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AAbbssttrraacctt

The present study examines three High Velocity Oxy Fuel deposited coatings, Tungsten 

Carbide, Chromium Carbide and Aluminium Oxide, under slurry erosion-corrosion 

conditions. Coatings produced in this manner typically exhibit superior density and hardness 

over alternative thermal spray technologies, therefore are suitable for use in corrosive and 

highly erosive environments. The scope of the study concentrates on isolation of the 

contributing factors of erosion, corrosion and synergy through applied electrochemistry, as 

well as metallographic analysis to evaluate the mechanisms causing coating degradation. 

The aim of which is to provide comprehensive data on the performance of the mentioned 

coatings under erosion-corrosion in conditions representing a flowing environment. Results 

demonstrate the breakdown of Chromium Carbide and Aluminium Oxide coatings result in 

enhanced mass loss over the uncoated S355 steel. Despite this, results have shown Tungsten 

Carbide with a Cobalt binder to be an effective protective coating, resulting in a significant 

reduction in total material loss over uncoated S355 steel. 
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11.. IInnttrroodduuccttiioonn

Erosion-corrosion is a major cause of material degradation within pump and pipeline 

components transporting erosive slurry at high velocities [1–3]. In order to combat this 

degradation, applied hard surface coatings provide protection against erosive particulates 

within the slurry; one such technology is High Velocity Oxy Fuel (HVOF). A derivative of flame 

spraying, HVOF is used to deposit wear resistant coatings onto a variety of substrate 

materials [4]. The deposition process involves spraying molten or semi-molten powder 

particles at high velocities onto the substrate surface [5]. The high kinetic energies 

generated by the spraying process result in a very dense coating that is well bonded to the 

substrate and resistant to mechanical wear and corrosion [6–11], with particle size being a 

key factor in the coating density achieved [12]. 

Under slurry impingement conditions, coatings are subjected to a highly destructive 

environment and are degraded as a result of two contributing factors; mechanical wear due 

to sand particulates within the slurry impacting on the material surface and corrosion from 

the saline solution [13]. Under these conditions, the degradation process is known as 

erosion-corrosion.  The erosion-corrosion of steel has been widely studied with the effects of 

erodent size, flow velocity and angle of attack all being documented [14–20]. These studies 

have shown measurable changes in the electrochemical properties of steel under flowing 

conditions when contrasted with corresponding properties under static conditions. The 

observed variation is attributed to particulates within the slurry impinging on the material 

surface causing rapid removal of the passive layer and resulting in a higher rate of 

electrochemical charge transfer [21,22]. Based on this work, it is widely accepted that 

combination of liquid impingement and electrochemical corrosion processes yields greater 

mass loss than is produced from the sum of isolated mechanical wear and isolated corrosion. 

A third mechanism, incorporating the synergistic effect between erosion and corrosion, 
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results in the additional mass loss [23]. This synergy effect leads to erosion-enhanced 

corrosion and corrosion-enhanced erosion with the total mass loss equating to the sum of 

these three mechanisms [24].  

Existing research on the erosion-corrosion behaviour of multiple HVOF coatings is 

less comprehensive, with previous work failing to address the combined effect of erosion –

corrosion on HVOF deposited WC-CoCr, Cr3C2-NiCr or Al2O3 coatings within an environment 

replicating in-service conditions. Instead, existing studies isolate the effects of wear and 

corrosion through sliding wear and static corrosion [8,25–29]. The findings of these 

investigations highlight the substantial improvement to wear [25–28] and corrosion [8,27–

29] resistance over uncoated substrate that can be achieved with HVOF coatings. Despite 

consisting of extensive studies assessing electrochemistry, microstructure and mechanical 

properties, the investigations fail to account for the effects of synergy and as such do not 

present comprehensive data on the erosion – corrosion behaviour of HVOF deposited 

coatings under aqueous, flowing conditions [8,25–27]. One such study to address the effect 

of slurry erosion was carried out by Goyal et al. [30], who investigated the influence of 

erodent particle size, impact velocity and slurry concentration on the volume loss of two 

