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AN EXAMINATION OF THE BENEFITS OF DYNAMIC TRADING STRATEGIES 

 

IN U.K. CLOSED-END FUNDS 

ABSTRACT 

We examine the after-cost out-of-sample performance of the unconditional mean-

variance (UMV) strategy in the presence of conditioning information (Ferson and 

Siegel(2001)) using portfolios of U.K. equity closed-end funds.  We find that the 

performance of the UMV strategy significantly improves when using lagged information 

variables with the highest persistence (first-order autocorrelation) levels and reduces 

turnover.  This strategy is able to outperform alternative dynamic trading strategies and 

performs well across different subperiods.  At low levels of trading costs, the UMV strategy 

is able to deliver significant value added to investors. 
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I Introduction 

 Recent studies have examined whether investors can exploit predictability in 

individual U.S. mutual funds (Avramov and Wermers(2006)), hedge funds (Avramov, 

Kosowski, Naik and Teo(2011)), and European mutual funds (Banegas, Gillen, Timmermann 

and Wermers(2013)), by focusing on variations in manager skill, factor loadings, and factor 

risk premiums. These studies use conditional mean-variance strategies and find that such 

strategies deliver significant superior performance.  The use of conditional mean-variance 

(CMV) strategies does not exploit the optimal use of return predictability, which is to select 

portfolios on the unconditional mean-variance (UMV) frontier in the presence of 

conditioning information (Hansen and Richard(1987), Ferson and Siegel(2001))1.  Studies by 

Ferson and Siegel(2009), Abhyankar, Basu and Stremme(2012), and Penaranda(2014) find 

significant benefits in the optimal use of return predictability using test assets such as 

size/book-to-market (BM) portfolios2. 

 We examine the benefits of using the UMV strategy in trading strategies in U.K. 

equity closed-end fund portfolios3.  We compare the performance of the UMV strategy to the 

CMV strategy and the alternative approach of Brandt and Santa-Clara(2006) which models 

the optimal weights as a linear function of lagged information variables (Passive/Managed).  

We use a wide range of lagged information variables in our study and we evaluate the out-of-

sample performance of the strategies between January 1995 and December 2014. 

                                                           

1 Hansen and Richard(1987) show that every UMV strategy is a CMV strategy but the 

converse is not necessarily true.   

2  Chiang(2015) explores the optimal use of return predictability in mean-variance active 

tracking error strategies.  Ferson and Siegel(2015) examine the benefits of the optimal use of 

return predictability in optimal orthogonal portfolio strategies. 

3 Closed-end funds are known as investment trusts in the U.K. 
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 One feature of the UMV strategy, in addition to the alternative mean-variance 

strategies, is that they do require high turnover.  Fletcher(2011) finds that the superior 

performance of the UMV strategy disappears in U.K. stock returns after adjusting for trading 

costs due to the high turnover.  Abhyankar et al(2012) find that the level of persistence (first-

order autocorrelation) in the lagged information variables has an impact on the turnover of 

the UMV strategy.  Lagged information variables with the highest persistence levels (close to 

1) lead to the lowest trading costs for the UMV strategy.  However the most persistent lagged 

information variables are most likely to be subject to the spurious regression bias in 

predictive regressions (Ferson, Sarkissian and Simin(2003)).  We examine whether the choice 

of the lagged information variables has a significant impact on the after-cost performance of 

the UMV strategy.  We compare the performance of the UMV strategy using the most 

persistent lagged information variables to one which uses lagged information variables with 

the highest predictability from the predictive regression, and to the UMV strategy which uses 

all lagged information variables. 

 Our study makes a number of contributions to the literature.  We extend the prior 

evidence of the optimal use of return predictability in Ferson and Siegel(2009), 

Fletcher(2011), Abhyankar et al(2012), and Penaranda(2014) among others by evaluating 

performance after adjusting for trading costs.  We provide a fuller examination of whether the 

choice of lagged information variables has an impact on the after-cost performance of the 

UMV strategy.  Our study uses portfolios of closed-end funds rather than test assets such as 

size/book-to-market (BM) portfolios.  The attraction of using managed funds is that it allows 

us to consider whether dynamic trading strategies can deliver significant value added to 

investors even where the funds have neutral performance (Fletcher and Marshall(2014)).  By 

focusing on closed-end funds and the UMV strategy, we extend the prior studies of the 

performance of dynamic trading strategies in managed funds such as Avramov and 
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Wermers(2006), Avramov et al(2011), and Banegas et al(2013) among others by using the 

UMV strategy and focusing on closed-end funds.  Closed-end funds differ from open-end 

funds since the value added depends not only on performance ability, costs, expenses, but 

also on the behavior of the fund discount/premium4.   

There are three main findings in our study.  First, we find that the choice of lagged 

information variables has a significant impact on the after-cost performance of the UMV 

strategy.  Using the three lagged information variables with the highest persistence levels 

delivers the best performance for the UMV strategy.  Second, we find the UMV strategy 

provides the most consistent performance across the different subperiods.  The UMV strategy 

performs particularly well in recession states and bearish market states.  Third, we find at 

lower levels of trading costs, the UMV strategy delivers significant value added to investors.  

Our results suggest that there are benefits in the optimal use of return predictability for 

trading strategies in domestic equity closed-end fund portfolios. 

 The paper is organized as follows.  Section II describes the research method.  Section 

III discusses the data.  Section IV reports the empirical results and the final section 

concludes. 

II Research Method 

A) Mean-Variance Analysis in the Presence of Conditioning Information 

                                                           

4 See Dimson and Minio-Paluello(2002) and Cherkes(2012) for reviews of the alternative 

explanations of the closed-end fund discount.  Andriosopoulos, Fletcher and Marshall(2015) 

provide a review of non-US closed-end funds.  Recent studies by Berk and Stanton(2007) and 

Cherkes, Sagi and Stanton(2009) develop explanations of the fund discount in relation to 

expectations about future managerial performance ability or to the liquidity benefits provided 

by the funds.  Ramadorai(2012) provides support for rational theories of the discount in 

explaining the closed hedge fund premium.  
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 Hansen and Richard(1987) derive the theoretical framework of mean-variance 

analysis in the presence of conditioning information.  Using the excess returns of N risky 

assets over the risk-free return, portfolios on the CMV frontier solve the following problem: 

                                         Min E(rpt+1
2|Zt)                                                           (1) 

subject to E(rpt+1|Zt) = Target conditional expected excess return 

where rpt+1 is the excess return of the optimal portfolio at time t+1, and Zt is the information 

set of investors at time t, which is a (L+1,1) vector consisting of a constant and L lagged 

information variables.  The CMV problem in equation (1) assumes that the remainder of the 

wealth of the investor is invested in the risk-free asset so that the sum of the weights in the N 

risky assets and risk-free asset equals 1.   

Using the Hansen and Richard(1987) decomposition of the CMV frontier, the optimal 

weights of the N risky assets (x(Zt)) are given by: 

x(Zt) = [E(rpt+1|Zt)/Bt]Ƚt
-1ȝt                                                           (2) 

where Bt = ȝt’Ƚt
-1ȝt, Ƚt is the conditional (N,N) second moment matrix of the excess returns 

of the N risky assets at time t, and ȝt is the (N,1) vector of conditional expected excess returns 

at time t.  The conditional second moment matrix is calculated as: 

Ƚt = t + ȝtȝt’                                                                      (γ) 

where t is the (N,N) conditional covariance matrix at time t.   

 Hansen and Richard(1987) also derive the UMV frontier in the presence of 

conditioning information5.  The goal of the investor is to select an optimal strategy each 

period (x(Zt)) to minimize E(rpt+1
2) subject to a target unconditional expected excess return.  

Ferson and Siegel(2001) derive the closed-form solutions for UMV portfolios.  Using the 

                                                           

5Penaranda and Sentana(2015) explore the duality between portfolio and stochastic discount 

factor unconditional mean-variance frontiers in the presence of conditioning information and 

the implications that this has for empirical research. 
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Hansen and Richard decomposition, the optimal weights, when using excess returns, can be 

written as: 

x(Zt) = [E(rp)/E(Bt)]Ƚt
-1ȝt                                                            (4) 

where E(Bt) is the unconditional expected value of Bt and E(rp) is the target unconditional 

expected excess return6. 

