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Abstract High-resolution SAR (synthetic aperture radar) can 

provide a rich information source for target detection and 

greatly increase the types and number of target characteristics. 

How to and efficiently extract the target of interest from large 

amounts of SAR images is the main research issue. Inspired by 

the biological visual systems, researchers have put forward a 

variety of biologically-inspired visual models for target 

detection, such as classical saliency map and HMAX. But these 

methods only model the retina or visual cortex in the visual 

system, which limit their ability to extract and integrate targets 

characteristics, thus their detection accuracy and efficiency can 

be easily disturbed in complex environment. Based on the 

analysis of retina and visual cortex in biological visual systems, 

a progressive enhancement detection method for SAR targets is 

proposed in this paper. The detection process is divided into 

RET, PVC, and AVC three stages which simulate the 

information processing chain of retina, primary and advanced 

visual cortical, respectively. RET stage is responsible for 

eliminating the redundant information of input SAR image, 

enhancing inputs’ features, and transforming them to excitation 

signals. PVC stage obtains primary features through the 

competition mechanism between the neurons and the 

combination of characteristics, and then completes the rough 

detection. In the AVC stage, the neurons with more receptive 

field compound more precise advanced features, completing 

the final fine detection. The experimental results obtained in 

this study show that the proposed approach has better detection 

results in comparison with the traditional methods in complex 

scenes. 

Keyword: Cortex-Like Mechanisms, synthetic aperture radar 

(SAR), Hierarchical models, target detection 

Introduction 

With the increase of SAR systems and the improvement of 

their image quality, the targets in SAR images contain richer 

detail features. The common SAR target detection systems 

adopt the two-parameter Constant False Alarm Rate (CFAR) 

algorithm based on Gaussian distribution proposed by Lincoln 

Laboratory [1]. It takes advantage of differences between the 

statistical model [2] of background and the targets to achieve 

targets detection. Whereas, imaging scenes of SAR often 

contain a large number of artificial buildings, trees, grass  ̍ etc, 

which form heavy clutters [3] in images and reduce Signal to 

Clutter Ratio (SCR). The randomness of the clutter makes the 

estimation of background statistical models more difficult. 

Moreover, since this method does not make full use of outline, 

texture, shape and many other features of targets, its detection 

results are unsatisfied especially under low SCR condition.  

Biological visual system can search the targets or areas of 

interests quickly and accurately through properly extracting 

and processing various kinds of target features, without 

knowing the model of clutters. Inspired by the unique 

processing mechanism of the biological vision systems we 

propose a new idea for the study of SAR target detection. The 

development of cognitive psychology, neurophysiology, and 

other related science has unceasingly deepened our 

understanding for biological vision system [4], which provides 

the possibility for this attempt.  

The biological visual system is a complicated multi-level 

system [5], where low-level areas firstly receive inputs, and 

then processes these visual information and compound more 

complex features before transferring them to the higher level. 

Its main information processing units include retina, primary 

visual cortex (PVC) and advanced visual cortex (AVC).  
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Being the first part of biological visual system, retina 

realizes the first step, i.e., input processing. The retina includes 

the receptor cells, bipolar cells and ganglion cells from the 

outside to the inside. Specifically, with the aid of unique 

ON-center or OFF-center receptive fields, ganglion cells can 

remove some redundant information by ignoring those fields 

with no changes and transmit the interested information to the 

brain in the form of pulses. Rodieck [6] first proposed that the 

Difference of Gaussian (DOG) can be used to simulate these 

receptive fields, which has been applied in many saliency map 

models, e.g. Itti [7]. Whereas the DOG represents the initial 

stage of the visual processing, it is only sensitive to the limited 

simple feature and unable to manage the higher order feature. 

The saliency map [8] is easily influenced by the background 

clutters, which could only be applied in the relatively simple 

scenes.  

The pulse signals are transferred to the primary visual 

cortex (PVC) through the lateral geniculate body. David Hubel 

and Toresten Wiesel [9] found that most of the neurons in 

primary visual cortex have directional selectivity, i.e., they are 

sensitive to some fine bright bar (or dark bar) in a certain 

direction. Jones [10] proposed a 2D Gabor filter with similar 

property which achieves optimal localization properties in both 

spatial domain and frequency domain.  

