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Preconditioning for nonsymmetry and
time-dependence

Eleanor McDonald1, Sean Hon2, Jennifer Pestana3 and Andy Wathen4

1 Introduction

Preconditioning, whether by domain decomposition or other methods, is well
understood for symmetric (or Hermitian) matrices at least in the sense that
guaranteed convergence bounds based on eigenvalues alone describe conver-
gence of iterative methods. Establishing spectral properties of preconditioned
operators or matrices is thus all that is required to reliably predict the number
of steps of an appropriate Krylov subspace method—it would be Conjugate
Gradients (cg) Hestenes and Stiefel [1952] in the case of positive definite
matrices and minres Paige and Saunders [1975] for indefinite matrices—in
the symmetric case. Faster convergence than that predicted by these bounds
occurs in rare cases when only few eigenspaces are important; thus in the
rare cases that the convergence bounds fail to be descriptive, it is because
they overestimate the number of iterations required for convergence—a good
thing! Put another way, we know what we’re trying to achieve in the con-
struction of preconditioners in the case of symmetric coefficient matrices.

By contrast, in the nonsymmetric case, no generally descriptive conver-
gence bounds are known. In specialist situations, the field of values or other
sets can occasionally be usefully employed Loghin and Wathen [2004], but
it is known that gmres can converge in any (monotone) specified manner
whatever the eigenvalues for the coefficient matrix; precisely, it is proved in
Greenbaum et al. [1996] (and the results extended in Tebbens and Meurant
[2014]) that given any set of n eigenvalues and any monotonic convergence
curve terminating at or before the nth iteration, then for any b there exists
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an n×n matrix B having those eigenvalues and an initial guess x0 such that
gmres Saad and Schultz [1986] for Bx = b with x0 as starting vector will
give that convergence curve. More negative results than this exist (see for
example Tebbens and Meurant [2012]).

Thus, one can for example have an n × n nonsymmetric matrix with all
eigenvalues equal to 1 for which gmres gives no reduction in the norm of
the residual vectors—that is, no convergence—for n − 1 iterations. For any
of the range of other nonsymmetric Krylov subspace methods, convergence
theory is extremely limited. Thus, even though there is often consideration
of eigenvalues when considering possible preconditioners even in the non-
symmetric case, this is not well-founded. It is not however foolish, since poor
convergence can certainly in general be associated with problems with widely
spread eigenvalues!

The important point nevertheless remains that the construction of precon-
ditioners for nonsymmetric problems is of necessity currently heuristic.

In this short paper, we decribe at least one simple and frequently arising
situation—that of nonsymmetric real Toeplitz (constant diagonal) matrices—
where we can guarantee rapid convergence of the appropriate iterative method
by manipulating the problem into a symmetric form without recourse to the
normal equations. This trick can be applied regardless of the nonnormality
of the Toeplitz matrix. We also propose a symmetric and positive definite
preconditioner for this situation which is proved to cluster eigenvalues and is
by consequence guaranteed to ensure convergence in a number of iterations
independent of the matrix dimension. This is described in Section 2 and more
fully in Pestana and Wathen [2015].

We then go on to exploit these observations in considering time-stepping
problems for ordinary differential equations. The result we establish in this
setting is guaranteed convergence of an iterative method for an all-at-once
formulation in a number of iterations independent of the number of time-
steps. This is described in Section 3.

2 Real nonsymmetric Toeplitz matrices

If B is a real Toeplitz matrix then




a0 a−1 . . . a−n+2 a−n+1

a1 a0 a−1 a−n+2

... a1 a0
. . .

...

an−2
. . .

. . . a−1

an−1 an−2 . . . a1 a0




︸ ︷︷ ︸
B




0 0 . . . 0 1
0 0 1 0
... . .

.
1 0

...

0 . .
.
. .
.

0
1 0 . . . 0 0




︸ ︷︷ ︸
Y
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is the real symmetric matrix




a−n+1 a−n+2 . . . a−1 a0
a−n+2 a−1 a0 a1

... . .
.

a0 a1
...

a−1 . .
.

. .
.

an−2

a0 a1 . . . an−2 an−1




︸ ︷︷ ︸
B̂

.