 The difference in optimal weights of the UMV and CMV strategies is that the scaling 

of Ƚt
-1ȝt in equation (4) is constant but the scaling of Ƚt

-1ȝt in equation (2) is time varying.  If 

the target conditional expected excess return each period is set equal to target unconditional 

expected excess return, then the only difference between the strategies is that for the CMV 

strategy Bt can change every period whereas for the UMV strategy E(Bt) is constant.  Ferson 

and Siegel(2001) show that the UMV strategy is more conservative in response to extreme 

signals of high conditional expected returns due to the unconditional mean-variance objective 

of the investor (see also Abhyankar et al(2012)). 

 The solutions to the UMV and CMV strategies require the modelling of conditional 

moments.  An alternative approach to including conditioning information into mean-variance 

analysis that avoids the specification of conditional moments is used by Brandt and Santa-

Clara(2006) (Passive/Managed)7.  Brandt and Santa-Clara assume that the optimal weights at 

time t are a linear function of Zt given by: 

x(Zt) = șZt                                                               (5) 

                                                           

6Penaranda(2014) define a new class of efficient returns that use conditioning information 

known as Performance Efficient (PE) returns.  When using excess returns, the optimal 

weights in the PE strategy are the same as the UMV strategy.  It is only when working with 

gross returns and the gross risk-free return is time varying do the two strategies result in 

different weights. 

7 See also Bansal, Dahlquist and Harvey(2004). 
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where ș is a (N,L+1) matrix of coefficients in the portfolio weight function.  The portfolio 

weight function can be estimated by: 

                                       ș = [E(rp)/B]Ƚ-1ȝ                                                         (6) 

where ȝ is a (N(L+1),1) vector of expected excess returns of the N risky assets and NL scaled 

lagged excess returns (L lagged information variables multiplied by the corresponding N 

excess returns (Cochrane(2005)), Ƚ is the (N(L+1),N(L+1)) matrix of the second moments of 

the N excess returns and scaled excess returns, and B = ȝ’Ƚ-1ȝ. The Passive/Managed 

approach seeks to approximate the UMV frontier by expanding the investment universe to 

include not only the N excess returns but also the scaled excess returns, where the investor 

then holds a passive combination in the augmented investment universe.   

B) Evaluating the Performance of the Mean-Variance Strategies 

 We evaluate the out-of-sample performance of the UMV, CMV, and 

Passive/Managed strategies 8  using the following approach.  At the start of each month 

between January 1995 and December 2014, we estimate the relevant inputs for the strategies 

using a rolling estimation window of 60 months.  We set the target unconditional and 

conditional expected excess returns equal to 0.5%.  We set the targest expected excess return 

at 0.5% since Kirby and Ostdiek(2012) suggest specifying a lower expected excess return to 

ensure a fairer comparison with the 1/N strategy (which we use as a benchmark strategy) 

rather than using the tangency portfolio.  For the CMV and UMV strategies, we estimate the 

relevant inputs ȝt and Ƚt using a given model of the conditional moments.  The estimate of Ƚt 

is calculated as in equation (γ) using the estimates of ȝt and Ȉt.   

Our main model of conditional moments follows Ferson and Siegel(2009) and 

Abhyankar et al(2012) and uses the fitted values of the predictive regression of the N excess 

                                                           

8 We focus on these strategies as these strategies are the main methods of incorporating 

conditioning information into mean-variance dynamic trading strategies. 
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returns on a constant and the L lagged information variables to estimate ȝt.  The coefficients 

from the predictive regression are estimated from the estimation window.  The ȝt is 

calculated at the start of the month using the estimated coefficients from the predictive 

regression and the Zt available at the start of the month.  We assume the conditional 

covariance matrix is constant and compute as the Maximum Likelihood (ML) estimate of the 

residual covariance matrix from the predictive regressions during the estimation window.  

Given the estimates of ȝt and Ƚt, we then calculate Bt and the corresponding optimal weights 

of the CMV strategy from equation (2).  For the UMV strategy, we calculate E(Bt) as the 

average value of Bt during the estimation window, and calculate the optimal weights of the 

UMV strategy from equation (4)9. 

For the Passive/Managed strategy, we estimate ș using the sample moments of ȝ and 

Ƚ for the augmented investment universe of the N excess returns and NL scaled excess 

returns over the estimation window.  We then multiply ș by Zt to get the optimal weights of 

the Passive/Managed strategy as in equation (5).  Using the optimal weights of the three 

mean-variance strategies, we calculate the monthly portfolio excess returns.  This approach 

generates a time-series of out-of-sample portfolio excess returns.   

We compare the performance of the UMV, CMV, and Passive/Managed strategies to 

two alternative benchmarks.  The first is the 1/N strategy which invests an equal amount in 

each asset each period.  DeMiguel, Garlappi and Uppal(2009) find that the 1/N strategy 

performs well relative to alternative mean-variance strategies.  The second benchmark is the 

passive mean-variance (PMV) strategy.  This strategy is calculated as in equation (6) using 

the sample moments of the N excess returns during the estimation window.   

                                                           

9 There are lots of different ways we could model the conditional moments which would 

change the UMV and CMV strategies.  We examine later in the paper, the impact of using a 

time varying conditional covariance matrix. 



8 

 

We evaluate the out-of-sample performance of the 1/N and mean-variance strategies 

using a number of performance measures.  The first measure we use is the Sharpe(1966) 

performance measure and is given by the average portfolio excess return divided by the 

standard deviation of portfolio excess returns.  The second measure we use is the Certainty 

Equivalent Return (CER) performance and is given by: 

                   CER = rp – (Ȗ/β)ı2
p                                                         (7) 

where rp is the average excess return of strategy p, ı2
p is the variance of the excess returns of 

strategy p, and Ȗ is the assumed level of risk aversion.  We compute the CER performance for 

each strategy for Ȗ = 5.  The third measure we use is the Jensen(1968) measure relative to the 

four-factor Carhart(1997) model10.  The Jensen measure is given by the intercept of the 

regression of the excess returns of the optimal portfolio strategy on a constant and the four 

factors in the Carhart model. 

 The final performance measure we use is the performance fee (ǻȖ) of Kirby and 

Ostdiek(2012) (see also Fleming, Kirby and Ostdiek(2001,2003)).  The performance fee is 

the fee (as a fraction of invested wealth) that makes the expected utilities of two alternative 

strategies equal to one another.  The performance fee assumes that investors have quadratic 

utility functions.  Define strategy i as the 1/N strategy and strategy j as one of the optimal 

asset allocation strategies.  Kirby and Ostdiek interpret the performance fee as the maximum 

fee that an investor would be willing to pay each period to change from strategy i to strategy 

j.  The performance fee can be calculated as: 

ǻȖ = -Ȗ-1[1-Ȗ(E(Rpjt+1)] + Ȗ-1[((1-ȖE(Rpjt+1))2 - βȖE(U(Rpit+1)-U(Rpjt+1))]1/2                    (8) 

where Ȗ is the relative risk aversion level, E(Rpjt) is the expected portfolio return of strategy j, 

and E[U(Rpit+1)-U(Rpjt+1)] is the expected difference in utility for a quadratic utility investor 

                                                           

10Details on the formation of the factors in the Carhart(1997) model are included in the 

Appendix. 
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between the 1/N strategy (strategy i) and strategy j.  We compute the performance fee for Ȗ = 

5 for each mean-variance strategy. 

 We also estimate the turnover of each strategy as in Kirby and Ostdiek(2012).  

Turnover is defined as the fraction of invested wealth traded each period.  We estimate the 

turnover each month as:  

Turnoverp = Ȉi=1
N|xpit – xpit-1| + |Ȉi=1

N(xpit – xpit-1)|                         (9) 

where xpit is the optimal weight of asset i at the start of month t for strategy p, xpit-1 is the 

optimal weight of asset i in strategy p at the start of month t-1 adjusted for buy and hold 

returns at time t.  The turnover measure reflects the fact that the portfolio weights change 

even without any explicit trading due to the return performance of the assets in the portfolio.  

We calculate the time-series average turnover for each strategy.   

 Our focus in this study is to evaluate the performance of the different strategies after 

controlling for the impact of turnover and trading costs.  We estimate the after-cost 

performance of the strategies by adjusting the portfolio excess returns for the impact of 

turnover and trading costs.  We initially assume a level of proportional cost per transaction of 

50 basis points as in DeMiguel et al(2009) and Kirby and Ostdiek(2012) but also consider 

lower trading costs of 10 basis points as in DeMiguel, Nogales and Uppal(2014).  We use the 

z-test of Ledoit and Wolf(2008)11 to examine whether the after-cost Sharpe measures for 

every pair of strategies are equal to each other.  We also adapt the z-test of Ledoit and 

Wolf(2008)) to examine whether the after-cost CER measures are equal to one another for 

every pair of strategies.   

