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Understanding strength loss of E-
glass fibres following exposure to 
elevated temperatures 

Abstract 

The strength loss of glass fibres (GF) following exposure to elevated temperatures is a long-

established phenomenon, yet the mechanism or mechanisms responsible for the strength 

decrease are not fully understood, aside from acknowledgement that surface flaws must 

become more severe by some means. As disposal of GF based composite materials by 

landfill has become untenable in many regions, interest in composite recyclability has 

increased. Separation of GFs from thermosetting polymers generally requires the use of high 

temperatures, which produces very weak fibres with minimal commercial value. In this 

context an understanding of the strength loss mechanisms is of importance in terms of 

efforts to mitigate fibre damage or to recover the strength of previously heated fibres. In 

addition to fibre strength loss, numerous other physical and chemical changes to heat 

treated (HT) or recycled GF have been described in the literature.  

 

Peter G. Jenkins, Department of Mechanical & Aerospace Engineering, University of Strathclyde, 75 

Montrose Street, Glasgow G1 1XJ, UK 

e-mail: peter.jenkins@strath.ac.uk 

1. Overview 

The review presented examines the current understanding of both physical changes and 

strength loss of glass fibres caused by exposure to elevated temperatures, with particular 

focus on E-glass. This discussion, specifically, is addressed in section 4. In the preceding 

sections, a summary on the nature of E-glass is provided, followed by a brief discussion of 

the strength of glass fibre and its measurement. Readers knowledgeable in the subject may 

be familiar with the aspects of E-glass that are summarised; if not these sections serve as an 

extensive introduction to some material characteristics that are specific to E-glass and to the 

overall physical and chemical nature of the material. Some of these characteristics are of 
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particular interest because of the changes which occur in them due to exposure to elevated 

temperature. 

2. Glass fibre 

2.1 E-glass: an introduction to recyclability 

Glass fibre has been used as a polymer composite reinforcement material for decades since 

it was first commercially produced by Owens-Corning in the 1930s and is nowadays crucial 

to the composites industry. It constitutes 90 % of the reinforcement fibre used worldwide and 

global production of the most common type E-glass is of the order of approximately 7 million 

metric tons annually [1]. Glass fibre (GF) is a desirable material due to its high specific 

strength and stiffness, its hardness and resistance to chemical and biological action, in 

addition to other generally desirable properties such as transparency and thermal and sound 

insulation. In addition, GFs in both continuous and short fibre form possess a desirable 

balance of price and processability; they are therefore used widely as fibre reinforcement in 

a variety of thermoplastic and thermosetting plastic matrix materials. 

A significant drawback of thermoset (e.g. epoxy or polyester) based composites (GRP) is 

their relatively poor recyclability, for example in comparison with lightweight metal alloys or 

other materials which can be recycled and reformed with relative ease.  Separation of the 

reinforcement fibre from matrix is generally necessary; this requires the application of 

elevated temperature, and in some cases also the addition of solvents or elevated 

pressures. Of the available techniques, thermal recycling methods are probably the most 

technologically advanced [2–4]. Furthermore, these methods theoretically allow for the 

collection of the fibre fraction following removal of the matrix: this fraction has a large 

embodied energy due to the high processing temperatures in GF production and may be 

considered the most valuable fraction in GRP [4]. While thermal recycling methods may 

allow the recovery of fibre from GRP, the strength (and therefore value) of the recovered 

fibres is very poor due to exposure to the elevated temperatures; a strength loss of up to 80 

– 90 % is commonplace [5–9]. Potential processes to regenerate the strength of thermally 

recycled GF are a current research topic of interest [10]; understanding the underlying 

mechanism(s) responsible for the original strength loss is an important part of this work. This 

paper reviews the literature related to the topic of GF strength loss caused by heat treatment 

and recycling processes and the possible underlying phenomena that may be responsible, 

with particular focus on E-glass due to its place as the most widely used form of glass 

reinforcement fibre [11]. 
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2.2 Glass fibre formulation 

Glass fibres are produced using a large selection of naturally occurring minerals, mixed 

together in various ratios. Commonly, fibres are formed by pulling through bushings from a 

melt maintained at elevated temperature, although alternative methods exist [11]. On leaving 

the bushing fibres are rapidly quenched and attenuated to a diameter of generally no more 

than 25 µm [12]. Many of these fibre types contain a large weight percentage of pure silica 

(SiO2), with the addition of other oxides; the balance between these constituents is altered in 

order to control the desired properties of the final product. The simplest glass system of all, 

pure silica fibres are amorphous polymers based on tetragonal SiO4 groups with a silicon 

atom at their centre. The silicon atoms form a network by sharing the oxygen atoms at the 

corners of these tetrahedrons.  

