

Strathprints Institutional Repository

Conen, Lea and Dolean, Victorita and Krause, Rolf and Nataf, Frédéric (2015) Addendum to "A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator"' [J. Comput. Appl. Math. 271 (2014) 83–99]. Journal of Computational and Applied Mathematics, 290. pp. 670-674. ISSN 0377-0427 , http://dx.doi.org/10.1016/j.cam.2015.04.031

This version is available at http://strathprints.strath.ac.uk/56475/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (<u>http://strathprints.strath.ac.uk/</u>) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator: strathprints@strath.ac.uk

Corrigendum to "A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator" [J. Comput. Appl. Math. 271 (2014) 83–99]

Lea Conen^{a,*}, Victorita Dolean^b, Rolf Krause^a, Frédéric Nataf^c

^a Università della Svizzera italiana, Institute of Computational Science, Via G. Buffi 13, 6900 Lugano, Switzerland

^bUniversity of Strathclyde, Dept. of Mathematics and Statistics, 26 Richmond Street, Glasgow G1 1XH, Scotland, UK

^c Université Pierre et Marie Curie, Laboratoire J.L. Lions, Tour 15-25 Bureau 319, 4 place Jussieu, 75005 Paris, France

Abstract

This communication gives a corrigendum to the paper "A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator" [J. Comput. Appl. Math. 271 (2014) 83–99].

Keywords: Helmholtz equation, domain decomposition, coarse space, Dirichlet-to-Neumann operator

The preconditioner

$$P_{\rm BNN} = QM^{-1}P + ZE^{-1}Y^{\dagger} \tag{1}$$

from [1, Equation (7)] might be singular for general non-singular matrices A, M and $E = Y^T AZ$, and full ranked matrices Z and Y. Consider

$$A = \begin{pmatrix} 2 & 5 & 2 \\ 0 & 6 & 0 \\ 0 & 1 & 4 \end{pmatrix}, \qquad Z = Y = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \qquad M^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

The matrices A, M, and E are clearly non-singular, but $\begin{pmatrix} 15 & -4 & 7 \end{pmatrix}^T$ is an eigenvector of $P_B A$ with eigenvalue 0. This is in contradiction to a result of Erlangga and Nabben [2], on which our work was based. Their consequently wrong theorem reads

Theorem 0.1 ([2, Theorem 2.9]). Let Z and Y be full ranked. Let M be nonsingular. Then $P_{\text{BNN}}A$ is non-singular. In addition, any zero eigenvalue of $M^{-1}P_DA$ is shifted to one in $P_{\text{BNN}}A$.

Preprint submitted to Journal of Computational and Applied MathematicsSeptember 4, 2014

^{*}Corresponding author. Phone number: +41 (0)58 666 4975

Email addresses: lea.conen@usi.ch (Lea Conen), victorita.dolean@strath.ac.uk (Victorita Dolean), rolf.krause@usi.ch (Rolf Krause), nataf@ann.jussieu.fr (Frédéric Nataf)

Figure 5: Comparison of different criteria of how many DtN modes to choose.

Choice	# iter	ations
	$m_i = 12$	$m_i = 24$
no coarse space	115	115
$\operatorname{Re}(\lambda)$ minimal	17	11
$ \lambda $ minimal	27	17
$ \lambda - k $ minimal	49	21
$ \lambda $ maximal	155	145

Table 1: Iteration numbers for different choices of DtN eigenfunctions.

The solutions of the preconditioned of the original system might hence differ and the GMRES solver employed in [1] is not adapted to solve systems with singularities. For that reason, in this corrigendum the results of [1] are reproduced using a non-singular preconditioner. Numbering and notation are identificated to the original paper. The new results use the provably non-singular preconditioner [3]

$$P_{\rm new} = I - Z \left(Z^{\dagger} M^{-1} A Z \right)^{-1} Z^{\dagger} M^{-1} A + Z \left(Z^{\dagger} M^{-1} A Z \right)^{-1} Z^{\dagger}$$
(2)

and solve the preconditioned problem $M^{-1}AP_{\text{new}} = M^{-1}b$. The coarse matrix is now $Z^{\dagger}M^{-1}AZ$ instead of $Z^{\dagger}AZ$ in Equation (1). Its sparsity structure hence changes; it has blocks not only for neighboring subdomains but also for neighbors of neighbors, which constitutes a drawback for parallel implementation.

