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Abstractņ A single-switch, single-stage, three-phase, ac-dc buck-boost converter suitable for 

medium-voltage applications is proposed. Basic relations that govern steady-state converter 

operation are established, confirmed using PSCAD/EMTDC simulations, and substantiated 

experimentally. Simulation and experimental results establish that the proposed converter has 

good dynamic performance in buck and boost modes, with near unity input power factor.  

 

Index Terms ņ ac-dc converter, buck-boost converter, medium-voltage applications, wind energy conversion systems. 

I. INTRODUCTION 

AC-DC conversion is widely used in applications such as power supplies for microelectronics, 

uninterruptible power supplies (UPS), battery chargers, wind energy conversion systems, household-

electric appliances, dc-motor drives, and dc distributed systems [1-3]. Three-phase two-level ac-dc 

converters can be classified into three main categories, namely buck, boost and buck-boost converters. 

Buck converters [4-7] provide a dc output voltage lower that the peak of the ac supply voltage and 

reduce the number of power electronics switches to three, the number of diodes is increased and the 

converter requires a special firing technique. Reference [8] considers buck converters with isolation.  

Buck-boost converters can be classified into two categories: single-stage [9, 10] and double-stage [11, 

12]. In [13, 14], a single-phase converter is used for each phase and a transformer provides isolation 

and matches the dc output of each converter. The boost converter is widely used in wind energy 

conversion systems [15-20] where a three-phase bridge rectifier and dc-dc converter are used to provide a 

stable dc voltage for a grid-connected inverter over the wide speed range of the input synchronous 

generator. The main disadvantages of these back-to-back converters are the need to pre-charge the dc 

side capacitor, and poor output short-circuits protection in case of the boost converter. 

The proposed buck-boost converter consists of a three-phase bridge rectifier in series with a single 

switch as shown in Fig. 1(a). The single-phase version of the buck-boost converter was proposed and 



incorrectly discarded [21] on the grounds that it could not be extended to a three-phase system. The 

three-phase version of the circuit was investigated, but disqualified it on the grounds of discontinuous 

and non-sinusoidal input current [22]. The buck-boost converter considered in this paper has been 

operated in a discontinuous mode using multi-resonance zero current switching [23, 24], but this 

approach is not suitable for high-power applications since a 25 kHz switching frequency is used. This 

paper reintroduces the three-phase buck-boost converter for medium-voltage and high-power 

applications where the switching frequency is less than 1.5 kHz. Additionally, this paper operates the 

presented buck-boost converter as a current source converter, where filter capacitance rated at 0.3pu 

to 0.6pu is required at the converter input for harmonic attenuation and to ensure sinusoidal input 

currents [25]. The buck-boost converter under investigation offers the following features:  

 Buck and boost capability in a single stage with a minimum switch count. 

 Stable dc voltage output in buck and boost modes, making it applicable as a front-end 

converter for grid-connected current and voltage source converters, with black-start and 

shutdown capabilities. 

This paper is organized as follows: Section II describes the operating principle of the proposed three-

phase ac-dc buck-boost converter, and establishes the basic equations that govern its steady-state 

operation, control loop and filter design. Section III uses simulation results obtained from 

PSCAD/EMTDC to demonstrate the technical feasibility of the presented ac-dc buck-boost converter. 

Section IV presents experimental results from a prototype ac-dc buck-boost converter that validates 

the simulation results presented in Section III. Scalability of the ac-dc buck-boost converter to 

medium-voltage multi-megawatt level is demonstrated in Section V. Conclusions and major findings 

are highlighted in Section VI.  

 

II. PROPOSED THREE-PHASE BUCK-BOOST BRIDGE 

a. Circuit Description  



Fig.1 (a) shows that the three-phase ac-dc buck-boost converter being investigated consists of a three-

phase L-C filter followed by a three-phase bridge rectifier, with a series switch S placed between the 

bridge and the dc side inductor Ldc. Switch S adjusts the dc output load voltage by controlling the 

average current flow in inductor Ldc, and hence controls the power flow between the ac and dc sides. 

