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Abstract: As a response to the ever more stringent emission standards, automotive engines have become 

more complex with more actuators. The traditional approach of using many single-input single output 

controllers has become more difficult to design, due to complex system interactions and constraints. 

Model predictive control offers an attractive solution to this problem because of its ability to handle 

multi-input multi-output systems with constraints on inputs and outputs. The application of model based 

predictive control to automotive engines is explored below and a multivariable engine torque and air-fuel 

ratio controller is described using a quasi-LPV model predictive control methodology. Compared with 

the traditional approach of using SISO controllers to control air fuel ratio and torque separately, an 

advantage is that the interactions between the air and fuel paths are handled explicitly. Furthermore, the 

quasi-LPV model-based approach is capable of capturing the model nonlinearities within a tractable 

linear structure, and it has the potential of handling hard actuator constraints. The control design 

approach was applied to a 2010 Chevy Equinox with a 2.4L gasoline engine and simulation results are 

presented. Since computational complexity has been the main limiting factor for fast real time 

applications of MPC, we present various simplifications to reduce computational requirements. A 

benchmark comparison of estimated computational speed is included. 
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I. INTRODUCTION 

In order to meet more stringent future emissions standards as 

well as the desire for better engine performance, engine 

control systems have become more complex. Dual 

independent cam phasing, that was rare, is now widely used. 

Each actuator needs to be controlled to a setpoint, such that 

the overall engine performance, which is assessed based on 

the opposing objectives of drivability, emissions and fuel 

economy, is optimized. Coordination of the various engine 

actuators has always been difficult.  Traditionally, each 

actuator was controlled to its own setpoint based on engine 

operating condition. A large effort is required to calibrate the 

set-points offline so that the real-time control of the actuators 

does not result in undesirable behaviour. Moreover, ad-hoc 

patches are also often needed so that good performance is 

achieved under transient conditions. To avoid having too 

many patches, setpoints are selected to be conservative, 

which makes the engine controls difficult to calibrate.                                                                                      

The difficulty with the engine control problem is that the 

system is nonlinear, multi-input multi-output (MIMO), and 

has many actuator and state/output constraints. The 

shortcomings of the traditional single-input single-output 

(SISO) design philosophy are therefore becoming more 

evident. Model based control design can potentially provide a 

solution, which is truly multivariable, more flexible, and 

easier to upgrade when engine configurations change.  Of the 

many advanced control design methodologies available, 

model predictive control (MPC) is a popular control strategy 

because of its ability to tackle multivariable processes, handle 

constraints, deal with long time-delays, and utilize future 

reference knowledge. The main disadvantage of MPC 

controllers is that they can be computationally intensive due 

to the online optimization process used to compute the 

current control. Quadratic programming (QP) usually 

provides the most efficient optimization algorithm, but this in 

principle only applies to linear models.  Early work on MPC 

focused on linear time-invariant (LTI) systems. Popular 

predictive algorithms are Dynamic Matrix Control (Cutler 

and Raemaker, 1979), Generalized Predictive Control (GPC), 

due to Clarke et al. (1989), and those due to Richalet (1978). 

For useful review papers on MPC see Bemporad and Morari 

(2004), Qin and Badgwell (2003), and the references therein. 

Unfortunately, few practical systems can be modelled 

accurately by a linear time-invariant system, across the full 

operating range. Moreover, there is no generally accepted 

process for solving an MPC problem involving a general 

nonlinear (NL) model. Nonlinear MPC (NMPC) has proven 

successful in some applications based upon simple 

scheduling and anti-windup methods. This mainly applies to 

the chemical and process industries, where sampling times 

are usually of the order of a few seconds or minutes, and the 

operating points of large complex systems can be moved 

across operating regions relatively slowly. However, servo-

systems and combustion engines have highly nonlinear 



 

 

     

 

behaviour and require sampling times of a few milliseconds. 

This poses a challenging problem requiring tailored NL 

predictive control methods. With advances in computing 

power, it has been possible to apply MPC in high bandwidth 

control applications, including automotive systems. 

Nonlinear MPC for automotive engines was considered by 

Herceg et. al. (2006) and Vermillion et. al. (2010).  

