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An occupant-differentiated, higher-order Markov Chain method for prediction of domestic

occupancy

Graeme Flett∗, Nick Kelly

Energy Systems Research Unit (ESRU), Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, UK

Abstract

Household energy demand is closely correlated with occupant and household types and their associated occupancy patterns. Ex-

isting occupancy model performance has been limited by a lack of occupant differentiation, poor occupancy duration estimation,

and ignoring typical occupancy interactions between related individuals. A Markov-Chain based method for generating realistic

occupancy profiles has been developed that aims to improve accuracy in each of these areas to provide a foundation for future en-

ergy demand modelling and to allow the occupancy-driven impact to be determined. Transition probability data has been compiled

for multiple occupant, household, and day types from UK Time-Use Survey data to account for typical behavioural differences.

A higher-order method incorporating ranges of occupancy state durations has been used to improve duration prediction. Typical

occupant interactions have been captured by combining couples and parents as single entities and linking parent and child occu-

pancy directly. Significant improvement in occupancy prediction is shown for the differentiated occupant and occupant interaction

methods. The higher-order Markov method is shown to perform better than an equivalent higher-order ’event’-based approach.

The benefit of the higher-order method compared to a first-order Markov model is less significant and would benefit from more

comprehensive occupancy data for an objective comparison.
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1. Introduction

Technical and commercial analysis of distributed generation en-

ergy projects, particularly for smaller schemes with typically

fewer than 500 households, requires a detailed understanding

of the likely demand profile at both short and long time-scales.

Intra-day demand diversity estimation is required to assess the

sizing of localised energy supply systems, the demand manage-

ment potential, and the scope for grid import/export.

Demand prediction is of particular importance for small-

scale low-carbon projects. Generation may either be seasonal,

intermittent or benefit from stable demand [1], and as the scale

reduces individual household demand behaviours become in-

creasingly influential. Accurate matching of supply and de-

mand and adequate storage sizing are therefore critical for en-

suring that such projects perform as anticipated. The UK Gov-

ernment has identified a lack of energy demand data as a key

barrier to growth in low-carbon community energy and demand

management projects [5].

1.1. Relationship between Household Characteristics, Occu-

pancy, and Demand

The relationship between household characteristics, occupancy

and demand is complex.

A number of factors have been shown from analysis of mea-

sured data to influence household energy demand characteris-

tics. Yohanis [20], Haldi and Robinson [7], and McLoughlin
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et al [8] have determined that these include, but are not limited

to; floor area, household size, bedroom number, occupant age,

income, social class, children, employment status, and tenure.

The specific influence of occupancy probability has also been

identified. Capasso [3] incorporated occupancy potential as

a primary demand driver in a developed demand model that

combined a variety of socio-economic and behavioural factors.

Yao and Steemers [19] concluded that “both behavioral deter-

minants and physical determinants related energy-consumption

are more or less influenced by people’s occupancy pattern”,

and that employment related daytime absences were the most

significant occupancy effect. An extensive review of the lit-

erature linking time-use behaviour and electrical demand was

performed by Torriti [15], stating that “residential electricity

demand profiles are highly correlated with timing of active oc-

cupancy, i.e. when consumers are at home and awake”.

The link between household characteristics and occupancy

was analysed in detail by Wilke [18] using French Time Use

Survey data. Specific variations were observed based on em-

ployment, gender and day type (weekend/weekday) with age

ranges also identified as a key factor for the developed occu-

pancy model.

Despite the existing work linking both household character-

istics and occupancy with demand. There has been little work

done that specifically quantifies the impact of occupancy on de-

mand and the related influence of different types of occupants

(e.g. full-time workers, stay-at-home parents, retired individu-

als etc.).



The need for research in this area becomes more criti-

cal when considering the changing demand characteristics of

dwellings; as the thermal efficiency of dwellings improves, oc-

cupancy driven electrical and hot water demands will predomi-

nate as heating demand, which is less occupancy sensitive, falls.

Moreover, the residual heating load in low-carbon houses may

be more closely linked to active occupancy as pre-heat times

reduce and heating times tend towards actively occupied peri-

ods for a proportion of potential heating system and building

thermal design combinations. Consequently, realistic predic-

tions of occupancy patterns will be crucial in determining the

characteristics of future domestic energy consumption.

1.2. Occupancy Data Sources

There is currently no large UK dataset that specifically tracks

the occupancy of individuals over a prolonged period of time.

Assessing long-term occupancy patterns for individual house-

holds is therefore difficult. However, there is extensive single

day time-use data, allowing assessment of occupancy patterns

across identifiable sub-populations.

The UK Time-Use Survey (TUS) dataset compiled in

2000/2001 [11] was used for the initial analysis and final model

development for the work reported in this paper. The dataset

comprises approximately 20,000 diaries with a 10-minute res-

olution, with one weekday and one weekend day diary per per-

son. Additionally a smaller UK time-use dataset was compiled

in 2005 [12]. This comprises approximately 5000 diaries and

includes the same data as the earlier, larger TUS survey. This

later dataset was used for verification of the model outputs.

Each individual diary includes detailed personal information

(age, gender, relationships to other occupants etc.), household

information (size, type, age of youngest child etc.), and a pri-

mary activity, secondary activity (e.g. watching TV while un-

dertaking primary activity) and location for each of the 144

10-minute time-steps. 146 standard TUS activities are defined

that consolidate all potential occupant activities into appropri-

ately linked groups. For example, the ‘Food Prep’ TUS activ-

ity comprises all cooking and meal preparation activities. The

2000/2001 survey also includes one-week work diaries from

which typical working patterns can be derived.

Torriti [16] reviewed time-use datasets, identifying some in-

herent problems; (1) large datasets are required to provide suf-

ficiently representative behavioural data, (2) typical days are

captured, ignoring the potential for extreme weather or com-

munal events, and (3) TUS surveys are rarely undertaken, con-

sequently the use of older survey data for use in future pro-

jections could yield potentially misleading results. Further, the

24-hour duration of TUS diaries prevents identification of occu-

pancy and activity patterns for individuals occurring over time

periods exceeding 24 hours.

Despite these limitations, TUS datasets remains the sole

source for occupancy and activity data with a sufficient breadth

of respondents to be representative of the overall population and

also smaller sub-populations. With a 10-minute time resolution,

they provide sufficient data to allow effective modelling of oc-

cupancy and behaviour that affects energy use.

It should be noted that a new UK survey is to be completed

in 2015 [4]. This dataset may show significant changes in daily

activities and the work reported in this paper will be updated

when this data becomes publicly available.

1.3. Prediction of Occupancy for Demand Modelling

Grandjean et al [6] conducted a comprehensive review of de-

mand modelling and concluded that bottom-up models featur-

ing stochastic occupancy prediction represented the best current

method. Richardson et al [13] and Widen et al [17] have de-

veloped such models. These authors use a first-order Markov-

Chain approach to predict changes in occupancy.