                                                           

11 Ledoit and Wolf(2008) derive the z-test using the delta method.  The parameters to 

calculate the Sharpe measure can be estimated as moment conditions in a generalized method 

of moments (GMM) (Hansen(1982)) estimation.  The delta method is then used to derive the 

z-test that the Sharpe performance measures of two strategies are equal to one another.  
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 We use a one-tail z-test to examine the null hypothesis that ǻȖ ≤ 0 similar to Kirby 

and Ostdiek(2012).  If there are significant performance benefits after trading costs in the 

optimal use of return predictability via the UMV strategy, we expect the UMV strategy to 

provide significant higher after-cost Sharpe and CER performance than all the other strategies 

and deliver significant positive performance fees.  If the UMV strategy delivers significant 

value added to investors, we expect to find significant positive Jensen performance. 

III Data 

A) Investment Universe 

 We examine the performance of the UMV, CMV, and Passive/Managed strategies 

using an investment universe of the excess returns of four closed-end fund portfolios sorted 

by U.K. equity objectives and the one-month U.K. Treasury Bill return.  The sample period 

covers January 1990 and December 2014.  All of the data is collected from the London Share 

Price Database (LSPD) unless otherwise specified.  We collect the Treasury Bill return from 

LSPD and Datastream.  We form our closed-end fund sample by identifying each year 

between 1990 and 2014, all closed-end funds with an U.K. equity objective.  We include 

funds within the U.K. All Companies, U.K. Equity Income, U.K. Smaller Companies, and 

U.K. Equity and Bond Income.   

The investment sector information for each fund is collected each year12 from Money 

Management, the Association of Investment Companies (AIC) web site, and the Investment 

Trusts magazine.   We track the history of each fund throughout the sample period using the 

                                                           

12 The investment sectors have changed names over the years.  The four sectors are the 

current names of the U.K. investment sectors as at the end of the sample period.  In the early 

part of the sample period, there was a U.K. General sector.  We allocate trusts in the U.K. 

General sector to the U.K. All Companies sector since most trusts transferred to this sector 

when the classifications changed. 
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data from LSPD.  If a fund changes to a split capital fund or secondary share, we exclude the 

fund from that point in the sample.  Where a fund changes to an international equity sector or 

a specialist sector, we exclude the fund from that point in the sample.  There are 228 closed-

end funds in our sample. 

For each fund, we collect the stock returns of the funds from LSPD so as to focus on 

the value added of the funds (Aragon and Ferson(2008)).  We form a value weighted of funds 

for each of the four investment sectors as follows.  At the start of each year, all funds are 

ranked on the basis of their investment sector and allocated to one of four portfolios.  We 

then calculate the value weighted buy and hold return for each month during the year using 

the market value weights of the funds from LSPD at the start of the year for the initial 

weights.  Where a fund has missing return data during the year due to death, temporary 

suspension, changes to a split capital fund, or any other reason, we code the missing returns 

to zero as in Liu and Strong(2008).  To be included in the closed-end fund portfolios for a 

given year, we only require that funds have a U.K. equity sector and a non-zero market value.  

Our approach to forming the closed-end fund portfolios minimizes the impact of survivorship 

and look-ahead bias (Brown, Goetzmann, Ibbotson and Ross(1992), Carhart, Carpenter, 

Lynch and Musto(2002)) as we include funds with only a small number of return 

observations in the closed-end fund portfolios. 

B) Information Variables 

 We use nine information variables to proxy for the information set of investors.  The 

choice of these information variables is motivated by prior studies such as Fama and 

French(1988,1989), Ferson and Siegel(2009), Cooper and Priestley(2009), Abhyankar et 

al(2012), Rapach, Strauss and Zhou(2012), Bakshi, Panayotov and Skoulakis(2014) among 
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others13.  We use the lagged annualized dividend yield (DY) on the market index, the lagged 

return on the one-month Treasury Bill (Rf), the lagged term spread (Term), the lagged default 

spread (Default), the two month lag in the monthly change in the Retail Price Index 

(Inflation), the two month lag in the output gap, the lagged excess U.K. market returns 

(Market), the lagged quarterly log growth in the Baltic Dry Index (BDI), and the lagged 

excess ($) return of the U.S. market index.  Details on the formation of the lagged 

information variables are included in the Appendix.  

Table 1 reports summary statistics of the four U.K. equity closed-end fund portfolios 

(panel A) and nine lagged information variables (panel B) between January 1990 and 

December 2014.  The summary statistics of the closed-end fund portfolios in panel A of the 

table are the mean, standard deviation, minimum, and maximum monthly excess returns (%).  

The summary statistics of the lagged information variables in panel B include the mean, 

standard deviation, and first-order autocorrelation (ȡ1).   

To examine the predictive ability of the lagged information variables, we estimate 

predictive regressions of the closed-end fund portfolio excess returns on a constant and each 

lagged information variable separately.  The second last column of Table 1 includes the 

maximal R2 of Lo and MacKinlay(1997), which is the combination of the four closed-end 

fund portfolios which has the maximum predictability by the lagged information variable.  

The final column (ȍ) of the table reports the difference between the average ex ante 

conditional squared Sharpe(1966) performance from the optimal use of predictability 

(Proposition 2 of Abhyankar et al(2012)) and the squared Sharpe performance of the optimal 

fixed weight portfolio strategy in the test assets.  The difference captures the hypothetical 

benefits of the optimal use of predictability for a given lagged information variable.  

                                                           

13Lettau and Ludvigson(2010) and Rapach and Zhou(2013) provide excellent recent reviews 

of time-series predictability in stock returns. 
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Proposition 3 of Abhyankar et al shows that under the assumptions of the linear predictive 

regressions with a constant conditional covariance matrix, the null hypothesis that ȍ = 0 can 

be tested by a Wald test (Tȍ) which has an asymptotic Ȥ2 distribution with N degrees of 

freedom or a F test given by ((T-N-1)/N)ȍ which has a F distribution with N and T-N-1 

degrees of freedom in finite samples.  Table 1 uses p values based on the Wald test.  To 

conserve space, the table does not report the slope coefficients, t-statistics, and R2 from the 

predictive regressions but these are available on request. 

 

Table 1 here 

 

Panel A of Table 1 shows that there is a reasonable spread in the average excess 

returns of the four closed-end fund portfolios.  The average excess returns range between 

0.008% (Equity and Bond Income) and 0.479% (Small Companies).  The Equity Income 

portfolio has the lowest volatility across the four closed-end fund portfolios and the Small 

Companies portfolio has the highest volatility. 

Panel B of Table 1 shows that the BDI lagged information variable has the highest 

volatility across the nine lagged information variables.  The magnitude of the volatility is 

similar to Bakshi et al(2014).  Bakshi et al report that the volatility is even higher if the log 

monthly growth in the BDI index is used.  There is a wide range in the autocorrelations 

across the lagged information variables.  The DY, Rf, Term, and Output Gap lagged 

information variables have the most persistent time-series where the first-order 

autocorrelation exceeds 0.93.  In contrast, the Default, Inflation, Market, and US Market 

lagged information variables have the least persistent time-series with a first-order 

autocorrelation below 0.22.  The correlations between the lagged information variables are in 

general close to 0.  There are four correlations above 0.4 in absolute terms, which includes 
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DY and Rf at 0.448, Rf and Term at -0.756, Default and Market at 0.422, and Market and US 

Market at 0.780. 

In unreported tests, all of the lagged information variables have at least one significant 

slope coefficient in the predictive regressions at the 10% significance level.  The signs of the 

slope coefficients are consistent with prior research.  All of the closed-end fund portfolios 

have at least four significant slope coefficients at the 10% level.  Excluding the Market and 

US Market lagged information variables, all of the individual R2s are below 4.1% and so the 

degree of predictability is small in statistical terms14. 

The final column of Table 1 shows that there are significant hypothetical benefits of 

the optimal use of predictability for a number of the lagged information variables.  The null 

hypothesis of ȍ = 0 can be rejected at the 10% level for six of the lagged information 

variables.  The benefits of the optimal use of return predictability are largest for the Market, 

and US Market lagged information variables and smaller for the DY, Rf, Term, and Default 

lagged information variables.  These results are similar to Abhyankar et al(2012) in U.S. 

stock returns. 