 Biological target search in the visual field is a gradual 

enhancement and clear process. The preliminary integration of 

information in the primary visual cortex could eliminate a large 

number of false alarms with obvious features in a quick look. 

Only a small amount of residual signal is fed into the advanced 

visual cortex for future processing. In the next level, the 

advanced Visual cortex (AVC) has neurons with larger 

receptive field, can respond to some subjective contour in a 

more sophisticated manner. 

Based on the Hubel-Wiesel structure, Researchers made a 

number of heuristic target detection models. Amoon M [11] 

introduced Zernike moments and Particle Swarm Optimization 

(PSO) to features extraction and selection, improving target 

recognition efficiency. Tu et al. [12] proposed a moving target 

detection method based on independent component analysis 

(ICA) and principal component analysis (PCA).  Ho-Phuoc et 

al. [13] established a statistical model of visual features in the 

focus prediction, available on compositing saliency maps. 

Poggio[14] put forward the HMAX model. HMAX model 

applies Gabor filtering and the local maximum pooling 

operation to simulate the mechanism of the primate visual 

cortex, which has excellent robustness to rotation, translation, 

and scaling. An airborne or space-borne SAR image may cover 

a very large area including hundreds of suspicious regions 

needed to identify, so the elimination of redundant information 

is necessary. However, the HMAX only simulates the visual 

cortex which greatly reduces the calculation efficiency because 

it has no screening role like the retina. In addition, this model 

adopts a same processing with respect to different suspicious 

targets regardless of feature types or amounts. A large number 

of unnecessary calculations limit the application of HMAX.  

Because whether the saliency map or the HMAX can only 

model the partial function of biological visual systems, they 

cannot obtain the satisfactory results in both efficiency and 

effects at the same time. To solve this problem, by simulating 

the whole process of the biological vision system from the 

retina to the visual cortex, this paper presents a target detection 

method from SAR image to progressively enhance its 

performance. It takes advantage of the integration and 

eliminating the need of each unit to improve the efficiency of 

the information processing. Based on the collaborative 

mechanism of the retina, the primary and advanced visual 

cortex, the detection process is divided into the following three 

stages. The first stage simulates the retina, namely RET, which 

is responsible for extraction, distortion-rectifying and coding of 

the preliminary features of suspicious targets. The second stage 

PVC models the primary visual cortex to remove the false 

alarms for the objects having the obvious difference with the 

real targets by the “rough detection” based on the “primary 
feature” of each suspicious target. The third stage AVC plays 

the same role as the neurons in the advanced visual cortex. It 

further produces more accurate “advanced feature” for the 

remaining suspicious targets. With the help of the classifier, the 

final detection results are obtained through the “fine detection”. 
We conducted a series of experiments and made a comparison 

with the two-parameter CFAR to illustrate this proposed s 

method. 

The specific frame of this paper is as follows. The second 

session describes each stage of the proposed method in details. 

The experiment results of each step in complex scene and the 

comparison with the CFAR are given in the session 3. The 

fourth session is the conclusion. 
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Fig1 Flowchart of the proposed method 

Proposed Method 

The proposed method is shown in  

Fig1. A SAR image is firstly preprocessed to locate those 

suspicious regions where real targets may exist. In the RET 

stage, we use the DOG filter, the distortion rectifying and 

coding algorithm to handle the suspicious regions like retina in 

biological visual system. The PVC stage calculates the 

“primary feature” of each suspicious region through Gabor 

filtering and the maximum pooling operation. The AVC stage 

obtains more accurate “advanced features” to achieve the final 

results with the help of classifiers. 

Preprocessing 

The preprocessing includes the edge preserving, the gray 

level quantization and the connected component labeling. The 

result of the preprocessing for a composed SAR image is given 

in Fig. 2, where Fig. 2 (a) shows the composed SAR image; Fig. 

2 (b) is the binary image after the preprocessing and the white 

areas indicate the suspicious areas. As shown in Fig. 2 (c), a 

total of TN suspicious areas with the size of W H  extracted 

from (a) form a suspicious region set. Let 

( 1,..., )l Tt T l N   represent the lth  suspicious area. 