Markov-Chain (MC) techniques allow the occupancy status

at a time, t, to be determined based only on the status at the

previous time, t-∆t. The basis for any MC model is transition

matrices (see Figure 1). These hold the probability of transition

from one state a to another state b (pa→b). The size of this

matrix is determined by the number of independent states to be

modelled. For a model with n states, an n x n matrix is required.

A row in this matrix therefore contains the probabilities of a

transition from some state i to all n possible states (including

no change from state i) and all entries per row should sum to 1.

State 1 2 .. i .. n

1 p1→1 p1→2 .. p1→i .. p1→n

2 p2→1 p2→2 .. p2→i .. p2→n

.. .. .. .. .. .. ..

i pi→1 pi→2 .. pi→i .. pi→n

.. .. .. .. .. .. ..

n pn→1 pn→2 .. pn→i .. pn→n

Fig. 1. Transition probability matrix (TPM) structure.

To calculate a sequence of states over a number of time steps,

a random number R between 0 and 1 is generated for each mod-

elled time step and the new state is determined by systemati-

cally comparing the generated random number with the cumu-

lative probabilities, 1. . . n, in the appropriate row i of the matrix.

For example, if a state i persists at time step t-∆t then k, the next

state at time t, is the first cumulative probability
∑ j=k

j=1
pi→ j that

exceeds R.

For a first-order MC model, only the state at the preceding

time step is considered. A second-order model considers the

two preceding states. Higher-order models consider the dura-

tion of the existing state at each modelled time step.

In the Richardson et al [13] model, the states in the transi-

tion probability matrices (TPM) are the number of active occu-

pants in a household, ranging from 0 to h, with h being the total

number of occupants. Consequently, different sized matrices

are required for different household sizes: 2 x 2 for a 1-person

household (the occupant is out or in the dwelling), 3 x 3 for

a 2-person household (both out, one person, or two people in

dwelling), etc. Widen et al [17] model each individual indepen-

dently with three potential occupancy states (inactive (sleep),

active, out) requiring a 3x3 matrix.

TPMs were generated for each timestep (10-minute basis for

[13] and 1-minute for [17]) during the day to account for chang-

ing occupancy behaviour with time. Further differentiation is
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also made between weekdays and weekends. Therefore, de-

pending on the current occupancy state, day type, time period,

and, in the case of [13], household size, the corresponding TPM

is selected to generate the next occupancy state.

1.4. Markov Modelling Deficiencies

Existing Markov-based methods for occupancy prediction have

potential deficiencies that need to be addressed to improve oc-

cupancy modelling. First, most do not differentiate between

household types beyond the number of occupants. Second, the

simple, first-order approaches used do not account for the du-

ration of a particular occupancy state [18]. This is important as

certain activities (e.g. sleep, working absences) are associated

with particular ranges of duration, but also with variable start

and finish times that can conflict in a first-order model. Finally,

occupancy interactions between different household members

are not captured if modelled as multiple independent individu-

als [16].

1.4.1. Differentiated Occupant Models

Time Use Survey (TUS) data analysis highlights distinct occu-

pancy variations for different occupant and household types, as

demonstrated by Figure 2. The active occupancy probability

shown is the probability of at least one occupant being awake

and in the dwelling. This shows that some level of occupant

or household type differentiation is required to properly capture

different occupancy behaviours.

Neither the Richardson et al [13] nor Widen et al [17] models

make any differentiation by household type beyond number of

occupants. This implicitly assumes that different households

conform to an average occupancy behaviour, which Figure 2

demonstrates is not the case. So, at the individual household

level, these methods can generate occupancy profiles that are

an unrepresentative composite of multiple distinct behaviours.

Further work using the same basic first-order Markov tech-

nique by Muratori et al [9] split households into four archetypes

(working/non-working, male/female). Nijhuis et al [10] also

used a first-order Markov method differentiated by household

size and age. Neither includes a detailed analysis of the specific

influence of the differentiating characteristics.

Wilke [18] reviewed the impact of sub-population type and

size, including differentiation by household type, age, employ-

ment status, and gender, using an ‘event’-based model that will

be discussed in more detail below. He found that despite hav-

ing a smaller sample size, the more refined models better repli-

cated a particular sub-population’s characteristics compared to

a model derived from a larger, general population.

Aerts et al [2], using a modelling method similar to Wilke

[18], differentiated TUS populations by seven common occu-

pancy patterns (e.g. home all day, out from 9am-6pm, etc.)

across all household types. This method is suitable for gener-

ating household-type specific single-day profiles based on the

proportion of each particular day type per defined population.

Analysis of the UK TUS data conducted by the authors de-

termined that age, gender, and diary day employment status had

a significant influence on occupancy characteristics, confirming

consistency with the French TUS analysis performed by Wilke

[18].

To illustrate the relative influence of these additional factors,

1-person non-retired households were analysed; this group was

selected as it allowed the influence of age, gender and employ-

ment status to be analysed in isolation from the influence of

other occupants. Weekday, Saturday and Sunday datasets were

considered separately allowing the effect of day type on occu-

pancy to be assessed.

The overall 1-person non-retired household population was

split based on working/non-working days, over-44/under-44

years old (selected based on a 50/50 dataset split and an ob-

served occupancy behaviour change between 40 and 45) and

the sex of the subject. The working characteristic is defined as

those with more than 5 working hours during the diary day as

this was seen to be the working duration at which this behaviour

was distinguishable from typical non-work related daytime ab-

sences.

Table 1

Average weekday active occupancy probabilities for 1-person non-retired

household sub-populations.

TUS Population Average Active Occupancy Probability

Overall 0.317

Work-day / Non-Work-day 0.240 / 0.412

Under-44 / Over-44 0.260 / 0.376

Male / Female 0.291 / 0.343

As shown in Table 1, diary day employment status had the

greatest overall influence on average occupancy. Occupant age

also was significant, with a consistent increase with age shown

when multiple ranges are analysed.

Average active occupancy, is the average portion of the time

during the day for the stated group when the occupant is awake

and in the dwelling (i.e. sleep is excluded).

It should be noted that the current 24-hour basis for TUS di-

aries represents a fundamental barrier to considering any TUS-

based occupancy models as being representative of individual

households. A dataset of a similar scale, but with extended

multi-day diaries, would be required to determine statistically

how actual households compare to the average of their type.

Any differentiated model using current TUS data resolution

would be indicative only of typical sub-population behaviour.

Therefore, such models are most applicable for comparisons

between sub-populations and for community-scale analysis,

where a degree of averaging is acceptable.

1.4.2. Duration Prediction

According to Wilke [18], first-order Markov-Chain (MC) mod-

els result in overly random occupancy predictions with poor

occupancy status duration prediction. Wilke proposed an alter-

native event-based model that uses the same TUS data to gen-

erate forward prediction of occupancy status and duration. This

alternative method improved duration prediction, and reduced

computational load with a recalculation per event rather than

per time step.
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Fig. 2. Average weekday active occupancy probability profiles for different household types.

1.4.3. Occupant Interactions

For individuals in multi-person households, particularly those

of co-habiting individuals (i.e. couples, parents), occupancy is

not expected to be independent for each member.

