
Strathprints Institutional Repository

Majecki, Pawel and Molen, Gerrit M Van Der and Grimble, Michael J. and

Haskara, Ibrahim and Hu, Yiran and Chang, Chen Fang (2015) Real-time

predictive control for SI engines using linear parameter-varying models.

IFAC-PapersOnLine, 48 (23). pp. 94-101. ISSN 2405-8963 ,

http://dx.doi.org/10.1016/j.ifacol.2015.11.267

This version is available at http://strathprints.strath.ac.uk/56366/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42593761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

Real-Time Predictive Control for SI Engines

Using Linear Parameter-Varying Models

Pawel Majecki*, Gerrit M. van der Molen*, Michael J. Grimble*,

Ibrahim Haskara**, Yiran Hu**, Chen-Fang Chang**

*Industrial Systems and Control, Glasgow, UK (e-mail: pawel@isc-ltd.com)

**General Motors R&D, Propulsion Systems Research Lab, Warren, MI 48090 (e-mail: ibrahim.haskara@gm.com)

Abstract: As a response to the ever more stringent emission standards, automotive engines have become

more complex with more actuators. The traditional approach of using many single-input single output

controllers has become more difficult to design, due to complex system interactions and constraints.

Model predictive control offers an attractive solution to this problem because of its ability to handle

multi-input multi-output systems with constraints on inputs and outputs. The application of model based

predictive control to automotive engines is explored below and a multivariable engine torque and air-fuel

ratio controller is described using a quasi-LPV model predictive control methodology. Compared with

the traditional approach of using SISO controllers to control air fuel ratio and torque separately, an

advantage is that the interactions between the air and fuel paths are handled explicitly. Furthermore, the

quasi-LPV model-based approach is capable of capturing the model nonlinearities within a tractable

linear structure, and it has the potential of handling hard actuator constraints. The control design

approach was applied to a 2010 Chevy Equinox with a 2.4L gasoline engine and simulation results are

presented. Since computational complexity has been the main limiting factor for fast real time

applications of MPC, we present various simplifications to reduce computational requirements. A

benchmark comparison of estimated computational speed is included.

Keywords: SI engines, model predictive control, nonlinear control, LPV models

I. INTRODUCTION

In order to meet more stringent future emissions standards as

well as the desire for better engine performance, engine

control systems have become more complex. Dual

independent cam phasing, that was rare, is now widely used.

Each actuator needs to be controlled to a setpoint, such that

the overall engine performance, which is assessed based on

the opposing objectives of drivability, emissions and fuel

economy, is optimized. Coordination of the various engine

actuators has always been difficult. Traditionally, each

actuator was controlled to its own setpoint based on engine

operating condition. A large effort is required to calibrate the

set-points offline so that the real-time control of the actuators

does not result in undesirable behaviour. Moreover, ad-hoc

patches are also often needed so that good performance is

achieved under transient conditions. To avoid having too

many patches, setpoints are selected to be conservative,

which makes the engine controls difficult to calibrate.

The difficulty with the engine control problem is that the

system is nonlinear, multi-input multi-output (MIMO), and

has many actuator and state/output constraints. The

shortcomings of the traditional single-input single-output

(SISO) design philosophy are therefore becoming more

evident. Model based control design can potentially provide a

solution, which is truly multivariable, more flexible, and

easier to upgrade when engine configurations change. Of the

many advanced control design methodologies available,

model predictive control (MPC) is a popular control strategy

because of its ability to tackle multivariable processes, handle

constraints, deal with long time-delays, and utilize future

reference knowledge. The main disadvantage of MPC

controllers is that they can be computationally intensive due

to the online optimization process used to compute the

current control. Quadratic programming (QP) usually

provides the most efficient optimization algorithm, but this in

principle only applies to linear models. Early work on MPC

focused on linear time-invariant (LTI) systems. Popular

predictive algorithms are Dynamic Matrix Control (Cutler

and Raemaker, 1979), Generalized Predictive Control (GPC),

due to Clarke et al. (1989), and those due to Richalet (1978).

For useful review papers on MPC see Bemporad and Morari

(2004), Qin and Badgwell (2003), and the references therein.

Unfortunately, few practical systems can be modelled

accurately by a linear time-invariant system, across the full

operating range. Moreover, there is no generally accepted

process for solving an MPC problem involving a general

nonlinear (NL) model. Nonlinear MPC (NMPC) has proven

successful in some applications based upon simple

scheduling and anti-windup methods. This mainly applies to

the chemical and process industries, where sampling times

are usually of the order of a few seconds or minutes, and the

operating points of large complex systems can be moved

across operating regions relatively slowly. However, servo-

systems and combustion engines have highly nonlinear

behaviour and require sampling times of a few milliseconds.

This poses a challenging problem requiring tailored NL

predictive control methods. With advances in computing

power, it has been possible to apply MPC in high bandwidth

control applications, including automotive systems.

Nonlinear MPC for automotive engines was considered by

Herceg et. al. (2006) and Vermillion et. al. (2010).