Another area of active research is control design based on 

Linear Parameter Varying (LPV) models. This class of 

models provides can approximate nonlinear systems whose 

nonlinearity enters via parametric changes. The application of 

LPV models to MPC provides a great middle ground between 

traditional LTI model-based MPC and the less-attainable full 

nonlinear MPC. The QP optimization methods can be used, 

because LPV models are quasi-linear, providing an efficient 

solution method. Due to this improved modelling approach, 

MPC may now be used on some applications, where it was 

previously unsuitable (see for example Casavola et al 2002, 

2003; Chisci 2003; Besselmann 2012; Li 2010, Duan 2013).  

The main contribution in the following lies in the formulation 

of the Nonlinear Generalized Predictive Control (NGPC) 

problem in a useful form for the engine control application. 

In the following, an engine control that uses an LPV model-

based MPC solution is proposed. The problem of MIMO 

torque and air-fuel-ratio (AFR) control is considered. These 

are two of the most critical variables in the engine control 

system, which have a direct influence on drivability, 

emissions and fuel economy. The desired engine torque 

depends upon the driver’s pedal position. The intake throttle 

is the main actuator to control the intake manifold pressure 

and thus the inducted air charge. This in turn controls the 

engine torque. In addition to torque delivery, engine control 

systems also need to address other objectives such as 

improved fuel economy, reduced engine-out and tailpipe 

emissions. For a SI engine, AFR must be regulated, to 

achieve good emissions through torque transients.  

II. ENGINE CONTROL PROBLEM 

The problem of engine torque and air-to-fuel ratio control is 

considered in this paper. The engine is the 2.4L engine used 

on a 2010 Chevy Equinox. Amongst the main characteristics 

of this particular engine are dual independent cam phasers 

and a direct fuel injection system. The general block diagram 

of the engine torque and AFR production process is shown in 

Fig. 1. The throttle is used to maintain intake manifold air 

pressure. As cylinders go through an induction cycle, air is 

drawn into the cylinders through the intake valves. Cam 

phasing changes the intake/exhaust valve opening and 

closing timing, which varies the amount of trapped residual 

and the fresh charge in the cylinder. The FPW command, 

applied to the injectors determines the amount of fuel 

injected into the cylinders. The injected fuel is mixed with 

the air charge and is then ignited during the compression 

cycle. Spark timing controls the ignition time, and this 

determines the combustion phasing and the final torque 

generated during that combustion event.  

The desired engine torque is determined by the accelerator 

pedal position interpreting the driver request. The desired 

AFR is a function of the type of fuel used, as well as 

operating conditions. For stoichiometric SI engine, the 

desired AFR is the stoichiometric AFR for the recommended 

fuel. In some cases, a richer or leaner AFR may be required 

for other reasons (such as piston protection). Note that there 

are non-stoichiometric operating SI engines, where the 

desired AFR will vary significantly depending on the load. 

 

                   Fig. 1:  Block diagram of the SI Engine 

There are primarily five actuators that control the engine 

torque and AFR, namely throttle position, fuel pulse width 

(FPW), intake and exhaust cam phaser angles, and the spark 

advance. With the direct fuel injection system, there is a 

simple relationship between the FPW and the cylinder fuel 

charge. The throttle position and CFC are the two 

manipulated inputs, resulting in a square system. The ICAM 

and ECAM phaser position set-points, and the spark advance 

are obtained from operating-point dependent tables optimized 

to produce the best torque (MBT), and a desired trade-off 

between fuel economy and drivability. In this work these are 

treated as known disturbance inputs. The set of 

measurements available include Manifold Absolute Pressure 

(MAP) in the intake manifold, Mass Air Flow (MAF), air 

charge temperature (MAT), throttle position (TPS), exhaust 

AFR, cam phaser positions, engine speed, ambient pressure 

and ambient temperature. The sensors can be used for 

feedback control and to update model parameters.    

III. ENGINE LPV MODEL 

One of the objectives was to derive an LPV model suitable 

for QP-based implicit MPC that also captures the nonlinear 

and operating-point dependent nature of the engine dynamics. 

The model needs to relate the control inputs (i.e. fuel and 

TPS) to system outputs (lambda and torque) with the state-

space model matrices A, B, C, and D being dependent on 

measurable parameters. Two modelling techniques were 

considered. The first was to start with a physics-based model, 

based on governing dynamics of engine air path, and then 

transform the resulting NL model to an LPV format. The 

second was the direct identification of the model from data. 