Existing models either assume each household member is in-

dependent ([3], [17] and [18]) and accept the inherent error, or

base the MC model on the number of active household members

[13] but do not distinguish between individuals or differentiate

by household type. The significance of this potential error has

not been adequately determined.

2. Aim and Contribution

The aim and main contribution of this paper is to address the

highlighted deficiencies in the prediction of occupancy using

Markov-type models. To this end, a refined Markov-type model

for occupancy prediction has been developed with the following

innovations:

• First, transition probability matrices have been generated

from the TUS dataset that differentiate between critical

household characteristics with regards to the probability

of active occupancy.

• Second, a higher-order Markov model was developed in

order to improve the prediction of transitions and durations

of different occupancy states.

• Finally, further refinements are made to the basic Markov

model in order to account for the impact of relationships

between co-habiting individuals on the overall active oc-

cupancy probability.

3. An Improved Markov Model

The basic large population, first-order Markov methodology, as

used by [13] and others, has been adapted and refined in order

to improve occupancy prediction. The nature of the changes

are described below along with the verification of the benefits

of these changes.

3.1. Verification Mechanisms

Three metrics are used in this paper to assess the impact of the

changes made to the Markov-Chain occupancy model.

Average Occupancy Metric – determines the average per-

time step occupancy error between the Time Use Survey (TUS)

input data and model output for each occupancy state - quanti-

fying the quality of calibration of the model. Equation (1) be-

low is based on 144 data points per day (10 minute time steps).

AOstate =

144
∑

t=1

∣

∣

∣P̄mod
state(t) − P̄tus

state(t)
∣

∣

∣

144
(1)

where, AOstate is the Average Occupancy Metric for state,

state, P̄mod
state(t) is the average modelled probability for state,

state, at timestep, t, and P̄tus
state(t) is the average probability for

state, state, at timestep, t, derived from the input Time-Use Sur-

vey data.

Two means of analysis are possible with this metric.

• First, it can be used to calculate the prediction for the aver-

age per time step results of multiple profiles generated us-

ing the model. This determines how effectively the model

converges to the population average (hereafter referred to

as AO Conv).

• Second, it can be used to calculate the prediction error for

each individual profile. The mean of this error can be used

to determine how effectively individual profiles replicate

the input data (hereafter referred to as AO Var).

Over multiple profiles, a refined Markov model should be

consistent with the input data. However, individual profiles

should demonstrate deviation from the population average oc-

cupancy. Within real populations individual households will

also deviate; so, a model that tracks the broad occupancy char-

acteristics but with some variation about the mean is acceptable

within limits.

State Duration Distribution Metric – (hereafter referred to as

DurDist) is used to assess the ability of a model to generate a
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realistic range of occupancy state durations. It compares the

difference in the cumulative probability function (CDF) at each

10-minute duration range for the histograms of the model gen-

erated results and TUS data in order to determine if the gener-

ated occupancy profile replicates the occupancy state durations

seen in the TUS. The ’error’ is the sum of the absolute differ-

ence between the model and TUS data CDFs at each duration

value for each state.

This metric is commonly known as the Earth Movers Dis-

tance: a commonly used quantitative histogram similarity mea-

sure where the bin values are not independent and cross-bin

analysis is required [14].

DurDiststate =

144
∑

d=1

∣

∣

∣

∣

∣

∣

∣

d
∑

d=1

P̄mod
state(d) −

d
∑

d=1

P̄tus
state(d)

∣

∣

∣

∣

∣

∣

∣

(2)

where, P̄mod
state(d) is the probability of a modelled state duration

of d for state, state and P̄tus
state(d) is the probability of a state

duration of d for state, state, derived for the input Time-Use

Survey data.

Occupancy Profile Similarity Metric – the process used is

generally known as the Levenshtein Edit Distance Method

(LEDM) for character string similarity analysis, which is used

to compare individual occupancy profiles and is similar to the

method used by [2]. The derived metric is hereafter referred to

as ProfSim.

This LEDM method is used to quantify the dissimilarity be-

tween two strings by quantifying the measures needed to trans-

form one into the other. In the LEDM a ’cost’ of 1 is assigned

for each edit (insertions, deletions, and replacements) required

in the transformation. For example, transforming 110111 to

001011 would require a minimum edit of a replacement of the

first digit, deletion of the second, and insertion of the last digit

- a total cost of 3. The approach can therefore be applied when

comparing two numerical profiles. When two profiles are com-

pared, for clarity, the total ’cost’ is converted from a per-time

step to an hour equivalent by dividing the result by the number

of time steps per hour.

The metric can be used in two ways.

• First, it can be used to compare the output profiles with

the input dataset. The smallest cost per profile, represen-

tative of the closest match, is determined and an average

calculated across all modelled days. This is a measure of

the average similarity between generated profiles and the

closest real profile.

• Second, each profile in either the input dataset or model

output dataset can be compared with other profiles in the

same dataset quantifying the behavioural similarity within

and between each dataset.

There is no clear definition of when an input dataset, in terms

of occupancy behaviour, is either overly similar or contains an

unrepresentative population. Similarly there is no clear delin-

eation of the point at which the output results change from

overly random to realistic or from realistic to narrowly repli-

cating the input data. The ProfSim metric does, however, allow

a relative assessment to be made.

These comparison metrics will be used throughout the paper

to gauge the relative effectiveness of each modelling method

reviewed.

3.2. Markov Model Improvements

The following sections describe the development of a refined

higher-order Markov-Chain model for occupancy prediction.

Firstly, population-specific occupancy data is used to calibrate

the model, secondly, the models prediction of occupancy state

duration is improved, and finally, the influence of occupant rela-

tionships is accounted for. In this paper, the term ’higher-order’

is used to define a model where existing state durations beyond

the preceding time step are taken into account when determin-

ing the probability of a state transition.

3.2.1. Occupant Differentiation

The TUS dataset allows the number of occupants and their re-

lationships to be easily extracted and characterised. In addition,

data such as age, gender, employment hours, and diary date is

included that potentially allows further relevant differentiation

between occupant groups.

The TUS data analysis summarised in Table 1 showed that

for 1-person households, employment status had the most sig-

nificant impact on active occupancy, followed by age, and then

gender. However, in developing a probabilistic, differentiated

occupancy model, there is a need to balance the benefit of in-

creased realism obtained by using smaller subgroups with a

good depth of probability data from larger, heterogeneous pop-

ulations.

To allow differentiation into sufficiently well-defined sub-

populations and capture clear occupancy differences, whilst

retaining a sufficient depth of data, the new model distin-

guishes between three basic occupancy states (’Sleep’, ’Active’

or ’Out’) rather than multiple ’active’ states as per the Widen

et al [17], and Wilke [18] models. The need to distinguish be-

tween the ’Sleep’ and ’Out’ inactive states is necessitated by

the differences in sleep and absence timings and durations that

are utilised by the higher-order methods investigated later in the

paper and also that whilst sleeping an individual will still con-

tribute to heat gains in a dwelling. From this three-state basis,

work was undertaken to quantify when a population was of the

correct size to provide the ideal balance between characterising

the behaviour of specific groups and being statistically robust.