We make a few observations, refraining however from giving a detailed interpretation of the new results to save space. The eigenvalue distribution in Figure 7a is more favorable than the one for $P_{\rm BNN}A$. This is also reflected in the iteration counts for small coarse size, see e.g. Figure 6 or the last line of Table 14 for PW(10⁻²). Moreover, the convergence problems for the plane wave coarse space were not caused by the singularity of the preconditioner $P_{\rm BNN}$. In fact, e.g. in Table 3, convergence for PW(10⁻²) is even worse. That is why

L	k	kL	# iterations	coarse space dimension
1 5 10	$ \begin{array}{c} 30 \\ 6 \\ 3 \end{array} $	$ 30 \\ 30 \\ 30 $	20 20 19	224 224 224

Table 2: Dependence on the size L of the domain $\Omega = [0, L]^2$.

Figure 6: Number of iterations in Figure 7: 100 largest eigenvalues for $I - M^{-1}A$ and I - dependence of m_i . $M^{-1}AP_{new}$ in the complex plane.

$n_{\rm loc}$	k	1-lev	Ι	DtN	PW	(10^{-2})	PW	(10^{-1})
20	18.5	80	16	(144)	_	(352)	9	(293)
40	29.3	116	19	(224)	-	(467)	13	(382)
80	46.5	156	30	(299)	—	(577)	16	(505)
160	73.8	217	40	(508)	—	(609)	25	(597)

Table 3: Number of iterations (dimension of coarse space).

Figure 12: Testing different values of k^3h^2 . Problem 1, 5 × 5 subdomains.

	m_i from DtN coarse space							m_i from PW coarse space					
$n_{\rm loc}$	k	m_i	DtN	PW	(10^{-2})	PW	(10^{-1})	$\overline{m_i}$	DtN	PW	$V(10^{-2})$	PW	(10^{-1})
10	11.6	4	15	17	(100)	17	(100)	12	8	7	(288)	7	(244)
20	18.5	6	19	19	(150)	19	(146)	15	9	_	(355)	9	(305)
40	29.3	9	23	22	(225)	22	(225)	17	13	_	(409)	13	(373)
80	46.5	12	35	30	(296)	29	(292)	24	19	_	(556)	16	(496)
160	73.8	21	42	_	(521)	31	(513)	25	39	_	(609)	25	(597)

Table 4: Comparison of number of iterations with identical coarse space size for DtN and PW.

k	1-level	Ι	DtN
5	106	79	(25)
10	115	58	(70)
15	117	57	(90)
30	133	33	(224)
45	169	39	(299)

Table 5: Dependence on wave number for fixed mesh width.

we additionally give results for $PW(10^{-1})$. In total, the results do not change substantially and the conclusions drawn in [1] remain valid.

References

- L. Conen, V. Dolean, R. Krause, F. Nataf, A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator, J. Comput. Appl. Math. 271 (2014) 83 – 99.
- [2] Y. A. Erlangga, R. Nabben, Deflation and balancing preconditioners for Krylov subspace methods applied to nonsymmetric matrices, SIAM J. Matrix Anal. Appl. 30 (2008) 684–699.
- [3] P. Havé, R. Masson, F. Nataf, M. Szydlarski, H. Xiang, T. Zhao, Algebraic

	$n_{\rm loc} =$	L=2	$n_{\rm loc} =$	80, 1	L=2	$n_{\rm loc} = 80, \ L = 8$			
k	1-level	I	DtN	1-level	Ι	DtN	1-level	I	DtN
1	73	51	(25)	94	73	(25)	66	46	(25)
5	64	40	(25)	96	70	(25)	55	34	(25)
10	68	24	(74)	106	47	(74)	66	24	(74)
20	84	22	(139)	107	34	(144)	86	21	(139)

Table 6: Dependence of number of iterations (coarse space dimension) on overlap/mesh width.

			Number of subdomains								
$n_{\rm loc}$	k	5	$\times 5$	5	$\times 10$	5	$\times 20$	5	$\times 40$		
10	11.6	16	(80)	18	(180)	21	(380)	24	(780)		
20	18.5	16	(144)	18	(314)	19	(654)	21	(1334)		
40	29.3	20	(224)	20	(484)	22	(1004)	24	(2044)		
80	46.5	31	(299)	37	(644)	45	(1334)				

Table 7: Dependence on number of subdomains, DtN coarse space.

