphs in Figure 4.15).

Further, we note that there are only five ways in total in which the graphs
M , N and P can be extended by one more (external) layer if the graphs in
Figure 4.11 are to be avoided as an induced subgraph. The extensions are
shown in 4.14.

We now make an inductive hypothesis that each triangulation of a GCCG
with three sectors and n layers having no graph in Figure 4.11 as an induced
subgraph can be oriented semi-transitive so that two external layers form the
same directed graph as one of the directed graphs in Figure 4.15.

We will next prove the statement for n+ 1 layers by adding to all of the
graphs in Figure 4.15 one more layer, in all possible ways, and extending
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M1 N2N1 P1 P2

Figure 4.15: Semi-transitive orientations of the graphs M , N and P

the orientation of the resulting partially oriented graph to a semi-transitive
orientation. It is important to note that in each case below, it will follow
from our way to extend orientations that no cycle or shortcut will be possible
involving vertices on newly added level Cn+1 and vertices on levels Cn−3,
Cn−4, . . . , C0.

M has a unique extension by an extra layer, and the orientation of M1

can be extended to that shown in Figure 4.16. Note that the two external
layers of the graph in Figure 4.16 form M1, as desired.

Figure 4.16: The extension of M1

N1 has two possible extensions by an extra layer, but both of them can
be extended to semi-transitive orientation: see N11 and N12 in Figure 4.17.
Two external layers of N11 and N12 form N1 and P1, respectively, as desired.

N2 has two possible extensions by an extra layer, but both of them can
be extended to semi-transitive orientation: see N21 and N22 in Figure 4.17.
Two external layers of N21 and N22 form N2 and P2, respectively, as desired.

P1 has two possible extensions by an extra layer, but both of them can
be extended to semi-transitive orientation: see P11 and P12 in Figure 4.18.
Two external layers of P11 and P12 form P2 and N2, respectively, as desired.

Finally, P2 has two possible extensions by an extra layer, but both of them
can be extended to semi-transitive orientation: see P21 and P22 in Figure 4.18.
Two external layers of P21 and P22 form P1 and N1, respectively, as desired.

We are done.
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N11 N12

N21 N22

Figure 4.17: The extensions of N1 (top row) and of N2 (bottom row)

P11 P12

P21 P22

Figure 4.18: The extensions of P1 (top row) and of P2 (bottom row)
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5 Concluding remarks

It is easy to see that any triangulation of a GCCG with more than three
sectors contains no K4 as an induced subgraph. Using this fact, it is not
difficult to see that the orientation O defined in Section 3 contains no tran-
sitively oriented induced subgraphs on four or more vertices. That means
that removing any directed edge in such an orientation, the resulting graph
will avoid shortcuts (and directed cycles). As a particular case of this ob-
servation, when only diagonal edges can be removed, we have the following
generalization of Theorem 3.1.

Theorem 5.1. Given a GCCG G with more than three sectors, triangulate
some of cells of G to obtain a graph T . Then T is word-representable if and
only if it contains no W5 or W7 as an induced subgraph.

Unfortunately, such a generalization for Theorem 4.1 does not follow di-
rectly from our proofs. Indeed, for example, the graph N11 in Figure 4.17
contains a transitively oriented copy of K4 (in the middle of the graph), and
removing the rightmost edge in the K4 we will obtain a shortcut. Thus,
we leave it as an open problem to decide whether avoidance of the graphs
in Figure 4.11 characterize triangulations of selected cells in a GCCG with
three sectors, and if not then to find such a characterization.

Finally, the results in this paper can be seen as a step towards charac-
terizing word-representable planar graphs, which remains a challenging open
problem.
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2011, Teplá Monastery, Czech Republic, June 21–24, 2011.
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