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Comprehensive Parametric Polymorphism:

Categorical Models and Type Theory

Neil Ghani1, Fredrik Nordvall Forsberg1, and Alex Simpson2

1 Department of Computer and Information Sciences, University of Strathclyde
2 Faculty of Mathematics and Physics, University of Ljubljana

Abstract. This paper combines reflexive-graph-category structure for
relational parametricity with fibrational models of impredicative poly-
morphism. To achieve this, we modify the definition of fibrational model
of impredicative polymorphism by adding one further ingredient to the
structure: comprehension in the sense of Lawvere. Our main result is that
such comprehensive models, once further endowed with reflexive-graph-
category structure, enjoy the expected consequences of parametricity. This
is proved using a type-theoretic presentation of the category-theoretic
structure, within which the desired consequences of parametricity are
derived. The formalisation requires new techniques because equality re-
lations are not available, and standard arguments that exploit equality
need to be reworked.

1 Introduction

According to Strachey [26], a polymorphic program is parametric if it applies the
same uniform algorithm at all instantiations of its type parameters. Reynolds [23]
proposed relational parametricity as a mathematical model of parametric poly-
morphism. Relational parametricity is a powerful mathematical tool with many
useful consequences; see [27,21,13] for numerous examples.

The polymorphic lambda-calculus, λ2, (a.k.a. System F) was introduced
independently by Girard [11] and Reynolds [22]. It serves as a model type theory
for (impredicative) polymorphism, and thus provides a significant testing ground
for ideas on relational parametricity. In this paper we address the question:

What is the fundamental category-theoretic structure needed to model
relational parametricity for λ2, which is both i) minimal, in assuming as
little structure as possible; but ii) strong enough to ensure the expected
consequences of parametricity hold?

It is perhaps surprising that this question does not yet have an established answer.
On the one hand, category-theoretic models for λ2 were developed many years
ago by Seely [25]. They are studied systematically as λ2 fibrations in Jacobs [15].
On the other, the fundamental category-theoretic structure needed to model
relational parametricity is also known. The crucial ingredient is the notion of
reflexive graph category which appeared implicitly in Ma and Reynolds [19], was



used explicitly by O’Hearn and Tennent [20], and Robinson and Rosolini [24],
and reached maturity in the parametricity graphs of Dunphy and Reddy [7,8].

To obtain minimal structure for relational parametricity for λ2, it is natural
to combine the structure of λ2 fibrations with that of parametricity graphs. This
results in the notion of λ2 parametricity graph, which we define in Section 3.
Sadly, λ2 parametricity graphs enjoy the expected properties of parametricity
only in the special case that the underlying category is well-pointed. (Similar
observations, for different but related notions of model, are made in [6,7,8].) Since
well-pointedness rules out many categories of interest in semantics (e.g., functor
categories) this limits the generality of the theory.

One way of circumventing the restriction to well-pointed categories was
proposed by Birkedal and Møgelberg [6], who developed a more elaborate category-
theoretic structure, which overcomes the limitation by modelling Plotkin and
Abadi’s logic for parametricity [21]. This method of modelling the combination of
λ2 with an extraneous logic has been been refined and simplified by Hermida [12].
Nonetheless, it does not enjoy the simplicity in conception of combining the
structure of category-theoretic models of λ2 with that of parametricity graphs.

To obtain our minimal structure, we retain the original idea of combining
parametricity graphs with category-theoretic models of λ2. However, we imple-
ment this in a perhaps unexpected way. We modify the notion of λ2 model. We
ask for λ2 fibrations to additionally satisfy Lawvere’s comprehension property.
Not only are the resulting comprehensive λ2 fibrations natural in their own right
as models of λ2, but, when combined with parametricity-graph structure to
form comprehensive λ2 parametricity graphs, they do indeed enjoy all expected
consequences of parametricity.

Sections 2 and 3 define comprehensive λ2 fibrations and comprehensive λ2
parametricity graphs respectively. In Section 4, we present a type theory λ2R,
corresponding to our category-theoretic structure, which provides a simple system
for reasoning about parametricity. The type theory λ2R is similar to Dunphy’s
System P [7], and Abadi, Cardelli and Curien’s System R [1], to which it is
compared in Section 7.

In Section 5, we develop the technical machinery needed to reason in λ2R. A
key obstacle is that the system does not include equality relations. This means that
graph relations, which are a crucial ingredient in standard arguments involving
relational parametricity, are not in general definable. In Section 5, we instead
identify two forms of pseudograph relations, whose subtle interrelationship allows
us to establish the consequences we need. One kind of pseudograph relation
is immediately definable using the fibrational structure built into the notion
of parametricity graph. The other type of pseudograph requires opfibrational
structure. We use an impredicative encoding to show that opfibrational structure
is definable in λ2R, and hence always present in comprehensive λ2 parametricity
graphs. In Section 6, we finally apply the technical machinery and establish that
the expected consequences of relational parametricity are indeed derivable in
λ2R, and hence hold in comprehensive λ2 parametricity graphs.

In summary, the main contributions of this work are:



(i) The definition of comprehensive λ2 fibrations as models of λ2.
(ii) The definition of a new category-theoretic notion of model of relational para-

metricity, obtained by combining parametricity graphs and comprehensive
λ2 fibrations into comprehensive λ2 parametricity graphs.

(iii) The extraction of λ2R as the type theory intrinsic to comprehensive λ2
parametricity graphs.

(iv) The derivation of the expected consequences of parametricity in λ2R, and
hence in comprehensive λ2 parametricity graphs. This requires novel tech-
niques: establishing the opfibration property of comprehensive λ2 parametric-
ity graphs, and the use of pseudograph relations.