A variety of methods were used to attempt to identify the

minimum population size required to produce a robust statisti-

cal model. Edit distance (ProfSim) analysis indicated that the

minimum number of TUS diaries required to produce a model

that generated sufficient behavioural variety was approximately

100.

Two further methods were used to determine the potential

for producing robust models. One was to review the number

of probability coefficients in the Transition Probability Matri-

ces (TPMs) greater than zero and less than one. A zero value

indicates that there was no individual with that specific state

transition and a value of one is typically associated with the

behaviour of one person (and is therefore not necessarily repre-

sentative of wider behaviour). A fractional value requires mul-
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tiple people to be represented and the number of such elements

can be used as a proxy for probability data quality, and it is

assumed, by extension, model stability.

The other was to review the number of times an annual

higher-order model had a state and duration range that did not

have associated probability data and required a recovery func-

tion to be used. This can occur due to the use of duration ranges

rather than specific durations in the model calibration resulting

in scenarios not seen in the input data. This is also an indi-

rect measure of data quality as reducing the use of the recovery

function requires an increasing likelihood of non-zero probabil-

ity data for transitions in adjacent duration ranges.

Example results for both measures for the under 65, non-

working population are shown in Table 2.

Table 2

Fractional TPM elements and recovery function use for different sizes of transi-

tion probability input datasets (under-65, non-working, 1-person households).

Households in Dataset

Fractional TPM

Probability Elements

(out of 9072)*

Time-steps Recovery

Function Required

(x10−3 %)

50 531 1.81

100 834 0.93

150 1084 0.64

200 1394 0.42

400 1891 0.31

* There are a large number of unlikely transitions which is why the number is

low compared to total elements.

Both measures improve exponentially with an increasing

number of input diaries, with the most significant improvement

up to c. 200 diaries. This suggests that 200 diaries should be the

target for stable statistical modelling. It was therefore decided

to split the populations by appropriate age range but not gen-

der at this stage to maintain sufficiently sized populations for

groups that remain small enough to capture differentiated be-

haviours. Gender being the least significant of the four key dif-

ferentiating elements identified (household type, employment

status on model day, age and gender). As an example, the single

household population shows distinct behaviour changes around

40-45 years of age, at retirement age, and around 70-74 years

of age that are consistent for both genders.

To maximise the benefit of differentiation by age, the TUS

dataset was split into overlapping age ranges. For working one-

person households, the 18-37 TUS population was used for the

18-33 model data, the 28-44 population for the 34-40 model,

etc. This increases the number of diaries per population group

and also recognises that the age-related behaviour changes are

gradual and that single day diaries may not adequately capture

more extreme behaviours within groups. Splitting the popula-

tion to account for the identified age-related behaviour transi-

tions results in groups of approximately 200-250 diaries, with

an approximate 50/50 gender split.

3.2.2. Differentiated Model Verification

To analyse the impact of using smaller, differentiated individ-

ual occupant populations, a general 1-person household occu-

pant model (representative of the models developed by [13]

and [17]) is compared to a model calibrated using two sub-

populations from the TUS dataset: ’Working 18–37’ – work-

ing individuals between 18 and 37 years of age, and ’Over 76’

– typically retired individuals over 76 years of age. A first-

order Markov model method was used for a typical weekday to

predict occupancy state (’Sleep’, ’Active’ or ’Out’), with 100

1-year duration 10-minute timestep occupancy state sequences

generated for each case.

The results were analysed using the average active occu-

pancy variation metric (AO Var) to determine the degree of cal-

ibration (see Table 3): comparing the mean error between the

predicted active occupancy per modelled annual sequence and

that found in the input dataset.

In Table 3, ’All 1-person’ represents the model calibrated

with the entire TUS 1-person dataset, ’Working 18-37’ and

’Over 76’ represent the models calibrated using the identified

TUS subgroups.

Table 3

Per-profile average occupancy probability variation analysis for different first-

order model populations.

Model TUS Population AO Var

All 1-person All 1-person 0.020

All 1-person ’Working 18-37’ 0.225

All 1-person ’Over 76’ 0.139

’Working 18-37’ ’Working 18-37’ 0.014

’Over 76’ ’Over 76’ 0.017

The results indicate that the first-order Markov model, cal-

ibrated using the more refined datasets produces occupancy

behaviour that is more representative of those subgroupings

within a population, as opposed to the model calibrated using

the larger dataset.

The state duration prediction comparison between the mod-

els calibrated using the same populations is shown in Table

4. (The values quantify the difference (measured using met-

ric DurDist) between the actual occupancy duration distribution

and the distribution predicted using the model.)

Table 4

State duration analysis (DurDist) for different first-order model populations.

Model TUS Sleep Active Out

All 1-person All 1-person 1.73 1.13 4.04

All 1-person ’Working 18-37’ 8.20 9.72 22.43

’Working 18-37’ ’Working 18-37’ 2.26 0.79 2.87

All 1-person ’Over 76’ 4.13 7.11 8.93

’Over 76’ ’Over 76’ 1.64 1.63 1.10

Significant improvements are again shown where both the

model input data and comparison TUS data are from the same

population. There is, however, a further improvement in the

DurDist metric for the smaller populations. More importantly,

the results show that the overall 1-person household population

significant fails to properly replicate the range of durations for

the two identified sub-populations.

The ProfSim metric is used to identify the lowest edit dis-

tance for each day in the output from the differentiated and

larger population models in comparison with the input data.

This allows an assessment of the models ability to generate re-

alistic profiles. In this example, the overall 1-person house-
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hold (’All 1P’) first-order model was again compared with the

’Working 18-37’ and ’Over 76’ sub-population models. The

average minimum edit distance (expressed as a time) for the

’All 1P’ model compared to the ’Working 18-37’ TUS dataset

is 4.35 hours. The result when the ’Working 18-37’ specific

model is used is 1.75 hours. The equivalent improvement for

the ’Over 76’ population was from 2.71 to 1.98 hours. This

suggests that the expected improvement from differentiation re-

duces for sub-populations with less consistent behaviour pat-

terns.

Overall, there is an improvement in the first-order Markov

models ability to replicate observed behaviour using smaller

sub-populations. The degree of improvement would depend on

the deviation of the sub-population from the overall population

average, but is significant for those with extreme deviations.

3.2.3. Occupancy Status Duration

As was mentioned previously, first-order Markov occupancy

models do not consider the duration of the current state and are

therefore ’memoryless’. The state at the next time step being

dependent only on the previous time step state. It was deter-

mined by Wilke [18] that such models are likely to poorly pre-

dict state durations. This is demonstrated using a three-state

(’Sleep’/’Active’/’Out’) first-order Markov model for 100 1-

person households over an annual (52560 time step) run. The

predicted cumulative probability for the ’Out’ duration is shown

in Figure 4 along with the actual cumulative duration of this

state from the TUS dataset. The results show that the first-order

model averages duration probability and does not capture the

tendency for absences to be either short or long. This discrep-

ancy is more significant for working days.

Fig. 4. Cumulative distribution of Out state duration for all 1-person house-

holds.