Another area of active research is control design based on

Linear Parameter Varying (LPV) models. This class of

models provides can approximate nonlinear systems whose

nonlinearity enters via parametric changes. The application of

LPV models to MPC provides a great middle ground between

traditional LTI model-based MPC and the less-attainable full

nonlinear MPC. The QP optimization methods can be used,

because LPV models are quasi-linear, providing an efficient

solution method. Due to this improved modelling approach,

MPC may now be used on some applications, where it was

previously unsuitable (see for example Casavola et al 2002,

2003; Chisci 2003; Besselmann 2012; Li 2010, Duan 2013).

The main contribution in the following lies in the formulation

of the Nonlinear Generalized Predictive Control (NGPC)

problem in a useful form for the engine control application.

In the following, an engine control that uses an LPV model-

based MPC solution is proposed. The problem of MIMO

torque and air-fuel-ratio (AFR) control is considered. These

are two of the most critical variables in the engine control

system, which have a direct influence on drivability,

emissions and fuel economy. The desired engine torque

depends upon the driver’s pedal position. The intake throttle

is the main actuator to control the intake manifold pressure

and thus the inducted air charge. This in turn controls the

engine torque. In addition to torque delivery, engine control

systems also need to address other objectives such as

improved fuel economy, reduced engine-out and tailpipe

emissions. For a SI engine, AFR must be regulated, to

achieve good emissions through torque transients.

II. ENGINE CONTROL PROBLEM

The problem of engine torque and air-to-fuel ratio control is

considered in this paper. The engine is the 2.4L engine used

on a 2010 Chevy Equinox. Amongst the main characteristics

of this particular engine are dual independent cam phasers

and a direct fuel injection system. The general block diagram

of the engine torque and AFR production process is shown in

Fig. 1. The throttle is used to maintain intake manifold air

pressure. As cylinders go through an induction cycle, air is

drawn into the cylinders through the intake valves. Cam

phasing changes the intake/exhaust valve opening and

closing timing, which varies the amount of trapped residual

and the fresh charge in the cylinder. The FPW command,

applied to the injectors determines the amount of fuel

injected into the cylinders. The injected fuel is mixed with

the air charge and is then ignited during the compression

cycle. Spark timing controls the ignition time, and this

determines the combustion phasing and the final torque

generated during that combustion event.

The desired engine torque is determined by the accelerator

pedal position interpreting the driver request. The desired

AFR is a function of the type of fuel used, as well as

operating conditions. For stoichiometric SI engine, the

desired AFR is the stoichiometric AFR for the recommended

fuel. In some cases, a richer or leaner AFR may be required

for other reasons (such as piston protection). Note that there

are non-stoichiometric operating SI engines, where the

desired AFR will vary significantly depending on the load.

 Fig. 1: Block diagram of the SI Engine

There are primarily five actuators that control the engine

torque and AFR, namely throttle position, fuel pulse width

(FPW), intake and exhaust cam phaser angles, and the spark

advance. With the direct fuel injection system, there is a

simple relationship between the FPW and the cylinder fuel

charge. The throttle position and CFC are the two

manipulated inputs, resulting in a square system. The ICAM

and ECAM phaser position set-points, and the spark advance

are obtained from operating-point dependent tables optimized

to produce the best torque (MBT), and a desired trade-off

between fuel economy and drivability. In this work these are

treated as known disturbance inputs. The set of

measurements available include Manifold Absolute Pressure

(MAP) in the intake manifold, Mass Air Flow (MAF), air

charge temperature (MAT), throttle position (TPS), exhaust

AFR, cam phaser positions, engine speed, ambient pressure

and ambient temperature. The sensors can be used for

feedback control and to update model parameters.

III. ENGINE LPV MODEL

One of the objectives was to derive an LPV model suitable

for QP-based implicit MPC that also captures the nonlinear

and operating-point dependent nature of the engine dynamics.

The model needs to relate the control inputs (i.e. fuel and

TPS) to system outputs (lambda and torque) with the state-

space model matrices A, B, C, and D being dependent on

measurable parameters. Two modelling techniques were

considered. The first was to start with a physics-based model,

based on governing dynamics of engine air path, and then

transform the resulting NL model to an LPV format. The

second was the direct identification of the model from data.

The first method was selected where a physics based model

was rewritten in a quasi-LPV form. The major model

components needed are the intake manifold dynamics,

volumetric efficiency, torque output, and lambda sensor

model. Intake manifold dynamics can be modelled based on

the physics-based filling and emptying model. Regression

models are available for static components, such as

volumetric efficiency and engine torque output. A first-order

order lag was used to model the lambda sensor. Transforming

a physics based model into an LPV form is therefore more

advantageous than the data identification approach.

During the model development, throttle and fuel injector

dynamics were ignored, a one-state intake manifold model

was used and engine rotational dynamics were not included

(engine speed was considered an external parameter). Model

parameters were estimated using driving cycle data, and the

model was transformed to a quasi-LPV form by exploiting

the natural physical structure of the solution. The engine

hybrid model is an interconnection of the continuous-time

intake manifold and lambda sensor dynamics, and the event-

based mean-value models for the volumetric efficiency,

torque production and exhaust manifold dynamics. The

model for the control design was defined in an event-based

time-frame, and consists of the Euler-discretized intake

manifold, and lambda sensor dynamics in combination with

explicit discrete-time delays. Fig. 2 shows the block diagram

of the engine used for control design.