 

Fig. 2 Preprocessing (a) Composed SAR image, where the 

red rectangular labeled areas indicate real targets (b) The 

binary image after the preprocessing (c) A total of TN  

suspicious regions extracted from the original SAR image 

with the size of W H . 

RET Stage  

We first use the DOG operator to filter each suspicious 

area to strengthen the important features like corner, edge and 

so on, which plays a similar role of the retinal ganglion cell in 

the vision information processing. As shown in equation (1), 

the DOG filter corresponds to the difference between the two 

images filtered by the Gaussian filers with different 

parameters. 

 

 

2

1 2 2

11

2

2

22

1
( , , , ) exp

22

1
exp

22

x u
f x u

x u

 
 

 

 
  

 
 
 

  
 
 

   (1) 

Where, f is a suspicious area after filtering; x is a 

pixel of f ; u  is the mean, which is usually taken to be  0 

for the sake of simplicity; 1  and 2  are the standard 

deviations of the two Gaussian functions. Since the index 

computing in the DOG filtering process leads to a nonlinear 

distortion of the pixel values, a distortion rectifying is needed 

in the following formula: 

   2

10 1 2log ( , , , )f x a b f x u                     (2) 

Where ,a b  are the constant coefficients.  

In biological vision system, there is a competitive 

relationship between the adjacent cells, called the 

“winner-take-all” where those relatively weak signals in a 

small area will be ignored while only the strongest will win the 

competition and become the excitation signal, transmitted to 

the visual cortex via the lateral geniculate nucleus (LGN). 

Based on this theory, we use a simple and effective mean filter 

to encode the suspicious region after the distortion rectifying 
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        
0

f x if f x mean f x
y x

else

  


  (3) 

Through retaining those pixels greater than the mean, the 

coding can highlight the features like corner, edge, inflection 

point while ruling out the weaker background. It improves the 

efficiency of the subsequent treatments. 

PVC Stage 

Having received the signals from the retina, the primary 

visual cortex could get a "primary feature" for each suspicious 

region image through fast extracting and combining the target 

features. Then, based on the competition mechanism between 

the neurons, the "rough detection" is in charge of eliminating 

parts of false alarms and transmitting the remaining suspicious 

targets to the advanced visual cortex. The calculation flow 

diagram of the primary feature of a suspicious area is shown in 

Fig. 3. It is a feature on the basis of the correlation between the 

suspicious areas and the priori information, namely the 

patch-based features. Here we first introduce the patch-based 

feature learning and screening. 

 

Fig. 3 Calculation flow diagram of the primary feature Results after the RET stage of processing (b) 8 Gabor feature sub-images of 

lt (c) Selection of eighth sub-image to compute the correlation coefficients (d) Similarity matrix of the suspicious region 
lt  (e) The 

primary feature of 
lt  with the averaging method. 

 

Fig.4 Flowchart of the patch-based feature learning and screening (a) Training samples first go through the RET stage to wipe out 

the clutters and enhance the features, including the DOG filtering, distortion rectifying and encoding (b) Simulating the simple and  

complex cells in the primary visual cortex. The Gabor filtering and maximum pooling operation are used to get the Gabor features of 

the training samples (c) Extracted patches from the Gabor features (d) Screening patches.

Patch-based Feature Learning and Screening 

Fig.4 illustrates the flowchart of the patch-based feature 

learning and screening. The training samples first go through 

the RET stage described in last Section to enhance the image 

features. And then the Gabor filtering and the maximum 

pooling operation are used to get the Gabor feature sub-images 

of these training images, which simulate the simple and 

complex cells in the primary visual cortex with the bar-like 

receptive fields. After that, the patch-based features of the 

training samples are extracted randomly from these Gabor 

feature sub-images. In order to reduce the redundant patches, 

the last step is to screen patches. The detailed process is as 

follows.  