HVOF deposited coatings. Results indicate tungsten-based coatings provide enhanced slurry 

erosion protection over the uncoated steel, with alumina-based coatings having 

comparatively poor resistance to slurry erosion. In spite of thorough analysis, the 

investigation does not isolate the contributing effects of erosion, corrosion and synergy to 

the overall volume loss under slurry impingement [30]. Bjordal et al. [31] recorded the 

effects of synergy in thermally sprayed WC coatings with varying Cr and Co content. The 

authors conclude that under highly erosive conditions, the influence of corrosion is less 

significant with the effects of synergy present in coatings with low corrosion resistance (low 

Cr content). Finally, there have been numerous studies examining the effect of carbide size 
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on the wear performance of HVOF deposited coatings [12,26,32,33], the outcomes of which 

demonstrate the increase in wear rate with increasing carbide size. The presence of larger 

carbides causes increased damage to the underlying surfaces with WC-CoCr experiencing 

low wear due to the coatings comparably small carbide size [12] and high hardness [34]. 

The present study provides insight on the erosion-corrosion performance of HVOF 

deposited WC-CoCr, Cr3C2-NiCr and Al2O3 based coatings under slurry liquid impingement. 

Through the use of liquid impingement apparatus, results will provide an indication of the 

three coatings’ performance under conditions reflecting a flowing environment. The mass 

loss as a result of erosion, corrosion and the synergy factor has been calculated for each 

coating in order to generate comparative data for the relative performance of each coating 

material under multiple angles of attack. Metallographic analysis was carried out to establish 

a link between coating properties and the mode of coating degradation through assessment 

of wear scar damage. This body of work seeks to provide a novel insight on the erosion-

corrosion performance of WC-CoCr, Cr3C2-NiCr and Al2O3 based coatings under slurry liquid 

impingement through comparative analysis of the three coatings under consistent flowing 

erosion – corrosion conditions.  

22.. EExxppeerriimmeennttaall mmeetthhooddss

2.1 Materials 

WC-CoCr, Cr3C2-NiCr and Al2O3 coatings were selected for erosion-corrosion testing, with 

their specific composition detailed in Table 1. Each material was deposited on EN:10025 

S355 JR steel substrate using Praxair JP-5000 HVOF equipment. Coatings were examined in 

the as-deposited condition. Figure 1 shows a SEM micrograph of each of the three coatings 

in the as-received condition, with coatings comprised of a generally dense structure with 

limited porosity. Table 2 highlights the associated properties for the three coatings. Average 
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carbide/oxide size and coating thickness were evaluated using light optical microscopy, with 

a Mitutoyo MVK-G1 micro-hardness tester with a 200 gf load used to evaluate average 

hardness. A Mitutoyo SV 2000 profilometer provided accurate measurements of the

respective surface roughness for each coating.   

Table 1 

Powder composition [35–37]. 

Coating 

Material

Powder 

Identification Code
Composition (wt.%)

Substrate 

Material

WC-CoCr Woka 3652 80.6W - 10Co - 4Cr -

5.2C - 0.2Fe

S355 Steel

Cr3C2 Woka 7202 69.9Cr - 20Ni - 9.6C -

0.5Fe

S355 Steel

Al2O3 Al-1110-HP 100Al2O3 S355 Steel

Table 2 

Coating properties.

Coating Thickness 

(µm)

Average Carbide/Oxide

Size (µm)

Average 

Hardness (HV)

Surface Roughness, 

Ra (µm)

Uncoated N/A N/A 200 0.172

WC-CoCr 163 1.07 1364 4.119

Cr3C2-NiCr 176 3.47 1006 1.855

Al2O3 294 2.35 1164 1.063

2.2 Slurry erosion-corrosion 

A  closed loop jet impingement system, as seen as a schematic in Figure 2, was used to carry 

out this comparative study, as similar systems have been used extensively by researchers to 

study the effects of erosion – corrosion on materials under high velocity, sand-containing 

flow regimes [14,38–40]. The benefits of this liquid impingement system include the ability 

to accurately control the flow velocity, manipulate the impingement angle and vary the 

quantity of erosive particles within the slurry. The stated variables have been shown to have 

significant impact on the rate of mass loss experienced by the damaged material [15,41]. The 

main tank contained the slurry solution with pump 1 circulating the solution from the main 
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tank up to the jet nozzle.  This nozzle had a 4 mm exit diameter and produced a flow velocity 

of 23 m/s.  Slurry used throughout the study was comprised of a 3.5 wt.% NaCl solution 

containing FS9 grade angular silica sand with an average particle size of 0.355 mm. The test 

specimen was located directly beneath the nozzle, whilst fully immersed in the slurry 

solution. Pump 2 allowed efficient removal of slurry with the system subsequently flushed 

with fresh water to remove all trace particulates, thereby ensuring consistent sand content 

throughout all experimental testing. Table 3 highlights the parameters for all liquid 

impingement tests carried out.  