In the category-theoretic parts of the paper, we assume familiarity with fibred
category theory, for which Jacobs [15] is our main reference. Nevertheless, a
substantial portion of the paper is presented in purely type-theoretic terms, and
may be read without reference to the accompanying category-theoretic material.

2 Comprehensive λ2 Fibrations

In Fig. 1, we recall the polymorphic λ-calculus λ2. We use x, y, . . . to range over
term variables, and α, β, . . . to range over type variables. Our presentation has

four judgements: Γ ctxt , stating that Γ is a well-formed context; Γ ⊢ A type ,

stating that A is a well-formed type in context Γ ; Γ ⊢ t : A , stating that the

term t has type A in context Γ ; and judgemental equality Γ ⊢ t1 = t2 : A . We
assume β and η-equalities for both term abstraction, λ, and type abstraction,
Λ. Equality is also assumed to be a congruence relation, although the rules
guaranteeing this have been omitted from Fig. 1 for brevity.

A minor departure from many presentations of λ2 is that we interleave type
variables and term variables in a single context. This approach is not only natural,
but indeed standard when λ2 is considered in the context of dependent type
theory; for example, when derived as an instance of a pure type system [3].
Since there is no dependency of λ2 types on term variables, such interleaving
is syntactically vacuous. Nevertheless, we shall see below that its presence does
have semantic implications.

We next recall the standard category-theoretic notion of λ2 fibration, which
models λ2. We directly restrict the definition to the split case to circumvent
coherence issues that would otherwise arise, cf. [15].

Definition 1 (λ2 fibration). A λ2 fibration is a split fibration p : T → C,
where the base category C has finite products, and the fibration:

(i) is fibred cartesian closed;
(ii) has a split generic object U [15, Def. 5.2.1] — we write Ω for pU ;
(iii) and has fibred-products along projections X ×Ω - X in C.

Moreover, the reindexing functors given by the splitting are required to preserve
the above-specified structure in fibres on the nose.



Context formation rules:

· ctxt
Γ ctxt

Γ, α ctxt
(α /∈ Γ )

Γ ctxt Γ ⊢ A type

Γ, x : A ctxt
(x /∈ Γ )

Type formation rules:

Γ ⊢ α type
(α ∈ Γ )

Γ ⊢ A type Γ ⊢ B type

Γ ⊢ A → B type

Γ, α ⊢ A type

Γ ⊢ ∀α.A type

Term typing rules:

Γ ⊢ x : A
(x : A ∈ Γ )

Γ, x : A ⊢ t : B

Γ ⊢ λx. t : A → B
Γ ⊢ s : A → B Γ ⊢ t : A

Γ ⊢ s t : B

Γ, α ⊢ t : A

Γ ⊢ Λα. t : ∀α.A

Γ ⊢ t : ∀α.A Γ ⊢ B type

Γ ⊢ t[B] : A[α 7→ B]

Judgemental equality:

Γ ⊢ (λx. t)u = t[x 7→ u] : B Γ ⊢ t = λx. tx : A → B
(x /∈ Γ )

Γ ⊢ (Λα. t)[U ] = t[α 7→ U ] : A[α 7→ U ] Γ ⊢ t = Λα. t[α] : ∀α.A
(α /∈ Γ )

Fig. 1: The type system λ2

The above definition differs slightly from [15, Def. 8.4.3(b)] in that we do not
include fibred coproducts in condition (iii). These are not needed to model λ2,
and their existence is anyway derivable in parametric models.

In a λ2 fibration, we write TX for the fibre category over X. We also use X

as a subscript when referring to structure in TX ; e.g., 1X is the specified terminal
object in TX , and ⇒X is the exponential structure in TX . Given f : X - Y

in C, we write f∗ for the reindexing functor TY → TX , and A∗f : f∗A - A

for the specified cartesian lifting of f relative to A. We also write
∏

Ω for the
specified right adjoint, given by (iii), to reindexing functors π∗

1 : TX → TX×Ω .

We recall in outline the semantic interpretation of λ2 in a λ2 fibration T → C.
A context Θ = α1, . . . , αn of type variables is interpreted as the n-fold product
JΘK = Ωn in C. A type A in type-variable context Θ is then interpreted as an
object JAKΘ of T over JΘK, defined by induction on the structure of A, using
cartesian closure for function types, fibred products for universal types, and the
reindexing (πi)

∗ U of the generic object along the projection πi : Ω
n - Ω

to interpret αi over JΘK. Finally, the interpretation of a term Γ ⊢ t : A is
obtained by splitting Γ into its component contexts: Θ of type variables, and ∆

of term variables. Then ∆ = x1 :A1, . . . , xm :Am is interpreted as the product
J∆KΘ = JA1KΘ × · · · × JAmKΘ in the fibre over JΘK, and t is interpreted as a
morphism JtKΓ : J∆KΘ - JAKΘ in TJΘK.



In the above outline, one sees that the structure of a λ2 fibration fits uneasily
alongside our mixed contexts of interleaved type and term variables, since these
have to be separated to define the semantic interpretation. In dependent type
theory, where no such separation is possible, a more direct semantic interpretation
is achieved using Lawvere’s comprehension property [18] to model the process of
context extension [14]. It is natural to apply the same idea to λ2.

Definition 2 (Comprehensive λ2 fibration). A λ2 fibration p : T → C

is comprehensive if it enjoys the comprehension property [15, Def. 10.4.7]: the
terminal-object functor X 7→ 1X : C → T has a specified right adjoint K : T → C.

Requiring a specified right adjoint maintains consistency with our policy of
working with split fibrational structure. Given A in TX , we write κA : KA - X

for the ‘projection’ map obtained by applying p to the counit 1KA
- A in T.