Thus the simple trick of reversing the order of the unknowns which is effected
by multiplication with Y yields a matrix for which we can get theoretical a
priori convergence bounds for minres based only on eigenvalues. We com-
ment that the (Hankel) matrix B̂ is most likely indefinite, but it is clearly
symmetric. Premultiplication by Y leads to similar conclusions: see Pestana
and Wathen [2015].

It is quite likely that minres applied to any linear system involving B̂
would converge slowly, but fortunately it is well-known that Toeplitz matrices
are well preconditioned by related circulant matrices in many cases (see Chan
[1988],Strang [1986],Tyrtyshnikov [1996],Tyrtyshnikov et al. [1997]). Any cir-
culant matrix C ∈ R

n×n is diagonalised as C = U⋆ΛU by a Fast Fourier
Transform (FFT) Cooley and Tukey [1965] in O(n log n) operations and so
matrix multiplication by a vector or solution of equations with a circulant
is computationally achieved in O(n log n) operations. For many Toeplitz ma-
trices which have sufficient decay in the entries in the first row and column
moving away from the diagonal it is known that

C−1B = I +R+ E

where R is of small rank and E is of small norm. This implies that the
eigenvalues of the preconditioned matrix C−1B are clustered around 1 except
for a few outliers. Precise statements about the decay of entries are usually
expressed in terms of the smoothness of the generating function associated
with the Toeplitz matrix which relates to the decay of Fourier coefficients
and thus the speed of convergence of Fourier series.

Now, for use with minres a symmetric and positive definite precondi-
tioner is required (see Wathen [2015]). Fortunately via the FFT diagonalisa-
tion this is easily achieved by taking the absolute value

|C| = U⋆|Λ|U (1)

where |Λ| is just the diagonal matrix of absolute values of the eigenvalues
for an appropriate (e.g. Strang or Chan) circulant, C. For a nonsymmetric
Toeplitz matrix with decay of entries as above, there now follows.

Theorem 2.1 Pestana and Wathen [2015]
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|C|−1B̂ = J + R̂+ Ê

where J is a real symmetric and orthogonal matrix with eigenvalues ±1, R̂
is of small rank and Ê is of small norm.

The eigenvalues of |C|−1B̂ are thus clustered around ±1 together with a
few outliers and guaranteed rapid convergence follows [Elman et al., 2014,
Chapter 4].

A very simple example demonstrates the point: let

B =




1 0.01
1 1 0.01

. . .
. . .

. . .

1 1 0.01
1 1



∈ R

n×n (2)

with preconditioning via the Strang preconditioner (which simply takes C as
B but with an additional 1 in the nth entry of the first row and 0.01 in the
first entry of the nth row). The result of (implicitly) reordering/multiplying
by Y and preconditioning with |C| are shown in theminres iteration counts
in Table 1 for a randomly generated right hand side vector. Convergence is
accepted when the preconditioned residual vector has norm less than 10−10

for the results shown. The eigenvalues of the preconditioned matrix are shown
in Table 2.

Table 1 Condition numbers κ(B) for the Toeplitz matrix B described in (2) and iteration
counts for MINRES applied to the symmetrized matrix B̂ with preconditioner |C|.

n κ(B) Iterations

10 14 6
100 207 6

1000 2.6×106 6

Table 2 Eigenvalues of the Toeplitz matrix as described in (2) preconditioned with ab-
solute value circulant (to 4 decimal places). Repeated eigenvalues are shown in brackets
with the number of repeated eigenvalues indicated.

n Eigenvalues of |C|−1B̂

10 {−9.9107,−1.0002, (−1× 2),−0.9640, 0.9893, (1× 4)}
100 {−2.2803,−1.0007, (−1× 47),−0.2536, 0.9919, (1× 49)}

1000 {−2.1626,−1.0008, (−1× 497),−1.8309e-5, 0.9929, (1× 499)}
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In fact for this example one can prove these and simpler results via consid-
eration of low rank updates and the degree of the minimal polynomial so it
is also possible to prove that gmres will terminate in just a few iterations.