Amorphous silica has no true melting point but softens from 1650 °C. To enhance the ease 

of production of glass fibres numerous other minerals containing non-siliceous species are 

added to silica sand. Some additives producing oxides in the melt such as Al2O3 and B2O3 

are referred to as network formers as they become incorporated into the silica network, 

effecting a reduction in processing temperature. Other oxides, known as network modifiers, 

are created in glass mixtures; examples of these are CaO, Na2O or K2O.  

The purpose of network modifiers is to balance the charges associated with oxygen ions 

within the network, due to the incorporation of network formers other than silicon. These 

modifiers are found in the interstices of the glass network. Some further oxides known as 

intermediates are also used, MgO and TiO2 for example, which can act as either network 

formers or modifiers. 

Many different formulations of glass fibre exist, their chemical compositions being tailored 

towards an array of various practical uses [11, 13]. For example, GF formulations with 

improved acid/alkali resistance, low dielectric constant or particularly high tensile strength 

are available. 

2.3 E-glass 

E-glass is the most widely produced of all the formulations of mechanical reinforcement 

glass fibres, due to the overall balance of desirable properties that it possesses [11]. 

Although unsuitable for some specialist applications, it is a suitable general purpose fibre 

formulation. There are broadly two types of E-glass: the incumbent (Table 1) and more 

recent boron-free formulation (Table 2). With respect to both of these types of E-glass two 

formulations, (a) and (b), are presented. In both cases the weight percentages used in 
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production mixtures are quoted as typical ranges; this is an outcome of global variations that 

exist in composition of the oxides that are available to manufacturers. In some cases, 

smaller weight fraction components may be left out altogether.  

Table 1: Typical formulations of boron containing E-glass, taken from [13] 

  Typical composition of E-glass (wt%) 

Component [X] SiO2 Al2O3 B2O3 CaO MgO 
Na2O + 

K2O 
TiO2 Fe2O3 F2 

Formulation (a) 
52-

56 

12-

16 
5-10 

16-

25 
0-6 0-2 ͙ ͙ ͙ 

Formulation (b) 
52-

56 

12-

15 
4-6 

21-

23 

0.4-

4 
0-1 

0.2-

0.5 

0.2-

0.4 

0.2-

0.7 

 

Trends towards E-glass formulations without B2O3 or fluorine are a consequence of health 

concerns surrounding the volatilisation of these materials. 

Table 2: Typical formulations of boron-free E-glass, taken from [13] 

  Typical composition of boron-free E-glass (wt%) 

Component [X] SiO2 Al2O3 CaO MgO TiO2 Na2O K2O Fe2O3 F2 

Formulation (a) 59 12.1 22.6 3.4 1.5 0.9 ͙ 0.2 ͙ 

Formulation (b) 60.1 13.2 22.1 3 0.5 0.6 0.2 0.2 0.1 

 

Typical production mixtures for boron-free E-glass are shown in Table 2. Compared with the 

incumbent E-glass, these formulations have a higher SiO2 content and therefore slightly 

higher characteristic temperatures, as indicated in Table 3.  

Table 3: Characteristic temperatures of incumbent and boron-free E-glass, taken from [13] 

  Characteristic temperatures (°C) 

  Log3 forming Liquidus Softening Annealing Straining 

E-glass 1160-1196 
1065-

1077 
830-860 657 616 

Boron-free E-glass 1260 1200 916 736 691 
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2.4 Glass surface 

In reviewing glass fibre and its strength it is of the utmost importance to discuss the fibre 

surface, as this is understood to be directly linked to fracture behaviour [14]. Some research 

into the surface of E-glass can be found in the literature, but a greater volume exists for pure 

silica. This is a useful place to initiate the discussion as the complexities introduced by 

adding or altering even one component in a silica or glass system can significantly alter its 

state and complicate analysis of the surface [15, 16]. The study of pure silica systems began 

many decades ago [17] and has continued since [16, 18, 19]. 

2.4.1 Surface hydroxyl groups 

Unless it has been treated under certain specific conditions the surface of silica can be 

assumed to be covered to some extent with hydroxyl (OH) groups; when these hydroxyls are 

bonded to a silicon atom they are known as silanols. These silanols exist in one of two 

states: they are either free (isolated) or they are hydrogen bonded with a neighbouring 

silanol [17]. The overall coverage of hydroxyl groups on a surface is expressed by the 

hydroxyl number ĮOH. This value was calculated for many types of silica with a range of 

specific surfaces by Zhuravlev [20]; for a fully hydroxylated silica he produced the so-called 

Kiselev-Zhuravlev constant, ĮOH = 4.6 nm-2. A similar value of between 4.2 – 5.4 nm-2 was 

also reported by Bakaev and Pantano [19] using a hydrogen/deuterium exchange method. 

The Kiselev-Zhuravlev is generally accepted: differing values for fully hydroxylated silica 

have been reported with a range ĮOH = 1.3 – 9.8 nm-2 but these can be explained by 

significant differences in materials and methodology [16, 18]. 