The first method was selected where a physics based model 

was rewritten in a quasi-LPV form. The major model 

components needed are the intake manifold dynamics, 

volumetric efficiency, torque output, and lambda sensor 

model. Intake manifold dynamics can be modelled based on 



 

 

     

 

the physics-based filling and emptying model. Regression 

models are available for static components, such as 

volumetric efficiency and engine torque output. A first-order 

order lag was used to model the lambda sensor. Transforming 

a physics based model into an LPV form is therefore more 

advantageous than the data identification approach. 

During the model development, throttle and fuel injector 

dynamics were ignored, a one-state intake manifold model 

was used and engine rotational dynamics were not included 

(engine speed was considered an external parameter). Model 

parameters were estimated using driving cycle data, and the 

model was transformed to a quasi-LPV form by exploiting 

the natural physical structure of the solution. The engine 

hybrid model is an interconnection of the continuous-time 

intake manifold and lambda sensor dynamics, and the event-

based mean-value models for the volumetric efficiency, 

torque production and exhaust manifold dynamics. The 

model for the control design was defined in an event-based 

time-frame, and consists of the Euler-discretized intake 

manifold, and lambda sensor dynamics in combination with 

explicit discrete-time delays. Fig. 2 shows the block diagram 

of the engine used for control design. 
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Fig. 2:  Structure of Engine Model for Control Design             

(delay blocks represent discrete engine event time steps) 

The model has 7 states: intake manifold pressure Pim, two 

delayed CAC states xCAC1-2, three delayed in-cylinder 

equivalence ratio states xφD1-3 and the state φ representing the 

output of lambda sensor. The outputs are the generated torque 

TQ and the in-cylinder fuel-air ratio φIC. The manipulated 

control variables are the Throttle Position (TPS) and Cylinder 

Fuel Charge (CFC). The LPV model used in the MPC 

controller suggested use of the quadratic function of the 

throttle area Ath as the effective control variable uth: 

1 ( 1)th th CdA CdAx thu A p p A= ⋅ ⋅ +  (1) 

The parameter pCdAx is defined such that the function has a 

maximum at Ath,max, i.e. for TPS = 100%.  The throttle 

position TPS can be retrieved from uth using a one-to-one 

mapping. The equivalence ratio φIC, rather than the air-fuel 

ratio λIC, was chosen as the output to be controlled, 

exploiting its proportionality to the control input CFC.  The 

state, input, and the controlled and measured output vectors: 

0 1 2 3 1 2

T

im D D D CAC CACx P x x x x xφ φ φφ =    

, ,
th

c m
IC

MAP
TQu

u y y TQ
CFC φ

φ

 
    = = =          

 (2) 

State Equation Matrices:  The discrete-time LPV model of 

the engine with both measured (ym) and controlled (yc) 

outputs is written in general form as: 

0, 1 0 0, 0 ,

, 0 0, ,

, 0, ,

t t t t t k x t

m t mt t mt t k ym t

c t ct t ct t k yc t

x A x B u d

y C x E u d

y C x E u d

+ −

−

−

 = + +
 = + +
 = + +

 (3) 

where k is the common input delay and the notation Xt 

denotes X(pt), i.e. an LPV matrix evaluated based on the 

values of parameters at time t. The terms dx, dym and dyc 

represent known input signals other than the control u. The 

parameter vector in this problem contains the following 

variables p = (N, MAP, SA, ICAM, ECAM, Tim, Pamb, Tamb). 

Apart from the exogenous signals it also contains a system 

state (MAP), making the model quasi-LPV. The state matrices 

A0(pt) and B0(pt) can be constructed as: 
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where ( )21s air im amb CdA im amb imt R T P p P T VΩ = ⋅ Ψ ⋅ + .   