Prior to testing, all specimens were lightly abraded using 500 grit SiC paper, to 

produce a uniform surface finish and weighed using a mass balance of accuracy 0.1 mg. 

Specimens were weighed prior to, and following testing to determine the total mass loss. 

The specimen holder was modified to attain mass loss values for both 90
O
 and 30

O
 under 

free erosion-corrosion conditions. Three test replicates for each coating were evaluated in 

order to calculate an average mass loss value. 

Table 3 

Liquid Impingement Test Parameters

Flow Velocity 

(m/s)

Sand Concentration 

(g/l)

Standoff 

Distance (mm)

Test Time 

(hr)

Sample Diameter 

(mm)

23 2.3 20 1 20

2.3 Electrochemical measurement 

The application of cathodic protection and anodic/cathodic polarization was 

necessary to isolate the effects of pure erosion and pure corrosion from the total mass loss 

in order to quantify the influence of synergy. Sample preparation was kept consistent with 

total mass loss testing, with identical liquid impingement setup used (Figure 2). A WaveNow 

potentiostat, produced by Pine Instruments, in conjunction with Aftermath data acquisition 
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software facilitated the electrochemical analysis. Platinum foil served as the auxiliary 

electrode with a Double Junction Ag/AgCl electrode used as the reference electrode.  

Application of cathodic protection enabled calculation of the component of mass loss 

relating to pure erosion. A potential of -1 V was applied across the specimen (working 

electrode) which supressed any anodic reaction and prevented any corrosion from taking 

place on the specimen surface. 

Mass loss from corrosion was determined through DC anodic/cathodic polarization 

scans under static and flowing conditions. The Ecorr value for each coating type was 

established for both conditions, with scans conducted for 40 min in order to allow sufficient 

time for the potential to settle. Static conditions refer to the specimen submerged in 3.5% 

NaCl solution with no liquid impingement acting on the surface. For the polarization scans, 

the applied potential was swept from Ecorr -250 mV (cathodic) to Ecorr +250 mV (anodic) at a 

sweep rate of 14 mV/min; this provided sufficient potential range to determine the 

corrosion current density using Tafel extrapolation from both the cathodic and anodic 

curves. The calculated values were used to determine the corresponding corrosion mass loss 

rate using the method outlined in ASTM G102 - 89(2010) [42]. Since the coatings included a 

mixture of elements, the equivalent weight of each constituent was evaluated using 

equation 1. Valence values were obtained from published literature [43]. Mass loss rate was 

calculated using equation 2, incorporating the respective equivalent weight values 

determined for each coating. The mass loss from corrosion and erosion was subtracted from 

the total mass loss under free erosion-corrosion conditions to establish the mass loss 

attributed to the synergistic effect of combined erosion-corrosion. 

(1) 

        (2) 
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Where EW is the equivalent weight, fi represents the mass fraction of the specific element, 

ni is the valance value of the specific element and Wi is the atomic weight of the specific 

element. K2 is a contestant from Faraday’s equation and is equal to 8.954 x 10-3
 g cm

2
/ µA 

m
2
 d. 

2.4 Surface topography 

Post experimental surface analysis was carried out to evaluate the damage caused by 

the erosive slurry. This incorporated assessment of specimen topography and wear scar 

depth. Analysis was performed using an Olympus GX51 light optical microscope that was 

used to evaluate surface features in detail. A Mitutoyo SV 2000 profilometer provided 

accurate measurements of wear scar depth. A non-contact optical surface characterisation 

system (Alicona Infinite Focus G4) facilitated the examination of the wear scar region and 

determined the volume loss in the directly impinged zone and turbulent zone of the wear 

scar. In doing so, it was possible to determine the contribution to total volume loss of the 

direct impinging slurry and the sliding wear in the turbulent region.  