The silanol coverage on a silica surface has been shown to be variable, depending on the 

application of heat and/or vacuum treatments. Using samples pre-treated simultaneously 

under vacuum and at various temperatures Zhuravlev [20] presented extensive data 

regarding dehydration of physically adsorbed water, the dehydroxylation of surface silanols 

and the rehydroxylation of treated samples. After treatment below 200 °C physically 

adsorbed water remained on the silica surface. However, following treatment at 200 °C or 

above the surface was fully dehydrated. Further heating led to further evolution of water, due 

to dehydroxylation of the surface. Two regions of dehydroxylation were found, one between 

approximately 200-450 °C and the second above 450 °C. The lower range was attributed to 

the removal of hydrogen bonded hydroxyls and it was noted that combined hydroxyl 

coverage halved by 450 °C. Above 450 °C only free hydroxyls remained; a temperature in 

excess of 1000 °C was required to fully dehydroxylate the surface. 
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Although it is more complex than simple silica, the surface of E-glass fibre has been shown 

using angle-resolved XPS [21] to be populated with silanol groups whose concentration is 

greater than in the bulk of the fibre. Values for the surface hydroxyl coverage of glass 

samples, rather than silica, obtained using contact angle measurements have also been 

published. The hydroxyl number of heat cleaned laboratory glass slides was reported as ĮOH 

= 2.5 nm-2 [22]. For slides of boron-free E-glass, once again carefully cleaned and fully 

hydrolysed, a value of approx. ĮOH = 2.4 nm-2 was obtained [23]. In both cases it is clear that 

hydroxyl coverage is significantly lower than that of the idealised fully hydroxylated silica 

system.  

2.4.2 Surfaces of E-glass systems 

Although they are both amorphous materials whose surfaces are populated with hydroxyl 

groups, E-glass and silica cannot be considered directly analogous, as suggested by the 

significant difference in hydroxyl number. Differences between the surface hydroxyl 

coverage of silica and more complex glass systems are perhaps not surprising given the 

changes to the molecular network caused by the additions of various network formers and 

modifiers in glasses. It has been shown [15] that the addition of one extra glass forming 

component to silica can significantly alter the surface state as demonstrated by a change in 

the interaction with adsorbate molecules; its effect on surface hydroxyl coverage has also 

been demonstrated [24]. 

The surface of E-glass has been studied by numerous researchers and in a few studies it 

has been shown that there are differences between the surface and bulk of glass fibres in 

terms of composition at an atomic level. Wong [25] used Auger Electron Spectroscopy to 

compare the elemental compositions of E-glass fibre surfaces with the bulk (obtained by 

analysis of fracture surfaces). His results suggested that the fibre surface is rich in silicon, a 

result also reported by Thomason and Dwight [26]. Wong also reported an enrichment of 

aluminium at the surface, but to a lesser extent compared with silicon. Conversely, the 

surface of the fibres studied appeared to have significantly lower concentration of calcium 

and magnesium compared to the fibre bulk. The conclusion of a calcium-depleted surface 

was also reported by Nichols et al. [27]. Using X-ray Photoelectron Spectroscopy (XPS) they 

measured the Ca/Si peak ratio and showed that the calcium concentration at the surface 

was lower than the bulk value. Similar results – of a silicon- and oxygen-rich and calcium-

depleted surface – have also been reported by Wang et al. [28] but using thin glass slides of 

E-glass composition rather than fibres directly. Studies using plate-glass of E-glass 

composition, rather than fibre, can simplify measurements due to their flat surface although 
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they cannot be assumed to be analogous to E-glass fibres in their chemical molecular 

structure [29]. 

2.5 Interaction with water 

2.5.1 Effect on tensile strength of fibres 

From the moment they are drawn, the strength of glass fibres begins a downwards 

trajectory. At the first instant a fibre will be at close to the intrinsic strength (Section 3.1) 

associated with the formulation it is manufactured from, but exposure to both mechanical 

and chemical attack causes a decrease in tensile strength over time. The effect of 

atmospheric moisture on the development of E-glass fibre strength was investigated by 

Martin et al. [30] using freshly drawn fibres aged in controlled relative humidity. Exposure to 

moisture caused a decrease in strength with time; the authors postulated that this was 

related to an increase in the surface area of so-called macropores, which they defined as 

pores with a radius rp > 10 nm.  

Numerous theories have been proposed to explain the mechanism causing strength loss 

due to water exposure [31–37]. The details are not relevant to the discussion of strength loss 

of heat treated (HT) and recycled GF (which relates to extrinsic strength only) as these 

mechanisms apply to decreases from the intrinsic strength of glasses which is initially very 

high. The differences between these types of strength are discussed in Section 3.1. 