Similar results occur for the sleep and active states. The first-

order model therefore generates occupancy patterns which of-

ten do not reflect reality and the conclusion is that it cannot ac-

curately capture specific behaviours (e.g. sleep, work absences

etc.).

To improve the prediction of state duration, a simple higher-

order Markov method was developed where multiple probabil-

ity transition matrices have been generated according to the du-

ration of the existing state, accounting for behaviour prior to

the previous time step. A single transition probability matrix

is therefore replaced with matrices corresponding to, for exam-

ple, sleep durations of 0-2, 2-4, 4-6, 6-8, and 8+ hours. So,

if an occupant has been asleep for 3 hours then the 2-4 hour

sleep duration transition probability matrix would be used to

determine the next occupancy state. This approach captures the

changes in relative probability of waking having slept for differ-

ent lengths of time. Optimum ranges vary per transition based

on specific behaviours, and in particular, those related to sleep

and work-related absences.

The difference in the per-time-step transition matrices for the

first and higher-order models is shown in Figure 3. Each row of

the first-order matrix transforms into a multi-row matrix. (’P’

is the probability of a particular transition, ’S’ refers to ’Sleep’,

’A’ is ’Active’ and ’O’ is ’Out’). For example, the matrix ele-

ment on the third row and second column represents the prob-

ability that someone who has been asleep for between 4 and

6 hours at a particular time step will transition to the ’Active’

state.

3.2.4. Higher Order Model Verification

In order to assess the relative performance, the new higher-

order model is first compared to the original equivalent first-

order Markov model, and then compared to a higher-order

event-based model (see Validation section below). As before,

the analysis is based on results for 100 1-person households

over an annual (52560 time step) run.

Results for the average active occupancy prediction metrics

(AO Conv) and (AO Var) showed no significant performance

difference between both Markov-based methods, suggesting

both capture basic occupancy probability to the same degree.

Using metric ’DurDist’, the distribution of state durations

was compared for the first-and higher-order models for two dif-

ferent sub–populations; the 18-37 working population and the

over 76 non-working population (see Table 5).

Table 5

State duration analysis (DurDist) for first and higher-order Markov models.

Model Sleep Active Out

’Working 18-37’ First-Order 2.26 0.79 2.87

’Working 18-37’ Higher-Order 1.42 0.47 1.43

’Over 76’ First-Order 1.64 1.63 1.10

’Over 76’ Higher-Order 1.26 1.15 1.03

The results shows that the higher order model gives improved

prediction of state durations when compared to the input TUS

data, particularly for the working population. Similar results

were achieved for other populations. This improvement is also

demonstrated graphically in Figure 4 for the overall 1-person

population model, with the higher-order model results tracking

the input data distribution more closely.

Table 6 shows the same profiles assessed for similarity using

the edit distance method (ProfSim), this again shows a demon-

strable improvement when using the higher-order model in the

ability to generate realistic profiles. This improvement was

more significant in sub-populations of the TUS dataset with

more distinct behaviours, confirming the benefit of the higher-

order approach is dependent on the sub-population behaviour

consistency.
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Fig. 3. Transition from a first-order to a higher-order Markov model (Sleep state example).

Table 6

Occupancy profile similarity analysis (ProfSim) for first and higher-order one-

person household models.

Model LEDM (Hours)

’Working 18-37’ First-Order 1.75

’Working 18-37’ Higher-Order 1.53

’Over 76’ First-Order 1.98

’Over 76’ Higher-Order 1.92

The edit distance method can also be used to assess datasets

for similarity. Each single-day occupant profile (input data and

output model) are compared with the other profiles in the same

dataset and the edit distances determined. The distribution of

edit distances (see Figure 5) demonstrates graphically the over-

all similarity between profiles in a particular dataset.

Figure 5 shows the results from the TUS dataset and differ-

ent model types for the ’Working 18-37’ population. The hor-

izontal axes elements represents the edit distance rounded up

to the nearest hour and the vertical axis is the proportion of all

edit distances within each edit distance range. (For example,

horizontal axes element ’9’ represents the edit distances in the

range 8 < ED ≤ 9 hours, for which the proportion was 0.073 in

the TUS 2000 dataset.)

Fig. 5. Edit distance distributions for input and output datasets (’Working 18-

37’ population).

An effective output model should replicate the input data

baseline distribution. How far the peak value (and, by exten-

sion, the mean) of the distribution has increased is a measure

of the overall increase in dissimilarity. A narrower overall dis-

tribution suggests a model that produces less realistic averaged

profile outputs.

Of the three modelling methods, the higher-order model pro-

duces the closest approximation of the input dataset similarity

distribution. The distribution shows a slight decrease in over-

all similarity and a reduction in the number of highly dissimilar

profiles produced, but is closer than the other two methods. In

comparison, the first order model shows a distinctly narrower

overall distribution, suggesting a tendency to replicate average

rather than generate realistic individual behaviours. This con-

firms the results shown in Tables 5 and 6 which demonstrate

that the higher-order model better replicates both state dura-

tions (metric DurDist) and actual profiles in the input dataset

(metric ProfSim).

3.2.5. Interaction of Couples, Parents and Children

In existing models, co-habiting couples were either modelled as

independent adults ([17], [18]) or not distinguished from other

households with the same occupant number [13]. However,

analysis indicates that this leads to discrepancies in the esti-

mation of the number of occupants per-time step and an over-

estimation of total occupied time (see Figure 6).

To improve interaction prediction, each couple was instead

modelled as a single entity, having a status based on both indi-

vidual states. To minimise the data requirement, and assuming

tracking specific individuals is not critical, the individual states

are unassigned (e.g. Sleep/Active combines Sleep/Active and

Active/Sleep etc.).

The average age of the couple is used to define age ranges

as this was shown by analysis of the TUS dataset by the author

to be a better differentiator for occupancy than individual ages.

Days with both occupants working and one occupant working

were also differentiated in the generation of the transition prob-

ability matrices.

Occupancy states from the combined couple model was com-

pared to the predictions based on two adult individuals. The

joint model results are significantly closer to the input TUS

dataset. As an example, Figure 6 shows the results for the work-

ing age 28-50 sub-population.

In Figure 6, ’Any Active’ represents the probability of either

1 or 2 people being active and in the dwelling. The ’TUS’ ele-

ments are the baseline results from the input TUS dataset. The

’Individual’ elements are the results for the multiple individual

models method, and ’Combined’ the results for the single com-

bined model method. Similar results can be shown for the pre-

diction of periods where 1 person is active and in the dwelling.

This combined method was also applied separately to par-

ents with resident children. Parent occupancy patterns were
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Fig. 6. Impact of Combined Couple Model on Individual and Overall Occu-

pancy.

assumed to be at least partially driven by child occupancy re-

quirements, and that the child model could therefore be simpli-

fied and linked directly to the parent model. The child model

is also Markov-chain based, but is first-order and only tracks

whether the child is active or inactive. For a child, ’sleep’ and

’out’ distinctions for the ’inactive’ state can be inferred based

on time-of-day.