33.. RReessuullttss aanndd ddiissccuussssiioonn

3.1 Macro observations 

A typical wear scar for each of the three coatings as well as uncoated S355 was 

captured using an Alicona optical imaging system; these are highlighted in Figure 4. The 

specimens exhibit two distinct zones within the impinged area. The central region represents 

the direct impingement zone and relates to the area of the test specimen located 

immediately beneath the 4 mm jet nozzle. The exit diameter of the nozzle correlates to a 

directly impinged region of 12.6 mm
2
. The outer zone indicates a turbulent region that 

experiences significant sliding erosion as particles are forced outwards at high velocity 
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following impact in the direct zone. The size variation of the turbulent region between     

WC-CoCr and Cr3C2-Nicr is exhibited in Figure 5. 

3.2 Mass loss 

Figure 6 displays the influence of the angle of attack on the free erosion-corrosion 

mass loss. The average mass loss for each coating type is shown over three test replicates for 

both 90
O
 and 30

O
 angle of attack. Error bars indicate the range of individual test results. It 

should be noted that the indicated mass loss for Cr3C2-NiCr and Al2O3 specimens also 

includes mass loss from the substrate material, due to the coatings being breached within 

the highly aggressive test conditions. 

The results demonstrate that the comparably ductile S355 substrate experiences 

greater mass loss with a shallower angle of attack. In contrast, the coated specimens exhibit 

significantly greater mass loss under 90
O
 angle of attack. This trend is attributed to the 

presence of hard carbide particles within the coating layer and agrees with the work of [15]. 

Andrews et al., who previously demonstrated that alloys with higher carbide content 

experience increased mass loss at greater angles of attack, with more ductile steels 

experiencing the greatest mass loss at shallower angles of attack [15].  

Despite its high hardness, the Al2O3 coating has experienced significant mass loss 

under 90
O
 angle of attack, with the calculated average mass loss being close to that of 

uncoated S355. In contrast to impingement at 90
O
, the Al2O3 specimen exhibits substantially 

less mass loss under impingement at 30
O
. This is in agreement with the reported findings 

[15] in which the increased quantity of carbides results in maximum damage occurring at 

higher angles of attack. A similar mechanism exists within the Cr3C2-NiCr specimens, with 

attack at 90
O
 causing greater mass loss than the uncoated material. The coating suffered less 

degradation at 30
O
, however still proved the poorest performing coating of the three. 

Reduced mass loss over the Cr3C2-NiCr and Al2O3 coated specimens demonstrates the ability 
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of Cobalt to effectively retain carbide particles within the coating matrix. This, combined 

with the increased hardness of the coating, has resulted in WC-CoCr functioning as an 

effective protective layer for S355 steel under erosion – corrosion conditions at both 90
O
 and 

30
O
 angles of attack. The findings support previous work on the erosion-corrosion of HVOF 

coatings under multiple angles of attack [15,29,44–46]. 

The correlation between mass loss and angle of attack is highlighted in Figure 7. 

Firstly, there is a link between high average coating hardness, see Table 2, and minimal mass 

loss. The recorded data shows mass loss to be inversely proportional to coating hardness. 

This relation is present for both angles of attack and is in agreement with existing findings 

[25,47]. Additionally, Figure 7 highlights the variation in mass loss between 30
O 

and 90
O

angles of attack. In the case of uncoated steel, the lack of ceramic particles yields a 

comparably ductile structure [48]. Figure 7 demonstrates a negative gradient linking the 

average mass loss at 30
O
 and 90

O
 angles of attack, i.e. the steel experiences increased mass 

loss at shallower angles of attack. Al2O3 does not follow this trend due to the coating 

consisting entirely of a single ceramic phase, hence the lack of binder within the coating 

matrix results in Al2O3 retaining the lowest overall ductility. As exhibited in Figure 7, the 

Al2O3 coating displays a steep gradient linking the two impingement angles. The gradient 

linking the two angles of attack reduces due to the presence of binder in WC-CoCr and Cr3C2-

NiCr, becoming a negative value for steel. 

3.3 Volume loss 

Figure 8 depicts the resulting volume loss within the wear scar, highlighting the 

volume loss from the coating layer and substrate, for both the directly impinged and 

turbulent regions. Volume loss in the turbulent region is determined by measuring the 
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difference in volume losses between the entire wear scar and the directly impinged region 

using the Alicona surface analysis system. 