2.5.2 Adsorption of water on E-glass 

Previous investigations have suggested that the E-glass surface is hydrophilic, possessing 

adsorbed multi-layers of water that form over time [38–40]. The adsorption of water may also 

promote an increase in specific surface that is related to increase in roughness or 

microporosity [39]. Removal of the adsorbed water layers from E-glass fibre has been 

reported to occur in the temperature range 55- 200 °C [40]: this upper temperature limit 

agrees with findings for the removal of adsorbed water on silica [20]. 

2.6 Glass fibre bulk structure 

In addition to an understanding of the GF surface, which is critical to the fracture behaviour, 

it is also important to understand the structure of the fibre bulk. The bulk structure of GF is 

distinct from massive glass of the same composition due to effects of the fibre drawing 

process. 

2.6.1 Non-equilibrium structure and fictive temperature (Tf) 
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Glass fibres have what may be termed a non-equilibrium structure due to the very high rate 

of quenching they experience during manufacture, in addition to significant longitudinal 

stresses from fibre pulling (discussed in detail in 2.6.3). The very fast quenching results in 

the ‘freezing-in’ of a structure, corresponding to that of an equilibrium liquid; the fictive 

temperature (Tf) describes the temperature of this equilibrium liquid which possesses similar 

structure to the non-equilibrium GF. Fictive temperatures for GFs such as E-glass tend to be 

high because of the fast cooling experienced; thicker fibres of similar composition will have a 

lower Tf. Fictive temperature correlates with GF material properties of more immediate 

relevance, for example there is an inverse relationship between Tf and density [41]. This 

work, however, also demonstrated the complexities of inter-relationships of fibre drawing 

parameters: for example, at constant fibre diameter an increase in Tf produced an increase 

in GF density rather than the expected decrease, due to the effect of fibre drawing stresses. 

Some data regarding the Young’s modulus and the hardness of E-glass fibres were 

presented by Lonnroth et al. [42]. Their data suggested a slight decrease in both modulus 

and hardness with decreasing fibre diameter; related to the higher fictive temperature and 

correspondingly more ‘open’ fibre structure. Comparability of these results with those of 

other researchers may, however, be slightly problematic as the wool fibres were produced 

by cascade spinning process [43] rather than by drawing from a bushing during which a 

longitudinal stress is applied throughout. The natural range of fibre diameters that may be 

obtained from cascade spinning differs significantly from fibre drawing, where a desired 

change in diameter necessitates changes in drawing speed (which correspondingly will 

affect drawing stress) [44]. 

2.6.2 Bulk structural orientation 

Glass fibre demonstrates significantly superior tensile strength compared to massive glass of 

similar composition; it has been theorised that this might be explained in part by an 

orientation of structure whereby bonds within the material are formed with some preferential 

direction. In the case of glass fibre, if orientation were present, the assumption was that the 

‘strong’ bonds would be along the longitudinal direction of the fibre. This differs from other 

orientations, for example the drawing out of any heterogeneities persisting in the melt [45]. 

Although evidence of orientation of structure has been presented for other glass systems 

[46–48] it has not been evidenced for E-glass and it is a matter of agreement that its 

structure is isotropic [45, 49, 50]. 

2.6.3 Anisotropy orientation and birefringence 
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Although it has been argued convincingly in the literature that the structure of E-glass fibre is 

isotropic there is, however, a separate discussion regarding a different type of orientation in 

glass fibre. This may be referred to as axial or optical anisotropy and it is quantified by 

measuring birefringence. If a material is birefringent its refractive index is different depending 

on the polarisation or direction of light passing through it. This property is imparted to glass 

fibres due to straining during the fibre drawing process [51]. Stockhorst and Brückner [41] 

measured birefringence (ȴn) of E-glass fibre bundles drawn from a constant melt, but varied 

production parameters such as nozzle temperature, drawing speed and drawing force, as 

shown in Figure 1. The birefringence of fibres was shown to increase with increasing 

drawing speed and drawing force. For a constant birefringence, fibres drawn from a hotter 

nozzle required a smaller stress but, conversely, a greater drawing speed. From a structural 

point of view, the authors suggested that the glass melt structure is more “open” after flow 

through the nozzle, and a higher nozzle temperature leads to a more open structure. It is 

therefore easier to deform and polarise which is why the birefringence is higher at constant 

axial pulling stress for higher nozzle temperatures. It was noted by the authors that their 

results indicated that glass fibres consist of two “portions” – an isotropic one due to thermal 

history and quenching of the melt (as discussed Section 2.6.2), and an anisotropic portion in 

the fibre longitudinal direction due to the drawing stress. Birefringence of E-glass fibres has 

been confirmed by other researchers [52–54]. 