The child model utilises transition probability matrices

(TPMs), determined from the TUS dataset, that reflect the prob-

ability of a change in child occupancy state dependant on a par-

ticular transition in parent state. The parent model is therefore

run first to determine the parent state at the new time step. For

example, at time step, t-∆t, parent occupancy is one active/one

inactive and the child is inactive and, at timestep, t, parent oc-

cupancy becomes both active. The selected TPM for the child

model is the one that determines whether the child remains in-

active or becomes active if a second parent becomes active.

Similar TPMs are available for all potential parent occupancy

transitions (including no change), for both potential initial child

states.

Whilst the couple model uses average age for differentiation,

it was determined that the age of the youngest child was the

strongest determinant of parent occupancy. This was done by

comparing the relative influence of a variety of factors (i.e. av-

erage parent age, age of oldest parent, age of youngest parent,

average child age, age of eldest child) on overall occupancy

probability and selecting the one which showed the most dis-

tinct occupancy variations between sufficiently-sized popula-

tions for effective modelling.

Each child was modelled separately as there is insufficient

data to determine occupancy interaction between siblings of

different ages. Child occupancy was split by age range (e.g.

8-9, 10-11 etc.), and between school-term and holiday periods.

Separate independent models are used for ’adult’ children

living in the parental home. One for 16-18 year olds in edu-

cation, and the other for the remainder of 16-24 year olds. It

can be shown that their occupancy is broadly independent of

the other household members.

3.2.6. Couple Model Verification

Analysis with the average occupancy prediction (AO) metrics

is less straightforward for 2-person models as either simple ac-

tive occupancy (Any Occ) or the specific occupant number (Occ

Num) can be analysed. Table 7 shows the results for the aver-

age active occupancy variation metric (AO Var) analysis, con-

sidering both options, for working couples with an average age

between 28 and 50 (’Working 28-50’ model population). For

the specific occupant number the total error is the sum of the

errors for single and double occupancy prediction compared to

the input TUS dataset.

Table 7

Average occupancy prediction comparison between combined and multiple in-

dividual model options (’Working 28-50’ population).

Model
AO Var

(Any Occ)

AO Var

(Occ Num)

2 x Individual First-Order 7.17 15.70

2 x Individual Higher-Order 6.40 14.56

’Combined’ First-Order 5.05 6.70

’Combined’ Higher-Order 3.71 5.04

The results demonstrate both the improvement switching

from independent to combined models, and also the additional

improvement of the higher-order model in comparison to the

equivalent first-order model when applied to the combined cou-

ple model.

The status duration comparison metric (DurDist) for the

’Working Couple 28-50’ model (see Table 8) shows a signif-

icant improvement using the combined model approach, and

a more limited additional benefit from using the higher-order

Markov approach for this particular metric.

Table 8

State duration analysis (DurDist) for first and higher-order Markov ’Working

Couple 28-50’ models.

Model S-S S-A S-O A-A A-O O-O

2 x Individual First-Order 3.53 1.33 0.85 1.54 1.44 2.97

2 x Individual Higher-Order 2.59 1.45 0.75 1.84 0.88 2.12

’Combined’ First-Order 0.99 0.37 0.84 0.65 0.30 1.67

’Combined’ Higher-Order 0.97 0.29 0.88 0.50 0.30 1.36

’S’=Sleep, ’A’=Active, ’O’=Out

In Table 9 results for occupancy profile analysis (metric Prof-

Sim of the same population shows a more significant benefit for

the higher-order approach.

Table 9

Occupancy profile analysis (ProfSim) for first and higher-order Working Cou-

ple 28-50 models.

Model LEDM (Hours)

2 x Individual First-Order 3.88

2 x Individual Higher-Order 3.38

’Combined’ First-Order 3.28

’Combined’ Higher-Order 2.89

Considering all results, quantitative and graphical, the single-

entity, higher-order model provides an improved method for

predicting the occupancy for related, co-habiting households.

3.2.7. Family Model Results

As outlined above, the two-parent family model combines the

method for co-habiting couples with a simple child model link-

ing child occupancy directly with parent occupancy.
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The combined higher-order parent model exhibits similar

metric improvement as for couple models. Figure 7 shows that

the model tracks the average total occupancy of the parents in a

one-child household with good accuracy. It also demonstrates

that the child model tracks the input data reasonably well with

some short periods of relatively weaker agreement (late after-

noon, mid-evening).

Fig. 7. Comparison of Average Child Active Occupancy (1-Child Households).

4. Validation

4.1. Comparison with Alternative Approaches

The previous analysis demonstrates that the higher-order

Markov-Chain approach performs better than a first-order ap-

proach in terms of prediction of duration of occupancy events.

Wilke [18] demonstrated that an alternative higher-order ap-

proach which seeks to identify each transition ’event’ and sub-

sequent duration probabilistically also shows an improvement

over the first-order Markov approach, particularly for differen-

tiated populations. It is therefore useful to compare the higher-

order Markov and event-based occupancy prediction methods.

The ’event’ model used in this comparison is similar to that

developed by Wilke [18] (ibid) but uses the same three-state

basis (’Sleep’/’Active’/’Out’) as the Markov model. Wilke’s

original model predicted whether an individual was undertaking

specific activities, as recorded in the TUS dataset.

For this paper, the Time Use Survey (TUS) dataset was used

to derive probabilities for each potential occupancy state tran-

sition and the duration of each occupancy state. For each 10-

minute TUS data time step and for each of the three possible

states the model calculates:

• if there is a change of state;

• the new transition state probability;

• the probabilities of the new state duration being within a

particular range.

For example, Figure 9 shows the transition and duration ma-

trices for an ’active’ period that ends at 11.10pm. The ’event’

model will first generate a random number (RN1) between 0

and 1 to determine if the transition is to ’Sleep’ or ’Out’ states.

The duration in hours of the new state is determined in the same

manner using the duration probability matrix for the new state if

starting at 11.10pm. A third random number (RN3) determines

with equal probability the exact 10-minute timestep on which

the next transition occurs and the process is repeated for this

identified next event. Using this approach, the model calculates

a sequence of occupancy states and their durations, calculated

to a 10-minute resolution.

Fig. 9. ’Event’ model next state type and duration calculation example.

The performance of the two higher-order methods was com-

pared. The three metrics defined previously were again used to

assess performance. Four single household TUS weekday pop-

ulations were analysed: ’Working All Ages’, ’Working 18-37’,

’Retired All Ages’ and ’Over 76’.

The average results for 1000 annual runs were compiled and

are shown in Table 10. All results show a significantly bet-

ter performance for the Markov model, particularly an order

of magnitude improvement in overall convergence to the input

data (AO Conv) and significant improvement in the duration

prediction metric (DurDist).

The occupancy profile similarity metric (ProfSim) was used

for single-day profile analysis as before. For the ’Working 18-

37’ population the average edit distance for the ’event’ model

was 1.98 hours, which compares poorly with 1.53 and 1.75

hours for the higher-order and first-order Markov methods re-

spectively.