After the processing in the RET stage, the training 

samples are handled according to the method described in S1 

layer and C1 layer HMAX model, namely, the Gabor filter 

2 2

2 2

1 1 2
( , ) exp{ ( )}cos

2 2

cos sin cos sin

u v u v

u v
h x y u

u x y v x y


    

   

  

   
  (4) 

Whereˈ  ,h x y  is the filtering result of a pixel located in 

 ,x y  of the sample image; 
0 0 0 0= 45 ,0 ,45 ,90     is the angle 

of the filters; the axis u  is parallel to   and the axis v  is 

perpendicular to  ; u ǃ v  are the standard deviations of the 
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Gaussian envelopes in the axis u  and v , respectively;   

represents the wavelength which has 16 values: 

7 9 11 , 33,35, 37ˈ̍ ˈ . Each training image has 8 different 

Gabor sub-images after filtering [15] expressed by 

( 1,...,8)kG k  respectively. Assuming the size of the training 

sample is W H , the kth Gabor feature kG is 

4k kW R H R  , where  = 8 10 12 ... 22kR  shows the 

down-sampling parameter and 4 corresponds to 4 filter angles. 

After filtering, according to the filters of different 

wavelengths, the Gabor feature images of all the training 

samples can be divided into 8 groups. To ensure that the 

patches can cover the features in all scale space, we extract 

1000 patches from each group, a total of 1000 8  patches. At 

the same time, these patches have 4 sizes 

 4 1,2,3,4i iS S i   , each having 250 8 , which contributes 

the patches to have a robustness for the target scale 

transformation. The obtained patches can be represented by the 

following matrix 

1 1

1 4

8 8

1 4

P P

P

P P

 
 

  
 
 

        (5) 

Where  ̍ the subscript of 
k

iP represents the size of 

patches; the superscript k  indicates that these patches are 

extracted randomly from the Gabor features kG  of all  the 

training samples. In other words, 
k

iP  represents a total of 

250 patches extracted from the kth  Gabor feature kG  with 

the size of 4i iS S  . And the jth  patch in 
k

iP is 

expressed as ( 1,...,4, 1,...,8, 1,...,250)k k

ij ip P i k j    . In the 

HMAX model of Poggio, each patch 
k

ijp  contains the 

features in 4 directions to ensure that the patches have the 

robustness for the rotation variation of the training samples, 

which increases the following calculation by 4 times. 

According to the “winner-takes-all” principle of the visual 

cortex during the signal processing, we used the method of [16] 

to compress the patches. It could reduce patches with four 

directions into one by retaining the maximum pixel at the same 

position but different directions and removing other three 

pixels, namely. 

4

,
1

max
o

k k

ij ij o
o

p p



         (6) 

After the compression, the 4i iS S   patch 
k

ijp  

becomes i iS S , and the total computation is reduced by three 

quarters on the base of retaining important features in every 

direction. 

Because the above patches are selected randomly, the 

amount of features in each patch is also random. In this case, a 

large number of patches are needed to maintain a high 

recognition accuracy [15]. However, too many patches greatly 

increase the calculation time for detection. It is necessary to 

remove those patches with little characteristics and select the 

“better” patches. Here, the Support Vector Machine (SVM) is 

applied to screen the patches [16]. Firstly, we use the HMAX 

model to calculate the feature vectors of all the training 

samples and each element of the feature vector corresponds to a 

patch. Then the SVM is used to classify these feature vectors. 

In the process of classification, the classifiers would give each 

element a weight. Greater weight means this element plays a 

more important role in the classification and the corresponding 

patch would contain more useful features. By rearrange all the 

patches in 
k

iP  with  the weights from big to small and 

reserve front N , the  patch screening is completed. 

Acquisition of the Primary Feature 

Similar to the processing method for the training samples, 

we first carry on the Gabor filtering and maximum pooling 

operation to handle each suspicious region having gone 

through the RET stage in processing. Likewise, according to 

the different wavelengths of filters, a suspicious region 
lt has 

8 Gabor feature sub-images expressed as
k

lt whose size is

 4 1,...,8k kW R K R k   . Then under the principle of 

the “winner-take-all”, k

lt can be compressed into 

 1,...,8k kW R K R k   by retaining the maximum pixels 

in 4 directions. 

The primary feature of a suspicious region is on the basis 

of image similarity, which can be described by the two 

correlation coefficients between the two images  

  

   
1 1

2 2

1 1 1 1

( , )

g k

g gk k

N N

gk gk

g k

N NN N

gk gk

g k g k

m m p p

s m p

p p m m

 

   

 


 



 
   (7) 

Wherein gkm  and gkp  are  the pixel values on line 



 

7 

 

g  column k  of images m and p ,respectively; m , p  are 

the means of the  two images, gN , kN  represent their 

numbers of rows and columns. 