 

Figure 1: Birefringence of E-glass fibre as a function of the drawing stress; parameter, nozzle temperature [41] 
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A link between strength and anisotropy of E-glass fibre was investigated [52] using bare 

fibres that were formed using a range of drawing stress. The strengths of continuous fibres 

were shown to be higher than those of both the bulk glass and (E-glass) spun wool fibres, 

whose axial drawing stress was estimated to be around 1 MPa. However, continuous E-

glass fibres drawn with stress between 10 – 70 MPa showed no significant difference in their 

average tensile strengths all of which were in the range 2.5 – 3 GPa.  

 

3. Strength of glass fibre 

3.1 Types of strength 

The theoretical maximum strength of glass falls somewhere in the range 10 – 30 GPa [55] 

yet the measured strengths of bulk glasses seldom exceed 50 MPa. Tensile strengths of 

glass fibres sit somewhere between these extremes with values between 1 – 5 GPa 

depending on the glass formulation [11]. The strength of E-glass is often quoted as between 

2.5 – 4 GPa [8, 11, 13, 56, 57] although in reality the strength of commercially produced 

fibre, particularly chopped fibres, can be significantly lower. In the context of a given fibre 

composition such as E-glass there is a maximum intrinsic strength that is measureable; for 

E-glass this is reported as approximately 6 GPa [56]. To achieve values above even 3 GPa, 

however, involves a meticulous approach to minimise contact between fibres and any other 

surfaces. The intrinsic strength is controlled by flaws, as for all glasses, but they are intrinsic 

to the material. 

Extrinsic strength, on the other hand, is controlled by the presence and severity of induced 

flaws whose size surpasses those of the intrinsic flaws already present. When discussing 

extrinsic strength this general term ‘flaws’ may refer to numerous features such as surface 

scratches and cracks, devitrified regions or unintended inclusions in the bulk material. It is 

this type of strength that is of interest in practical applications, for example in relation to the 

strength of HT and recycled glass fibre discussed herein. 

3.2 Flaw theory and flaw visualisation 

In the discussion of extrinsic strength of glass fibre, flaws are the features of key importance 

– specifically cracks. A theoretical crack is a 2-dimensional flaw across whose boundary the 

atomic bonds of the material are broken. Around this flaw stress will be concentrated at the 

crack tip, which is assumed to be infinitely sharp but in reality must have atomistic 

dimensions. Cracks are considered the most important type of flaw as only they can grow 
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under the application of tensile stress [56]. The issue with the infinitely sharp crack tip is that 

when considering a highly brittle material like glass (where no crack tip blunting occurs) any 

externally applied stress immediately translates to an infinitely concentrated stress at the tip. 

The seminal work of Griffith [14] addressed this mathematical issue by considering the 

problem using an energy balance approach. By application to the case of a uni-axially 

stressed plate with an edge crack Griffith derived the following equation (1). 

௙ߪ  ൌ ඨʹܽߨߛܧ  (1) 

In (1) f is the failure stress of the material, E its Young’s modulus,  the surface energy and 

a is the length of the crack. Although relatively simple, (1) can be acceptably used to 

describe the behaviour of glass due to its highly brittle nature. In materials with greater 

ductility a proportion of the released strain energy is dissipated around the crack tip due to 

plastic flow in the material. A further mathematical modification to (1) comes in the form of 

the Griffith-Orowan-Irwin Equation (2). 

 ܽ ൌ ܻଶ  ଶ (2)ߪߛܧ

In the form presented, equation (2) may be used to calculate the dimension ‘a’ of some 

surface or volume flaw with circular or elliptical shape. Proper use of the equation, however, 

demands knowledge of the general dimensions of this flaw by some method (such as 

observation) so that the correct value of the geometric constant Y is chosen. Some values of 

parameter Y may be obtained in ASTM C1322-05b [58]. 

Due to their dimensions of the order of only microns in diameter, visualisation of the fracture 

surfaces of glass fibres is challenging but has been achieved using Scanning Electron 

Microscopy (SEM). Lund and Yue [59] attempted to systematically correlate strength levels 

of fibres with flaw types by fractographic analysis of single fibre fracture surfaces but found 

that there is often no visible flaw at the origin of failure. Even more problematic, a confirmed 

flaw or crack, critical or otherwise, has never been visualised in an un-fractured glass fibre. 

An exception to this is the artificial cracks produced in E-glass fibres using Focused Ion 

Beam (FIB) milling in [60]. 
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4. The effect of elevated temperature on E-

glass fibre: changes in strength and to 

physical and chemical structure 

Numerous changes to glass fibres following either direct heat treatment or composite 

recycling at elevated temperature have been reported in the literature. A decrease in fibre 

tensile strength is found in almost all cases. In addition, various changes to what can 

generally be termed the fibre bulk and fibre surface have been described by researchers. 

Despite the phenomenon being well established the precise mechanism or mechanisms 

contributing to strength loss from thermal effects remain unclear, as are possible links 

between known bulk and surface changes and tensile strength loss. 