The data presents a number of noteworthy trends; Cr3C2-NiCr specimens suffered the 

greatest loss of material from the specimen substrate, with total volume loss in the direct 

zone comprising approximately 40% coating loss and 60% substrate loss. WC-CoCr is the only 

coating that has not been penetrated following 1-hour of exposure to the impinging slurry. 

Without the deep impact crater observed in other specimens, the impinging particles are 

free to scour across the surface of the WC-CoCr coating, eroding a wider area of material as 

demonstrated in Figure 5. The total volume loss recorded in WC-CoCr is approximately 20% 

of the value recorded for the uncoated material. Both Cr3C2-NiCr and Al2O3 specimens have 

sustained substantial damage to the substrate material immediately beneath the directly 

impinged zone. This has formed a deep crater; increased depth of this crater correlates to

the reduced respective volume loss from the turbulent region, with the shallower WC-CoCr 

wear scar promoting increased sliding erosion in the turbulent zone.

3.4 Electrochemical measurements 

Electrochemical measurements are necessary to determine the contributing factors 

of erosion, corrosion and the synergistic effects of both to the total mass loss. Figure 9 

illustrates the average mass loss variation between the three coatings under free erosion –

corrosion conditions and with applied CP.  

Erosion-corrosion mass loss experiments show WC-CoCr coatings to yield around 

60% reduction in mass loss with and without applied CP, over the uncoated substrate. 

Conversely, both Cr3C2-NiCr and Al2O3 specimens resulted in enhanced mass loss when 

compared with uncoated S355 substrate. Applied CP has had the most significant impact on 
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the uncoated and Al2O3 specimens, with mass loss of CP protected specimens measurably 

less than observed under free erosion – corrosion conditions.  

The application of CP necessitated the measurement of OCP for each coating 

material under both flowing and static conditions. Figure 10a outlines the variation in Ecorr 

between the three coating types and the uncoated S355 substrate for static conditions, with 

Figure 10b showing results for flowing conditions. 

After 200 s of exposure to the flowing slurry, the Ecorr values for Cr3C2-NiCr  dropped 

to approximately -600 mV.  The proximity of this value to the Ecorr of uncoated S355 

demonstrates that the coating has been damaged to such an extent that current is able to 

flow between the slurry and the substrate. Under static conditions, the Al2O3 coating 

restricted the flow of current between the slurry and the electrode. As a result, no corrosion 

density data is presented for this coating in static conditions. When exposed to the 

impinging slurry, no current flow was detected for 100 s, after which a -80 mV voltage was 

measured across the working electrode. Given that the Al2O3 coating halts the flow of 

current, the identified voltage is ascribed to the current flowing between the substrate and 

the slurry. Continued impingement led to an increase in the detected voltage, thus indicating 

that more of the substrate material has been exposed to the slurry. After 420 s, the Ecorr of 

the specimen fell rapidly to -480 mV and stayed constant at this value for the remainder of 

the test. The results demonstrate that following 80 s of exposure, the impinging jet has 

damaged the coating sufficiently to allow current flow between the substrate and the slurry. 

Continued impingement has led to the complete removal of the Al2O3 layer after 420 s, at 

which point the Ecorr of the specimen dropped to a value similar to that of the uncoated S355 

substrate. This further highlights the poor performance of Al2O3 and Cr3C2-NiCr as protective 

surface coatings exposed to aggressive slurry erosion. The rapid removal of coating material 
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resulted in an inability to generate corrosion rate values under flowing conditions. Thus, the 

mass loss from pure corrosion under flowing conditions was determined for uncoated S355 

and WC-CoCr only. However, the corrosion rate for static conditions was determined for 

each coating in order to provide some indication as to the corrosion performance of each 

material. Al2O3 was excluded from this test as no current was able to flow between the 

electrode and the slurry under static conditions. Tables 4 and 5 show the extrapolated 

corrosion density for each material under static and flowing conditions, respectively. The 

polarization curves for WC-CoCr and uncoated S355 are shown in Figure 11. The large 

fluctuations in the current density are indicative of particle impingement, which caused 

disruption of the passive layer.  

Table 4 

Calculated corrosion density for coating material under static conditions.