Based on this formula, we can get the correlation 

coefficient between a Gabor feature sub-image 
k

lt of the 

suspicious region 
lt and a patch

k

ijp , namely  ,k k

l ijs t p . 

In order to ensure the accuracy of correlation coefficient, 
k

lt
and 

k

ijp  must be in the same scale space which means that 

their corresponding Gabor filters have the same wavelengths or 

their superscripts k  are the same. It also reflects the relative 

independence of the information flow between the various 

areas of visual cortex. 

The eighth Gabor feature sub-images 
8

lt  corresponds the 

longest wavelength of filters. Therefore they have the smallest 

size and retains the more overall features, which will greatly 

simplify the following calculation. As a result, we only use 
8

lt  

to calculate the primary feature. The correlation coefficients 

between 
8

lt of all the suspicious regions 
lt and 

8

ijp  

compose the corresponding similarity matrix ( )lS t : 

     
     
     
     

8 8 8 8 8 8

11 12 1

8 8 8 8 8 8

21 22 2

8 8 8 8 8 8

31 32 3

8 8 8 8 8 8

41 42 4

, , ,

, , ,
( )

, , ,

, , ,

l l l N

l l l N

l

l l l N

l l l N

s t p s t p s t p

s t p s t p s t p
S t

s t p s t p s t p

s t p s t p s t p

 
 
 
 
 
 
 
 

   (8) 

The primary feature ( )primary lS t of the suspicious region 

lt is the mean of all elements in the similarity matrix 

  
4

8 8

1 1

1
( ) ,

4

N

primary l l ij

i j

S t s t p
N  

       (9) 

The primary feature ( )primary lS t  represents the average 

correlation coefficient between this suspicious region 
lt and 

the prior information. It reveals the probability of this 

suspicious region containing the real targets. The greater 

( )primary lS t  means a higher possibility. 

Rough Detection 

According to the competition mechanism of the visual 

cortex, the rough detection for the suspicious regions is 

completed using the obtained primary features. First, we need 

to set a threshold 0( )primaryS t  

0 0 0( )primaryS t c          (10) 

Among them, 0

1

1
( )

TN

primary l

lT

S t
N




  ,  2

0 0

1

1
( )-

TN

primary l

lT

S t
N

 


 

represent the means and standard deviation of all the primary 

features; 
TN

 
indicates the total number of the suspicious 

regions after the pretreatments˗c is an adjustable parameter. 

The rough detection is finished through excluding the 

suspicious regions whose primary feature is less than the 

threshold. 

AVC Stage 

Rough detection has eliminated a large number of 

suspicious areas having poor correlation with the prior features, 

so finer features are needed to identify the targets and false 

alarms. In the AVC Stage, we simulate the neurons with the 

bigger receptive fields in the advanced visual cortex to further 

process the suspicious areas. More accurate “advanced feature” 

is extracted from each suspicious region and classifiers are 

used to separate the false alarms and real targets, namely “fine 
detection”. The whole process is shown in 

 

Fig 6. In the calculation of the advanced feature, the 

“matching area” [17] is introduced to compensate the position 

errors of the suspicious regions to improve the accuracy of 

advanced features. 

Matching area  

As the suspicious areas are obtained by the preprocessing, 
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their positions have relatively big errors. As shown in Fig. 5(a), 

only a portion of the real target is in the suspicious region, 

which reduces the quantity of the useful features in this 

suspicious region, influencing the accuracy of the detection. 

The schematic diagram of the matching area is shown in Fig. 5 

(b). First, let us keep the center of the suspicious region 
lt

(W H ) unchanged and expand its area 4 times, which is the 

matching area of this suspicious region, expressed by l . Then, 

the matching area is divided into the 4 sub-areas with the size

W H , expressed by  1,..,4l   . Now the main body of 

the real target will be located in one of these subareas. In the 

subsequent steps, we need to further deal with all the four 

sub-regions and calculate the advanced features on this basis. 

 Suspicious area

Real target 

 Original image

2W

2 H

W

H

Matching area

(b)(a)

lt

 

Fig. 5 Schematic diagram of the matching area (a) The 

relationship between a real target and a suspicious area (b) 

Location-relation of a real target and matching area 

Advanced Feature and Fine Detection. 