4.1 Strength loss of heat treated glass fibre 

Following the discussion in Section 3, a decrease in strength after heat treatment implies 

that a new and more severe flaw on the GF surface is present compared to the non-heat 

treated case. This could be a newly formed flaw or have developed from a pre-existing flaw 

which has grown in size or been made more severe in some other way. Finally, it is possible 

that some other changes to the GF surface and/or bulk that occur as a consequence of 

elevated temperature may contribute to failure at a lower stress. 

4.1.1 Temperature and time effects 

The earliest investigations into strength loss of heat treated E-glass were carried out over 55 

years ago [8, 57, 61–63] and established many of the phenomena that remain relevant 

today. Both Thomas [8] and Cameron [57, 62, 63] showed that retained tensile strength 

decreases with increasing HT temperature,  for all temperatures investigated up to 600 °C. 

Further work suggested that strength loss proceeds with length of furnace soak time until a 

constant minimum value is reached, but at higher conditioning temperatures this minimum 

value is reached within a very short time. These experiments were conducted with lab-

produced pristine E-glass without any surface coating, referred to as sizing. In practice it is 

necessary to apply a tailored sizing to production GF in order to, amongst other things, 

protect the fibre surface and promote bonding with matrix materials [64, 65]. The findings 

regarding fibre strength loss have been replicated by Feih et al. using sized E-glass [7, 66]: 

the trends in strength loss with coupled temperature and time are remarkably similar to those 

produced by Thomas. Contemporary data regarding strength loss of E-glass using fibres 
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without sizing are relatively uncommon although some have been produced by Jenkins [5] 

(shown in Figure 2) et al. and Lund and Yue [52]. The latter of these is somewhat at odds 

with other data, suggesting that a temperature in excess of 300 °C was necessary to initiate 

strength loss despite a 3 hour HT. However, this work is of particular interest because 

measurements of changes in both enthalpy and anisotropy relaxation were made in addition 

to strength loss. These results are discussed in detail in 4.2.1 and 4.2.2. 

 

Figure 2: Tensile strengths of bare and Aminopropyltriethoxysilane coated fibre after 25 minute HT [5] 

4.1.2 Temperature and mechanical damage 

In addition to the effect of elevated temperature alone, mechanical damage inflicted on the 

surface of GFs can also cause a decrease in strength. In HT and recycling processes both 

are likely to act simultaneously. It has been demonstrated that by purposefully 

experimentally minimising the effect of mechanical damage, leaving only thermal effects, the 

retained strength of HT GF can be significantly increased, by as much as 90 % under some 

conditions [5]; nonetheless a decrease compared to the untreated fibre strength is found. 

The effect of fibre mechanical damage during recycling processes can be even more 

dominant. Kennerley et al. [9] showed tentative results for single glass fibres recovered from 

both heat-cleaned cloth and composites processed in their Fluidized Bed Combustion (FBC) 

rig. Although some of the average values reported were based on far smaller sample sizes 

than preferable for brittle glass, the inverse relationship between retained strength and 

temperature was observed. Crucially, in this work fibres were exposed to elevated 

temperatures for short times (20 minutes or less) yet significant strength loss was still 

measured. In the case of fibres that were FBC processed at 650°C only 5% of the measured 

original strength remained. 
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4.1.3 The effect of heating atmosphere 

The effect of the atmosphere in which fibre HT was conducted was a considered variable in 

work by Cameron [57, 62, 63]. He determined that changes in atmosphere did not produce a 

significant effect on retained strength, a conclusion verified by the findings of Lund and Yue 

[52] who treated unsized fibre in either air or nitrogen. Tentative evidence from Feih et al. [7] 

suggests that an inert atmosphere may retard strength loss of sized fibre for short durations 

of HT and that this is likely to be related to slowing of the thermal degradation of the sizing. 

Very little research has been carried out to investigate the possible role of surface water on 

fibres during HT. Initial results from Jenkins et al. [67], using a simultaneous vacuum and HT 

process, suggested that there was not a significant change in retained fibre strength for a 

treatment performed at 450 °C and that water in the atmosphere and on the fibre surface 

may not, therefore, play a role in strength loss due to HT. 

4.1.4 The effect of heat treatment under tensile stress 

A rarely investigated phenomenon with respect to the HT of GFs is the effect of applied 

tensile stress during heating. Despite relatively little attention in the literature the effect 

produced is of some interest in terms of understanding the strength loss of HT GFs and the 

mechanism or mechanisms that may be responsible. 