These matrices, that are measured, or estimated, at time t, 

contain both constant and varying engine parameters. The 

volumetric efficiency η(⋅), throttle function Ψ(Pim/Pamb) and 

the cylinder air charge CAC expressions are given as: 

3 3 2

1 2 3

2 2

4 5 6 7 8 9

2 2

10 11 12 13

( , , , )
im VE VE im VE

VE im VE VE im VE VE VE

VE VE VE im VE im

P N ICam ECam p N p P p N

p P p N p P p p ICam p ICam
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( )ac s cyl air im imCAC m t V R T Pη= ⋅ = ⋅ ⋅     (6) 

0.5[ ] 60[ / min] [ / min]st rev s N rev= ⋅  (7) 

The effective disturbance input dx,t is zero in this LPV model.  

Indeed, all the disturbance inputs form elements of the LPV 

state matrices. From the definition of the measured and 

controlled outputs in (2), the output LPV matrices are: 

0 3 2 0 ,
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0 0 0 0 0 , 0,
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The output torque components due to disturbance inputs: 

2 2
1 4 1 5 1 6 7 8 1

2 2 2
9 1 10 2 11 2 12 13

TQ TQ TQ TQ TQ TQ TQ

TQ TQ TQ TQ TQ

d p p SA p SA p N p N p SA N

p SA N p ICam p ICam p ECam p ECam

− − −

− − −

= + + + + + ⋅

+ ⋅ + + + +

The volumetric efficiency and cam angles appear as LPV 

parameters; RPM appears indirectly through sample time; 

dependence of the discharge coefficient on the MAP state is 

taken into account by a term in the B0 matrix (demonstrates 

quasi-LPV nature of the model).  The control inputs uth and 

CFC appear linearly in the equations, with the control signal 

uth depending uniquely on the throttle position TPS and not 

on the state MAP. The terms in the torque model that are not 

model states appear as measured disturbance terms.  

The above LPV model formulation is not unique. In fact, 

pointwise controllability and achievable performance depend 

on the choice of the model, even though the open-loop 

characteristics remain unaffected (Huang and Jadbabaie, 

1999). This is a feature of quasi-LPV models. In some cases 

the model formulation follows naturally from the system 

structure, but in general the "best" formulation may not be 

obvious. The model does not rely on Jacobian linearization, 

i.e. it is valid for the whole range of engine operating 

conditions, limited only by the validity of the NL model. 

IV. CONTROLLER DESIGN 

There are many possible formulations and variations of the 

predictive control problem. The Nonlinear Generalized 

Predictive Controller (NGPC) algorithm used here seems 

well suited to real-time engine control applications. At each 

time step, the controller aims to minimize the sum of squares 

of predicted performance variables, with or without 

constraints on the control signal changes. The traditional 

method of introducing integral action in predictive control is 

to augment the system input by adding an integrator: 

, 1 ,

,

i t i t t k

t k i t t k

x x u

u x u

β

β
+ −

− −

= + ∆
 = + ∆

 (8) 

1(1 (1 ))t k t ku z uβ −
− −= − ∆  (9) 

The MPC cost function normally contains a penalty on the 

incremental change in control action tu∆ . The error 

weighting matrices can in this case just be constant matrices 

(no extra states). It is useful to define a generalized operator 

in unit-delay terms 1(1 )zβ β −∆ = −  so that if ȕ = 0 

then t k t ku uβ − −∆ = . The results therefore apply to both 

systems using control input and rate of change of control 

input, respectively. If ȕ =1 equation (9) defines an integrator 

without additional delay. If the actual control input ut is used, 

an alternative way of including integral action is to use a 

dynamically weighted error signal involving a high gain in 

low frequencies. The steady-state error should then be 

removed, otherwise the cost would increase indefinitely. 

Performance variables and combined model:  The output 

variables of interest are contained in the vector yc: 

, ,c t ct t ct t k yc t ty C x E u d cβ −= + ∆ + +  (10) 

The controlled output yc can be different from the measured 

output ym. A ‘robustness’ signal ct is included in an output 

disturbance model, to compensate for modelling mismatch: 

, 1 ,

,

d t d d t d t

t dc d t

x A x B

c C x

ω+ = +

=
 (11) 

It is often desirable to consider dynamically weighted 

performance variables, to penalize the signals in different 

frequency ranges. In fact, it may also be useful to penalize 

actuator movements to prevent too aggressive (high-

frequency) control actions. This motivates an introduction of 

dynamic weighting functions acting on the control error 

,( )t c tr y−  and possibly on the control action ut: 

1
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−= − :
, 1 , ,

, , ,
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 (12) 

The augmented state 0 , , ,
T

T T T T
t t dt it ptx x x x x =   for the combined 

model and vector of performance variables, including 

weighted error pz e= follows: 
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More concisely: 
1 ,

,

t t t t t k x t t
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x A x B u g D

z C x E u g

β

β
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−
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    (13) 

The model (13) defines the variables to be minimized. The 

dynamic control weighting is not used here, i.e. Wu = I. 