To show that comprehensive λ2 fibrations permit a direct, inductive-on-syntax
semantic interpretation, we present the interpretation of λ2 types in detail. A
context Γ ctxt is interpreted as an object JΓ K of C; and a type Γ ⊢ A type is
interpreted as an object JAKΓ in TJΓ K. These are defined by mutual induction,
together with maps πα

Γ : JΓ K - Ω for every context Γ containing α.

J·K = 1 JαKΓ = (πα
Γ )

∗ U πα
Γ, α = π2

JΓ, αK = JΓ K ×Ω JA → BKΓ = JAKΓ ⇒JΓ K JBKΓ πα
Γ, β = πα

Γ ◦ π1 (β 6=α)

JΓ, x : AK = KJAKΓ J∀α.AK =
∏

Ω
JAKΓ, α πα

Γ, x:A = πα
Γ ◦ κJAKΓ

Having made the above definitions, a term Γ ⊢ t : A is interpreted as a global
element JtKΓ : 1JΓ K

- JAKΓ in TJΓ K. The definition, which we omit, is a
straightforward induction on the derivation of Γ ⊢ t : A.

The appropriateness of comprehensive λ2 fibrations as a notion of model for
λ2 is supported by soundness and completeness results.

Theorem 3 (Soundness for λ2). If Γ ⊢ t1 = t2 : A then, in every comprehen-
sive λ2 fibration, we have Jt1KΓ = Jt2KΓ .

Theorem 4 (Full completeness for λ2). There exists a comprehensive λ2
fibration satisfying:

(i) for every type Γ ⊢ A type, every global point 1JΓ K
- JAKΓ is the denotation

JtKΓ of some term Γ ⊢ t : A; and
(ii) for all terms Γ ⊢ t1, t2 : A satisfying Jt1KΓ = Jt2KΓ , we have Γ ⊢ t1 = t2 : A.

Theorem 3 is proved by a routine induction on equality derivations, and Theorem 4
by construction of a syntactic model, which has the requisite properties.

3 Comprehensive λ2 Parametricity Graphs

Reflexive graph categories are studied in [19,24,16,7,8] as a simple category-
theoretic structure for modelling relational parametricity. A reflexive graph



category consists of a pair of categories, V, the vertex category, and E, the
edge category, together with functors ∇1,∇2 : E → V and ∆ : V → E satisfying
∇1∆ = idV = ∇2∆. Informally, one thinks of E as a category whose objects are
binary ‘relations’ between objects of V. Then ∇1,∇2 are ‘projection’ functors,
and ∆ maps an object to its ‘identity relation’.

We shall be guided by the following general thesis. A model of relational
parametricity, irrespective of the type theory for which it is considered, should form
a reflexive graph category, in the (2-)category of structure-preserving functors
between models of the type theory in question. This thesis is supported by the
following considerations. Endowing the edge category E with the categorical
structure needed to interpret types corresponds to giving types a relational
interpretation. The preservation of this structure by the projection functors∇1,∇2

means that the relational interpretation commutes with the usual non-relational
interpretation of types. The preservation of structure by ∆, in combination with
the identity property discussed later, corresponds to Reynolds’ identity extension
property [23].

In the context of the present paper, we need to specialise the above recipe to
(comprehensive) λ2 fibrations. Amorphism from one (comprehensive) λ2 fibration
p′ : T′ → C

′ to another p : T → C is given by a pair of functors, H : T′ → T and
L : C′ → C such that pH = Lp′, and such that H,L preserve all other specified
structure (including the choice of cartesian morphisms in the splitting) on the
nose. By a reflexive graph of (comprehensive) λ2 fibrations, we thus mean a pair
of (comprehensive) λ2 fibrations with functors between them:

R(T)

∇T
1 , ∆T, ∇T

2-� - T

R(C)

pR

? -� -
∇C

1 , ∆C, ∇C
2

C

p

?

(1)

where each of the three pairs ∇T
1 ,∇

C
1 and ∇T

2 ,∇
C
2 and ∆T, ∆C is a morphism

of (comprehensive) λ2 fibrations, and where each of the triples ∇T
1 ,∇

T
2 , ∆

T and
∇C

1 ,∇
C
2 , ∆

C is a reflexive graph category. We emphasise that pR : R(T) → R(C),
in (1), is an arbitrary (comprehensive) λ2 fibration fitting into the diagram. The
notation R(·) is merely mnemonic, and does not imply that R(T) is obtained
using a particular construction from T.

One needs to add further conditions to the above structure to ensure that the
objects of R(T) behave sufficiently like relations. In [19], this was addressed by
requiring the fibre category R(T)1R(C)

, over the terminal object, to coincide with
a particular category of logical relations over T1C

. As well as only being applicable
if T1C

has (sufficient) finite limits, this requirement also has the weakness that
it says nothing about other fibres of pR. As a result, the structure is too weak
to imply consequences of parametricity in general, see [24,6] for discussion. To



remedy this, we instead need axiomatic structure for a category of relations, in
a form that is suitable for being imposed fibrewise on pR. This is provided by
Dunphy and Reddy’s notion of parametricity graph [7,8], which we now recall.