Bartenev and Motorina [68] published some early results on fine GFs (diameter 

approximately 20 µm) of alkaline composition. Initially weak fibres (approximately 1 GPa) 

presented a linear decrease in strength with HT temperature when heated in stress-free 

state but an improvement in strength retention was found when a load was applied. Loads 

equalling 2 or 70 % of the ultimate strength were applied: the former produced a moderate 

improvement in retained fibre strength after HT, but the latter up to an 100 % increase in 

comparison with stress-free HT. Cameron [57] made similar findings using E-glass. In this 

case the fibres had much greater initial strength in excess of 3.5 GPa. The application of a 

pre-stress of between 2 – 20 % of the room temperature strength led to an improvement in 

retained strength after HT, although a decrease with respect to the initial value was found. In 

the discussion of results of these pieces of work the retarded weakening, or strengthening, 

effect was attributed to alterations to the geometry around cracks or flaws on the fibre 

surface. Bartenev and Motorina discussed elastic and plastic deformation, and Cameron 

‘inelastic flow’, of material in the vicinity of cracks. In both cases they assumed that this 

stress-forced flow led to a less critical crack geometry and hence reduced stress 

concentrations developed when tensile testing was conducted. 
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Recent investigation of this phenomenon has been carried out by Lezzi et al. [69, 70] using 

both silica and E-glass, although the fibres used in these works had diameters of 

approximately 100 µm, greater than mechanical reinforcement GFs by a factor of 5 or more. 

Despite significant differences in materials their findings were similar to previous 

investigations.  Their explanation for the superior strength retention of fibres was the 

formation of a thin residual compressive stress layer on the surface of fibres when they are 

heated under stress while exposed to water vapour; this was confirmed by data gathered 

using FT-IR and fibre slicing [71].  

4.2 Physical and chemical changes following heat treatment 

A number of changes to GFs, and E-glass in particular, following HT have been reported 

which can generally be described as physical or chemical in nature. These are summarised 

and their potential relevance to GF strength loss is discussed. 

4.2.1 Thermal compaction or enthalpy relaxation 

A significant bulk phenomenon occurring in E-glass fibre during heating is thermal 

compaction, first described by Otto and Preston [49] and later investigated in greater detail 

by Otto [72]. From heating experiments carried out above 300 °C for sufficiently long times a 

densification process of fine GFs was evidenced by a contraction in their lengths. Similarly, 

Otto indirectly showed that this process was associated with an increase in Young’s 

modulus. The work of Aslanova et al. [73] demonstrated that the same phenomenon also 

applied to glass fibre of other compositions. Results showing contraction of fibres in both the 

longitudinal and radial directions have also been reported [41]. Recently, Otto’s findings 

were verified by Yang and Thomason [74] including direct measurement of the increase in 

Young’s modulus after HT (Figure 3). This agrees with the understanding of the relationship 

between fictive temperature and Young’s modulus presented by Lonnroth et al. [42]. HT 

below Tg produces a similar effect as that of a slower quenching rate; fictive temperature 

decreases therefore modulus increases.  
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Figure 3͗ RĞůĂƚŝǀĞ ĐŚĂŶŐĞƐ ŝŶ YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ ŽĨ GFƐ ĂƐ a function of temperature (circles) and at room temperature 

after HT (squares) [74] 

Other more recent studies have analysed the relaxation of GFs using Differential Scanning 

Calorimetry  (DSC) [52, 53, 75–77]. They demonstrate that heating below Tg allows the 

release of what the authors term excess enthalpy from the fibres. The phenomenon is thus 

called enthalpy relaxation. It was demonstrated [76] that the enthalpy relaxation is related to 

the quenching of the glass during its production; a larger amount of energy (excess 

enthalpy) is stored within the glass structure when quenching is performed at a higher 

cooling rate. The explanation offered for this phenomenon is a “cooperative rearrangement 

of the frozen-in isotropic network”. With respect to E-glass, this rearrangement occurs only 

once the heat treatment temperature surpasses around 300 °C and its rate increases 

significantly at higher temperatures. 

The temperature range over which enthalpy relaxation occurs agrees with that for which fibre 

length contraction and corresponding increase in Young’s modulus occur. It seems 

reasonable to conclude that these works demonstrate the same phenomenon and that 

enthalpy relaxation is associated with a long-range relaxation or reorganisation of the glass 

network producing a denser glass structure. Although this is the case, an explanation of 

exactly what is happening within the fibre structure during the process has yet to be 

reported. 

A link between thermal compaction/enthalpy relaxation of fibres and the decrease in fibre 

tensile strength of heat treated fibre is also absent and has yet to be directly investigated. 

However, an interesting correlation may be noted in the work of Lund and Yue [52]. Using 

laboratory-produced E-glass fibres they reported that significant strength loss did not occur 

until HT temperature in excess of 300 °C was used, the same temperature at which enthalpy 

relaxation began.  
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4.2.2 Anisotropy (birefringence) relaxation 

The presence of axial anisotropy in fibres is a function of the drawing parameters and was 

discussed in 2.6.3. In many studies that report birefringence measurements of GFs 

experiments were also conducted to analyse the effect of heat treatment [41, 52–54]. Lu et 

al. [54] suggested that anisotropy relaxation was temperature dependent; complete 

relaxation occurred if samples were heated to the glass transition temperature (Tg) but lower 

temperature annealing led to incomplete relaxation. This work was furthered in studies using 

E-glass fibre [52, 53]. The anisotropy relaxation index, ȴn/ȴnmax, was introduced to describe 

the remaining fibre anisotropy, where ȴn/ȴnmax = 1 means no relaxation has occurred. 