Limiting the controller bandwidth can also be achieved by 

using the constrained solution. The control law derivation 

summarized below is in Grimble and Majecki (2010). 

Cost Function and Prediction Equations:  At each sample 

instant, the predictive controller minimizes a criterion over a 

cost horizon N, involving a weighted combination of the 

predictions of performance variables and the control effort:  

( ) ( )
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Note the time shift of k sample time steps between the two 

quadratic terms in the cost, reflecting the fact that the control 

at the current time t can only affect the output with a k-steps 

delay. For simplicity, it will be assumed that k = 1. 

Consequently, the solution involves the initial step of 

computing the k-step state prediction. The cost (14) can then 

be represented in a vector-matrix form as: 
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
      (16) 

The future values of the performance variables z are estimates 

given the information available at time t. They are based on 

the state estimates (provided by the Kalman Filter), current 

measured disturbances (assumed to stay constant within the 

prediction horizon), the reference signal (with or without 

future knowledge), previous control actions and the control 

input sequence 1,t NUβ −∆  (computed in the previous 

iteration). The aim is to find the control sequence ,t NUβ∆  

that minimizes the cost (15). Invoking the receding horizon 

strategy, only the first element of the sequence is applied. 

To minimize the cost index equations are needed to predict 

future values of performance variables. Based on (13), setting 

the stochastic noise inputs to zero, the state predictions: 

1 2 1 2 1

1 2 2 1 1 1 2 2

1 1 1 2 1 ,

1 2 2 , 1 , ,

t j t j t j t t t j t j t t t

t j t j t t t t j t j t j

t j t j t j t j t x t

t j t j t x t t j x t x t

x A A A x A A A B u

A A A B u A B u

B u A A A g

A A A g A g g

β

β β

β

+ + − + − + − + − +

+ − + − + + + + − + − + −

+ − + − + − + − +

+ − + − + + −

   = + ∆   
   + ∆ + ∆   

 + ∆ +  
 + + + 

 







 

or 0
, ,

d x
t j t j t j t j t Nx x x s Uβ+ + += + + ∆                                    (17) 

Note that 0
1 2t j t j t j t tx A A A x+ + − + − =    represents the free 

response, d
t jx +  the forced response and ,t NUβ∆ the 

optimization variables. The j-step-ahead prediction follows: 

( )
,

0
, , ,

t j t j t j t j t j k y t

x d
t j t j t N t j t j k t j t j t j y t

z C x E u g

C s U E u C x x g

β

β β

+ + + + + −

+ + + − + + +

= + ∆ +

= ∆ + ∆ + + +
  

, ,t j t N t js U fβ += ∆ +                                                             (18) 

where   , ,
x

t j t j t j t js C s E+ += +                                    (19) 

( )0
,

d
t j t j t j t j y tf C x x g+ + + += + +                                           (20) 

Finally, the vector Zt+k,N can be written as: 

, , , ,t k N t N t N t NZ S U Fβ+ = ∆ +  (21) 

, ,1 ,2 , , 1 2with ,
T T

T T T T T T
t N t t t N t N t t t NS s s s F f f f+ + +   ==    

Due to the k-steps delay, the prediction equations (17) are 

shifted by (k-1) steps. The starting point for predictions is not 

the current ˆ
tx  but 1

ˆ
t kx + − .  This can be computed from the 

previous controls assuming no future disturbance changes. 

The parameter-dependent matrices in the above expressions 

are computed based on the future predicted states in (17). 

Alternatively, they can be found, at each control calculation, 

using the current state estimate xt (frozen model). This results 

in a less computationally demanding algorithm but there is a 

loss of model accuracy. The future control sequence is 

needed to compute the future state estimates. An iterative 

"successive approximation" procedure can be used to 

improve predictions but adding to the computational burden.  