Uncoated WC-CoCr Cr3C2-NiCr

Total Anodic Current (µA) 47.89 6.22 1.76

Specimen Area (cm
2
) 3.14 3.14 3.14

Current Density (µA/cm
2
) 15.25 1.98 0.56

Table 5 

Calculated corrosion density for coating material under flowing conditions.

Uncoated WC-CoCr

Total Anodic Current (µA) 2331.64 44.65

Specimen Area (cm
2
) 3.14 3.14

Current Density (µA/cm
2
) 742.53 14.22

Polarization sweeps reveal significant variance in the corrosion rate, for each of the 

three coatings – as seen in Tables 4 and 5. The results show Cr3C2-NiCr to display a 

significantly lower corrosion rate compared with all assesed coatings. The method outlined 

in ASTM G102 - 89(2010) [42,43] was employed to calculate hourly mass loss rates for each 

coating material from the extrapolated current density. Table 6 shows the contribution of 
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each wear mechanism to the total mass loss under flowing, free erosion – corrosion 

conditions. It is clear that mass loss within flowing liquid impingement environment is highly 

erosion dominant, with the synergistic effect of combined corrosion and erosion 

contributing around 10% of the total mass loss in the case of uncoated S355. 

Cr3C2-NiCr provides excellent corrosion resistance; however, due to the 

comparatively poor performance when exposed to the impinging jet, the coating has not 

provided suitable protection under erosive conditions. While not as corrosion resistant as 

Cr3C2-NiCr, WC-CoCr presents a substantial reduction in current density for flowing and static 

conditions over the uncoated specimen. This, in combination with high resiatance to erosive 

wear, results in the WC-CoCr coating providing exceptional protection of the S355 substrate 

under flowing erosion-corrosion conditions. 

Table 6 

Percentage contribution of pure erosion, pure corrosion and synergy to total mass loss under flowing 

conditions.

Coating Material Total Mass Loss (%) Erosion (%) Corrosion (%) Synergy (%) 

Uncoated 100 83.9 4.97 11.13

WC-CoCr 100 87.0 0.19 12.81

3.5 Post-test characterization 

3.5.1 Macro examination of eroded surfaces 

The typical wear scar for each of the three coatings and the uncoated S355 was 

captured using an Alicona optical imaging system and is highlighted in Figure 4. Figure 12 

depicts a comparative analysis of the wear scar depths from each coating material following 

1-hour free erosion – corrosion impingement, measured using a surface profilometer. Wear 

scar depth was corroborated using an Alicona with results being shown in Table 7. It is 

evident that the Al2O3 coating has developed the largest wear scar, with a maximum 
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recorded depth of 678 µm. The scar depth for Cr3C2 – NiCr was shown to be marginally 

shallower, however, given the comparably thin coating layer, the substrate penetration 

depth is 100 m greater than in the Al2O3. The recorded maximum wear scar depth for WC-

CoCr was 141.7 µm. With an indicated coating thickness of 180 µm, the results verify that 

the coating layer has not been breached following the 1-hour liquid impingement test. The 

significant reduction in wear scar depth clearly demonstrates that WC-CoCr has provided 

superior protection of the S355 substrate over other assessed coatings. 

Table 7 

Wear scar properties

Coating

Coating 

Thickness 

(mm)

Profilometer Indicated 

Scar Depth (m)

Alicona 

Indicated Scar 

Depth (m)

Average Substrate 

Penetration Depth 

(m)

Uncoated N/A 518.9 518.5 518

WC-CoCr 163 145.9 141.7 0

Cr3C2-NiCr 176 657.0 653.7 481

Al2O3 294 680.0 678.0 386

Both the Cr3C2-NiCr and uncoated specimens exhibited similar wear scars, with Cr3C2-NiCr 

developing a scar of marginally greater depth. Wear scar analysis indicates the deleterious 

effects of Cr3C2-NiCr and Al2O3 coating on S355 substrate. In both instances, the presence of 

a coating increased the total mass loss and enlarged the produced wear scar. This 

phenomenon has been attributed to the erosive effects of coating particulates previously 

removed by the impinging slurry acting as a secondary erodent.