TQ

N

SA

ICam

ECam

÷

λ sensor

1
z

−
2

z
−

1
z

−

CFC

CAC λEM, φEM

λ, φ

Torque generation

Throttle and

Intake Manifold

TPS

SA-1
ICam-2

1
z

−

1
z

−

1
z

−

1
z

−

xCAC1

xCAC2

xφD1

xφD2
xφD3

MAP

throttle map
uth

Fig. 2: Structure of Engine Model for Control Design

(delay blocks represent discrete engine event time steps)

The model has 7 states: intake manifold pressure Pim, two

delayed CAC states xCAC1-2, three delayed in-cylinder

equivalence ratio states xφD1-3 and the state φ representing the

output of lambda sensor. The outputs are the generated torque

TQ and the in-cylinder fuel-air ratio φIC. The manipulated

control variables are the Throttle Position (TPS) and Cylinder

Fuel Charge (CFC). The LPV model used in the MPC

controller suggested use of the quadratic function of the

throttle area Ath as the effective control variable uth:

1 (1)th th CdA CdAx thu A p p A= ⋅ ⋅ + (1)

The parameter pCdAx is defined such that the function has a

maximum at Ath,max, i.e. for TPS = 100%. The throttle

position TPS can be retrieved from uth using a one-to-one

mapping. The equivalence ratio φIC, rather than the air-fuel

ratio λIC, was chosen as the output to be controlled,

exploiting its proportionality to the control input CFC. The

state, input, and the controlled and measured output vectors:

0 1 2 3 1 2

T

im D D D CAC CACx P x x x x xφ φ φφ =

, ,
th

c m
IC

MAP
TQu

u y y TQ
CFC φ

φ

 = = =

 (2)

State Equation Matrices: The discrete-time LPV model of

the engine with both measured (ym) and controlled (yc)

outputs is written in general form as:

0, 1 0 0, 0 ,

, 0 0, ,

, 0, ,

t t t t t k x t

m t mt t mt t k ym t

c t ct t ct t k yc t

x A x B u d

y C x E u d

y C x E u d

+ −

−

−

 = + +
 = + +
 = + +

 (3)

where k is the common input delay and the notation Xt

denotes X(pt), i.e. an LPV matrix evaluated based on the

values of parameters at time t. The terms dx, dym and dyc

represent known input signals other than the control u. The

parameter vector in this problem contains the following

variables p = (N, MAP, SA, ICAM, ECAM, Tim, Pamb, Tamb).

Apart from the exogenous signals it also contains a system

state (MAP), making the model quasi-LPV. The state matrices

A0(pt) and B0(pt) can be constructed as:

0 0

1 0 0 0 0 0 0
0

0 0
0 1 0 0 0 0

0
0 0 0 0 0 0 0

,
0 00 0 1 0 0 0 0

0 00 0 0 1 0 0 0

0 0
0 0 0 0 0 0

0 0

0 0 0 0 0 1 0

cyl

im

s s

cyl

air im

V

V

t t

Stoich

CAC
A B

V

R T

λ λ

η

τ τ

η

−

Ω

 −

 ==

where ()21s air im amb CdA im amb imt R T P p P T VΩ = ⋅ Ψ ⋅ + .

These matrices, that are measured, or estimated, at time t,

contain both constant and varying engine parameters. The

volumetric efficiency η(⋅), throttle function Ψ(Pim/Pamb) and

the cylinder air charge CAC expressions are given as:

3 3 2

1 2 3

2 2

4 5 6 7 8 9

2 2

10 11 12 13

(, , ,)
im VE VE im VE

VE im VE VE im VE VE VE

VE VE VE im VE im

P N ICam ECam p N p P p N

p P p N p P p p ICam p ICam

p ECam p ECam p N P p NP

η = + + +

+ + + + +

+ + + +

 (4)

1 1
1

1

2(1) 1

2 2
1 ,

1 1
()

2 2

1 1

pr pr pr

pr

pr

γγ
γγ γ

γ γ
γ γ

γ
γ γ

γ
γ γ

−
−

+
− −

 − > − + Ψ =

 ≤ + +

(5)

()ac s cyl air im imCAC m t V R T Pη= ⋅ = ⋅ ⋅ (6)

0.5[] 60[/ min] [/ min]st rev s N rev= ⋅ (7)

The effective disturbance input dx,t is zero in this LPV model.