Unconstrained and Constrained Solutions: The 

unconstrained minimum of the cost-function (15), given the 

prediction equation (21), is computed from a simple gradient 

calculation, or by completing the squares, to obtain: 

( ) 1

, , , , ,
T T

t N t N t N U t N t NU S S S Fβ
−

∆ = − + Λ  (22) 

The same solution applies to both the absolute and 

incremental control formulation, with the corresponding 

changes in the system model and the resulting matrices St,N 

and Ft,N.  In accordance with the receding horizon principle, 

only the first element of this control sequence is applied as 

the input [ ] ,0...0t t Nu I U= ⋅ . The whole sequence Ut,N can be 

used in the next sample instant to perform the predictions.  

The unconstrained solution is faster to compute, and is 

acceptable when the normal operation is within the 

operational constraints. When optimal performance is 

demanded, the system will often operate close to the 

constraints imposed on actuator magnitude and rate, and 

outputs min , maxt NU U U≤ ≤ , min , maxt NU U U∆ ≤ ∆ ≤ ∆  and   



 

 

     

 

min , maxt NY Y Y≤ ≤ . They can be written in the linear matrix 

inequality form:   ,U t N UM U b
β ββ∆ ∆∆ ≤                             (23) 

The control magnitude and rate are related as: 


1 2

1 1

0 0

0 0

0 0

t t t t t

C C

I I

I I
U U U u U

I I

− −

−   
   −   ∆ = − = +
   
   

−   





    




 (24) 


3 4

1

0 0

0
t t t

C C

I I

I I I
U u U

I I I I

−

   
   
   = + ∆
   
   
   





    




 (25) 

The output constraints can be represented in the standard 

form by writing the outputs in a form similar to (21):  

1, , , ,
Y Y

t N t N t N t NY S U F+ = +  (26) 

with appropriate definition of ,
Y
t NS and ,

Y
t NF . The minimum of 

(15), subject to the constraints, can be obtained by quadratic 

programming, using the Hildreth algorithm (Wang, 2009). 

Time-Varying Kalman Filter:  To construct the prediction 

matrices ,t NS and ,t NF  the NGPC controller relies on the 

system states to be available at the current time t. These may 

be measured but a Kalman filter is used in practice to 

estimate them. The filter makes uses of the LPV model of the 

engine, the measurable disturbances and outputs. The process 

model and sensor noise covariances can be used as filter 

tuning parameters. The filter provides the state estimates 

including disturbance and the dynamic weighting states. The 

system model (13) includes stochastic white noise sources 
T

T T
t t tς ξ ω =    and vt, representing process and 

measurement noise and can be  written as: 

1 ,

,

t t t t t k x t t

mt mt t mt t k ym t t

x A x B u g D

y C x E u d v

β

β

ζ+ −

−

= + ∆ + +
 = + ∆ + +

 (27) 

The covariance matrices of the signals tς  and tv  are denoted  

QN and RN, respectively. These can be treated as tuning 

parameters, used to define the relative ‘confidence’ in the 

model and the measurements. The D matrix is used when 

there is more detailed knowledge about the system stochastic 

properties. When there is little information the D can be set to 

identity and then process noise directly represents the 

uncertainty associated with the estimation of the particular 

state. The part of the D matrix associated with the white noise 

input tω  corresponds to the output disturbance model, 

including mismatch states. The signal ut-k is fed to the 

Kalman Filter, as in Fig. 3.  At time t, the time-varying 

Kalman Filter equations involve two steps: 

Step 1: Computation of the Kalman gain, state estimation and 

update of the estimation error covariance (system matrices 

evaluated with the state prediction | 1
ˆ
t tx − ): 

( ) 1

| 1 | 1 | 1 | 1 | 1 | 1
T T

t t t t t t t t t t t t NK P C C P C R
−

− − − − − −=+                      (28) 

( )| | 1 | 1 , | 1 | 1 , ,
ˆ ˆ ˆ
t t t t t t m t t t t t m t t k ym tx x K y C x E u d− − − − −= + − − −  (29) 

| | 1 | 1 | 1 | 1t t t t t t t t t tP P K C P− − − −= −  (30) 

Step 2: State and covariance matrix predictions (system 

matrices evaluated with the state estimate |
ˆ
t tx ): 

1| | ,
ˆ ˆ
t t t t t t t k x tx A x B u g+ −= + +  (31) 

1| |
T T

t t t t t t NP A P A DQ D+ = +  (32) 

The model mismatch may result in a steady-state offset in the 

system output estimate which can sometimes be compensated 

by representing the mismatch by an output disturbance.   