The three-phase buck-boost converter has seven operational modes, six of which are conducting 

modes whilst the seventh is an intervening freewheeling mode. The conducting modes occur when 

switch S is turned on allowing the ac current to be converted to dc when energizing inductor Ldc. 

During this period, the dc inductor current IL increases and blocking diode Dbd is reverse biased. The 

dc side capacitor Cdc thus discharges to supply the load.  The different conducting modes are defined 

by the conduction sequence of the three-phase bridge rectifier diodes, and are shown in Table 1.  

Bridge diode conduction Mode1 is shown as an example in Fig.1 (b). The freewheeling mode (Mode 

7) occurs when switch S is turned off, allowing dc inductor current IL to decrease whilst charging the 

dc side capacitor Cdc and supplying the load, as shown in Fig.1(c). 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Fig.1:Proposed buck-boost converter and illustration of its operation (a) topology, (b)Mode 1 operation: conduction, (c)Mode 7 operations: 

freewheeling, and (d) inductor current IL and ac side filter current during a full Mode 1 switching cycle. 

 

 



  Table 1: Proposed three-phase buck-boost converter conduction modes 

 Operating Mode 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

Conduction periodt 0°-60° 60°-120° 120°-180° 180°-240° 240°-300° 300°-360° 

Lower active diode D 5 D 1 D1 D 3 D 3 D 5 

Upper active diode D6 D6 D2 D2 D4 D4 

 

In Mode 1, diodes D5 and D6 conduct since they experience the largest line-to-line voltage, hence the 

three-phase bridge dc output voltage is equal to the instantaneous ac side capacitor line-to-line voltage 

vccb, i.e. the voltage across capacitor Csc with respect to that across capacitor Csb. When the switch S is 

in the ‘on’ state, the ac side capacitor Csc discharges by changing its current direction to supply dc side 

inductor Ldc, where the dc side inductor current IL equals the sum of the ac side filter capacitor current 

icc and supply current isc.  When switch S is in the ‘off’ state, the ac side capacitor Csc starts to charge 

and its current icc is equal to supply current isc, as shown in Fig.1(c) and (d). The following 

assumptions are made when deriving an expression for the dc output voltage, Vdc. 

1. The switching period is T=t1+t2, such that a conduction mode occurs during0≤t≤t1 and the 

freewheeling mode occurs during t1≤t≤t2, as illustrated in Fig.1(d). 

2. The ac side capacitor operates in a continuous conduction mode.  

3. The three-phase bridge average output voltage is 
ିଷξଷగ ஼ܸ௠, where VCm is the peak fundamental 

phase voltage across the ac side capacitors.  The negative sign reflects the inversion of the bridge 

output voltage with respect to the load ground. 

4. The dc side inductor current is continuous, increasing linearly from I1 to I2 during 0≤t≤t1 and 

decreasing linearly from I2 to I1 during t1≤t≤t2, so that ∆IL=I2-I1, as shown in Fig.1(d). 

5. The ac side current is sinusoidal and is in ac steady-state during each switching period.  

Switching utilizes a combination of natural and forced commutation of the diodes, and a self-

commutated switch to achieve balanced current sharing between the diodes. In Mode 1, the voltage 

across dc side inductor Ldc equals the instantaneous value of vCcb. The differential equations describing 

operation during conduction Mode 1 are: 
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where Is is the instantaneous switch (IGBT) current, icc is the current in the ac filter capacitor of phase 

‘c’, isc is phase ‘c’ supply current, Idc is the instantaneous dc output (load) current, Vdc is the dc load 

voltage, vccb is the line-to-line voltage across the ac filter capacitors connected between phases ‘b’ and 

‘c’, and IL is inductor current. 

In freewheeling Mode 7, the dc side equations are: 
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In this mode, the rectifier input currents iRa, iRb and iRc are zero. Thus equation (3) becomes: 

 sc cci i  (6) 

For phase ‘c’, the ac filter current is: 
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For the conducting modes, equation (1) becomes: 
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Similarly, equation (4) in the freewheeling mode becomes: 
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From (8) and (9): 
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Where į=t1/T is the switch on-state duty cycle such that 0≤į≤1. 