IV Empirical Results 

 We begin our empirical analysis by examining the out-of-sample performance of the 

UMV, CMV, and Passive/Managed strategies using all nine lagged information variables in 

the information set.  Table 2 reports the after-cost performance between January 1995 and 

December 2014 for the UMV, CMV, and Passive/Managed strategies and the two benchmark 

strategies (1/N and PMV).  Panel A of the table reports the Sharpe(1966), CER performance 

(%), performance fee (ǻ,%), Jensen performance (Į,%), and the average turnover.  Panels B 

and C report the z-test of equal Sharpe (panel B), and CER (panel C) performance between 

                                                           

14The low R2s from predictive regressions are still a challenge for rational asset pricing 

models to explain (Zhou(2010), Huang and Zhou(2015)). 
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every pair of strategies.  Where the z-test is negative (positive) in panels B and C, implies that 

the strategy in the row has a lower (higher) Sharpe or CER performance than the strategy in 

the column.  All of the test statistics in Table 2 onwards are corrected for the effects of 

heteroskedasticity and serial correlation using the automatic lag selection (without 

prewhitening) method of Newey and West(1994).  To conserve space, we do not report the z-

test of the performance fees or the t-statistic of the Jensen performance but we do denote 

statistical significance. 

 

Table 2 here 

 

 Table 2 shows that none of the dynamic trading strategies significantly outperform the 

1/N strategy using all the lagged information variables.  The 1/N strategy actually provides a 

significant higher Sharpe performance than the Passive/Managed and CMV strategies.  The 

Passive/Managed, CMV, and UMV strategies all have significant negative Jensen 

performance.  The Passive/Managed strategy has extremely high average turnover.  The high 

turnover and poor performance of the Passive/Managed strategy is due to the large number of 

lagged information variables, which increases the estimation risk of this strategy. 

 In contrast to the Passive/Managed and CMV strategies, the UMV strategy has a 

much lower negative Jensen performance and lower turnover.  The lower turnover stems 

from the conservative response the UMV strategy has to extreme values of the lagged 

information variables (Ferson and Siegel(2001), and Abhyankar et al(2012)).  The UMV 

strategy does significantly outperform the Passive/Managed and CMV strategies using both 

the Sharpe and CER measures.  These findings are similar to Fletcher(2011).   

 The results in Table 2 suggest that although the UMV strategy does outperform the 

alternative dynamic trading strategies, it does not significantly outperform the 1/N strategy 
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after adjusting for trading costs.  We next examine the performance of the dynamic trading 

strategies, where we consider the two subsets of the lagged information variables.  The first 

subset is the three lagged information variables with the highest persistence (ȡ) level in the 

initial estimation window (DY, Rf, and Term) and the second subset is the three lagged 

information variables with the highest predictability in the initial estimation window (ȍ) 

(Default, Market, and US Market).  Table 3 reports the out-of-sample performance of the 

strategies using the two subsets of the lagged information variables.  Panel A refers to the 

lagged information variables with the highest ȡ and panel B refers to the lagged information 

variables with the highest ȍ.  To examine whether the choice of lagged information variables 

has a significant impact on the performance of the UMV strategy, panel C reports the z-tests 

of equal Sharpe (columns 2 and 3) and CER (columns 5 and 6) performance measures 

between the UMV strategies using all the lagged information variables (All), and the two 

subsets of lagged information variables.   

 

Table 3 here 

 

 Panel A of Table 3 shows that the UMV strategy is the only mean-variance strategy 

with positive performance across all performance measures when using the lagged 

information variables with the highest ȡ.  The UMV strategy also has the lowest average 

turnover among the mean-variance strategies.  The negative performance of the 

Passive/Managed strategy in panel A is substantially reduced compared to Table 2, as is the 

average turnover of the strategy.  The UMV strategy significantly outperforms the PMV, 

Passive/Managed, and CMV strategies using the Sharpe measure and the PMV strategy using 

the CER measure.  The outperformance of the UMV strategy relative to the different mean-

variance strategies is driven by a lower turnover and a superior performance before trading 
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costs.  Although the UMV strategy does outperform the alternative dynamic trading 

strategies, it does not provide significant outperformance relative to the 1/N strategy or 

exhibit significant positive Jensen performance. 

 When using the lagged information variables with the highest ȍ in panel B of Table 

3, there is a sharp increase in the average turnover for all three dynamic trading strategies and 

the performance of the Passive/Managed and UMV strategies is poorer than compared in 

panel A of Table 3.  The average turnover of the UMV strategy more than doubles compared 

to panel A.  All three dynamic trading strategies in panel B have negative Sharpe and CER 

performance.  The 1/N strategy provides a significant higher Sharpe performance than all the 

other strategies.  Among the dynamic trading strategies, the UMV strategy significantly 

outperforms the Passive/Managed and CMV strategies using the CER measure, and the CMV 

strategy using the Sharpe measure.  

 Panel C of Table 3 provides the formal tests of whether the choice of the lagged 

information variables has a significant impact on the after-cost performance of the UMV 

strategy.  Panel C shows that the UMV strategy using the lagged information variables with 

the highest persistence level provide a significant higher after-cost performance using the 

Sharpe and CER measures relative to the other two UMV strategies.  This result suggests that 

using lagged information variables with the highest persistence levels enhances the after-cost 

performance of the UMV strategy.  This finding is driven by the lower turnover of using the 

lagged information variables with the highest persistence levels as the before-cost 

performance between the UMV strategies is similar using either the Sharpe or CER measures.  

The use of persistent lagged information variables lowers the turnover of the UMV strategy 

because the conditional expected excess returns is less volatile through time compared to 

using lagged information variables with a lower persistence level (Abhyankar et al(2012)). 
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 Our findings that the superior after-cost performance of the UMV strategy relative to 

the Passive/Managed and CMV strategies is similar to Fletcher(2011) in U.K. stock returns, 

although the test assets and sample period differs.  The benefits of the UMV strategy relative 

to the alternative dynamic trading strategies are similar to Ferson and Siegel(2009) and 

Abhyankar et al(2012).  The poor performance of the Passive/Managed strategy is consistent 

with Stivers and Sun(2014).  The lack of significant Jensen performance shows that dynamic 

trading strategies do not deliver significant value added for investors and is similar to the 

neutral closed-end fund Jensen performance in Fletcher and Marshall(2014). 

We conduct a number of robustness tests on our performance tests of the UMV 

strategy using the lagged information variables with the highest persistence levels.  First, we 

examine if there are any benefits for the UMV strategy of using a time-varying conditional 

covariance matrix.  We model a time-varying conditional covariance matrix using the two 

alternative approaches of Ferson and Siegel(2009)15.  We find that using a time-varying 

conditional covariance matrix has little impact on the performance of the UMV strategy and 

actually leads to a marginal reduction in out-of-sample performance.  Second, we examine 

the impact of portfolio constraints on the performance of the UMV strategy by imposing no 

short selling restrictions by truncating the negative weights in the UMV strategy to zero.  We 

also consider the impact of no short selling and  an upper bound constraint of 0.4.  There is a 

marginal reduction in the performance of the UMV strategy but the differences are not 

statistically significant.  Imposing constraints has no significant impact on the performance of 

the UMV strategy.  Third, we examine the impact of using a higher target expected excess 

returns for the strategies.  Using a higher target expected excess returns does increase the 

turnover of the strategies but also increases the before-cost performance and so our main 

findings are largely unchanged. 

                                                           

15 Details are provided in the Appendix. 
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We next examine the performance of the mean-variance strategies over different 

subperiods using the three lagged information variables with the highest persistence levels.  

We consider three different subperiods16.  First, we split the overall sample period into a pre-

crisis period (January 1995 and December 2006), and a post-crisis period (January 2007 and 

December 2014).  Second, we split the sample period into recession and expansion states 

using the formal definition of a recession in the U.K. economy17.  Third, we split the sample 

period into bearish and bullish market states following Zhang(2012).  Bearish market states 

are the months in the lowest 30% of excess market returns and bullish market states are the 

months in the highest 30% of excess market returns over the January 1995 and December 

2014 period18.  Table 4 reports the subperiod performance of the mean-variance strategies.  

To conserve space, we do not report the z-tests of equal Sharpe and CER performance 

between the strategies but discuss in the text. 

 

Table 4 here 

 

Panel A of Table 4 shows that the performance of the dynamic trading strategies is 

better in the pre-2007 period.  The UMV and Passive/Managed strategies have the best 

performance in the first subperiod and have positive performance across all measures.  

However neither strategy significantly outperforms the 1/N strategy.  The UMV strategy does 

provide a significant higher performance than the CMV strategy using the Sharpe and CER 

                                                           

16 We are thankful for the reviewers in suggesting that we examine this issue in more detail. 

17 Recession occurs when there are two successive quarters of negative real GDP growth.  We 

define recession states for the months within the quarters where there is a recession. 

