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Abstract: The inverse Finite Element Method (iFEM) is a revolutionary methodology for real-

time reconstruction of full-field structural displacements and stresses in plate and shell structures 

that are instrumented by strain sensors. This inverse problem is essential for structural health 

monitoring systems and commonly referred as ‘displacement and stress monitoring’ or ‘shape- 

and stress-sensing’. In this study, displacement and stress monitoring of a Panamax containership 

is performed based on the iFEM methodology. A simple, efficient, and practically useful four-

node quadrilateral inverse-shell element, iQS4, is used for the numerical implementation of the 

iFEM algorithm. Hydrodynamic analysis of the containership is performed for beam sea waves 

in order to calculate vertical and horizontal wave bending moments, and torsional wave moments 

acting on parallel mid-body of the containership. Several direct FEM analyses of the parallel 

mid-body are performed using the hydrodynamic wave bending and torsion moments. Then, 

experimentally measured strains are simulated by strains obtained from high-fidelity finite 

element solutions. After that, three different iFEM case studies of the parallel mid-body are 

performed utilizing the simulated sensor strains. Finally, the effect of sensor locations and 

number of sensors are assessed with respect to the solution accuracy. 

Keywords: Displacement and Stress Monitoring, Structural Health Monitoring, Inverse Finite 

Element Method (iFEM), Panamax Containership. 
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1. Introduction 

Vessels are operated under challenging conditions because marine environment can cause 

failure of the structure due to extreme or cyclic loadings, corrosion, and erosion. Structural 

failure may lead to major accidents that may result in crew or passenger life loses, pollution of 

the marine environment, and very expensive maintenance/repair costs. Therefore, it is necessary 

to ensure safety, reliability, and integrity of ship structures for avoiding major accidents. 

Moreover, the number of new vessels is increasing day-to-day. Therefore, new structural 

designs, new construction techniques, and new materials are progressively being used in the 

shipbuilding industry. As a result, it is necessary to increase knowledge about the on-site 

structural performance not only for traditionally designed ships, but also for newly designed 

ships.  

Structural Health Monitoring (SHM) is an interdisciplinary procedure that (1) integrates 

sensing systems to the structure, (2) processes the data collected from the sensing systems in 

real-time, and (3) provides decisive real-time information from the structure about its global 

and/or local structural state. Therefore, the necessities mentioned earlier and detailed structural 

management of the ships including inspection, maintenance, and repair plans can only be 

successfully accomplished if an application of SHM system is installed into the ships. In 1994, 

the International Maritime Organization (IMO) originally recommended the utilization of hull 

stress monitoring systems to facilitate the safe operation of ships. Then, the requirements for a 

typical hull structural monitoring system are regulated by class societies including ABS (1995), 

LR (2004), and DNV (2011). Recently, ABS (2015) has published a guide that discusses the 

need for fitting of hull condition monitoring systems on all types and sizes of merchant vessels. 

Besides, plenty of researchers considered the hull structural monitoring as an important case 

study. For example, different types of hull structural monitoring systems are investigated for 

various ship types (Van der Cammen 2008, Torkildsen et al. 2005, Andersson et al. 2011, Sielski 

2012, Zhu and Frangopol 2013, Hageman et al. 2013, and Majewska et al. 2014). In particular, 

Phelps and Morris (2013) presented a general review regarding the technical aspects of available 

hull structural monitoring systems. However, most of the aforementioned SHM approaches don’t 

take into account the advanced structural topologies and boundary conditions. Moreover, they 

mostly require sufficiently accurate loading information even though it is not easy to estimate 
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dynamic loads of waves and winds due to the complexity and statistical feature of oceanographic 

phenomena. Furthermore, some of them are not appropriate for use in real-time due to the time-

consuming analysis.  

Real-time processing of the data obtained from a system composed of a network of strain 

sensors is the key component of the SHM procedure for supplying trustworthy information about 

the structural condition. In other words, real-time reconstruction of three-dimensional structural 

displacements and stresses by utilizing discrete on-board strain measurements, known as 

‘displacement and stress monitoring’ or ‘shape- and stress-sensing’, is the primary technology 

for performing an accurate SHM. Apart from the SHM systems mentioned earlier, Tessler and 

Spangler (2003, 2005) developed a powerful algorithm called inverse Finite Element Method 