Depending on fibre drawing temperature significant reduction in ȴn/ȴnmax was achieved at 

HT temperatures between 200 – 300 °C and full relaxation was achieved at temperatures as 

low as 400 °C given sufficient length of HT.  

Similar to enthalpy relaxation, no evidence of a link between anisotropy relaxation and fibre 

strength loss following HT has been presented but an interesting correlation is noted from 

the work of Lund and Yue [52]. The same E-glass formulation was used to produce both 

standard drawn fibres and a spun wool fibre (SWF), the production of which is described in 

[43]: without fully detailing the SWF production process it is important to note that it is less 

controlled than fibre drawing, which could allow greater fibre surface damage to occur . 

These E-glass SWFs produced with minimal axial stress, and hence very low anisotropy, 

had a measured tensile strength of approximately 1.5 GPa. The anisotropy of continuous E-

glass fibres was found to decay to approaching zero after treating at 500 °C for 3 hours; this 

treatment also caused a decrease in strength from around 3 to 1.5 GPa. From this 

correlation one could postulate, neglecting additional damage from SWF production, a link 

between strength loss and anisotropy relaxation.  

4.2.3 Crystallisation 

Crystallisation of GF due to heat treatment has been proposed as a source of strength loss 

from work using non-alkaline fibres [78] but these findings have not been reproduced since. 

There is evidence of nano-crystallisation at the surface of HT basaltic fibres [79] but the 

mechanism responsible is not applicable to E-glass due to its much lower content of ferric 

ions. The E-glass formulation is tailored to, in part, eliminate any crystallisation during 

forming [11] however potential crystallisation of E-glass, for example at the nano scale on 

the surface, due to HT remains unexplored. 

4.2.4 Physical and chemical surface changes 
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In addition to the phenomena described which represent changes to the bulk structure of E-

glass due to heat treatment, some surface phenomena have been reported. In their chemical 

surface analysis using XPS Nichols et al. observed a Ca depleted surface in comparison to 

the bulk of E-glass fibres. After heat treating samples for 3 hours at temperatures up to 720 

°C it was found that the surface concentration of Ca increased, suggesting that a diffusion 

process may occur during HT. The strength of GFs after HT was not investigated in this work 

and no study of the relationship between it and Ca concentration is found in the literature. In 

general it can be considered unlikely as a mechanism to reduce fibre strength: if an increase 

in Ca concentration at the glass surface has any effect it appears to correlate with an 

increase in fracture toughness or strength [80]. 

Surface roughness of GFs, usually shortly after fibre drawing, have been reported by 

numerous researchers [81–83]. However, no rigorous studies of change in surface 

roughness following annealing or HT have been presented in the literature and neither has 

there been any investigation of any possible link between nano-level surface state and fibre 

strength, despite the accepted model that failure initiates at the surface unless a significant 

internal pore has been introduced as a manufacturing flaw. 

 

5. Summary 

Temperature induced strength loss of E-glass fibres is a long established phenomenon [8, 

57] and, as a brittle material, the fracture mechanics which govern its failure are well 

understood [14]. Surface flaws with greater severity, due to an increase in dimension or 

change in geometry, must be present after heat treatment (HT). In some cases mechanical 

sources of damage may explain the strength loss at least in part [9]; however, a fundamental 

strength loss caused only by exposure to elevated temperature also exists [5]. It is not well 

understood by what mechanism this reduction in fibre strength is caused. Interactions 

between water and the GF surface have at times been postulated although experimental 

results in this area suggest this may not provide a sufficient explanation [67]. It is known that 

significant long-range relaxation or reorganisation of the glass network occurs at elevated 

temperature [52, 53, 72, 74, 77] but no link between this phenomenon and strength loss has 

been demonstrated. Similarly, relaxation of the anisotropy caused by drawing stresses has 

been shown from birefringence measurements [41, 52–54] but it is not proven if this is a 

factor in thermal based strength loss following HT. The efficacy of applied tensile stress 

during HT to reduce strength loss has been proved and a probable mechanism described 

[69–71]; however the absence of this mechanism during stress-free fibre HT or recycling 
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processes does not help to explain the thermal based strength loss that does occur. Further 

study of the phenomenon is required: initial research into regeneration of the strength of GFs 

following HT or recycling using surface treatment methods has demonstrated positive results 

[10, 84], but an improved understanding of the mechanism(s) behind strength loss should 

help to inform further research in this field.  
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