Indeed, all the disturbance inputs form elements of the LPV

state matrices. From the definition of the measured and

controlled outputs in (2), the output LPV matrices are:

0 3 2 0 ,

1 0 0 0 0 0 0 0

0 0 0 0 0 , 0,

0 1 0 0 0 0 0 0

m TQ TQ m ym TQ tC p p E d d

= = =

3 2

,
,

,

0 0 0 0 0

0 0 0 0 0 0 0

0 0

0 0

TQ TQt

c t t
EM t

TQ t

t

t

p pTQ
y x

d
uStoich

CAC

φ

= =

 + +

The output torque components due to disturbance inputs:

2 2
1 4 1 5 1 6 7 8 1

2 2 2
9 1 10 2 11 2 12 13

TQ TQ TQ TQ TQ TQ TQ

TQ TQ TQ TQ TQ

d p p SA p SA p N p N p SA N

p SA N p ICam p ICam p ECam p ECam

− − −

− − −

= + + + + + ⋅

+ ⋅ + + + +

The volumetric efficiency and cam angles appear as LPV

parameters; RPM appears indirectly through sample time;

dependence of the discharge coefficient on the MAP state is

taken into account by a term in the B0 matrix (demonstrates

quasi-LPV nature of the model). The control inputs uth and

CFC appear linearly in the equations, with the control signal

uth depending uniquely on the throttle position TPS and not

on the state MAP. The terms in the torque model that are not

model states appear as measured disturbance terms.

The above LPV model formulation is not unique. In fact,

pointwise controllability and achievable performance depend

on the choice of the model, even though the open-loop

characteristics remain unaffected (Huang and Jadbabaie,

1999). This is a feature of quasi-LPV models. In some cases

the model formulation follows naturally from the system

structure, but in general the "best" formulation may not be

obvious. The model does not rely on Jacobian linearization,

i.e. it is valid for the whole range of engine operating

conditions, limited only by the validity of the NL model.

IV. CONTROLLER DESIGN

There are many possible formulations and variations of the

predictive control problem. The Nonlinear Generalized

Predictive Controller (NGPC) algorithm used here seems

well suited to real-time engine control applications. At each

time step, the controller aims to minimize the sum of squares

of predicted performance variables, with or without

constraints on the control signal changes. The traditional

method of introducing integral action in predictive control is

to augment the system input by adding an integrator:

, 1 ,

,

i t i t t k

t k i t t k

x x u

u x u

β

β
+ −

− −

= + ∆
 = + ∆

 (8)

1(1 (1))t k t ku z uβ −
− −= − ∆ (9)

The MPC cost function normally contains a penalty on the

incremental change in control action tu∆ . The error

weighting matrices can in this case just be constant matrices

(no extra states). It is useful to define a generalized operator

in unit-delay terms 1(1)zβ β −∆ = − so that if ȕ = 0

then t k t ku uβ − −∆ = . The results therefore apply to both

systems using control input and rate of change of control

input, respectively. If ȕ =1 equation (9) defines an integrator

without additional delay. If the actual control input ut is used,

an alternative way of including integral action is to use a

dynamically weighted error signal involving a high gain in

low frequencies. The steady-state error should then be

removed, otherwise the cost would increase indefinitely.

Performance variables and combined model: The output

variables of interest are contained in the vector yc:

, ,c t ct t ct t k yc t ty C x E u d cβ −= + ∆ + + (10)

The controlled output yc can be different from the measured

output ym. A ‘robustness’ signal ct is included in an output

disturbance model, to compensate for modelling mismatch:

, 1 ,

,

d t d d t d t

t dc d t

x A x B

c C x

ω+ = +

=
 (11)

It is often desirable to consider dynamically weighted

performance variables, to penalize the signals in different

frequency ranges. In fact, it may also be useful to penalize

actuator movements to prevent too aggressive (high-

frequency) control actions. This motivates an introduction of

dynamic weighting functions acting on the control error

,()t c tr y− and possibly on the control action ut:

1
, ,()()p t e t c te W z r y

−= − :
, 1 , ,

, , ,

()

()

p t p p t p t c t

p t p p t p t c t

x A x B r y

e C x E r y

+ = + −
 = + −

 (12)

The augmented state 0 , , ,
T

T T T T
t t dt it ptx x x x x = for the combined

model and vector of performance variables, including

weighted error pz e= follows:

0, 1 00 0

, 1

, 1

, 1

0 0 0

0 0

0 0 0

0 0 0

0 0

0 0 0 0

0 0 0 0

0 0

t t

d t dtd

i t it

p c p dc p c p ptp t

t d
t k

t

p c p p c

x xA B

x xA

x xI

B C B C B E A xx

B G D

r B
u

I d

B E B B H

β

β

β
β

+

+

+

+

−

 =

− − −

 + ∆ + +
− −

t

t

ξ
ω

pt p c p dc p c p te E C E C E E C xβ =− − −

t
p c t k p p c

t

r
E E u E E H

d
β −

 + − ∆ + −

More concisely:
1 ,

,

t t t t t k x t t

t t t t t k y t

x A x B u g D

z C x E u g

β

β

ζ+ −

−

= + ∆ + +
 = + ∆ +

 (13)

The model (13) defines the variables to be minimized. The

dynamic control weighting is not used here, i.e. Wu = I.

Limiting the controller bandwidth can also be achieved by

using the constrained solution. The control law derivation

summarized below is in Grimble and Majecki (2010).