A reflexive graph category ∇1,∇2 : E → V, ∆ : V → E is said to be relational
if the functor 〈∇1,∇2〉 : E → V×V is faithful. This property allows one to think
of morphisms in E as pairs of relation-preserving maps from V. Accordingly,
we call objects of E relations, we write R : A ↔ B to mean an object R of
E with ∇1R = A and ∇2R = B, and we write f × g : R - S to mean
that there is a (necessarily unique) map h : R - S in E with ∇1h = f and
∇2h = g. A reflexive graph category satisfies the identity property if, for every
h : ∆A - ∆B in E, it holds that ∇1h = ∇2h. This allows one to think of ∆A

as an identity relation on A (although, cf. Sect. 5 for caveats). In a relational
reflexive graph category, the identity property is equivalent to the fullness of the
functor ∆. A parametricity graph is a relational reflexive graph category with the
identity property, for which the functor 〈∇1,∇2〉 : E → V× V is a fibration. The
fibration property supports the following definition mechanism. Let R : A ↔ B

be a relation in E. Then, given morphisms f : A′ - A and g : B′ - B in V,
reindexing produces an inverse image relation [f×g]−1R : A′ ↔ B′.3

The main category-theoretic definition of this paper is a fibrewise adaptation
of parametricity graph to the context of comprehensive λ2 fibrations.

Definition 5 ((Comprehensive) λ2 parametricity graph). A (comprehen-
sive) λ2 parametricity graph is a reflexive graph of (comprehensive) λ2 fibrations,
as in (1), that satisfies, for all objects W of R(C) and X of C:

(Relational) The functor 〈∇T
1 ,∇

T
2 〉↾R(T)W : R(T)W → T∇C

1W
×T∇C

2W
is faithful.

(Identity property) The functor ∆T ↾TX
: TX → R(T)∆CX is full.

(Fibration) 〈∇T
1 ,∇

T
2 〉↾R(T)W : R(T)W → T∇C

1W
×T∇C

2W
is a cloven fibration.

Moreover, for every φ : W ′ - W in R(C), we require the commuting square

R(T)W
(pR)∗φ - R(T)W ′

T∇C

1W
×T∇C

2W

〈∇T
1 ,∇

T
2 〉↾R(T)W

?

p∗(∇C
1φ)× p∗(∇C

2φ)
- T∇C

1W
′×T∇C

2W
′

〈∇T
1 ,∇

T
2 〉↾R(T)

W ′

?

(where the notation distinguishes reindexing functors determined by p and pR) to
give a cleavage-preserving fibred functor from 〈∇T

1 ,∇
T
2 〉↾R(T)W to 〈∇T

1 ,∇
T
2 〉↾R(T)

W ′
.

This definition could by strengthened by asking for the parametricity-graph
fibrations to be split instead of merely cloven. Such a strengthening does not

3 We use (·)−1 rather than (·)∗ for reindexing to emphasise that we are in a relational
setting: 〈∇1,∇2〉 is a preorder fibration since it is faithful.



affect any of the results in the sequel, and may seem natural given our use of
split fibrations in all previous definitions. Nevertheless, our choice of definition
reflects the fact that the weaker cloven assumption is all that is needed to avoid
coherence issues arising in the semantic interpretation of the type theory λ2R
introduced in Sect. 4 below.

It is Def. 5, with the comprehension property included, that provides our
answer to the question highlighted in the introduction. (The definition without
comprehension is included for comparison purposes only.)

4 A Type System for Relational Reasoning

We define a type system λ2R, suggested by the structure of comprehensive λ2
parametricity graphs. This system is similar, in many respects, to System R of
Abadi, Cardelli and Curien [1] and System P of Dunphy [7], to which we shall
compare it in Sect. 7.

The rules for λ2R are given by Fig. 1 (it extends λ2) in combination with

Fig. 2. The latter adds three new judgements: Θ rctxt says that Θ is a well-

defined relational context ; Θ ⊢ A1RA2 rel says that R is a relation between types

A1 and A2, in relational context Θ; and Θ ⊢ (t1 :A1)R(t2 :A2) is a relatedness

judgement, asserting that t1 :A1 is related to t2 :A2 by the relation R.
Relations, in Fig. 2, are built up from a collection of relation variables ρ, . . . ,

which, for clarity, we choose to keep disjoint from type and term variables. In
the rules, we make use of three operations (·)1, (·)2 and 〈·〉, defined in Fig. 3,
which implement reflexive graph structure on syntax. The (·)i operations project
a relational context to a typing context, whereas the 〈·〉 operation acts in the
other direction. In the definition of the latter, we associate a distinct relation
variable ρα to every type variable α. Lemma 7 below states how these operations
relate typing and relational judgements.

The rules for building relational contexts and relations, in Fig. 2, require
some explanation. In adding an assertion αρβ to a relational context Θ, all
variables α, β, ρ need to be sufficiently fresh. However, the formulation of λ2R
is such that variables on the left-hand side of relations are always manipulated
separately from variables on the right. Thus, for example, α is sufficiently fresh
in αρβ, as long as α does not already occur on the left side (Θ)1 of Θ. A similar
separation principle applies also with respect to the term variables x1, x2 in
assertions (x1 :A1)R(x2 :A2). The separation principle means that one needs to
be cautious in interpreting assertions of the form αρα and (x :A)R(x :A). In
such assertions, even though the same variable appears on the left and right, the
correct intuition is that these are really two distinct variables. We have chosen
not to underline this distinction by requiring the variables to be syntactically
different, since doing so would add unnecessary syntactic clutter to the system;
for example, it would complicate the definition of the 〈·〉 operation. Instead, we
rely on left and right positioning to make the necessary distinctions. This is
crucial in the definition of the substitution operations on relations. There are



Relational context formation rules:

· rctxt
Θ rctxt

Θ,αρβ rctxt
(ρ /∈ Θ,α /∈ Θ1, β /∈ Θ2)

Θ rctxt Θ ⊢ A1RA2 rel

Θ, (x1 : A1)R(x2 : A2) rctxt
(x1 /∈ Θ1, x2 /∈ Θ2)

Relation formation rules:

Θ ⊢ αρβ rel
(αρβ ∈ Θ)