3.5.2 Microstructural characterisation 

Light optical microscopy, operating in dark field mode, facilitated further evaluation 

of the associated wear mechanisms operating in the two mentioned zones. The use of dark 

field improved image contrast and proved more effective at revealing signs of damage in 
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each region. The examined specimens had been subjected to 1-hour free erosion – corrosion 

tests at 90
O
 angle of attack. 

Figure 13a reveals enhanced surface roughness within the central impinged zone. 

Uncoated S355 shows evidence of wear marks in the form of microcutting and ploughing. 

Moreover, there exist small craters on the damaged surface caused by impinging sand 

particles. A similar result was noted by Santa et al. [49], who related increasing size of 

impact craters to increased impinging particle size. The production of craters on the surface 

leads to the presence of crater lips that are subsequently removed by the cutting motion of 

the particles as the move out from the centre of the directly impinged zone. The cause of 

material loss is therefore associated with repetitive plastic deformation caused by impinging 

particles followed by microcutting. Figure 13b highlights the directionality in the turbulent 

zone, with evidence of parallel scratch patterns and apparent microcutting [30]. 

Figure 14a illustrates the damage to the Cr3C2-NiCr coated specimen within the outer 

turbulent region. Complete coating removal in the directly impinged zone results in a surface 

similar to that observed in Figure 13a. Examination of the turbulent zone reveals signs of 

directionality in the orientation of surface damage. It is therefore expected that the majority 

of erosive wear has been contained within the wear scar crater. However, as particles move 

outwards from the crater, they slide and graze across the surface of the coating resulting in 

the observed damage. Within the turbulent zone, there also exist signs of particle removal. 

The ability for particles to be pulled out of the coating matrix accelerates material removal 

by acting as an additional erodent and supports the high mass loss experienced by the Cr3C2-

NiCr coated specimens. 

The structure of Al2O3 presents different characteristics from the previous two 

coatings. The pure ceramic coating is highly brittle and possesses no ductile binder. Thus, 
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material loss occurs rapidly with Al2O3 particles spalling off. Owing to complete coating 

removal within the directly impinged zone, the structure in this region reflects the structure 

of Figure 13a. Figure 14b highlights the apparent directionality in the turbulent region 

surrounding the directly impinged zone. The lack of binder material has resulted in rapid 

removal of the protective Al2O3 coating with removed alumina particles causing further 

damage to the exposed S355 substrate. This contributes to the enhanced mass and volume 

loss over uncoated S355.  

Micrographs of the central impinged and turbulent zones within the WC-CoCr coating 

are depicted in Figure 15 and reveal a wear mechanism similar to that observed in uncoated 

S355. There is evidence of impact craters within the directly impinged zone. The presence of 

craters indicates the surrounding material has retained its structure following impact. With 

continued liquid impingement, carbide particles fracture and cannot be retained by the 

cobalt matrix, with continuous flow eventually removing the particles from the coating 

matrix altogether. Corroborating results have been obtained by Thakur et al. [34] . The 

remaining cobalt binder has insufficient hardness to withstand the erosive conditions and is 

eventually removed. Microcutting is also evident and is linked to the ploughing of silica 

particles and removal of soft cobalt binder. The observations are in accordance with those 

reported in associated studies [50,51]. The superior wear performance of the WC-CoCr 

coating can be attributed to the cobalt binder effectively retaining the hard carbide particles 

within the matrix. The turbulent zone shown in Figure 15b depicts some signs of 

directionality but in contrast with other specimens, shows signs of more erratic wear. This is 

to be expected given the lack of a defined impact crater. 
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44.. CCoonncclluussiioonnss

The novel research work undertaken in the present study has evaluated HVOF 

deposited WC-CoCr, Cr3C2-NiCr and Al2O3 surface coatings on S355 steel. Specimens were 

subjected to highly erosive liquid impingement testing, with resultant mass and volume loss 

calculated for each coating material. The scope of the study has incorporated 

electrochemical assessment to determine the effect of combined corrosion and erosion as 

well as metallographic analysis to evaluate the mechanisms causing coating degradation. 

The following outlines the conclusions drawn from this body of work. 

 Electrochemical analysis confirmed a highly erosion dominant wear regime, with 

pure corrosion contributing no more than 6% to the total mass loss in the case of 

uncoated 355. Under flowing conditions, pure corrosion contributed only 0.34% to 

the mass loss of WC-CoCr coated specimens.  