Cost Function and Prediction Equations: At each sample

instant, the predictive controller minimizes a criterion over a

cost horizon N, involving a weighted combination of the

predictions of performance variables and the control effort:

() ()
1

0

()

N
T

T
t t k i t k i t i u t i

i

J N z z u uβ β

−

+ + + + + +
=

 = + ∆ Λ ∆
 ∑ (14)

Note the time shift of k sample time steps between the two

quadratic terms in the cost, reflecting the fact that the control

at the current time t can only affect the output with a k-steps

delay. For simplicity, it will be assumed that k = 1.

Consequently, the solution involves the initial step of

computing the k-step state prediction. The cost (14) can then

be represented in a vector-matrix form as:

() (), , , ,

T
T

N t k N t k N t N U t NJ Z Z U Uβ β+ += + ∆ Λ ∆ (15)

where
11

, ,

11

,

tt k

tt k
t k N t N

t Nt k N

uz

uz
Z U

uz

β

β
β

β

+

++ +
+

+ −+ + −

∆
 ∆ = ∆ =
 ∆

 (16)

The future values of the performance variables z are estimates

given the information available at time t. They are based on

the state estimates (provided by the Kalman Filter), current

measured disturbances (assumed to stay constant within the

prediction horizon), the reference signal (with or without

future knowledge), previous control actions and the control

input sequence 1,t NUβ −∆ (computed in the previous

iteration). The aim is to find the control sequence ,t NUβ∆

that minimizes the cost (15). Invoking the receding horizon

strategy, only the first element of the sequence is applied.

To minimize the cost index equations are needed to predict

future values of performance variables. Based on (13), setting

the stochastic noise inputs to zero, the state predictions:

1 2 1 2 1

1 2 2 1 1 1 2 2

1 1 1 2 1 ,

1 2 2 , 1 , ,

t j t j t j t t t j t j t t t

t j t j t t t t j t j t j

t j t j t j t j t x t

t j t j t x t t j x t x t

x A A A x A A A B u

A A A B u A B u

B u A A A g

A A A g A g g

β

β β

β

+ + − + − + − + − +

+ − + − + + + + − + − + −

+ − + − + − + − +

+ − + − + + −

 = + ∆
 + ∆ + ∆

 + ∆ +
 + + +

or 0
, ,

d x
t j t j t j t j t Nx x x s Uβ+ + += + + ∆ (17)

Note that 0
1 2t j t j t j t tx A A A x+ + − + − = represents the free

response, d
t jx + the forced response and ,t NUβ∆ the

optimization variables. The j-step-ahead prediction follows:

()
,

0
, , ,

t j t j t j t j t j k y t

x d
t j t j t N t j t j k t j t j t j y t

z C x E u g

C s U E u C x x g

β

β β

+ + + + + −

+ + + − + + +

= + ∆ +

= ∆ + ∆ + + +

, ,t j t N t js U fβ += ∆ + (18)

where , ,
x

t j t j t j t js C s E+ += + (19)

()0
,

d
t j t j t j t j y tf C x x g+ + + += + + (20)

Finally, the vector Zt+k,N can be written as:

, , , ,t k N t N t N t NZ S U Fβ+ = ∆ + (21)

, ,1 ,2 , , 1 2with ,
T T

T T T T T T
t N t t t N t N t t t NS s s s F f f f+ + + ==

Due to the k-steps delay, the prediction equations (17) are

shifted by (k-1) steps. The starting point for predictions is not

the current ˆ
tx but 1

ˆ
t kx + − . This can be computed from the

previous controls assuming no future disturbance changes.

The parameter-dependent matrices in the above expressions

are computed based on the future predicted states in (17).

Alternatively, they can be found, at each control calculation,

using the current state estimate xt (frozen model). This results

in a less computationally demanding algorithm but there is a

loss of model accuracy. The future control sequence is

needed to compute the future state estimates. An iterative

"successive approximation" procedure can be used to

improve predictions but adding to the computational burden.

Unconstrained and Constrained Solutions: The

unconstrained minimum of the cost-function (15), given the

prediction equation (21), is computed from a simple gradient

calculation, or by completing the squares, to obtain:

() 1

, , , , ,
T T

t N t N t N U t N t NU S S S Fβ
−

∆ = − + Λ (22)

The same solution applies to both the absolute and

incremental control formulation, with the corresponding

changes in the system model and the resulting matrices St,N

and Ft,N. In accordance with the receding horizon principle,

only the first element of this control sequence is applied as

the input [] ,0...0t t Nu I U= ⋅ . The whole sequence Ut,N can be

used in the next sample instant to perform the predictions.