Θ ⊢ A1RA2 rel Θ ⊢ B1SB2 rel

Θ ⊢ (A1 → B1)(R → S)(A2 → B2) rel

Θ, αρβ ⊢ A1RA2 rel

Θ ⊢ (∀α.A1)(∀αρβ.R)(∀β.A2) rel

Θ ⊢ B1RB2 rel Θ1 ⊢ t1 : A1 → B1 Θ2 ⊢ t2 : A2 → B2

Θ ⊢ A1([t1 × t2]
−1R)A2 rel

Relatedness rules:

Θ ⊢ (x1 : A1)R(x2 : A2)
((x1 : A1)R(x2 : A2) ∈ Θ)

Θ, (x1 : A1)R(x2 : A2) ⊢ (t1 : B1)S(t2 : B2)

Θ ⊢ (λx1. t1 : A1 → B1)(R → S)(λx2. t2 : A2 → B2)

Θ ⊢ (s1 : A1 → B1)(R → S)(s2 : A2 → B2) Θ ⊢ (t1 : A1)R(t2 : A2)

Θ ⊢ (s1 t1 : B1)S(s2 t2 : B2)

Θ, αρβ ⊢ (t1 : A1)R(t2 : A2)

Θ ⊢ (Λα. t1 : ∀α.A1)
(

∀αρβ.R
)

(Λβ. t2 : ∀β.A2)

Θ ⊢ (t1 : ∀α.A1)
(

∀αρβ.R
)

(t2 : ∀β.A2) Θ ⊢ B1SB2 rel

Θ ⊢ (t1[B1] : A1[α 7→ B1])R[αρβ 7→ B1SB2](t2[B2] : A2[β 7→ B2])

Θ ⊢ (t1 u1 : B1)R(t2 u2 : B2)

Θ ⊢ (u1 : A1)([t1 × t2]
−1R)(u2 : A2)

Θ ⊢ (u1 : A1)([t1 × t2]
−1R)(u2 : A2)

Θ ⊢ (t1 u1 : B1)R(t2 u2 : B2)

Θ ⊢ (t1 : A1)R(t2 : A2) Θ1 ⊢ t1 = s1 : A1 Θ2 ⊢ t2 = s2 : A2

Θ ⊢ (s1 : A1)R(s2 : A2)

Parametricity rule:

〈Γ 〉 ⊢ (s : A)〈A〉(t : A)

Γ ⊢ s = t : A

Fig. 2: The type system λ2R



The operations (−)i (for i ∈ {0, 1}) on relational contexts:

(·)i = ·

(Θ, α1ρα2)i = (Θ)i, αi

(Θ, (x1 :A1)R(x2 :A2))i = (Θ)i, xi :Ai

The operation 〈−〉 on contexts and types:

〈·〉 = · 〈α〉 = ρα

〈Γ, α〉 = 〈Γ 〉, α ραα 〈A → B〉 = (〈A〉 → 〈B〉)

〈Γ, x :A〉 = 〈Γ 〉, (x :A)〈A〉(x :A) 〈∀α.A〉 = ∀αραα. 〈A〉

Fig. 3: Syntactic reflexive graph structure

two such operations: R[αρβ 7→ ASB] substitutes, in the relation R, the type A

for all left occurrences of α, the type B for all right occurrences of β (which may
itself be α), and the relation S for all occurrences of ρ; similarly, S[x 7→ s, y 7→ t]
substitutes, in the relation S, the term s for all left occurrences of x, and the
term t for all right occurrences of y (which may itself be x). Note that relations
can indeed contain terms and (hence) type variables, due to the [t1 × t2]

−1R

construction, where we consider t1 as occurring on the left, and t2 on the right.

Lemma 6 (Substitution lemma).

(i) If Θ ⊢ A1RA2 rel and Θ, α1ρα2 ⊢ (t1 : B1)S(t2 : B2) then
Θ⊢(t1[α1 7→A1] :B1[α1 7→A1])S[α1ρα2 7→A1RA2](t2[α2 7→A2] :B2[α2 7→A2]).

(ii) If Θ ⊢ (t1 : A1)R(t2 : A2) and Θ, (x1 : A1)R(x2 : A2) ⊢ (s1 : B1)S(s2 : B2)
then Θ ⊢ (s1[x1 7→ t] : B1)S[x1 7→ t1, x2 7→ t2](s2[x2 7→ t2] : B2).

The relatedness rules of Fig. 2 include the expected rules for relations R → S

and ∀αρβ.R, which mimic the analogous type constructions in λ2. The rules for
[t1×t2]

−1R implement its intended interpretation as an inverse image construction.
In addition, a further rule expresses an extensionality principle for relations with
respect to judgemental equality. Such an intermixing of relatedness judgements
with equality judgements is legitimised by statement (i) of the lemma below.

Lemma 7.

(i) If Θ ⊢ (t1 : A1)R(t2 : A2) then (Θ)i ⊢ ti : Ai.
(ii) If Γ ⊢ t : A then 〈Γ 〉 ⊢ (t : A)〈A〉(t : A).

Statement (ii) of the lemma asserts that all terms enjoy the characteristic
relation-preservation property of relational parametricity. By the extensionality
rule, it follows that Γ ⊢ s = t : A implies 〈Γ 〉 ⊢ (s : A)〈A〉(t : A). That is,
equal terms are parametrically related. Since parametric relatedness captures a
form of behavioural equivalence, we can ask also for the converse implication to
hold. This is implemented by the parametricity rule in Fig. 2. This rule, in the



general form given, is derivable from its empty-context version: ⊢ (s : A)〈A〉(t : A)
implies ⊢ s = t : A. Thus the parametricity rule is equivalent to asking for the
relational interpretation of a closed type to act as an identity relation between
closed terms—a weak version of Reynold’s identity extension property [23]. We
discuss the relational interpretation of open types in Sect. 5.