 The pull-out of carbides from the coating layer acts as an additional erodent within 

the slurry leading to enhanced mass and volume loss over uncoated S355. The 

damage resulting from carbide pull-out is highly dependent on the respective carbide 

size. In this context, the high mass loss associated with Cr3C2-NiCr coatings can be 

partly attributed to the large carbide size.  

 Wear scar analysis has shown substantial variation in material loss experienced by 

the three coatings. In the case of WC-CoCr, the wear scar is shallower with the 

impinging slurry unable to penetrate through to the substrate material in the 

prescribed test duration.  

 Al2O3 coatings provide comparably poor protection under erosion – corrosion 

conditions. The large particle size, in conjunction with the lack of ductile supporting 

binder, results in enhanced mass loss over uncoated S355 and significant increase to 
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the depth of wear scar. The lack of ductile binder resulted in the rapid removal of 

alumina particles, which in turn acted as a secondary erosive medium within the 

slurry, resulting in enhanced mass loss. 

 Despite Cr3C2-NiCr providing substantial corrosion resistance, as demonstrated 

through calculation of static corrosion rate, the coating failed to withstand the 

effects of erosive wear under liquid impingement conditions. This resulted in the 

highest observed mass loss out of all examined specimens, with a value 52% greater 

than uncoated material. Post-test volumetric analysis also revealed the Cr3C2-NiCr 

coated specimen to have the highest percentage of total volume loss attributed to 

substrate material loss.  

 WC-CoCr provides enhanced protection over uncoated S355 substrate. Total mass 

loss was reduced by 61% with wear scar depth reducing by 56%. The low mass loss 

and minimal wear scar can be attributed to high hardness and the ability of the 

cobalt matrix to retain the comparably small carbides resulting in a coating layer 

resistant to the erosive effects of the slurry. The electrochemical properties of the 

same coating also demonstrate significant resistance to the corrosive effects of the 

slurry over uncoated S355.  
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Fig 1. SEM images of HVOF deposited coatings in the as-received condition. a) WC-CoCr, b) Cr3C2 – NiCr, c) 

Al2O3. 

Fig 2. Schematic diagram of recirculating liquid impingement test rig (not to scale). (1) Data logging; (2) 

Potentiostat; (3) Working electrode; (4) Reference electrode; (5) Auxiliary electrode; (6) Recirculating pump 

(pump 1); (7) Sample holder; (8) Jet impingement nozzle; (9) Specimen; (10) Slurry solution; (11) Slurry tank; 

(12) Drainage valve; (13) Drainage pump (pump 2). 

Fig 3. Jet nozzle and specimen in situ for liquid impingement at a) 90
O
 angle of attack, b) 30

O
 angle of attack. 

Fig 4. Macro images of a) Uncoated specimen, b) WC-CoCr, c) Al2O3, d) Cr3C2-NiCr following erosion-corrosion 

testing for 1 hour. 

Fig 5. Variation in the diameter of the turbulent region between (a) WC-CoCr and (b) Cr3C2-NiCr wear scars.

Fig 6. Mass loss under free erosion-corrosion conditions at 90
O
 and 30

O
 angle of attack.

Fig 7. Correlation between angle of attack and total mass loss for each coating type.  

Fig 8. Volume loss in direct and turbulent regions following 1 hour liquid impingement test and 90
O
 angle of 

attack. 

Fig 9. Mass loss of HVOF deposited coatings under free erosion – corrosion conditions and with applied CP.

Fig 10. a) Ecorr values under static conditions, b) Ecorr values under flowing conditions. 

Fig 11. Anodic polarization sweeps of a) Uncoated, b) WC-CoCr, specimens under flowing liquid impingement 

conditions. 

Fig 12. Wear scar depth profiles for three coating material and uncoated substrate following 1-hour free 

erosion – corrosion test.

Fig 13. Optical image of uncoated specimen following free erosion-corrosion test. a) Directly impinged zone, b) 

turbulent zone [x100, Unetched]. 

Fig 14. Turbulent zone of a) Cr3C2-NiCr and b) Al2O3 coated specimen following free erosion-corrosion test. 

[x100, Unetched]. 

Fig 15. Optical image of WC-CoCr coated specimen following free erosion-corrosion test. a) directly impinged 

region, b) turbulent region [x100, Unetched]. 
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