The unconstrained solution is faster to compute, and is

acceptable when the normal operation is within the

operational constraints. When optimal performance is

demanded, the system will often operate close to the

constraints imposed on actuator magnitude and rate, and

outputs min , maxt NU U U≤ ≤ , min , maxt NU U U∆ ≤ ∆ ≤ ∆ and

min , maxt NY Y Y≤ ≤ . They can be written in the linear matrix

inequality form: ,U t N UM U b
β ββ∆ ∆∆ ≤ (23)

The control magnitude and rate are related as:

1 2

1 1

0 0

0 0

0 0

t t t t t

C C

I I

I I
U U U u U

I I

− −

−
 − ∆ = − = +

−

 (24)

3 4

1

0 0

0
t t t

C C

I I

I I I
U u U

I I I I

−

 = + ∆

 (25)

The output constraints can be represented in the standard

form by writing the outputs in a form similar to (21):

1, , , ,
Y Y

t N t N t N t NY S U F+ = + (26)

with appropriate definition of ,
Y
t NS and ,

Y
t NF . The minimum of

(15), subject to the constraints, can be obtained by quadratic

programming, using the Hildreth algorithm (Wang, 2009).

Time-Varying Kalman Filter: To construct the prediction

matrices ,t NS and ,t NF the NGPC controller relies on the

system states to be available at the current time t. These may

be measured but a Kalman filter is used in practice to

estimate them. The filter makes uses of the LPV model of the

engine, the measurable disturbances and outputs. The process

model and sensor noise covariances can be used as filter

tuning parameters. The filter provides the state estimates

including disturbance and the dynamic weighting states. The

system model (13) includes stochastic white noise sources
T

T T
t t tς ξ ω = and vt, representing process and

measurement noise and can be written as:

1 ,

,

t t t t t k x t t

mt mt t mt t k ym t t

x A x B u g D

y C x E u d v

β

β

ζ+ −

−

= + ∆ + +
 = + ∆ + +

 (27)

The covariance matrices of the signals tς and tv are denoted

QN and RN, respectively. These can be treated as tuning

parameters, used to define the relative ‘confidence’ in the

model and the measurements. The D matrix is used when

there is more detailed knowledge about the system stochastic

properties. When there is little information the D can be set to

identity and then process noise directly represents the

uncertainty associated with the estimation of the particular

state. The part of the D matrix associated with the white noise

input tω corresponds to the output disturbance model,

including mismatch states. The signal ut-k is fed to the

Kalman Filter, as in Fig. 3. At time t, the time-varying

Kalman Filter equations involve two steps:

Step 1: Computation of the Kalman gain, state estimation and

update of the estimation error covariance (system matrices

evaluated with the state prediction | 1
ˆ
t tx −):

() 1

| 1 | 1 | 1 | 1 | 1 | 1
T T

t t t t t t t t t t t t NK P C C P C R
−

− − − − − −=+ (28)

()| | 1 | 1 , | 1 | 1 , ,
ˆ ˆ ˆ
t t t t t t m t t t t t m t t k ym tx x K y C x E u d− − − − −= + − − − (29)

| | 1 | 1 | 1 | 1t t t t t t t t t tP P K C P− − − −= − (30)

Step 2: State and covariance matrix predictions (system

matrices evaluated with the state estimate |
ˆ
t tx):

1| | ,
ˆ ˆ
t t t t t t t k x tx A x B u g+ −= + + (31)

1| |
T T

t t t t t t NP A P A DQ D+ = + (32)

The model mismatch may result in a steady-state offset in the

system output estimate which can sometimes be compensated

by representing the mismatch by an output disturbance.

MPC Controller Structure: The overall NMPC controller

structure in Fig. 3 is a form of separation principle and

consists of the Kalman filter, state predictor and optimizer.

The RHC block represents the receding horizon control

strategy, whereby only the first element of the computed

control sequence is used for actual control. The remaining

elements are utilized for future state predictions.

MPC Design Issues and Weightings: The cost-function

utilized is general using dynamic cost-function weightings.

The sample time and prediction horizon N should be set so

that the dominant transient behaviour is captured. There is a

choice between the absolute and incremental control

formulations. The ‘∆u’ approach is the classical approach.

Integral action can also be added (when penalizing the

control u) by including an integrator on the error weighting.

The dynamic error and control weightings We(z-1) and Wu(z-1)

are usually chosen to have low pass and high pass

characteristics, respectively, and a constant control weighting

matrix Λu may be used. The actuator and operating

constraints (for QP computations) and the QN and RN

covariance’s for the Kalman Filter are also design variables.

Fig. 3: MPC Block Diagram Including Kalman Filter

V. NGPC CONTROL SIMPLIFICATIONS

The predictive control algorithm as detailed in the previous

section may result in an excessive computational burden on

the production control processing unit, particularly when both

rt

ym

dt

ˆ
t

x Kalman

 Filter Predictor Optimizer

k
z

−

1
z

−

RHC
St,N , Ft,N ∆Ut,N ut

Ut-1,N

ut-k

the sampling frequency and prediction horizon are high, and

the constrained solution is used. For practical implementation

the controller code must execute in real time in a

deterministic way. The additional caveat in engine control is

that the sample period varies with engine cycle and is

dependent on the engine speed. Since all the code is executed

at each trigger, it must have sufficient time to complete for

the highest expected engine speed. Alternatively, the number

of flops required may need to be reduced. The simplest way

to reduce the numerical load is to reduce the horizon N. From

(22), the MPC solution involves inverting at each step a

matrix of size N, which has complexity O(n3). Even a small

reduction of N can then bring significant computational

savings, resulting in some degradation of performance. It is

therefore important to strike the right balance between the

algorithm complexity and the performance demanded.