We outline the semantic interpretation of λ2R. Given a comprehensive λ2
parametricity graph, the contexts, types and terms of λ2 are interpreted in
the comprehensive λ2 fibration p : T → C, as in Sect. 2. In addition, we
interpret a relational context Θ as an object JΘK of R(C), and a syntactic relation
Θ ⊢ ARB rel as a semantic relation JRKΘ : JAK(Θ)1 ↔ JBK(Θ)2 in R(T)JΘK. The
definitions of JΘK and JRKΘ interpret context extension, function space and
universal quantification using the structure of the comprehensive λ2 fibration
pR : R(T) → R(C), where relation variables αρβ are interpreted using the
generic object of pR. For the inverse-image relation Θ ⊢ A1([t1 × t2]

−1R)A2 rel,
we have that Jt1K(Θ)1 and Jt2K(Θ)2 determine maps JA1K(Θ)1

- JB1K(Θ)1 and
JA2K(Θ)2

- JB2K(Θ)2 in TJ(Θ)1K and TJ(Θ)2K respectively. The fibration property

of 〈∇T
1 ,∇

T
2 〉↾R(T)JΘK

then gives J[t1×t2]
−1RK : JA1K(Θ)1 ↔ JA2K(Θ)2 as the inverse

image of JRK : JB1K(Θ)1 ↔ JB2K(Θ)2 along these maps.
In the above semantic interpretation, the comprehension property is needed in

order to interpret a relational context Θ as an object JΘK of R(C), and essential
use is made of this in the definition of J[t1 × t2]

−1RK. Were the comprehension
property of models dropped, it would be possible to rejig the semantics to
interpret a restricted calculus with inverse-image relations definable only in
relational contexts containing no term variables, but not full λ2R.

The semantics is supported by soundness and completeness theorems.

Theorem 8 (Soundness for λ2R). In every comprehensive λ2 parametricity
graph:

(i) if Γ ⊢ t1 = t2 : A then Jt1KΓ = Jt2KΓ ; and
(ii) if Θ ⊢ (t1 :A1)R(t2 :A2) then Jt1K(Θ)1 × Jt2K(Θ)2 : 1JΘK

- JRKΘ.

Theorem 9 (Full completeness for λ2R). There exists a comprehensive λ2
parametricity graph satisfying the following.

(i) For every type Γ ⊢ A type, every global point 1JΓ K
- JAKΓ is the denota-

tion JtKΓ of some term Γ ⊢ t : A.
(ii) For all terms Γ ⊢ t1, t2 : A satisfying Jt1KΓ = Jt2KΓ , we have Γ ⊢ t1 = t2 : A.
(iii) For every relation Θ ⊢ A1RA2 type, every global point 1JΘK

- JRKΘ arises
as Jt1K(Θ)1 × Jt2K(Θ)2 for terms t1, t2 such that Θ ⊢ (t1 :A1)R(t2 :A2).

Theorem 8 is proved by induction on derivations. We highlight that the soundness
of the parametricity rule follows from the identity property of comprehensive λ2
parametricity graphs. Theorem 9 is proved by a term model construction.

5 Direct-image and Pseudograph Relations

As already discussed, the parametricity rule of Fig. 2 interprets the relation 〈A〉
as an identity relation when A is a closed type. When A contains type variables,



however, this interpretation is not available. Consider an open type α ⊢ A(α) type
(where we write A(α) to highlight the occurrences of α in A). Then we have
αρα ⊢ A(α)

(

〈A〉(ρ)
)

A(α) rel. However, the independent handling of left and right
variables in λ2R (forced by the semantic correspondence with comprehensive
λ2 parametricity graphs), means that the latter relation is equivalent to αρβ ⊢
A(α)

(

〈A〉(ρ)
)

A(β) rel; i.e., it is a family (indexed by relations ρ) of relations
between different types. Indeed, the distinctness of left and right type variables
means λ2R has no facility for formulating relations between open types and
themselves. In particular, λ2R contains no mechanism for defining identity
relations on open types. Nonetheless, the relation 〈A〉 can act as a kind of pseudo-
identity relation for type A where the parametricity rule can establish equalities
from 〈A〉-relatedness in relational contexts of the form 〈Γ 〉.

Graphs of functions are ubiquitous in standard arguments involving relational
parametricity. Since we have only pseudo-identity relations, we correspondingly
have only pseudographs available in λ2R. Suppose Γ ⊢ f : A → B. Define:

gr∗(f) := [f × idB ]
−1〈B〉

Clearly 〈Γ 〉 ⊢ Agr∗(f)B rel. Its defining property is that (x :A) gr∗(f) (y :B)
holds if and only if (fx :B)〈B〉(y :B). Mathematically, there is, however, another
natural pseudograph relation, for f , between A and B. This is the relation gr!(f)
defined by (x :A)gr!(f)(y :B) if there exists w :A such that (x :A)〈A〉(w :A) and
y = fw. Since, by (ii) of Lemma 7, f maps 〈A〉-related values to 〈B〉-related
values, gr!(f) ⊆ gr∗(f). However, because 〈A〉 and 〈B〉 are not identity relations,
there is no need for this inclusion to be an equality. We shall need to make use
of both forms of pseudograph relation to derive the standard consequences of
parametricity. In order to do so, we must first provide a definition of gr!(f) in
λ2R itself, and establish formal analogues of the informal observations above.

The main construction we need is that of direct-image relations [t1 × t2]!R,
dual to inverse-image relations. This is achieved using an impredicative encoding.