18 Drenovak, Urosevic and Jelic(2014) and Leite and Cortez(2015) find that the performance 

of funds is sensitive to crisis periods. 
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measures.  For the second subperiod, the performance of the mean-variance strategies 

deteriorates.  The Passive/Managed and CMV strategies have large negative performance.  In 

contrast the UMV strategy has a performance close to zero.  The differences in performance 

between the UMV strategy and the other three mean-variance strategies are large in economic 

terms but the differences are not statistically significant due to large standard errors.  The 

difference in performance between the two subperiods for the UMV strategy is driven mainly 

by a lower turnover in the first subperiod.  The before-cost performance of the UMV strategy 

is a bit lower in the second subperiod in contrast to the other mean-variance strategies where 

the before-cost performance in the second subperiod is poor.  Coupled with a much higher 

turnover in the second subperiod, the PMV, Passive/Managed, and CMV strategies have poor 

after-cost performance in the second subperiod. 

Panel B of Table 4 shows that the performance of the UMV strategy is stronger in 

recession states and delivers positive performance across all measures.  In contrast all the 

other strategies deliver negative performance in recession states with the PMV and CMV 

strategies having particularly poor performance.  The UMV strategy significantly 

outperforms the PMV, Passive/Managed, and CMV strategies using the Sharpe measure amd 

the PMV and Passive/Managed strategies using the CER measure.  There is substantial 

improvement in the performance of all strategies except the UMV strategy in expansion 

states.  The UMV strategy continues to have positive performance across all measures.  The 

UMV strategy provides a significant higher Sharpe and CER performance than the CMV 

strategy and a significant higher CER performance than the PMV strategy.  The difference in 

performance between the recession and expansion states for the UMV strategy is driven 

entirely by a much higher before-cost performance in recession states as the turnover of the 

UMV strategy in recession states is more than double the turnover in expansion states.  The 

alternative strategies have both a poor before-cost performance and a much higher turnover in 
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recession states, which explain the poor after-cost performance in recession states in panel B 

of Table 4.   

Panel C of Table 4 shows that the performance of the UMV strategy is relatively 

robust across bearish and bullish market states.  In bearish market states the UMV strategy is 

the only strategy that delivers close to neutral performance using the Sharpe and CER 

measures.  The UMV strategy provides a significant higher performance than the 1/N and 

PMV strategies using the Sharpe and CER measures and a significant higher CER 

performance than the Passive/Managed strategy.  Three of the four mean-variance strategies 

have significant performance fees.  The performance of all the strategies tends to improve in 

bullish market states, especially for the 1/N and CMV strategies.  Among the mean-variance 

strategies the UMV strategy still has the best performance.  There are no significant 

differences in the Sharpe and CER performance between the mean-variance strategies but the 

1/N strategy significantly outperforms all the mean-variance strategies using both measures 

in bullish market states.  The performance of the UMV strategy is stronger in bullish market 

states due to a better before-cost performance since the turnover of the UMV strategy is 

marginally higher in bullish market states.  The UMV strategy has superior after-cost 

performance in bearish market states relative to the alternative strategies due to both a much 

lower turnover (excluding the 1/N strategy) and much better before-cost performance. 

The results in Table 4 suggest that the UMV strategy, when using the lagged 

information variables with the highest persistence levels, delivers the most consistent 

subperiod performance across the strategies.  The relative performance of the UMV strategy 

is particularly strong in recession states and bearish market states.  The UMV strategy is even 

able to significantly outperform the 1/N strategy in bearish market states.  This result 

suggests that the optimal use of return predictability is especially beneficial in periods of poor 

market performance.  This finding is driven by lower turnover and superior before-cost 
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performance of the UMV strategy.  Although the UMV strategy performs well across 

subperiods, it does not provide a significant positive Jensen performance.   

Our analysis so far assumes that the trading costs are 50 basis points.  We next 

examine the performance of the mean-variance strategies assuming a level of proportional 

cost per transaction of 10 basis points as in DeMiguel et al(2014).  Table 5 reports the 

performance of the mean-variance strategies over the whole sample period using the lagged 

information variables with the highest persistence levels.  Table 6 reports the corresponding 

subperiod performance.   

 

Table 5 here 

Table 6 here 

 

 Table 5 shows that when the investor faces lower trading costs at 10 basis points, 

there is a dramatic improvement in the performance of the UMV strategy.  The UMV strategy 

now delivers a significant positive Jensen performance and significantly outperforms all the 

other mean-variance strategies using the Sharpe measure.  The UMV strategy also provides a 

significant higher CER performance than the CMV strategy.  Much of the negative 

performance of the Passive/Managed strategy from Panel A of Table 3 also disappears at the 

lower level of trading costs.   

 Table 6 shows that the subperiod performance of the UMV strategy is robust at the 

lower level of trading costs.  The performance of all the strategies improves at the lower 

trading costs.  The UMV strategy is the only strategy to have positive performance across all 

subperiods.  The UMV strategy has the highest Sharpe performance across all strategies 

except in bullish market states.  The UMV strategy is able to significantly outperform the 1/N 

strategy using the Sharpe and CER measures in bearish market states.  The UMV strategy 
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provides a significant positive Jensen performance in the pre-2007 and post-2007 subperiods 

and in recession and expansion states suggesting that the optimal use of return predictability 

in closed-end fund portfolios delivers significant value added to investors. 

The results in Tables 5 and 6 suggest that when investors face lower trading costs, the 

UMV strategy in closed-end fund portfolios, using the most persistent lagged information 

variables, can deliver significant value added to investors.  This result stems from the fact the 

UMV strategy has superior before-cost performance and lower turnover compared to the 

alternative strategies.  The finding that the UMV strategy adds value is interesting given the 

mixed empirical evidence as to whether individual closed-end funds can deliver significant 

value added to investors.  Fletcher and Marshall(2014) find that investment sector portfolios 

of closed-end funds have neutral performance and there are no funds with either significant 

superior or inferior performance beyond what we would expect in a world with zero 

performance.  Bredin, Cuthbertson, Nitzsce and Thomas(2014) find more positive results 

about the performance of closed-end funds.  However their sample of funds includes both 

domestic and international equity funds and they use both self-designated benchmarks and 

global factors to evaluate performance.  Our study suggests that closed-end funds provide a 

useful investment vechicle for investors from the optimal use of return predictability with 

lagged information variables with the highest persistence levels.   

V Conclusions 

 We examine whether the choice of the lagged information variables affects the after-

cost performance of the UMV strategy in U.K. equity closed-end fund portfolios.  There are 

three main findings in our study.  First, we find that the choice of lagged information 

variables has a significant impact on the after-cost performance of the UMV strategy.  The 

UMV strategy, using the three lagged information variables with the highest persistence 

levels, significantly outperforms the UMV strategies using all lagged information variables 
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and the three lagged information variables with the highest predictability.  The superior 

performance is driven by lower average turnover and not superior before-cost performance.  

The UMV strategy is able to significantly outperform after adjusting for trading costs the 

alternative dynamic trading strategies and the PMV strategy using the lagged information 

variables with the highest persistence levels.  This superior performance is driven by both a 

lower turnover and a superior before-cost performance.  The benefits of the optimal use of 

return predictability is consistent with Ferson and Siegel(2009), Fletcher(2011), Abhyankar et 

al(2012), and Penaranda(2014) among others.  However the UMV strategy does not 

significantly outperform the 1/N strategy.   

 Second, we find that the UMV strategy, using the lagged information variables with 

the highest persistence levels, have the most consistent subperiod performance across all 

strategies.  The UMV strategy provides particularly good performance in recession states and 

bearish market states.  The UMV strategy is able to significantly outperform the 1/N strategy 

in bearish market states.  The subperiod performance suggests that the optimal use of return 

predictability delivers good performance in low market states and suggests it provides a 

hedge against market downturns.  This superior performance is driven by both a lower 

turnover and superior before-cost performance. 