Freezing Prediction Model: The state and output predictions

performed at each step in (17) and (18) involve LPV model

matrices, which in general vary with external parameters

and/or system states. Consequently, these matrices need to be

evaluated N times at each step. A simple way to reduce the

number of computations is to fix the prediction model based

on the parameters and states available at the current time t

and use them for prediction as in the linear GPC case.

Connection Matrix and Control Profile: At each step, the

MPC optimization problem with prediction horizon N

involves the computation of N decision variables (control

moves). With a large N, this may lead to over-

parameterization and an impractical solution. One commonly

used solution is to introduce a separate control horizon Nu

which uses the first Nu controls as the decision variables, and

fixes the remaining (N–Nu) ones. Here we generalize this idea

by defining a control profile Pu of the form:

row{Pu} = [number of samples held, repetitions] (33)

For example, letting Pu = [1 3; 2 2; 3 1] represents 3 different

initial controls, then 2 samples with the same control used but

this is repeated again, and finally 3 samples with the same

control used. Based on a control profile, it is possible to

specify the transformation matrix Tu, relating the control

moves to be optimized (say vector V) to the full control

vector (U). For incremental control, the connection matrix:

1

2 1

3 2

4 3

5 4

6 5

7 6

8

9

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

t

t

t

t

t

t

t

t

t

t

u

u

u v

u v

u v

u v

u v

u v

u

u

+

+

+

+

+

+

+

+

+

∆
 ∆
 ∆ ∆

∆ ∆
 ∆ = ∆
 =

∆ ∆
 ∆ = ∆

∆ ∆
 ∆ =
 ∆ =

uU T V∆

⇒ ∆ = ∆

This represents a situation with 3 2 1 6uN = + + =

independent control moves and 3 1 2 2 1 3 10N = × + × + × =

sample points. The computation of 4 control moves has been

avoided, representing a substantial computational saving.

This approach, often termed ‘move blocking’ in the MPC

literature, can provide the solution to the GPC class of

problems with different control and error horizons. The

changes to the algorithm are minimal. It also solves the

problem where the horizons are the same but the control

changes are not allowed at each sample instant. The usual

approach is to assume future control changes are null after

the control horizon Nu and in this case the connection matrix

can be defined to have Nu+1 rows and N+1 columns. For

example, the form of the Tu matrix, when N = 6 and Nu = 2:

, , 1 2

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

and 0 0 0 0

T

u

T
T T T

t N u t Nu t t t

T

U T U u u u+ +

 =

 ∆ = ∆ =∆ ∆ ∆

VI. RESULTS

Two simulation scenarios are presented here. Fig. 4 shows

the comparison between the nominal MPC design and the

conventional controller for a fragment of an FTP drive cycle.

Extended prediction horizon and handling system interactions

by the multivariable controller generally lead to improved

tracking for both torque and lambda output signals. The more

aggressive MPC causes overshoots at low/negative torques,

however in reality this operating range would be handled by a

separate idle speed controller.

The responses to torque reference and speed disturbance step

changes for different MPC designs are shown in Fig. 5. The

nominal case DC0 was based on the absolute control

formulation (β = 0), constrained solution and equal horizons

N = Nu = 15. The other design cases represent various design

simplifications and are listed in Table 1, where their relative

speed-up factors are also benchmarked against the nominal.

Analysis of the figures and table leads to several conclusions.

First, freezing the prediction model (neglecting the time

variation of state matrices) gives almost 20% speed-up

without changing the results noticeably (this case was not

included in the figure). As expected, reducing the prediction

horizon significantly reduces the computational load,

however the dynamic performance also changes substantially.

On the other hand, the use of separate control horizon or

control profile/connection matrix allows reducing the load

without degrading performance.

Table 1 MPC Design Cases and speed-up factors due to

the algorithmic simplifications used

DC Configuration Speed-Up (%)

0 Nominal design case (N = 15) 0.0

1 Prediction model frozen 19.3

2 Unconstrained solution 48.5

3 N = 12 3.1

4 N = 9 18.4

5 N = 6 39.7

6 N = 15, Pu = [1 6; 9 1] 27.2

190 192 194 196 198 200 202 204 206 208 210
0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

λ
[-

]

190 192 194 196 198 200 202 204 206 208 210
-40

-20

0

20

40

60

80

100

120

140

T
Q

 [
N

m
]

190 192 194 196 198 200 202 204 206 208 210
0

5

10

15

20

25

30

35

40

45

T
P

S
 [
%

]

t [s]
190 192 194 196 198 200 202 204 206 208 210
0

5

10

15

20

25

30

C
F

C
 [
m

g
]

t [s]

Baseline

NGPC

TQSP

Fig. 4: Comparison of the classical (red) and MPC (black)

control for a fragment of FTP cycle

4 5 6 7 8 9 10 11

0.99

0.995

1

1.005

1.01

1.015

1.02

λ
[-

]

4 5 6 7 8 9 10 11

40

60

80

100

120

T
Q

 [
N

m
]