Similarly, the 4 sub-regions l  of the suspicious 

region lt  first go through the RET stage of the detection, the 

Gabor filtering, the maximum pooling operation and the 

compressing in different directions. Each l  has 8 Gabor 

feature sub-images with the size of k kW R H R , 

 1,...,8k

l k  . According to the related calculation 

formula, we could get the correlation coefficient between 
k

l  

and its corresponding patches
k

ijp , namely  ,k k

l ijs p . It also 

should be noted that 
k

l  and
k

ijp  must correspond to the 

Gabor filters of the same wavelength. Among the 4 correlation 

coefficients   , =1,2,3,4k k

l ijs p  , the larger correlation 

coefficient means that its corresponding sub-region 
k

l  may 

contain more features of the target, hence we take the 

maximum as the correlation coefficient between 
k

lt and 
k

ijp ,

 ,k k

l ijs t p : 

   
4

1
, max ,k k k k

l ij l ijs t p s p



      (11) 

 

Fig 6 Processing flowchart of the AVC stage (a) Matching area 

of a suspicious area lt (b) RET stage process of 4 sub-images 

of a matching area  =1,2,3 4l  ˈ  (c) Calculate the advanced 

features on the base of Gabor features (d) Complete the fine 

detection by the means of classifiers  

In this case, we get a new similar matrix about 
lt

composing of the correlation coefficients of all Gabor 

sub-images of this suspicious area 
lt and the corresponding 

patches, namely ( )advance lS t  

       
       

       

1 1 1 1 1 1 1 1

1 2 3 4

2 2 2 2 2 2 2 2

1 2 3 4

8 8 8 8 8 8 8 8

1 2 3 4

, , , ,

, , , ,
( )

, , , ,

l l l l

l l l l

advance l

l l l l

s t P s t P s t P s t P

s t P s t P s t P s t P
S t

s t P s t P s t P s t P

 
 
 

  
 
  
 

 (12) 

Where        1 2, , , ,k k k k k k k k

l i l i l i l iN
s t P s t p s t p s t p    . 

Each of its elements indicates the correlation coefficient 

between 
k

lt  and a patch in
k

iP . As each 
k

iP  has N  

patches after the screening described in last section,  ,k k

l is t P  

is a 1 N  vector. The similarity matrix ( )advance lS t  is the 

obviously different matrix ( )lS t in the PVC stage. ( )lS t  only 

consists of the correlation coefficients between 
8

lt and 
8

iP

while ( )advance lS t  contains  all the Gabor feature sub-images, 

which preserves the  characteristics of the suspicious targets in 
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various scale spaces and reflects the advanced visual cortex 

vast capable of synthesizing complex information. 

After the above calculation, each remaining suspicious 

target 
lt  has 4 8 N   correlation coefficients, composing a 

4 8 N   vector, which is the named “advanced feature” of the 

suspicious target 
lt . Compared with the primary feature of 

only one element, the advanced feature can comprehensively 

describe a target as a vector. Finally, we use the SVM to play 

the role of nerve center by separating the false alarms from real 

targets. 

To summarize, the particular flow of the proposed method 

is shown in Fig. 7. 

Experimental Results and Analysis 

The original images used in our experiments are the real 

MSTAR amplitude images with a resolution of 0.3m and the 

size 1748 1478 . The well-known MSTAR public database 

was collected using the Sandia National Laboratories Twin 

Otter SAR sensor payload operating at X band with a high 

resolution of 0.3 m, spotlight mode and HH single polarization.  

The detection objects are 128 128  slice images of the 

various vehicles taken from different angles and they are 

divided into a training set and a detection set, respectively. The 

training set is used to extract the patch-based features while the 

detection set is used to compound the detecting SAR images.  

In the example,  

 

Fig. 8 shows the four slice images of two kind tanks 

bmp2_9563 and btr70 in different directions.  