The occupancy profile similarity analysis (ProfSim) shown

in Figure 6, shows that the profile similarity to the input TUS

dataset is lower for the ’event’ model in comparison to the

higher-order Markov method. This can be inferred from the

greater rightward shift from the TUS-derived distribution for

the ’event’ model, highlighting higher overall ProfSim values

(and lower similarity). This shows that the ’event’ method

shortcomings addressed in this paper result in poor basic per-

formance to replicate actual profiles.

Figure 8 shows the average per-time step active occupancy

(AO Var) error calculated from 1000 runs for the ’event’,

higher-order Markov and first-order Markov models. For the

’Working 18-37’ 1-person population, the majority of the er-

ror for all models is during the morning and early evening peri-

ods. Both times correspond to significant changes in occupancy

probability, which the ’event’ approach fails to capture as effec-

tively as both Markov methods as demonstrated by more signif-

icant peaks.

As state transitions have a low occurrence in the dataset, for
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Table 10

Metric comparison for developed higher-order models.

Single Hhld Populations Model AO Conv(x E-3) AO Var(x E-3)
DurDist

Sleep / Active / Out

FT Work - All Markov 3.6 15 1.12 / 0.46 / 1.43

FT Work - All Event 39.5 43 2.16 / 0.82 / 1.80

FT Work - <37 Markov 5.5 14 1.42 / 0.47 / 1.43

FT Work - <37 Event 41.6 45 3.17 / 0.87 / 2.87

Retired - All Markov 2.6 19 1.28 / 0.93 / 0.88

Retired - All Event 41.1 46 1.78 / 1.03 / 1.35

Retired - >76 Markov 5.0 18 1.26 / 1.15 / 1.03

Retired - >76 Event 44.4 47 1.49 / 1.26 / 1.41

Fig. 8. AO Var error time distribution comparison for each method.

each time step in the ’event’ model, data from several adja-

cent time steps is used to ensure a sufficient depth of data. As

with the Markov model, duration ranges are required rather than

capturing specific durations. The base analysis presented above

used three preceding and subsequent time steps for probability

data, and 1-hour duration ranges.

Comparative analysis was undertaken with the event-based

model to determine if the weaker performance was a result of

the number of adjacent time steps or the duration ranges se-

lected. Analysis with five and seven adjacent time steps, and 20

and 30-minute duration ranges, showed no significant change,

therefore the errors seem to be inherent to the basic method.

One possible explanation for these results is that the event-

based method does not have the self-correcting nature of a per-

timestep probability model. The balance of this method is too

focused on state duration prediction at the expense of state

probability based on time-of-day. Further, not effectively track-

ing basic daily behaviour also compromises the duration predic-

tion as demonstrated by poor duration (DurDist) and occupancy

profile similarity (ProfSim) metric results. This is illustrated by

a detailed review of model outputs, which show an increased

tendency for the ’event’ model to produce unusual behaviours

(e.g. no daily sleep period, less distinct work-related absences,

etc.).

4.2. Independent Dataset Validation

For final validation of the differentiated, higher-order model,

the results were compared with occupancy profiles from the

smaller 2005 UK TUS survey [12]. This dataset uses a sim-

pler UK-specific methodology with 4941 diaries compared to

20981 for the 2000 TUS survey [11].

For validation purposes, both TUS datasets should capture

similar occupancy behaviour. Figure 10 demonstrates that the

average weekday profile for the overall 1-person household

population and the two 1-person sub-populations (under 37

years old on working days and over 80 years old) analysed

in detail for this paper are broadly consistent. This confirms

that there are occupancy traits that are inherent to the TUS sub-

populations, which was also confirmed for other occupant and

household types.

In order to discount the differences between the TUS datasets

in the comparison, the two TUS datasets were first compared

using the same metrics deployed in the comparison between the

two Markov models and the TUS data. If the models are suc-

cessfully predicting occupant behaviour then there should not

be a significant increase in the model-TUS comparison metrics

compared to the inter-TUS metrics.

The results in Table 11 show analysis of the average ac-

tive occupancy (AO), duration prediction (DurDist), and pro-

file similarity (ProfSim) metrics. The results for both the first

and higher-order models compared to the TUS 2005 dataset are
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Table 11

Metric results for TUS 2000 data and Markov models compared to TUS 2005 data.

Dataset 1 Dataset 2 AO Var ProfSim (Hours)
DurDist

Sleep / Active / Out

’Working 18-37’ TUS 2000 ’Working 18-37’ TUS 2005 4.69 11.9 2.55 / 1.27 / 4.20

’Working 18-37’ First-Order ’Working 18-37’ TUS 2005 4.75 12.1 2.67 / 1.23 / 3.25

’Working 18-37’ Higher-Order ’Working 18-37’ TUS 2005 5.15 11.7 2.17 / 1.23 / 4.19

’Over 76’ TUS 2000 ’Over 76’ TUS 2005 4.15 12.4 4.50 / 3.44 / 3.76

’Over 76’ First-Order ’Over 76’ TUS 2005 5.21 12.3 4.40 / 3.35 / 3.49

’Over 76’ Higher-Order ’Over 76’ TUS 2005 4.91 12.3 4.72 / 3.58 / 3.83

Fig. 10. Single household average active occupancy profiles comparison for

TUS 2000 and 2005 datasets.

broadly consistent with the calculated difference between the

two TUS datasets. This demonstrates that the sub-population

behaviours are adequately replicated, despite some differences

between the two TUS populations.

The results are less conclusive regarding the performance of

the higher-order model relative to the first-order model when

compared with the 2005 dataset. Both methods perform slightly

better on some measures, and worse on others. The TUS 2000

dataset may be too small to produce wholly representative data

for the sub-populations. Alternatively, there may be an inher-

ent weakness in the metrics used to differentiate relative perfor-

mance at this level of similarity. Further analysis with the larger

2015 TUS dataset will be required for a better judgement of the

higher-order model benefit relative to normal variability rather

than merely to the input data.

5. Final Differentiated Model Basis

5.1. Occupancy Model Selection

All defined metrics show a clear advantage for the higher-order

Markov method over the ’event’ method. There was no obvi-

ous difference in relative performance based on type or size of

population selected.

The benefits of the higher-order Markov method compared to

the first-order method are less conclusive. There is a measure-

able improvement in the metrics for duration and consistency

with actual TUS profiles, especially for groups with consistent

patterns of behaviour (e.g. workers). In comparison with the

independent TUS dataset the results are less clear. However,

there is sufficient justification to use the higher-order method

for further development as there is evidence that the residual is-

sues are related to current data availability rather than the basic

method.

The improvements in all defined metrics for the differenti-

ated model suggests that the level of differentiation used with

a minimum of 200 diaries per sub-population was sufficient to

produce stable models that are at least representative of the in-

put data.

5.2. Model Structure

5.2.1. Occupant Type Modules

The developed model integrates the three basic modules;

single-person, couple, and child, outlined in the preceding sec-

tions, with further differentiation by age, employment status

and day type as proposed.

The single-person model can be used for single households,

and for individuals in multiple unrelated adult households or

households with related adults of different generations (e.g.

adult children) with divergent behaviours. It has seven age

ranges from 18-33 to 80+ and two further models for young

adults living in a family household; 16-18 year olds in educa-

tion and a general 16-24 age group.