4 5 6 7 8 9 10 11

20

22

24

26

28

30

32

34

36

T
P

S
 [

%
]

t [s]

4 5 6 7 8 9 10 11

15

20

25

30

C
F

C
 [

m
g
]

t [s]

DC4

DC3

DC2

DC0

Fig. 5: Responses to torque reference and speed

disturbance step changes for MPC design (cases: DC0

(black), DC2 (red), DC3 (green) and DC4 (magenta))

In fact, down-sampling the control action may lead to

performance improvement. The unconstrained solution is

also less computationally expensive and is always considered

an option. For the constrained version, computational savings

can also be obtained by reducing the number of the active-set

iterations in the QP algorithm. As this is related to

convergence of the algorithm, this step must be taken

carefully by gradually reducing the number of iterations.

VII. CONCLUSIONS

The LPV-based version of the predictive control law is

computationally intensive, although simpler than most

nonlinear predictive algorithms. Attention therefore turned to

simplifications to the controller, to reduce the computational

load. We considered the application to the engine control

problem and benchmarked the performance. The impact of

code optimization was assessed, and the results show

significant savings are possible through a combination of

measures to modify the standard design process and simplify

the algorithm. These were validated during the trials of

embedded engine control code.

The value of this work also lies in the systematic framework

for NL MPC based on quasi-LPV models, including absolute

and incremental control. The use of an output disturbance

model to reduce the effects of plant-model mismatch is

useful, as is the way of limiting the control moves to gain

computational savings. The simulation results for the torque

tracking and air-fuel ratio regulation problem were shown.

On-going work involves the use of variable cam phasing to

improve fuel economy and real-time implementation.

REFERENCES

Bemporad, A and M Morari, (2004), Robust model predictive

control: A survey, in Proc. European Control Conference, Porto.

Clarke, D.W., and C. Montadi, (1989), Properties of generalised

predictive control, Automatica, Vol. 25, No. 6, pp. 859-875.

Cutler C.R. and Ramaker B.L. (1979), Dynamic matrix control - A

computer control algorithm, A.I.C.H.E, 86th National Meeting

Grimble M.J. and P. Majecki (2010), State-space approach to

nonlinear predictive generalized minimum variance control,

International Journal of Control, Vol. 83, pp.1529-1547.

Herceg M., T. Raff, R. Findeisen and F. Allgöwer, (2006),

"Nonlinear model predictive control of a turbocharged engine",

Proc. 2006 IEEE Int. Conf. on Control Algs, Munich, pp. 2766-71

Huang Y. and A. Jadbabaie, (1999) Nonlinear H-infinity control: an

enhanced quasi-LPV approach, IFAC World congress, Beijing.

Jankovic M., (2002) "Nonlinear control in automotive engine

applications", Proceedings of 15th MTNS Conf., South Bend, IN.

Qin, S and T Badgwell, (2003), A survey of industrial model

predictive control technology, Con. Eng. Prac., Vol. 11, pp. 733-764

Richalet J., A. Rault, J.L. Testud, J. Papon (1978), Model predictive

heuristic control applications to industrial processes, Automatica,

14, pp. 413-428.

Vermillion C, K Butts, and K Reidy, (2010), Model Predictive

Engine Torque Control, ACC, Baltimore.

Wang L., (2009) Model Predictive Control System Design and

Implementation Using Matlab, Springer.

Casavola, A, Famularo, D and G Franzè, 2003, Predictive control of

constrained nonlinear systems via LPV linear embeddings, Int. Jour

of Robust and Nonlinear Control, Vol.13; Issue 3-4; pp. 281–294.

Chisci, L., F, Paola and G Zappa, 2003, Gain-scheduling MPC of

nonlinear systems, Int Jour. of Robust and Nonlin Cont., 13; pp.3-4.

Casavola, A., Famularo, D. and G Franze, 2002, A feedback min-

max MPC algorithm for LPV systems subject to bounded rates of

change of parameters, IEEE Trans. A.C, ,47, No.7, pp.1147-1153.

Besselmann, T., J. Lofberg. and M Morari, 2012, Explicit MPC for

LPV Systems: Stability and Optimality, IEEE Transactions on

Automatic Control, vol.57, No.9, pp.2322-2332.

Li D., and Y. Xi, 2010, The Feedback Robust MPC for LPV

Systems With Bounded Rates of Parameter Changes, IEEE Trans.

on Automatic Control, vol.55, No.2, pp.503-507, Feb., pp.503-507.

Duan G-R and H-H Yu, 2013, LMIs in Control Systems: Analysis,

Design and Applications, CRC Press, ISBN 9781466582996.

http://www.seas.upenn.edu/%7Ejadbabai/papers/ifaclpv.ps
http://www.seas.upenn.edu/%7Ejadbabai/papers/ifaclpv.ps

	I. INTRODUCTION
	II. ENGINE CONTROL PROBLEM
	III. ENGINE LPV MODEL
	IV. CONTROLLER DESIGN
	V. NGPC CONTROL SIMPLIFICATIONS
	VI. RESULTS
	VII. CONCLUSIONS
	REFERENCES