Since dc side capacitor voltage balance necessitates that the average capacitor current over one or a 

number of consecutive switching cycles is zero (
_

cI =0), the relationship between the average inductor 

current ܫ ҧ௅ and the average load current ܫ ҧௗ௖  is: 
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Therefore, for a resistive load, the average dc output voltage തܸௗ௖ can be expressed in terms of average 

inductor current ܫ ҧ௅. 

 
_ _
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Since the switch current Is is equals to the inductance current IL in the conducting modes, relation 

between the average switch current ܫ ҧ௦ and the average inductor current ܫ ҧ௅ is: 

 
_ _
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The relation between average switch current ܫ ҧ௦ and the average output current ܫ ҧௗ௖ can drive by 

substituting equation (13) in (15):   
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Assuming lossless conversion, power balance dictates that power into the converter equals the dc 

output power: 

  

 _
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Where: iRm_fund is the peak fundamental converter input current. Substituting (11) into (17) gives: 
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The rms current in switch S can be calculated as [26]: 
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Equation (19) can used to calculate the per-phase rms converter input current iR_rms: 
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To facilitate analysis of the rectifier input current, the dc side inductance Ldc is assumed sufficiently 

large so that the dc side inductor current is constant (ripple free) and equals ܫ ҧ௅. Fig.2 shows rectifier 

input current during one fundamental cycle, and shows that this three-phase buck-boost converter 

operates with a constant duty cycle. A triangular carrier is used to ensure good harmonic performance, 

with the current pulses centred within each carrier period. 

 

Fig.2: Rectifier input current during one carrier cycle. 

 

The spectrum of the rectifier input current iR can be obtained using the double Fourier series in 

complex form [27]: 
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Where: y=Ȧ0t and x=Ȧct, Ȧ0 and Ȧc respectively represent fundamental and carrier frequencies in 

rad/s, and where m and n respectively are the orders of the carrier and baseband component 

harmonics.  

 

The baseband harmonics of the rectifier input current iR are computed by setting m=0 in (21), yielding: 
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Equation (22) is valid for all n that represent odd and non-triplen harmonics; otherwise C0n=0, 

meaning that A0n=0 and B0n= ɎɁn

I L32
.  The peak value of the rectifier input fundamental component 

iRm_fund is obtained with n=1, so that: 
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The peak fundamental current obtained from the double Fourier series (23) is the same as that 

obtained from the power balance equation (18). This validates the input current analysis presented. 

The carrier frequency harmonic components are obtained by setting n=0 in(21), yielding: 
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From (24),
m

I
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  and Bm0=0.  The peaks of the 1
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nd
 carrier frequency components can be 

obtained by setting m=1 and 2 respectively. 

The sideband harmonics are obtained by computing (21) for non-zero m and n as:  
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From (25), Amn=0 and
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rectifier input current expressions are: 
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Equation (27) provides a theoretical solution for interpreting the ac harmonic distribution of the 

converter under investigation, including basebands, carrier frequency, and sidebands harmonics. Also, 

equation (27) assists the filter design as it provides information about the location of the dominant 

low-order and switching frequencies to be eliminated.  

b. Control Stage  

The proposed buck-boost converter gives a stable output dc voltage using the simple control structure 

in Fig.3, which consists of an outer voltage control loop and an inner current control loop. In the 

voltage control loop, the reference dc voltage Vdc_ref is subtracted from the load voltage Vdc_fb, and then 

the voltage error is input to a PI controller, which generates the output dc current reference signal 

Idc_ref. A current limiter is used to provide overload protection. Idc_ref is the input to the current control 

loop and is subtracted from the load current.  The resulting error is input to a PI controller, whose 

output is compared with a triangular carrier wave to provide the gating signal required to control the 

buck-boost converter switch. 

 

Fig.3: Three-phase buck-boost converter control circuit. 