	D	DtN		$10^{-}2)$	$PW(10^{-1})$	
# subdomains	# it.	size	# it.	size	# it.	size
2×2	24	(68)	_	(96)	18	(88)
4×4	31	(200)	_	(368)	15	(320)
8×8	40	(416)	—	(1116)	14	(924)
16×16	60	(960)	—	(3256)	12	(2686)
32×32	48	(2944)	?	(9208)	?	(?)

Table 8: Second scaling test: Vary the number of subdomains.

		$\rho = 5$						$\rho = 10$					
$n_{\rm loc}$	ω]	DtN	PW	$V(10^{-2})$	PW	(10^{-1})	Ι	DtN	PW	$V(10^{-2})$	PW	(10^{-1})
10	11.6	21	(69)	8	(229)	10	(179)	23	(69)	9	(214)	11	(169)
20	18.5	27	(111)	_	(274)	14	(218)	29	(111)	_	(263)	16	(207)
40	29.3	35	(159)	—	(339)	12	(279)	44	(159)	_	(326)	28	(263)
80	46.5	38	(242)	—	(442)	—	(363)	45	(236)	_	(414)	—	(346)
160	73.8	53	(388)	_	(519)	_	(481)	62	(378)	_	(494)	_	455

Table 9: Number of iterations (coarse space dimension) for heterogeneous open cavity problem.

ρ	1-level	Ι	DtN	PW	$V(10^{-2})$	PW	(10^{-1})
10^{0}	156	31	(299)	—	(577)	16	(505)
10^{1}	154	45	(236)	_	(414)	—	(346)
10^{2}	173	59	(236)	_	(388)	_	(320)
10^{3}	177	64	(236)	_	(379)	—	(315)

Table 10: Varying contrast for heterogeneous open cavity problem.

$n_{ m loc}$	ω	m_i	DtN	ΡW	(10^{-2})	PW	(10^{-1})
10	11.6	3	21	22	(75)	22	(75)
20	18.5	5	23	25	(123)	25	(123)
40	29.3	7	38	40	(171)	41	(163)
80	46.5	10	42	—	(237)	45	(223)
160	73.8	16	59	—	(358)	63	(346)

Table 11: Fixed coarse space size for heterogeneous open cavity problem.

$n_{\rm glob}$	k	1-level	1	ΟtΝ
50	11.6	64	15	(116)
100	18.5	92	17	(168)
200	29.3	130	25	(257)
400	46.5	173	33	(381)
800	73.8	256	43	(645)

Table 12: Decomposition with Metis.

				5 subdor	nains		10×10 subdomains						
k	$n_{\rm glob}$	DtN		$\mathrm{PW}(10^{-2})$		$PW(10^{-1})$		DtN		$PW(10^{-2})$		$PW(10^{-1})$	
18.5	100	15	(144)	8	(355)	9	(293)	17	(364)	23	(1152)	8	(872)
29.3	200	18	(224)	_	(466)	13	(379)	22	(460)	_	(1288)	11	(1132)
46.5	400	27	(315)	_	(577)	16	(511)	35	(660)	_	(1712)	15	(1380)
73.8	800	33	(514)	—	(609)	25	(597)	57	(956)	—	(2346)	18	(1928)

Table 13: Number of iterations (coarse space dimension) for Problem 2.

		15 subdomains							60 subdomains						
ω	n	DtN		$PW(10^{-2})$		$PW(10^{-1})$		DtN		$PW(10^{-2})$		$PW(10^{-1})$			
90	150×250	14	(267)	12	(346)	12	(323)	21	(541)	10	(1038)	12	(877)		
180	300×500	15	(514)	24	(375)	24	(373)	22	(1074)	15	(1426)	15	(1333)		
360	600×1000	18	(968)	50	(375)	50	(375)	26	(2113)	42	(1500)	42	(1500)		

Table 14: Number of iterations (coarse space dimension). Problem 3 decomposed with Metis

domain decomposition methods for highly heterogeneous problems, SIAM Journal on Scientific Computing 35 (2013) C284–C302.