 Third, we find at lower levels of trading costs of 10 basis points, the UMV strategy 

using the lagged information variables with the highest persistence levels delivers significant 

value added to investors.  The UMV strategy also provides a significant higher Sharpe 

performance relative to the alternative mean-variance strategies.  The UMV strategy 

continues to have good subperiod performance and delivers significant value added to 

investors in both the pre-2007 and post-2007 subperiods, and in recession and expansion 

states.  This finding is consistent with DeMiguel et al(2014) who find that the benefits of 

using conditioning information in CMV strategies only holds at low levels of trading costs. 
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 Our results suggest that using lagged information variables with the highest 

persistence levels is an effective way of reducing the turnover of the UMV strategy and 

exploit the benefits of the optimal use of return predictability.  At low levels of trading costs, 

the UMV strategy delivers significant value added to investors.  This result suggests the U.K. 

equity closed-end funds can be a useful investment vehicle even where the underlying funds 

have neutral performance (Fletcher and Marshall(2014)).  Our results also suggest that 

closed-end fund managers might wish to consider exploiting the optimal use of return 

predictability in their trading strategies using lagged information variables with the highest 

persistence levels. 

 Our analysis has focused on portfolios of domestic equity closed-end funds.  An 

interesting extension to our study would be to examine the performance of the UMV strategy 

using individual closed-end funds.  It would be useful to see if the UMV strategy performs 

well in portfolios of international equity closed-end funds.  Exploring the benefits of the 

optimal use of return predictability in other types of managed funds such as open-end funds 

or hedge funds is worthy of investigation.  We leave these issues to future research. 
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Appendix 

A) Factors in the Carhart(1997) Model 

We form the factors between January 1990 and December 2014.  We construct the 

market index using a similar approach to Dimson and Marsh(2001).  At the start of each year 

between 1990 and 2014, we construct a value weighted portfolio of all stocks on LSPD by 

their market value at the start of the year.  We calculate buy and hold monthly returns during 

the next year.  We exclude companies with a zero market value.  We make a number of 

corrections and exclusions to the portfolio returns which we follow across forming the factors 

and the passive portfolios.  Where a security has missing return observations during the year 

or month, we assign a zero return to the missing values as in Liu and Strong(2008).  We 

correct for the delisting bias of Shumway(1997) by following the approach of Dimson, Nagel 

and Quigley(2003).  A –100% return is assigned to the death event date on LSPD where the 

LSPD code indicates that the death is valueless.  We exclude closed-end funds, foreign 

companies, and secondary shares using data from the LSPD archive file.   

To form the SMB and HML factors we use a similar approach to Fama and 

French(2012).  At the start of July year between 1989 and 2014, all stocks on LSPD are 

ranked separately by their market value at the end of June and by their book-to-market (BM) 

ratio from the prior calendar year.  The BM ratio is calculated using the book value of equity 

at the fiscal year-end (WC03501) during the previous calendar year from Worldscope and the 

year-end market value.  Two size groups (Small and Big) are formed using a breakpoint of 

90% by aggregate market capitalization where the Small stocks are the companies with 

smallest 10% by market value and the Big stocks are the companies with the largest 90% by 

market value.  Three BM groups (Growth, Neutral, and Value) are formed using break points 

of the 30th and 70th percentiles of the BM ratios of Big stocks.  Six portfolios of securities are 

then constructed at the intersection of the size and BM groups (SG, SN, SV, BG, BN, BV).  
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The monthly buy and hold return for the six portfolios are then calculated during the next 12 

months.  The initial weights are set equal to the market value weights at the end of June.  

Companies with a zero market value, and negative book values are excluded.   

The SMB factor is the difference in the average return of the three small firm 

portfolios (SG, SN, SV) and the average return of the three large firm portfolios (BG, BN, 

BV).  The HML factor is the average of HMLS and HMLB where HMLS is the difference in 

portfolio returns of SV and SG and HMLB is the difference in portfolio returns of BV and 

BG.  The HMLS and HMLB zero-cost portfolios capture the value effect in Small stocks and 

Big stocks respectively. 

We form the WML factor using a similar approach to Fama and French(2012). At the 

start of each month between January 1990 and December 2014, all stocks on LSPD are 

ranked separately by their market value at the end of the previous month and on the basis of 

their cumulative return from months –12 to –2. Two size groups (Small and Big) are formed 

as in the case of the size/BM portfolios.  Three past return groups (Losers, Neutral, and 

Winners) are formed using break points of the 30th and 60th percentiles of the past returns of 

Big stocks.  Six portfolios of securities are then constructed at the intersection of the size and 

momentum groups (SL, SN, SW, BL, BN, BW).  The value weighted return for the six 

portfolios are then calculated during the next month. Companies with a zero market value, 

and less than 12 return observations during the past year are excluded from the portfolios. 

The WML factor is the average of WMLS and WMLB where WMLS is the difference 

in portfolio returns of SW and SL and WMLB is the difference in portfolio returns of BW and 

BL.  The WMLS and WMLB zero-cost portfolios capture the momentum effect in Small 

stocks and Big stocks respectively. 

B) Lagged Information Variables 
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The term spread is the difference in the annualized yield on long-term government 

bonds and the three-month Treasury Bill.  The U.K. long-term bond yield comes from the 

International Financial Statistics (IFS) U.K. country tables provided by the International 

Monetary Fund (IMF).  The default spread is the difference in price returns of U.K. corporate 

bond and government bond indexes.  The corporate bond index consists of the Financial 

Times (FT) Fixed Interest Securities index until it discontinues and the Barclays Capital 

Sterling Aggregate Corporate bond index.  The government bond index consists of the FT 

Government Securities index until it discontinues and the Barclays Capital Sterling 

Aggregate Government bond index.  The index series are collected from Datastream.  We 

calculate the output gap using the seasonally adjusted U.K. industrial production index 

provided by the IFS.  We estimate the output gap using the recursive approach as in Cooper 

and Priestley(2009).  We calculate the lagged monthly log quarterly growth in the Baltic Dry 

Index (BDI) following the approach of Bakshi et al(2014).  For the excess returns on the U.S. 

market index, we use the value weighted market index and the one-month Treasury Bill 

return available on the Ken French’s Data Library19.  

C) Models of Conditional Moments 

We consider two alternative models of conditional moments as in Ferson and 

Siegel(2009).  In each model, the conditional expected excess returns are the same as the 

predictive regression model but both models provide an estimate of a time varying 

conditional covariance matrix. 

1) Conditional single-index model 

This model uses a conditional single-index model to model the conditional covariance 

matrix.  The conditional covariance matrix can be calculated from a conditional K factor 

model as: 

                                                           

19http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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Ȉt = ȕt’Ȉftȕt + Ȉut                                                   (10) 

where ȕt is a (N,K) matrix of the conditional betas on the K factors at time t, Ȉft is a (K,K) 

conditional covariance matrix of the K factors at time t, Ȉut is the (N,N) conditional residual 

covariance matrix at time t, and K is the number of factors.  For this model of the conditional 

moments K = 1 and we use the excess stock market returns as the single-index.  

The conditional betas are assumed to be a linear function of Zt.  We estimate the 

conditional beta function from the regression of the residuals from the predictive regression 

on a constant, the excess market returns, and the scaled excess market returns (excess market 

returns times the lagged information variables) during the estimation window.  We get the 

conditional betas by multiplying the slope coefficients from this regression by the current 

values of Zt at the start of the month.  We assume Ȉut is constant and use the ML estimate of 

the sample covariance matrix of the residuals from the conditional beta regression.  We 

assume that the conditional variance of the market excess returns is constant and calculate as 

the ML estimate of the variance of the residuals from the regression of the excess market 

returns on Zt during the estimation window.  

2. Davidian and Carroll(1987)  

This model assumes that the conditional correlation matrix is constant and models the 

conditional standard deviations of the N excess returns.  The conditional standard deviations 

of the N excess returns are given by the fitted values from the regression of the absolute 

residuals (from the predictive regression) on Zt multiplied by (/2)1/2.  We estimate this 

regression during the estimation window and multiply the coefficients from this regression by 

the current values of Zt at the start of the month.  We then multiply by (/2)1/2 to get the 

conditional standard deviations  The conditional correlation matrix is assumed constant and is 

estimated from the residual correlation matrix from the predictive regression.  The 
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conditional covariance matrix is then calculated from the corresponding conditional standard 

deviations and correlation matrix.   
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Table 1 Summary Statistics of Closed-End Fund Portfolios and Lagged Information 

Variables 

Panel A Mean 
Standard 

Deviation Minimum Maximum 
 All Companies 0.371 4.574 -15.352 16.653 
 Equity Income 0.473 4.455 -14.392 14.880 
 Small 