 

c. Filter Design 



Like the rectifier with constant current load, the phase current conduction period of the buck-boost 

converter is 2ʌ/3 radians per half-cycle. The design of the ac side LC filter depends on several factors, 

such as the rectifier switching frequency (which is between 512Hz and1.2kHz for medium-power 

applications), LC resonant mode, required line current total harmonic distortion (THD), and input 

power factor. Equation (22) can be used to show that the converter input current contains high 

amounts of the 5
th
 and the 7

th
 harmonics.  The cut-off frequency of the ac side filter is therefore 

selected to be 2.5 times greater than the supply frequency f (50Hz in this case) and the input filter 

capacitances 0.33pu, which is within the normal range for capacitance in high-power PWM-current 

source rectifiers that use a low switching frequency [28]. Simulation results for different operating 

conditions show that for acceptable supply current THD; the ac filter cut-off frequency must be 2.4f. 

On this basis, the ac side filter inductance LS can therefore be calculated as shown in (28) and (31): 
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Where: ȦB is the base frequency in rad/s, CS is the ac side filter capacitance, base capacitance 
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Equations (31) and (32) express the ac side filter parameters based on rated line-to-line voltage VLL 

and desired converter input power P in a star configuration, while equation (33) specifies the filter 

capacitance Cs in the delta connection case. 
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d. Power Factor 

Based on simulation and experimental results obtained under different operating conditions, it has 

been shown that the proposed buck-boost converter power factor profile depends on the converter 

input power, and is independent of operating mode (buck or boost).Fig.4 shows the power factor 

profile at different load conditions, using the filter values based on equations (31) and (32). The input 

power factor of the proposed buck-boost converter varies in the narrow range between 0.98 and 

1when the converter input power is varied between 0.8pu and 1.2pu. Between input power of 0.7pu 

and 0.8pu, power factor varies between0.95 and 0.98. Below this operating range, the converter input 

power factor decreases to 0.85 at 0.5 pu of rated input power. 

 

Fig.4 Power factor profile of the proposed buck-boost converter. 

III. SIMULATION VALIDATION 

This section presents simulation results of the proposed buck-boost converter, using the 

PSCAD/EMTDC environment, with the three-phase converter operating in buck and boost modes. 

The converter parameters used in both the simulations and experimental validation are listed in Table 

2. 

 

Table 2Proposed three-phase converter buck-boost parameters 

Parameter Value 

Rated input  power 1800W 

Input supply line-to-line voltage 75V  



Supply frequency 50Hz 

AC side per phase filter capacitance (delta-connected) 115µF  

AC side per phase filter inductance 5.7mH 

DC side inductance 5mH 

DC side capacitance 3300µF 

PWM switching frequency 1.2kHz 

Load resistance 26ȍ 

 

Experimentation and simulation are both conducted at the rated input power of P =1800W. From 

equation (31) the ac side inductance is 5.3mH (experimentally, 5.7 inductance are used due to their 

availability), while from equation (33), the ac side filter capacitance is 112µF (experimentally, 115 µF 

capacitors are used due to their availability). 

The reference dc voltage Vdc_ref  is passed through a 1Hz low-pass filter to ramp any step change in the 

dc reference voltage Vdc_ref .This ensures controlled charging of the bulky dc side capacitor filter, 

avoiding the need for a capacitor pre-charge circuit. The dc voltage reference is initially Vdc_ref=154V. 

At t=3s, the reference is stepped to Vdc_ref=174V. At t=6s, the reference is stepped to Vdc_ref=204V. 

These values correspond to 0.55pu, 0.72pu and 1pu rated input power, respectively. 

Fig.5 shows simulation results when the converter is operated from a 50Hz three-phase ac supply.  

Fig.5(a) shows the converter dc output voltage, where the converter is able to provide stable dc 

voltage with soft start-up. Fig.5(b) shows the supply current, which increases smoothly without 

overshoot or oscillation. Fig.5(c) shows the active input power at each output voltage. Fig.5(d) shows 

a detailed view of the three-phase supply current and phase-a voltage at Vdc_ref =174V, where the 

supply current has a THD=4.03% and a power factor=0.956. Fig.5(e) shows a detailed view of the 

three-phase supply current and phase-a voltage at Vdc_ref=204V where THD=4.4% and power 

factor=0.999. The results in Fig.5 establish that the proposed three-phase buck-boost converter can 

provide high-quality sinusoidal input current with a power factor dependant on the rated power of the 

converter, as mentioned in Section II and as shown in Fig.4. 