AVC Stage  

Original 

SAR image

Calculate  

Advanced 

Features 

Fine 

Detection

Pre-processing

Edge preserving 

smoothing

gray scale quantization

Connected component 

labeling

Detection process

(c) (d)

Matching 

area

RET Stage

DOG

Distortion 

Rectifying

Encoding

PVC Stage

Calculate 

Primary 

Features 

Rough 

Detection

Patches

(b)(a)

 

Fig. 7 The detailed flowchart of the proposed method (a) Find the suspicious regions by the  pre-processing (b) RET stage processes 

to enhance the useful features and suppress the clutters, including the DOG filter, distortion rectifying, coding (c) PVC stage 

calculates the primary features of the suspicious regions on the base of the patch-based prior features to eliminate the parts of 

suspicious targets through the rough detection (d) AVC stage obtains more accurate advanced features to separate the real targets 

from the remaining suspicious regions in fine detection. 

Validity Experiments  

The original SAR images were selected as follows. 20 targets 

randomly selected from the detection set were added into the 

SAR images of the MSTAR public database with various SCR. 

 

Fig. 9 shows a composed SAR image when SCR 2.0  In 

order to observe their locations easily, the targets are marked 
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with the rectangle symbols. Some of the targets are obscured by 

forest and tussock adding the complexity of detection. 

In the example,  

 

Fig. 8 slice images of some targets (a), (b) represent 

bmp2_9563 tanks in different perspectives. (c), (d) are btr70 

tanks in different perspectives. 

The result of the preprocessing for the above SAR image 

is shown in Fig. 10. As a large numbers of trees, construction 

and other clutters are treated as the suspicious regions, the 

results contain a total of 146 false alarms and 20 real targets. 

Fig. 11 indicates the distribution characteristics of all the 

primary features of the suspicious areas calculated in the PVC 

stage, where the horizontal axis represents the values of the 

primary features and the vertical axis represents the numbers of 

the targets in different ranges. The false alarms and real targets 

are respectively represented by the blue, red bars. The vertical 

dotted line is the threshold for filtering the false alarms. As can 

be seen, compared with the false alarms, since the features of 

true targets are more similar to the transcendental 

characteristics, the correlation coefficient between the real 

targets and the patches are greater, so they have larger primary 

features. The rough detection eliminates 102 false alarms while 

remaining 44, misjudging 1 real target, as shown in Error! 

Reference source not found.. 

Fig. 13 shows the fine detection results. In addition to a missed 

target in the rough detection, the remaining 19 targets are all 

detected in this stage and the number of false alarms is reduced 

from 44 to 3. Hence, the advanced feature could greatly reduce 

the false alarms and effectively improve the detection 

performance with the aid of more accurate advanced features.  

 

Fig. 9 Composed SAR image with SCR=2, which includes 20 

real targets labeled by red rectangle 

 

Fig. 10 The binary image after preprocessing where black areas 

indicate the suspicious targets and the rectangle labeled area 

are real targets 

 

Fig. 11 Numbers of the suspicious targets in different range of 

the primary features 
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Fig. 12 Results of the rough detection on the base of primary 

features, a large number of false alarms have been eliminated. 

Rectangle labeled areas are detected for real targets and circle 

labeled region is the missed. 

 

Fig. 13 Final results from the fine detection using the advanced 

features. There are only three false alarms labeled by ellipses. 

The rectangles labeled areas are detected for real targets and 

the circle labeled region is the missed. 

Experiments about Environment Adaptability  

To verify the adaptability of the proposed method for 

various clutter environments, we carried out the following two 

experiments. The background clutters in Fig.14 (a) mainly 

includes trees and grass, which may obscure the targets and 

form many highlights similar to the goals in the image. The 

clutters in Fig.14(b) are the artificial buildings randomly 

distributed across the background. Fig.14(c) and (d) are the 

detection results of the CFAR for two composed SAR images, 

which leave a large number of false alarms. Fig.14 (e) shows 

the final detection results of the proposed method for image (a). 

There are 4 false alarms and one missed target. Fig.14 (h) is the 

detection result of the image(b), where one target is missed and 

two false alarms are treated as targets. As can be seen, this 

algorithm has better performance than the commonly used 

CFAR method. 

Matching Area Effect 

In order to observe the effect of the matching area on the 

detection rate and false alarms, Fig. 15 compares the detection 

results of the 5 composed SAR images with and without the 

matching area. Fig. 15 (a) shows the detection rates in two 

cases while Fig. 15 (b) indicates their difference in false alarms. 