Companies 0.479 5.809 -22.459 21.893 
 Equity and 

Bond Income 0.008 4.943 -22.214 13.581 
 

Panel B Mean 
Standard 

Deviation ȡ1 Maximal R2 ȍ 

DY 3.599 0.793 0.982 0.059 0.0631 

Rf 0.412 0.294 0.977 0.028 0.0292 

Term 0.782 1.604 0.962 0.029 0.0302 

Default 0.120 1.808 0.214 0.047 0.0491 

Inflation 0.263 0.432 0.158 0.025 0.025 

Output Gap -3.846 2.705 0.938 0.012 0.012 

Market 0.340 3.943 0.075 0.225 0.2901 

BDI -0.264 34.911 0.704 0.024 0.025 

US Market 0.629 4.354 0.080 0.164 0.1971 

 

1 Significant at 5% 
2 Significant at 10% 
 
The table reports summary statistics of the four U.K. equity closed-end fund portfolios (panel 
A) and nine lagged information variables (panel B) between January 1990 and December 
2014.  The summary statistics in panel A of the table are the mean, standard deviation, 
minimum, and maximum monthly excess returns (%).  The summary statistics in panel B 
include the mean, standard deviation, and first order autocorrelation (ȡ1) of the lagged 
information variables.  The maximal R2 column is the maximal R2 of Lo and 
MacKinlay(1997) from the predictive regressions of the closed-end fund portfolio excess 
returns on a constant and the corresponding lagged information variable.  The final column 
(ȍ) is the difference between the average ex ante conditional squared Sharpe performance 
and the squared Sharpe performance of a fixed weight portfolio strategy and captures the 
hypothetical benefits in the optimal use of predictability (Abhyankar et al(2012)).  The null 
hypothesis of ȍ=0 is tested by a standard Wald test as in Proposition 3 of Abhyankar et al.  
The lagged information variables include the lagged values of the annualized dividend yield 
(DY) on the market index, the return on the one-month Treasury Bill (Rf), the term spread 
(Term), the default spread (Default), the monthly change in the RPI index (inflation), the 
output gap, the excess market return (Market), the log quarterly growth in the BDI index 
(BDI), and lag excess return on the U.S. market (US Market). 
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Table 2 After-Cost Performance of Mean-Variance Strategies: All Lagged Information 
Variables 
 

Panel A Sharpe CER ǻ Į Turnover 

1/N 0.089 -0.085  
 

0.014 

PMV -0.138 -0.920 -0.842 -0.9752 0.747 

Passive/Managed -0.244 -0.666 -0.579 -0.6041 1.611 

CMV -0.272 -0.208 -0.119 -0.2061 0.655 

UMV -0.112 -0.084 0.004 -0.0962 0.498 

Panel B: 

Sharpe PMV Passive/Managed CMV UMV  

1/N 2.011 3.131 2.831 1.50  

PMV  0.92 1.37 -0.25  

Passive/Managed   0.41 -1.792  

CMV    -5.911  

Panel C: 

CER PMV Passive/Managed CMV UMV  

1/N 1.38 1.36 0.28 -0.00  

PMV  -0.57 -1.37 -1.63  

Passive/Managed   -2.651 -3.441  

CMV    -3.851  

 
1 Significant at 5% 
2 Significant at 10% 
 
The table reports the out-of-sample after-cost performance of the 1/N, PMV, 
Passive/Managed, CMV, and UMV strategies between January 1995 and December 2014.  
The investment universe is the excess returns of four U.K. equity closed-end fund portfolios 
sorted by investment sector and the one-month U.K. Treasury Bill return.  The dynamic 
trading strategies (Passive/Managed, CMV, and UMV) are estimated using all nine lagged 
information variables.  The target conditional and unconditional expected excess return is set 
equal to 0.5%.  A monthly rolling 60-month estimation window is used.  The after-cost 
performance assumes a level of proportional cost per transaction of 50 basis points.  Panel A 
of the table reports the out-of-sample performance and average turnover of the strategies.  
The performance measures are the Sharpe(1966) measure, the CER(%) measure, the 
performance fee (ǻ,%) of Kirby and Ostdiek(2012), and the Jensen performance measure 
(Į,%).  Panels B and C report the z-test of equal Sharpe (panel B), and CER (panel C) 
performance between every pair of strategies.  All of the test statistics are corrected for the 
effects of heteroskedasticity and serial correlation using the automatic lag selection (without 
prewhitening) method of Newey and West(1994). 
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Table 3 After-Cost Performance of Mean-Variance Strategies: Subsets of Lagged Information 
Variables  
 

Panel A: ȡ Sharpe CER ǻ Į Turnover 

1/N 0.089 -0.085 
  

0.014 

PMV -0.138 -0.920 -0.842 -0.9752 0.747 

Passive/Managed -0.013 -0.221 -0.136 -0.145 0.667 

CMV -0.079 -0.909 -0.831 -0.343 0.638 

UMV 0.102 0.076 0.166 0.070 0.363 

z-test Sharpe PMV Passive/Managed CMV UMV 
 1/N 2.011 1.09 1.922 -0.11 
 PMV 

 
-1.922 -0.71 -2.481 

 Passive/Managed 
  

1.10 -1.702 
 CMV 

   
-2.961 

 z-test CER PMV Passive/Managed CMV UMV 
 1/N 1.38 0.29 0.99 -0.39 
 PMV 

 
-2.031 -0.01 -1.912 

 Passive/Managed 
  

0.78 -1.20 
 CMV 

   
-1.17 

 Panel B: ȍ Sharpe CER ǻ Į Turnover 

1/N 0.089 -0.085 
  

0.014 

PMV -0.138 -0.920 -0.842 -0.975 0.747 

Passive/Managed -0.257 -0.317 -0.227 -0.287 1.210 

CMV -0.328 -0.405 -0.316 -0.387 1.250 

UMV -0.158 -0.162 -0.072 -0.172 0.820 

z-test Sharpe PMV Passive/Managed CMV UMV 
 1/N 2.011 3.071 2.901 1.722 

 PMV 
 

0.98 1.842 0.21 
 Passive/Managed 

  
0.71 -1.11 

 CMV 
   

-3.941 

 z-test CER PMV Passive/Managed CMV UMV 
 1/N 1.38 0.57 0.74 0.17 
 PMV 

 
-1.16 -0.99 -1.51 

 Passive/Managed 
  

0.91 -2.181 

 CMV 
   

-4.081 

 Panel C: 

z-test Sharpe ȡ ȍ z-test CER ȡ ȍ 

All -3.741 0.81 All -3.551 1.60 

ȡ 
 

3.371 ȡ  3.561 

 
1 Significant at 5% 
2 Significant at 10% 
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The table reports the out-of-sample after-cost performance of the 1/N, PMV, 
Passive/Managed, CMV, and UMV strategies between January 1995 and December 2014.  
The investment universe is the excess returns of four U.K. equity closed-end fund portfolios 
sorted by investment sector and the one-month U.K. Treasury Bill return.  The dynamic 
trading strategies are estimated using the three lagged information variables with the highest 
persistence levels (ȡ) (DY, Rf, and Term) in panel A, and the three lagged information 
variables with the highest predictability (ȍ) (Default, Market, and US Market) in panel B 
from the initial estimation window.  The target conditional and unconditional expected excess 
return is set equal to 0.5%.  A monthly rolling 60-month estimation window is used.  The 
after-cost performance assumes a level of proportional cost per transaction of 50 basis points.  
Panels A and B of the table report the out-of-sample performance and average turnover of the 
strategies.  The performance measures are the Sharpe(1966) measure, the CER(%) measure, 
the performance fee (ǻ,%) of Kirby and Ostdiek(β01β), and the Jensen performance measure 
(Į,%).  The z-test Sharpe and z-test CER are the z-test statistics of equal Sharpe or CER 
performance between every pair of strategies.  Panel C report the z-tests of equal Sharpe and 
CER performance between the UMV strategies in panels A and B, and the UMV strategy 
using all lagged information variables (All).  All of the test statistics are corrected for the 
effects of heteroskedasticity and serial correlation using the automatic lag selection (without 
prewhitening) method of Newey and West(1994). 
  