Fig.6 shows the harmonics spectra of the rectifier pre-filter input current iR(t) and supply current is(t) 

when the proposed buck-boost regulates its dc link voltage (Vdc) at 174V. Under this operating 

condition, the average load current is 6.7A dc, and duty cycle (į) provided by the current controller is 

about 0.6.  According to equations (18) and (23) the expected peak fundamental rectifier input current 



is 11.08A when į =0.6, Fig.6(a) shows harmonics spectrum of the rectifier input current and its peak 

value are similar to the expected theoretical values. Fig.6(b) shows that the proposed filters design is 

able attenuates the harmonic content in the pre-filter rectifier current over wide operating range. 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

 

 
(e) 

 

Fig.5: Simulation of the three-phase buck-boost converter during buck and boost operation modes, (a) output dc voltage, (b) input supply 

current, (c) input active power profile, (d) input supply three-phase currents and phase-a voltage at Vdc_ref=174V, and (e) input supply three-

phase currents and phase-a voltage at Vdc_ref=204V 

 
(a) 

 
(b) 

Fig.6 Waveforms show the rectifier input current and the supply current harmonics spectrum at Vdc_ref =174V.(a) Rectifier input current 

harmonics spectrum, and (b) Supply input current harmonics spectrum. 

 

IV. EXPERIMENTAL VALIDATION 

Experimental results for a 1.8kW version of the proposed three-phase buck-boost converter are 

presented in Fig.7 and Fig.8 to substantiate the theoretical discussion in Section II, and to confirm the 



simulations presented in Section III. The parameters used for both simulation and experimental 

validation of the proposed buck-boost converter are listed in Table 2. 

 

(a) 

 

(b) 

 

(c) 
 

 
(d) 

 

Fig.7: Experimental waveforms for the 2kW prototype three-phase buck-boost converter demonstrating its practical viability, (a) output dc 

voltage during start-up from zero to 154V, (b) output dc voltage during transitions from 154V to 174V and from 174V to 204V, (c) detailed 

view of the three-phase supply currents and phase-a voltage at 0.72pu of rated input power, and (d) detailed view of the three-phase supply 

currents and phase-a voltage at 1pu of rated input power. 

 

 

Fig.7(a) shows the output voltage during start-up from zero to 154V (buck mode), where the voltage 

build-up is stable and gradual.  Fig.7(b) shows dc output voltage during steady state, and during the 

transitions from 154V to 174V and from 174V to 204V (boost modes). Fig.7(c) and (d) show the 

three-phase input currents and phase-a voltages, where Vdc_ref =174V and Vdc_ref =204V respectively.  

The input currents are continuous and sinusoidal with limited distortion and near unity power factor, 

as with the simulations shown in Section III.  These results establish that the presented ac-dc buck-

boost converter could be used as an interfacing converter for permanent magnets wind-turbine 

generators, without the risk of pulsating torque that results with diode bridge rectification. 

 



Fig.8(a) shows dc side inductor current IL, dc load current Idc, and switch S and diode Dbd currents Is 

and Ibd respectively. From Fig.8(a), the current IL in the dc side inductance increases during the ‘on’ 

period and is equal to the switch current IS, while during the ‘off’ period the current in the inductor 

reduces and is equal to the blocking diode current Ibd. The voltage stresses across the dc side inductor 

VL, switch VS and diode Vbd are shown in Fig.8(b), from which it can be seen that the inductor voltage 

VL is equal to the supply voltage during the ‘on’ period and equal to the output dc voltage during the 

‘off’ period. The maximum switch voltage stress (VS-max) is the sum of the peak line voltage across the 

ac side capacitors and the dc output voltage during the off-period. The maximum voltage stress on the 

blocking diode (Vbd-max) is the sum of the peak line voltage across the ac side capacitors and the dc 

output voltage during the on-period.  