Theorem 10 (Direct-image relations). Using the definition

[t1 × t2]!R := [iB1
× iB2

]−1(∀αρα. ([(− ◦ t1)× (− ◦ t2)]
−1(R → ρ)) → ρ)

where iB abbreviates λb. Λα. λt. t b : B → ∀α. (B→α)→α and (−◦tj) abbreviates
λ(vj :Bj → α). λ(xj :Aj). vj(t1 xj), λ2R supports the derived rules below.

Θ ⊢ A1RA2 rel
Θ1 ⊢ t1 :A1 → B1

Θ2 ⊢ t2 :A2 → B2

Θ ⊢ B1([t1 × t2]!R)B2 rel

Θ ⊢ (u1 :A1)R(u2 :A2)

Θ ⊢ (t1u1 :B1)
(

[t1 × t2]!R
)

(t2u2 :B2)

Θ⊢C1QC2 rel Θ1⊢v1 :B1→C1 Θ2⊢v2 :B2→C2

Θ ⊢ (u1 :B1)
(

[t1 × t2]!R
)

(u2 :B2) Θ ⊢ (v1 ◦ t1 :A1→C1)
(

R→Q
)

(v2 ◦ t2 :A2→C2

Θ ⊢ (v1 u1: C1)Q(v2 u2 :C2)

In fact, these rules are derivable without use of the parametricity rule of λ2R.



It is now straightforward to define the second form of pseudograph relation
discussed above. Suppose that Γ ⊢ f : A → B and define 〈Γ 〉 ⊢ Agr!(f)B rel by:

gr!(f) := [idA × f ]!〈A〉 .

To understand the relationship between the two pseudograph relations we
introduce some notation. Given R and S such that Θ ⊢ ARB rel and Θ ⊢ ASB rel,
let Θ ⊢ R ⊆ S abbreviate Θ, (x : A)R(y : B) ⊢ (x : A)S(y : B).

Lemma 11. If Γ ⊢ f : A → B then:

(i) 〈Γ 〉 ⊢ gr!(f) ⊆ gr∗(f); and
(ii) 〈Γ 〉 ⊢ (s :A) gr∗(f) (t :B) iff Γ ⊢ f s = t : B iff 〈Γ 〉 ⊢ (s :A) gr!(f) (t :B).

We comment that, in spite of item (ii), the converse inclusion to (i) does not hold
in general. Property (ii) applies only in context 〈Γ 〉, and thus implies nothing
about what happens if further relational assumptions are added.

Theorem 10 has a semantic analogue: direct image relations correspond to
opfibrational structure on comprehensive λ2 parametricity graphs.

Theorem 12. In any comprehensive λ2 parametricity graph, for every object W
of R(C), the functor 〈∇T

1 ,∇
T
2 〉↾R(T)W : R(T)W → T∇C

1W
×T∇C

2W
is an opfibration.

6 Consequences of Parametricity

System λ2R is strong enough to prove the familiar consequences of parametricity.

Theorem 13 (Consequences of Parametricity). System λ2R proves:

(i) The unit (terminal) type can be encoded as 1 = ∀α. α → α.
(ii) The product of A and B can be encoded as A×B = ∀α. (A → B → α) → α.
(iii) The empty (initial) type can be encoded as 0 = ∀α. α.
(iv) The sum of A and B can be encoded as A+B = ∀α. (A→α)→(B→α)→α.
(v) Existential types can be encoded as ∃α. T (α) = ∀α. (∀β. (T (β) → α)) → α.
(vi) The type ∀α. (T (α) → α) → α is the carrier of the initial T -algebra for all

functorial type expressions T (α).
(vii) The type ∃α. (α → T (α)) × α is the carrier of the final T -coalgebra for all

functorial type expressions T (α).

This result for λ2R implies that analogous category-theoretic properties (which
we do not state for lack of space) hold for comprehensive λ2 parametricity graphs.

The proofs of (i)–(vii) follow the usual ones, see, e.g., [21], but with graph
relations replaced by pseudographs. Pseudograph relations of the form gr∗(f)
suffice in all proofs with the exception of the verification of final coalgebras, where
gr!(f) is used. In this section, we explain how this difference in the treatment of
initial algebras and final coalgebras arises. For lack of space, we focus on the use
of pseudograph relations only, and omit the (standard) supporting arguments.



Suppose Γ, α ⊢ T type. We write T (α) to highlight the occurrences of α in
T , and T (A) for the substitution T [α 7→ A]. If α occurs only positively in T

(i.e., not on the left-hand side of an odd number of arrows) then it is standard
that T defines an endofunctor on types. If Γ ′ ⊢ f : A → B, where Γ ′ extends Γ ,
then we use the notation Γ ′ ⊢ T (f) : T (A) → T (B) for the functorial action of
T . This action preserves identities and composition up to judgemental equality.
In addition, the corresponding relational substitution preserves pseudo-identity
relations; i.e., 〈T 〉(〈A〉) (by which we mean the substitution 〈T 〉[αραα 7→ 〈A〉])
syntactically coincides with 〈T (A)〉. Also, the functorial action lifts to relations:
if Θ ⊢ (f :A → B)(R → S)(f ′ :A′ → B′), where Θ extends 〈Γ 〉, then:

Θ ⊢ (T (f) :T (A) → T (B))(〈T 〉(R) → 〈T 〉(S))(T (f ′) :T (A′) → T (B′)) .

Using these facts (which assert that T is a reflexive-graph functor [8]) one
establishes the following properties of the action of 〈T 〉 on pseudograph relations.

Lemma 14. Suppose α occurs positively in Γ, α ⊢ T type and Γ ′ ⊢ f : A → B,
where Γ ′ extends Γ .