MPC Controller Structure:  The overall NMPC controller 

structure in Fig. 3 is a form of separation principle and 

consists of the Kalman filter, state predictor and optimizer. 

The RHC block represents the receding horizon control 

strategy, whereby only the first element of the computed 

control sequence is used for actual control. The remaining 

elements are utilized for future state predictions. 

MPC Design Issues and Weightings:  The cost-function 

utilized is general using dynamic cost-function weightings. 

The sample time and prediction horizon N should be set so 

that the dominant transient behaviour is captured. There is a 

choice between the absolute and incremental control 

formulations. The ‘∆u’ approach is the classical approach. 

Integral action can also be added (when penalizing the 

control u) by including an integrator on the error weighting.  

The dynamic error and control weightings We(z-1) and Wu(z-1) 

are usually chosen to have low pass and high pass 

characteristics, respectively, and a constant control weighting 

matrix Λu may be used. The actuator and operating 

constraints (for QP computations) and the QN and RN 

covariance’s for the Kalman Filter are also design variables. 

 

Fig. 3: MPC Block Diagram Including Kalman Filter 

V. NGPC CONTROL SIMPLIFICATIONS 

The predictive control algorithm as detailed in the previous 

section may result in an excessive computational burden on 

the production control processing unit, particularly when both 
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the sampling frequency and prediction horizon are high, and 

the constrained solution is used. For practical implementation 

the controller code must execute in real time in a 

deterministic way. The additional caveat in engine control is 

that the sample period varies with engine cycle and is 

dependent on the engine speed. Since all the code is executed 

at each trigger, it must have sufficient time to complete for 

the highest expected engine speed. Alternatively, the number 

of flops required may need to be reduced. The simplest way 

to reduce the numerical load is to reduce the horizon N. From 

(22), the MPC solution involves inverting at each step a 

matrix of size N, which has complexity O(n3).  Even a small 

reduction of N can then bring significant computational 

savings, resulting in some degradation of performance. It is 

therefore important to strike the right balance between the 

algorithm complexity and the performance demanded.  

Freezing Prediction Model: The state and output predictions 

performed at each step in (17) and (18) involve LPV model 

matrices, which in general vary with external parameters 

and/or system states. Consequently, these matrices need to be 

evaluated N times at each step. A simple way to reduce the 

number of computations is to fix the prediction model based 

on the parameters and states available at the current time t 

and use them for prediction as in the linear GPC case.  

Connection Matrix and Control Profile:   At each step, the 

MPC optimization problem with prediction horizon N 

involves the computation of N decision variables (control 

moves). With a large N, this may lead to over-

parameterization and an impractical solution. One commonly 

used solution is to introduce a separate control horizon Nu 

which uses the first Nu controls as the decision variables, and 

fixes the remaining (N–Nu) ones. Here we generalize this idea 

by defining a control profile Pu of the form: 

row{Pu} = [number of samples held, repetitions] (33) 

For example, letting Pu = [1 3; 2 2; 3 1] represents 3 different 

initial controls, then 2 samples with the same control used but 

this is repeated again, and finally 3 samples with the same 

control used. Based on a control profile, it is possible to 

specify the transformation matrix Tu, relating the control 

moves to be optimized (say vector V) to the full control 

vector (U). For incremental control, the connection matrix: 

1

2 1

3 2

4 3

5 4

6 5

7 6

8

9

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

t

t

t

t

t

t

t

t

t

t

u

u

u v

u v

u v

u v

u v

u v

u

u

+

+

+

+

+

+

+

+

+

∆   
   ∆   
   ∆ ∆
   

∆ ∆   
   ∆ = ∆
   =

∆ ∆   
   ∆ = ∆   

∆ ∆   
   ∆ =   
   ∆ =   

uU T V∆


 
 
 

⇒ ∆ = ∆ 
 
 
 
  

 

This represents a situation with 3 2 1 6uN = + + =  

independent control moves and 3 1 2 2 1 3 10N = × + × + × =  

sample points. The computation of 4 control moves has been 

avoided, representing a substantial computational saving. 