35 

 

Table 4 After-Cost Performance of Mean-Variance Strategies: Subperiod Results 
 

Panel A 

Jan 1995 and Dec 2006 Sharpe CER ǻ Į 

1/N 0.077 -0.141 
  PMV -0.004 -0.212 -0.060 -0.155 

Passive/Managed 0.128 0.133 0.287 0.108 

CMV -0.009 -0.036 0.119 -0.061 

UMV 0.163 0.147 0.302 0.107 

Jan 2007 and Dec 2014 Sharpe CER ǻ Į 

1/N 0.107 -0.000 
  PMV -0.264 -1.956 -1.974 -1.9201 

Passive/Managed -0.093 -0.747 -0.758 -0.428 

CMV -0.125 -2.206 -2.254 -0.687 

UMV -0.011 -0.026 -0.032 0.018 

Panel B 

Recession States Sharpe CER ǻ Į 

1/N -0.005 -1.365 
  PMV -0.763 -8.180 -6.884 -5.0841 

Passive/Managed -0.115 -2.900 -1.593 -0.022 

CMV -0.299 -11.216 -10.798 -6.5161 

UMV 0.135 0.118 1.422 0.1982 

Expansion States Sharpe CER ǻ Į 

1/N 0.105 0.018 
  PMV -0.022 -0.256 -0.271 -0.302 

Passive/Managed 0.031 -0.002 -0.016 -0.015 

CMV -0.009 -0.030 -0.042 -0.040 

UMV 0.099 0.073 0.060 0.051 

Panel C 

Bearish Market States Sharpe CER ǻ Į 

1/N -1.033 -4.554 
  PMV -0.512 -2.397 2.1421 -0.166 

Passive/Managed -0.119 -0.289 4.1981 -0.379 

CMV -0.128 -2.733 1.994 0.495 

UMV 0.021 -0.003 4.4761 -0.121 

Bullish Market States Sharpe CER ǻ Į  
1/N 1.637 4.033 

  PMV 0.062 -0.377 -4.604 -0.900 

Passive/Managed 0.032 -0.360 -4.515 -2.509 

CMV 0.110 0.089 -3.910 0.238 

UMV 0.210 0.210 -3.792 0.330 

 
1 Significant at 5% 
2 Significant at 10% 
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The table reports the out-of-sample after-cost performance of the 1/N, PMV, 
Passive/Managed, CMV, and UMV strategies across the different subperiods.  The 
investment universe is the excess returns of four U.K. equity closed-end fund portfolios 
sorted by investment sector and the one-month U.K. Treasury Bill return.  The dynamic 
trading strategies (Passive/Managed, CMV, and UMV) are estimated using the three lagged 
information variables with the highest persistence levels (DY, Rf, and Term) in the initial 
estimation window.  The target conditional and unconditional expected excess return is set 
equal to 0.5%.  A monthly rolling 60-month estimation window is used.  The after-cost 
performance assumes a level of proportional cost per transaction of 50 basis points.  The 
performance measures are the Sharpe(1966) measure, the CER(%) measure, the performance 
fee (ǻ,%) of Kirby and Ostdiek(β01β), and the Jensen performance measure (Į,%).  Panel A 
reports the subperiod performance between January 1995 and December 2006 and January 
2007 and December 2014.  Panel B reports the subperiod performance of recession and 
expansion states.  Panel C reports the subperiod performance of bearish and bullish market 
states.  All of the test statistics are corrected for the effects of heteroskedasticity and serial 
correlation using the automatic lag selection (without prewhitening) method of Newey and 
West(1994). 
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Table 5 After-Cost Performance of Mean-Variance Strategies with Lower Trading Costs 
 

Panel A Sharpe CER ǻ Į 

1/N 0.090 -0.079  
 PMV -0.067 -0.593 -0.518 -0.670 

Passive/Managed 0.090 0.070 0.150 0.139 

CMV -0.037 -0.597 -0.521 -0.141 

UMV 0.257 0.223 0.307 0.2211 

Panel B 

z-test Sharpe PMV Passive/Managed CMV UMV 

1/N 1.37 0.00 1.42 -1.52 

PMV 
 

-2.541 -0.33 -3.321 

Passive/Managed 
 

 1.39 -2.001 

CMV 
 

 
 

-4.161 

Panel C 

z-test CER PMV Passive/Managed CMV UMV 

1/N -0.86 -1.42 -0.92 -1.23 

PMV 
 

-1.32 -0.42 -1.19 

Passive/Managed 
  

1.792 0.46 

CMV 
   

-2.581 

 

1 Significant at 5% 
2 Significant at 10% 
 
The table reports the out-of-sample after-cost performance of the 1/N, PMV, 
Passive/Managed, CMV, and UMV strategies between January 1995 and December 2014.  
The investment universe is the excess returns of four U.K. equity closed-end fund portfolios 
sorted by investment sector and the one-month U.K. Treasury Bill return.  The dynamic 
trading strategies (Passive/Managed, CMV, and UMV) are estimated using the three lagged 
information variables with the highest persistence level in the initial estimation window (DY, 
Rf, and Term).  The target conditional and unconditional expected excess return is set equal 
to 0.5%.  A monthly rolling 60-month estimation window is used.  The after-cost 
performance assumes a level of proportional cost per transaction of 10 basis points.  Panel A 
of the table reports the out-of-sample performance of the strategies.  The performance 
measures are the Sharpe(1966) measure, the CER(%) measure, the performance fee (ǻ,%) of 
Kirby and Ostdiek(β01β), and the Jensen performance measure (Į,%).  Panels B and C report 
the z-test of equal Sharpe (panel B), and CER (panel C) performance between every pair of 
strategies.  All of the test statistics are corrected for the effects of heteroskedasticity and serial 
correlation using the automatic lag selection (without prewhitening) method of Newey and 
West(1994). 
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Table 6 After-Cost Performance of Mean-Variance Strategies: Subperiod Results and Lower 
Trading Costs 
 

Panel A 

Jan 1995 and Dec 2006 Sharpe CER ǻ Į 

1/N 0.078 -0.134 
  PMV 0.055 -0.041 0.103 0.013 

Passive/Managed 0.262 0.321 0.468 0.3041 

CMV 0.144 0.111 0.259 0.077 

UMV 0.282 0.268 0.416 0.2311 

Jan 2007 and Dec 2014 Sharpe CER ǻ Į 

1/N 0.109 0.004 
  PMV -0.183 -1.405 -1.424 -1.4101 

Passive/Managed 0.001 -0.304 -0.319 -0.022 

CMV -0.091 -1.651 -1.689 -0.419 

UMV 0.217 0.157 0.146 0.2011 

Panel B 

Recession States Sharpe CER ǻ Į 

1/N -0.004 -1.358 
  PMV -0.638 -6.651 -5.351 -3.7911 

Passive/Managed -0.019 -1.687 -0.373 0.685 

CMV -0.273 -9.191 -8.358 -5.471 

UMV 0.410 0.409 1.706 0.4712 

Expansion States Sharpe CER ǻ Į 

1/N 0.106 0.024 
  PMV 0.051 -0.050 -0.071 -0.110 

Passive/Managed 0.197 0.212 0.193 0.2021 

CMV 0.172 0.131 0.113 0.1182 

UMV 0.244 0.208 0.190 0.1871 

Panel C 

Bearish Market States Sharpe CER ǻ Į 

1/N -1.032 -4.547 
  PMV -0.462 -2.007 2.5181 0.114 

Passive/Managed 0.051 0.0136 4.4951 -0.098 

CMV -0.112 -2.221 2.461 0.572 

UMV 0.175 0.151 4.6251 -0.011 

Bullish Market States Sharpe CER ǻ Į 

1/N 1.640 4.039 
  PMV 0.147 0.106 -4.101 -0.918 

Passive/Managed 0.113 0.049 -4.076 -2.159 

CMV 0.300 0.268 -3.736 0.407 

UMV 0.360 0.377 -3.632 0.452 

 
1 Significant at 5% 
2 Significant at 10% 
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The table reports the out-of-sample after-cost performance of the 1/N, PMV, 
Passive/Managed, CMV, and UMV strategies across the different subperiods.  The 
investment universe is the excess returns of four U.K. equity closed-end fund portfolios 
sorted by investment sector and the one-month U.K. Treasury Bill return.  The dynamic 
trading strategies (Passive/Managed, CMV, and UMV) are estimated using the three lagged 
information variables with the highest persistence levels (DY, Rf, and Term) in the initial 
estimation window.  The target conditional and unconditional expected excess return is set 
equal to 0.5%.  A monthly rolling 60-month estimation window is used.  The after-cost 
performance assumes a level of proportional cost per transaction of 10 basis points.  The 
performance measures are the Sharpe(1966) measure, the CER(%) measure, the performance 
fee (ǻ,%) of Kirby and Ostdiek(β01β), and the Jensen performance measure (Į,%).  Panel A 
reports the subperiod performance between January 1995 and December 2006 and January 
2007 and December 2014.  Panel B reports the subperiod performance of recession and 
expansion states.  Panel C reports the subperiod performance of bearish and bullish market 
states.  All of the test statistics are corrected for the effects of heteroskedasticity and serial 
correlation using the automatic lag selection (without prewhitening) method of Newey and 
West(1994). 
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