The couple model has separate probability data for cohabit-

ing couples with and without dependent children. The ’without

children’ dataset has seven age ranges based on average age.

The ’with children’ dataset has 4 ranges based on the youngest

child’s age.

The child model has 5 age ranges (5-7, 8-9, 10-11, 12-13,

and 14-15). Under 5s are not modelled due to the lack of TUS

data for infants, with infant occupancy assumed to track that of

the parents.

Different module combinations can be used to replicate ac-

tual household types. For example, a family household with

one adult child and one under-16 child combines a parent mod-

ule, a single-person module, and a child module linked to the

parent model output.

5.2.2. Day Types and Occupant Calendars

To allow the model to replicate the behaviour of real house-

holds, each occupant is defined by age and working or edu-

cation status. Separate transition probability matrices (TPMs)

have been generated for each defined age range, for each day

type (weekday, Saturday and Sunday), and whether the occu-

pant is working, not working or in education. For couples and

parents, there are three options; both working, one working and

both not working. Workers are allocated typical working weeks
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based on analysis of the separate one-week working diaries in

the UK 2000/1 Time Use Survey dataset [11].

Individual calendars are then defined for each individual to

reflect the sequence of day types through the modelling period.

The model selects the appropriate TPM for the required day

type as necessary. The model can therefore clearly distinguish

different typical occupancy behaviours for each occupant types

(full-time workers, stay-at-home parents, students, school chil-

dren etc.), that is a key precursor to demand prediction for each

occupant and household type.

5.3. Model Output Assessment

The primary output from the model is a per-time step sequence

of occupant states. While the validation metrics used allow the

differences between profiles to be quantified, critical analysis of

actual profiles can also demonstrate model robustness.

Fig. 11. Example one-week individual occupancy state profiles for various

modelled one-person households.

Figure 11 shows results from randomly selected model runs.

The results compare a Mon-Sun sequence for a 1-person house-

hold using a first-order Markov-Chain approach (similar to

Richardson et al [13]) with a younger working and older retired

1-person household using the developed differentiated higher-

order Markov-Chain model. These populations were deliber-

ately selected for a strong likelihood for longer out and active

periods respectively.

The first-order, larger population model shows no overall

consistency between modelled days. This gives credence to the

assertion that this type of model generates profiles that are an

unrepresentative composite of multiple behaviours.

The developed higher-order model more consistently models

sleep durations within the most likely duration range, shows

daily out periods consistent with a working person, and long

active periods consistent with an older retired person.

For multi-person households the model generates individual

outputs as per Figure 11 and also consolidated profiles of total

adult, child and overall occupant number per timestep. Figure

12 shows an example output for a two-adult/two-child family

with one full-time worker for a typical school term week. The

modelled link between adult and child occupancy in particular

is highlighted.

Fig. 12. Example one-week occupant number profiles for a modelled 2-adult/2-

child household.

5.4. Model Applications and Limitations

Any TUS-based model has inherent limitations as a result of

the 24-hour basis of the diaries used to generate the calibration

data. For multiple annual model runs, the modelling method

identified does provide some degree of variability in overall av-

erage active occupancy (e.g. +/- c.10% for ’Working 18-37’

models) but it is not possible to assess if this overall result or

the specific sequence of days is realistic. As a minimum, it is

unlikely that the model captures extreme levels of occupancy

within populations and definitely does not model households

with repetitive behaviours (e.g. same weekday wake time, fixed

work hours etc.).

However, the analysis presented here and by others ([2],[18])

has clearly demonstrated that there are broad occupancy pat-

terns related to identifiable household types, and that existing

models have underused the available data at this level of differ-

entiation.

This model has been developed primarily to generate input

occupancy data for a high time resolution, occupancy-driven

energy model with the aim to identify specific demand patterns

for homogenous communities (e.g. retirement, social housing,

commuter) when compared to nationally representative popula-

tions and the specific influence of occupancy on any identified

differences. At this resolution, the impact of averaging and in-

accuracies associated with individual profiles will be reduced.

For analysis of individual households, the model has some ap-

plicability but with significant qualification.

6. Discussion and Conclusion

Several enhancements to existing high resolution, occupancy

models have been considered, with three primary potential im-

provements implemented and analysed. The first was to split
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the occupant models based on occupant and household char-

acteristics, and different day types. These are combined based

on realistic sequences of day types to generate more represen-

tative occupancy profiles that reflect different lifestyles. The

second potentially improves the model consistency and status

duration prediction by using a higher-order Markov-Chain pro-

cess. The third was to differentiate between single, couple and

family households, modelling couple and parent pairs as single

entities to capture occupancy interactions.

Three metric were identified to allow model performance to

be quantified. Analysis of the model output has shown signifi-

cant improvement associated with both highly differentiated oc-

cupant models and using different methods based on household

type. The higher-order method has been shown to be an im-

provement on existing methods, however the benefit is less sig-

nificant to overall modelling accuracy. Further analysis with

new occupancy validation data, and also of relative demand

model prediction accuracy, using both first- and higher-order

approaches will be required to determine the resolution and sce-

narios for which the higher-order approach is beneficial and cir-

cumstances when the simpler first-order approach may suffice.

Previous modelling work in this area has focused on main-

taining large, statistically robust populations to ensure model

stability at the expense of combining data from groups with

highly variable occupancy behaviours. Analysis of the avail-

able occupancy data highlighted that household type, age and

employment status on the specific day of interest were all key

determinants of occupancy behaviour. The presented work has

demonstrated that the model remains stable for smaller popula-

tions down to 200 sets of single-day data. This has allow the

occupancy data used to calibrate the model to be split by key

identified criteria to capture typical behavioural differences. It

has also allowed for the development of the single entity mod-

els for couples and parents from the limited existing occupancy

data.

The Markov-Chain approach has been shown to remain an

effective method for stochastic occupancy modelling from cur-

rently available data. A more computationally efficient ’event’

method was reviewed but shown to perform poorly in the key

occupancy transition periods. The use of higher-order models

was shown to be more effective for input dataset replication but

will require significantly more input and validation data for the

full benefit to general occupancy prediction to be determined.

The model output remains limited by the lack of large, multi-

day occupancy datasets. The output is not suitable for detailed

analysis at the single household level as it remains a compos-

ite of a wide range of behaviours. However, it provides the

means to identify key occupancy variations between different

household types, and potentially the influence on energy de-

mand patterns, with a particular relevance for microgeneration

schemes for communities (i.e. < 500 households) with distinct

household type distributions. The developed model also seeks

to move beyond traditional occupant archetype methods and

to identify individuals by a more realistic and personalised se-

quence of different day types that reflect actual lifestyles.

Further major improvements in domestic occupancy predic-

tion using this or other methods will require significantly better

data combining the number and representative range of house-

holds typically analysed in Time-Use Surveys with simpler oc-

cupancy related states (i.e. wake, first leave, last return, sleep

etc.) logged over longer periods.
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