Results show that the introduction of the matching area 

increased the average detection rate by 8.2% and reduced the 

false alarms by 1.6%. 

Performance analysis 

Fig. 16 gives the detection performance of different stages 

of the proposed approach, CFAR and HMAX. As HMAX does 

not have the function of target searching, a same preprocessing 

stage is also applied to obtain image slices of all suspicious 

areas before feature extraction by HMAX and recognition by 

means of SVM. Similarly, patches used in HMAX are also 

selected randomly from target samples. In Fig. 16(a), the curve 

PVC shows the number of false alarms after the processing at 

the PVC stage without the RET stage under different SCR, the 

curve RET+PVC represents the false alarms on the condition 

that the SAR image first goes through the RET stage and then 

enters the PVC phase. Compared with the PVC curve, the 

average false alarm of the RET+PVC decreases by 26%. 

Obviously, the RET stage has played a vital role in the 

detection similar to the retina in a biological visual system, 

which could preliminarily screen the visual information and 

effectively enhance the target features so as to improve the 

detection results. The curve RET+PVC+AVC represents the 

false alarms through all the 3 stages of the proposed method. Its 

average false alarm falls by 85% compared with the RET+PVC 

curve and can maintain a low false alarm under the low SCR. 

Instead, false alarm of CFAR is far more than the proposed 

method and HMAX since CFAR is easily affected by SCR. As 

can be seen, from the PVC stage and AVC stage, the continued 

refinement for features suspicious of regions gradually narrows 

down the scope of detection and decreases false alarm. It also 

reflects the rules of transmitting and managing information in 

biological visual systems. Namely, the information flows are 

processed and transmitted from the retina to the primary visual 
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cortex and the advanced visual cells. Fig. 16. (b) compares the 

detection rates of above three methods. Compared with CFAR, 

the proposed method and HMAX have relatively higher 

detection rates. Meanwhile, performance of the proposed 

method is better than HMAX especially when SCR is less 

than 4, proving that, DOG filtering, distortion rectifying and 

encoding enhance this model’s robustness by wiping out the 

clutters, and enhance the features. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 (e)  

 

(f) 

Fig.14 Detection results of the proposed method in two kinds of background clutters. (a) A composite SAR image by adding 10 

vehicles in the wood and grass background with SCR=2. (b) A composite SAR image with manmade building and 10 vehicles with 

SCR=2. (c) The result of CFAR for image (a). (d) The result of CFAR for image (b). (e) The result of the proposed method on the 

image (a). (g) The result of the proposed method on image (b). 

 

 (a) (b) 

 (b) 

Fig. 15 Comparative effects of with and without matching area 

(a) detection rate. (b) false alarms 

 

 (a) (b) 

Fig. 16 The performance analysis of the proposed method, 

CFAR and HMAX (a) Comparison of false alarms in different 

SCR, where the curve PVC means the direct PVC detection 

without RET; curve RET+PVC represents the false alarms of 

rough detection; RET+PVC+AVC indicates the fine detection. 

(b) Comparison of the detection rate of the proposed method, 

CFAR, and HAMX.  

 

Conclusion 

In order to realize the rapid detection for the targets of 

interest, inspired by the cooperation mechanisms between the 

retina, primary and advanced visual cortex in the visual 

information processing, a progressive enhancement SAR 
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targets detection approach is proposed. Using the improved 

feature learning method, this method progressively extracts and 

processes the target features in three stages to obtain the 

primary features and the advanced features. On this basis, the 

rough detection and the fine detection complete the target 

search by gradually reducing the suspicious areas.  

Our experimental results have shown that, whether for the 

isolated highlights or the various continuous clutters in SAR 

images, the proposed method can make the full use of the 

unique feature extraction and the processing mechanism of 

biological vision systems to accurately detect the targets with 

few false alarms. The introduction of the RET stage and the 

improvement of feature learning methods make the new  

method have the  better detection rate and the lower false 

alarms even with the  low SNR. At the same time, the 

matching area further improves the detection results by 

compensating the position errors of the suspicious regions. 

Finally, a series of comparative experiments with the 

traditional method have been carried out to demonstrated the 

superiority of the proposed approach. 
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