Table 3 Preconditioned MINRES convergence for dense nonsymmetric Toeplitz matrices
of Wiener class with absolute value circulant preconditioner.

n eigenvalue inclusion iterations

10 [−1.018,−0.710] ∪ [0.981, 1.804] 10
100 [−1.092,−0.856] ∪ [0.912, 1.160] 14

1000 [−1.154,−0.708] ∪ [0.864, 1.381] 20
10000 [−1.078,−0.980] ∪ [0.922, 1.017] 12

For a dense Toeplitz with sufficient decay of entries in the first row and
column this is not the case however, so the results presented in Table 3 for
random nonsymmetric Toeplitz matrices of so-called Wiener class (see e.g.
[Ng, 2004, page 51]) are not explained by any other means as far as we know,
but are a demonstration of the theory presented here. The matrices for these
numerical experiments were generated by initially selecting independently
the entries of two n-vectors, r and c with r1 = c1 from a normal distribution
with mean zero and variance 1 (using the randn command in Matlab), then
setting ri ← ri/(i

2), ci ← ci/(i
2) and using these vectors as the first row and

column of the nonsymmetric Toeplitz matrix, B.

3 Preconditioning for time-dependence

3.1 Theta method

Here, we consider only a scalar linear ordinary differential equation,

dy

dt
= ay + f, y(0) = y0

on the time interval [0, T ]. For the solution of systems of ODE and PDE
problems via the method of lines, see McDonald et al.. Likewise to begin
with for simplicity we consider only the simple two-level θ-method, which
gives,

yn+1 − yn

τ
= θayn+1 + (1− θ)ayn + fn, y0 = y0,

where τ is the constant time step with Nτ = T . The discrete equations to be
solved are
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(1− aθτ)yn+1 = (1 + a(1− θ)τ)yn + τfn, n = 0, 1, 2, . . . , N − 1, (3)

with y0 = y0.
The usual approach would be to solve the equations (3) sequentially for

n = 0, 1, 2, . . . which is exactly forward substitution for the all-at-once system

B




y1

y2

y3

...
yN




︸ ︷︷ ︸
y

=




τf1 + (1 + a(1− θ)τ)y0

τf2

τf3

...
fN




︸ ︷︷ ︸
f

where

B =




1− aθτ
−1− a(1− θ)τ 1− aθτ

−1− a(1− θ)τ 1− aθτ
. . .

. . .

−1− a(1− θ)τ 1− aθτ



.

(4)
However, we can note that the coefficient matrix B, in the all-at-once sys-
tem is real Toeplitz, hence solution using the idea in the section above is
possible. minres for B̂y = BY y = f, x = Y y converges in 4 iterations in-
dependently of N as can be seen from the results in Tables 4 and 5 below.
The parameter values for the presented results are a = −0.3, τ = 0.2, θ = 0.8;
similar behaviour has been observed for many other sets of parameter values.
The eigenvalues of the preconditioned matrix for this problem are shown in
Table 5.

Table 4 Condition numbers κ(B) for a time-dependent linear ODE using the Θ-method,
i.e. for B given by (4) and MINRES iteration counts with absolute value Strang circulant
preconditioner described by (1) applied to the symmetrized matrix B̂.

N κ(B) Iterations

10 10.474 4
100 30.852 4

1000 33.887 4

For such a bidiagonal Toeplitz matrix, with Strang circulant precondition-
ing, one can show that the minimal polynomial is quadratic, hence this is a
rare situation in which it is possible to deduce that gmres must terminate
with the solution after 2 iterations.
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Table 5 Eigenvalues of the preconditioned system (to 4 decimal places). Repeated eigen-
values are shown in brackets with the number of repeated eigenvalues indicated.

N Eigenvalues of |C|−1B̂

10 {−0.7206, (−1× 4), (1× 4), 3.1155}
100 {−0.4975, (−1× 49), (1× 49), 2.0157}

1000 {−0.4966, (−1× 499), (1× 499), 2.0139}

Theorem 3.1 Let α and β 6= 0 ∈ C. If

B =




α
β α
. . .

. . .

β α
β α



∈ C

n×n

is preconditioned by

C =




α β
β α
. . .

. . .

β α
β α



,

the minimal polynomial of the preconditioned system T = C−1B is quadratic
provided that both B and C are nonsingular.

Proof. A simple calculation gives

T = C−1B =




1 −αn−1β

detC

1 αn−2β2

detC
. . .

...

1 (−1)n−1αβn−1

detC
αn

detC



,

where

detC =

{
αn + βn when n is odd

αn − βn when n is even
.

We can now easily show that T satisfies

(T − I)(T −
αn

detC
I) = 0.
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Since (T − I) 6= 0 and (T − αn

detC I) 6= 0, (T − I)(T − αn

detC I) is the minimal
polynomial of the preconditioned system T .