 

 
(a) 

 

(b) 

Fig.8: Experimental voltage and current waveforms for the dc side inductor, blocking diode and switch at the largest output voltage 

Vdc_ref=204V, (a) dc inductor currents, output dc current, bridge rectifier output current, and dc blocking diode(Dbd) current, and (b) Voltage 

across dc side inductor, semiconductor switch S and blocking diode Dbd. 

 

The results in Fig.8 aid in the determination of the current and voltage ratings of the dc side inductor 

Ldc, switch S, and blocking diode Dbd. The results presented in Fig.5 to Fig.8 establish that the 

proposed buck-boost converter is a viable candidate for high-power, medium-voltage ac-dc 

applications.  Table 3, which summarises the converter’s performance, shows that the supply current 

has low THD and high power factor over a wide operating range.  At 98%, the efficiency of the 

proposed buck-boost converter is good.  The 2% power loss is due to: 

 dc and ac copper resistance losses in the dc side inductance. 

 Semiconductor power losses, from the series connection of two diodes and an IGBT switch.  



 Forward voltage drop across the power diodes (2.3V at 25°C), and IGBT forward voltage VCE 

(1.95V at 25°C): these would be less significant at higher supply voltages. 

 

Overall system efficiency is also reduced due losses in the ac side inductor. 

Table 3: Summary of the overall performance of the proposal buck-boost converter. 

Input 

Power 

(W) 

Input 

Power 

(pu) 

Power 

Factor 

Output dc 

Voltage 

(V) 

Output dc 

Power 

(W) 

Overall 

Efficiency 

(%) 

Supply 

Current THD 

(%) 

Converter 

Input Power 

(W) 

Converter 

Efficiency 

(%) 

1800 1 0.996 204 1606.7 0.89 3.94 1625W 0.985 

1300 0.722 0.955 174 1164 0.895 4.14 1185W 0.98 

1005 0.55 0.873 154 915.6 0.91 3.87 927W 0.987 

 

V. CONVERTER SCALABILITY 

To investigate the potential applicability of the of the proposed buck-boost converter in high-power, 

medium-voltage applications, a 2.5MW version of the proposed converter connected to a 3.3kV line-

to-line ac supply, with parameters listed in Table 4, was designed and simulated.  The results of the 

simulation are displayed in Fig.9. In Fig.9(a), the dc output voltage is ramped from 0 to 6.6kVdc. The 

output dc voltage ripple in the steady state is minimal, being less than 1.5% of the output voltage as 

shown in the insert in Fig.9(a). Fig.9(b) shows that the converter draws sinusoidal supply current with 

low distortion and high power factor. Finally Fig.9(c) shows the change in the output power, from 

zero to maximum power. The required voltage rating of switch S, for a 3.3kV input line voltage and 

6.6kV output dc voltage, is 11.66kV as shown in Fig.9(d), implying series device connection. 

Table 4: Proposed buck-boost medium-voltage system parameters. 

Medium-Voltage System Parameters Rating 

Rated power  2.5MW 

Input supply line-to-line voltage  3.3kV  

Supply frequency  50Hz 

AC side per phase filter capacitance (delta-connected) 80F  

AC side per phase filter inductance 7.7mH 

DC side inductance  2.8mH 

DC side capacitance 2200F 

PWM switching frequency 1.2kHz 

Load resistance 17.4ȍ 

 



 
(a)  

(b) 

 

(c) 

+  

(d) 

Fig.9:Simulation waveforms for the 2.5MW system, illustrating scalability of the proposed buck-boost converter, (a) output dc voltage,(b) 

input supply current (multiplied by 2) and phase-a voltage in steady state, (c) output power, and (d) switch voltage stress. 

 

VI. CONCLUSION 

A three-phase ac-dc buck-boost converter, that operates in continues conduction mode with relatively 

low switching frequency is proposed and investigated. The distinct feature of the proposed converter 

is that it achieves buck and boost operation in a single-stage, with adjustable dc output voltage in both 

modes.  The ac side filter design ensures high power factor at rated power, and low input current 

THD.  The theory, simulations, and experimental results presented establish that the proposed ac-dc 

buck-boost converter is viable for medium-voltage, high-power, ac-dc conversion applications, 

including grid interfacing of wind energy systems. 
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