This approach, often termed ‘move blocking’ in the MPC 

literature, can provide the solution to the GPC class of 

problems with different control and error horizons.  The 

changes to the algorithm are minimal. It also solves the 

problem where the horizons are the same but the control 

changes are not allowed at each sample instant. The usual 

approach is to assume future control changes are null after 

the control horizon Nu and in this case the connection matrix 

can be defined to have Nu+1 rows and N+1 columns. For 

example, the form of the Tu matrix, when N = 6 and Nu = 2: 

, , 1 2

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

and 0 0 0 0

T

u

T
T T T

t N u t Nu t t t

T

U T U u u u+ +

 
 =  
  

 ∆ = ∆ =∆ ∆ ∆ 

 

VI. RESULTS 

Two simulation scenarios are presented here. Fig. 4 shows 

the comparison between the nominal MPC design and the 

conventional controller for a fragment of an FTP drive cycle. 

Extended prediction horizon and handling system interactions 

by the multivariable controller generally lead to improved 

tracking for both torque and lambda output signals. The more 

aggressive MPC causes overshoots at low/negative torques, 

however in reality this operating range would be handled by a 

separate idle speed controller. 

The responses to torque reference and speed disturbance step 

changes for different MPC designs are shown in Fig. 5. The 

nominal case DC0 was based on the absolute control 

formulation (β = 0), constrained solution and equal horizons 

N = Nu = 15. The other design cases represent various design 

simplifications and are listed in Table 1, where their relative 

speed-up factors are also benchmarked against the nominal. 

Analysis of the figures and table leads to several conclusions. 

First, freezing the prediction model (neglecting the time 

variation of state matrices) gives almost 20% speed-up 

without changing the results noticeably (this case was not 

included in the figure). As expected, reducing the prediction 

horizon significantly reduces the computational load, 

however the dynamic performance also changes substantially. 

On the other hand, the use of separate control horizon or 

control profile/connection matrix allows reducing the load 

without degrading performance. 

Table 1 MPC Design Cases and speed-up factors due to 

the algorithmic simplifications used 

DC Configuration Speed-Up (%) 

0 Nominal design case (N = 15) 0.0 

1 Prediction model frozen 19.3 

2 Unconstrained solution 48.5 

3 N = 12 3.1 

4 N = 9 18.4 

5 N = 6 39.7 

6 N = 15,  Pu = [1 6; 9 1] 27.2 
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Fig. 4: Comparison of the classical (red) and MPC (black) 

control for a fragment of FTP cycle 
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Fig. 5: Responses to torque reference and speed 

disturbance step changes for MPC design (cases: DC0 

(black), DC2 (red), DC3 (green) and DC4 (magenta)) 

In fact, down-sampling the control action may lead to 

performance improvement. The unconstrained solution is 

also less computationally expensive and is always considered 

an option. For the constrained version, computational savings 

can also be obtained by reducing the number of the active-set 

iterations in the QP algorithm. As this is related to 

convergence of the algorithm, this step must be taken 

carefully by gradually reducing the number of iterations.  

VII. CONCLUSIONS 

The LPV-based version of the predictive control law is 

computationally intensive, although simpler than most 

nonlinear predictive algorithms. Attention therefore turned to 

simplifications to the controller, to reduce the computational 

load. We considered the application to the engine control 

problem and benchmarked the performance. The impact of 

code optimization was assessed, and the results show 

significant savings are possible through a combination of 

measures to modify the standard design process and simplify 

the algorithm. These were validated during the trials of 

embedded engine control code. 

The value of this work also lies in the systematic framework 

for NL MPC based on quasi-LPV models, including absolute 

and incremental control. The use of an output disturbance 

model to reduce the effects of plant-model mismatch is 

useful, as is the way of limiting the control moves to gain 

computational savings. The simulation results for the torque 

tracking and air-fuel ratio regulation problem were shown. 

On-going work involves the use of variable cam phasing to 

improve fuel economy and real-time implementation. 
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