Since the minimal polynomial for the preconditioned coefficient matrix is
in this case quadratic we must therefore have that the Krylov subspace is of
dimension 2 and so because of its minimisation property, gmres termination
must occur within 2 iterations.

3.2 Multi-step method

In order to examine a slightly more complex system where the minimal poly-
nomial is not as trivial as with the theta method above, we examine also a
2-step BDF time stepping method. We now require two initial conditions y−1

and y0. For the BDF2 method we have

yn+1 − 4
3y

n + 1
3y

n−1

τ
= 2

3ay
n+1 + 2

3f
n+1, y0 = y0, y−1 = y−1

where τ is the constant time step with Nτ = T . The discrete equations to be
solved are

(1− 2
3aτ)y

n+1 = 4
3y

n − 1
3y

n−1 + 2
3τf

n+1, n = 0, 1, 2, . . . , N − 1

with y0 = y0 and y−1 = y−1. The corresponding all-at-once system is

B




y1

y2

y3

...
yN




︸ ︷︷ ︸
y

=




2
3τf

1 + 4
3y

0 − 1
3y

−1

2
3τf

2 − 1
3y

0

2
3τf

3

...
2
3τf

N




︸ ︷︷ ︸
f

where

B =




1− 2
3aτ
− 4

3 1− 2
3aτ

1
3 − 4

3 1− 2
3aτ

. . .
. . .

. . .
1
3 − 4

3 1− 2
3aτ



. (5)

The coefficient matrix B in (5) has an additional subdiagonal but is still
Toeplitz and the method above therefore still applies. Applying minres to
solve the equation B̂y = BY y = f, x = Y y with a random starting vector,
we see convergence in 6 iterations independently of N as can be seen from
the results in Table 6. The parameter values for the presented results are
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again chosen as a = −0.3 and τ = 0.2 with zero forcing but the behaviour
does not change for many other choices of a and τ . As we have used implicit
time-stepping we have no restrictions on the value of τ to maintain stability
and, as Theorem 3.1 seems to indicate, it is only the lower diagonal Toeplitz
structure of B which ensures the number of unique eigenvalues of C−1B so it
is not surprising that other parameter values behaviour in the same manner
for the symmetrized system. The eigenvalues of the preconditioned matrix in
this case are shown in Table 7.

Table 6 Condition numbers κ(B) for a time-dependent linear ODE using the BDF2
method, i.e. for B given by (5) and MINRES iteration counts with absolute value Strang
circulant preconditioner described by (1) applied to the symmetrized matrix B̂.

N κ(B) Iterations

10 29.33 6
100 67.49 6

1000 67.67 6

Table 7 Eigenvalues of the preconditioned system (to 4 decimal places). Repeated eigen-

values are shown in brackets with the number of repeated eigenvalues indicated.

N Eigenvalues of |C|−1B̂

10 {−1.0442, (−1× 3),−0.6781, 0.9219, (1× 3), 3.3921}
100 {−1.0610, (−1× 48),−0.4410, 0.9424, (1× 48), 2.2736}
1000 {−1.0610, (−1× 498),−0.4401, 0.9425, (1× 498), 2.2720}

This approach for time-dependent problems may not seem of any advan-
tage for such a simple problems as considered here because minres requires
matrix vector multiplication with B (and Y ) as well as solution of a system
with |C| at each iteration. Its potential for time-dependent PDEs is however
more intriguing (see McDonald et al.).

4 Conclusions

Preconditioning for nonsymmetric linear systems is generally heuristic with
no guarantee of the speed of convergence from a priori spectral estimation.
This is in stark contrast to the case of real symmetric or complex Hermi-
tian matrices. We have shown that for nonsymmetric real Toeplitz matrices
the use of a simple trick gives symmetry so that convergence estimates for
minres which are based only on eigenvalues rigorously apply. Further, we
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propose the use of an absolute value circulant matrix as preconditioner: the
action of this preconditioner is effected in O(n log n) operations via use of
the FFT as originally suggested in Strang [1986]. These constructions ap-
ply independently of nonnormality and rapid, n-independent convergence is
guaranteed and hence observed.

It is further observed how this preconditioning can be applied in the con-
text of time-stepping problems and that convergence is achieved in a small
number of iterations independent of the number of time-steps.
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