(i) 〈Γ ′〉 ⊢ 〈T 〉(gr∗(f)) ⊆ gr∗(T (f)) .
(ii) 〈Γ ′〉 ⊢ gr!(T (f)) ⊆ 〈T 〉(gr!(f)) .

Our proof of this lemma closely mirrors the proof of the Graph Lemma in [9],
which exploits the fact that graph relations can be defined either using inverse
image, analogously to gr∗(f), or using direct image, analogously to gr!(f).

We now explain how Lemma 14 bears on the proofs of the universal properties
of initial algebras and final coalgebras. Given T as above, standard constructions
produce a T -algebra and a T -coalgebra that can be shown to be weakly initial
and weakly final respectively, without invoking parametricity. The parametricity
rule is used to establish the uniqueness part of the universal property. In the
initiality and finality arguments, one is led to consider T -algebra and T -coalgebra
homomorphisms respectively:

T (A)
T (h)- T (B) T (A)

T (h′)- T (B)

A

a
?

h
- B

b
?

A

a′
6

h′
- B

b′
6

where the diagrams are given by terms, in a context Γ ′ extending Γ , which
commute up to judgemental equality. Lemma 14 allows one to prove the following
crucial properties as consequences of the commutativity of the above diagrams.

〈Γ ′〉 ⊢ (a : T (A) → A)
(

〈T 〉(gr∗(h)) → gr∗(h)
)

(b : T (B) → B)

〈Γ ′〉 ⊢ (a′ : A → T (A))
(

gr!(h
′) → 〈T 〉(gr!(h

′))
)

(b′ : B → T (B))

It is the orientation of the function relations above that necessitates the use of
a different type of pseudograph relation in each case. Modulo this subtlety, the
remaining proofs of initiality and finality proceed as usual, cf. [21].



7 Related and Further Work

System R of [1] and System P of [7] share with λ2R the property of having a
syntax in which function space and universal quantification are basic constructions
on relations. Indeed λ2R is especially similar to System P, which also has the
inverse-image-relation constructor [t1 × t2]

−1R. The most significant difference
is that, in System P, the formation rule for this construction is restricted: the
terms t1, t2 are not allowed to contain free term variables. However, they are
permitted to contain so-called indeterminates, which, in the semantics of System
P, range over global elements in models. This device allows System P to be used
to establish consequences of parametricity in well-pointed models [7]. In λ2R,
our general arguments for consequences of parametricity make essential use of
the possibility for t1 and t2 to contain free term variables. As already observed
in Sect. 4, the comprehension property of our models is crucial to the semantic
interpretation of inverse-image relations in such cases.

System R of [1] departs from λ2R (and System P) in two main ways. The
first is that, in System R, every type A has an associated identity relation
A∗.4 A key rule of System R (written in our notation) is that Θ ⊢ xA∗ x,
whenever x : A appears anywhere in relational context Θ. This rule breaks
the independence between left and right variables in the relational judgements
of λ2R. (For example, property (i) of Lemma 7 fails.) The second difference
is that System R has an explicit syntax for defining graph relations, rather
than the inverse-image construct of λ2R (and System P), which would be more
general in that context. Due to the presence of both identity and graph relations,
the arguments, in System R, for consequences of parametricity proceed along
standard lines [1]. However, System R currently lacks a corresponding semantic
story of the kind we have used in this paper in justification of λ2R.

In fact, the interplay between models and syntax could be pushed much further
than in the present paper. By adding primitive product types to λ2 and λ2R, one
can strengthen our full completeness results by obtaining syntactic categories that
are initial in an appropriate 2-category of strict structure-preserving morphisms of
models. It would be more natural, however, to broaden both the notion of model,
by replacing splittings of fibrations with cleavages, and the notion of morphism,
by permitting non-strict structure preservation. With such a relaxation, coherence
issues arise, but one would expect to obtain (pseudo-)initiality of the syntactic
model of λ2R (without any need to extend the syntax with products).

For lack of space we have not presented any concrete models in this paper. In
fact, any instance of the more elaborate axiomatic structure from [6] can be re-
construed (albeit in a nontrivial way) as a comprehensive λ2 parametricity graph.
So our minimal structure at least generalises the known models of parametricity.
However, we do not know whether our structure encompasses any genuinely
new models of relational parametricity that truly exploit the (potential) added
generality of our approach.

4 In System P, every type A is itself a relation, which, although called an “identity
relation” in [7], has the properties of the relation 〈A〉 in the present paper.



The results of the present paper should be contrasted with those of other recent
work by first two authors and colleagues [9,10]. In this paper, we have axiomatised
category-theoretic structure modelling relational parametricity for the specific
type theory λ2, where the resulting structure encompasses both ‘syntactic’ and
‘semantic’ models. In contrast, [9,10] axiomatise the category-theoretic structure
required on a ‘semantic’ model for Reynolds’ original set-theoretic definition
of relational parametricity [23] to generalise to the model. Interestingly, the
category-theoretic notion of bifibration occurs both as a central ingredient in the
axiomatisation of [9,10], and, in the guise of direct-image relations, as a vital
tool in the present paper. A novelty in the present paper is that the bifibrational
structure is derived rather than assumed.

From a type-theoretic perspective, one advantage of the approach followed in
this paper is that the passage from the original type theory (λ2) to the relational
version (λ2R) appears not to depend on specific properties of the former, other
than that essential use is made of judgemental equality in the formulation of the
parametricity rule. We believe that this potential flexibility may be useful for
transferring our methods to dependent type theories, where parametricity is an
active area of study [2,4,5,17].

The proof-relevant setting of dependent type theory, however, requires mod-
ifications to our semantic framework. In particular the relational property of
parametricity graphs must be relaxed. Ongoing work on a higher-dimensional,
proof-relevant form of parametricity may show how to remove this requirement.
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