(iFEM) for the purpose of displacement and stress monitoring of engineering structures. In 

contrast to other developed SHM methods, iFEM framework has a general applicability to any 

type of structural topology and boundary conditions because using inverse beam, frame, plate, 

and shell elements enables an effective discretization of the physical domain. The iFEM 

algorithm minimizes a weighted-least-squares functional with respect to nodal displacements in 

order to perform the shape-sensing of the structure. Since the iFEM weighted-least-squares 

functional is defined by using only strain-displacement relationship, the iFEM methodology can 

reconstruct the structural deformed shapes of the structure without prior knowledge of material 

properties and loading information. Therefore, unlike other proposed SHM systems, stability and 

accuracy of the shape-sensing results obtained through iFEM methodology is independent from 

material properties of the structure and any type of static or dynamic loadings acting on the 

structure. In fact, this special feature makes the iFEM methodology much more powerful than 

the other SHM systems. Once the structural deformed shape is obtained, the full field strains can 

be calculated from strain-displacement relationship. Then, full field stresses of the structure can 

be evaluated by using full field strains and material properties of the structure. This stress 

calculation not only allows iFEM methodology to perform stress-sensing of the structure, but 

also allows real-time damage predictions if the full field structural stresses are converted to an 

equivalent stress by using an appropriate failure criterion such as von Mises yield criterion.  

Many different numerical and experimental iFEM studies have proved that the iFEM 

framework is an accurate, robust, and fast shape- and stress-sensing algorithm. For example, 
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Tessler and Spangler (2004) developed a three-node inverse shell element (iMIN3) by using 

lowest-order anisoparametric C
0
 continuous functions and adopting kinematic assumptions of the 

first-order and shear-deformation theory. Tessler and Spangler (2004) numerically verified the 

precision of iMIN3 element for performing iFEM analysis of plate/shell structures. Also, Quach 

et al. (2005) and Vazquez et al. (2005) confirmed the robustness of the iMIN3 element by 

conducting laboratory tests that uses experimentally measured real-time strain data. Moreover, 

Tessler et al. (2012) enhanced iMIN3 element for displacement and stress monitoring of plate 

and shell structures undergoing large displacements. Apart from iMIN3, Kefal et al. (2016) have 

recently formulated a four-node quadrilateral inverse-shell element, iQS4, utilizing the kinematic 

assumptions of the first-order and transverse-shear deformation theory. This new element 

includes hierarchical drilling rotation degrees-of-freedom (DOF) and further extends the 

practical usefulness of iFEM for shape-sensing analysis of large-scale structures. Kefal et al. 

(2016) numerically verified the precision of the iQS4 element by the analysis of several 

validation and demonstration problems. Furthermore, Cerracchio et al. (2010) and Gherlone et al. 

(2011, 2012, 2014) formulated a robust inverse frame element that uses kinematic assumptions 

of Timoshenko beam theory including stretching, bending, transverse-shear and torsion 

deformation modes. They numerically and experimentally validated capability of their inverse 

frame element by conducting several shape-sensing analyses of three-dimensional frame 

structures undergoing static and/or damped harmonic excitations. Moreover, Cerracchio et al. 

(2013, 2015a) has recently improved the original iFEM formulation of Tessler and Spangler 

(2003, 2005) by adding the kinematic assumptions of recently developed Refined Zigzag Theory 

(Tessler et al., 2009, 2010) in order to perform SHM of multi-layered composite and sandwich 

structures. The application of iFEM methodology for SHM of future aerospace vehicles is 

discussed by Tessler (2007) and Tessler et al. (2011). Likewise, another application of iFEM 

algorithm to real-time displacement monitoring of a composite stiffened panel is presented by 

Cerracchio et. al. (2015b). Apart from the aerospace applications, Kefal and Oterkus (2015) 

performed shape-sensing of a longitudinally and transversely stiffened plate as a fundamental 

application of the iFEM framework to SHM of marine structures. Similarly, Kefal and Oterkus 

(2016) presented a more sophisticated application of iFEM to marine structures namely 

displacement and stress monitoring of a chemical tanker based on iFEM algorithm. They 

performed iFEM case studies when the chemical tanker is subjected to the head sea waves 
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because this phenomenon of ship advancing in waves can be very crucial for closed-decked ships 

such as chemical tanker. However, for open-decked ships such as containerships, head sea wave 

loads may be less important than beam sea wave loads due to torsional and warping stresses 

induced by torsional moments. Since hull girder torsion loading on containerships represent a 

major loading quantity particularly when combined with hull girder vertical and horizontal 

bending loads, displacement and stresses monitoring of a containership floating in beam sea 

waves should be investigated in addition to all proposed iFEM marine structure applications. 

Hence, the main focus of this study is to demonstrate the application of the iFEM 

methodology for monitoring multi-axial deformations and stresses of a Panamax containership 

for the first time in the literature. For this purpose, the numerical implementation of the iFEM 

algorithm is done using the simple, efficient, and practically useful iQS4 element developed by 

Kefal et.al (2016). Hull form of a Panamax containership is designed performing several hull 

surface transformations of S175 containership. A typical mid-ship section is designed for the 

Panamax containership and the parallel mid-body of the containership is modelled using the 

iQS4 element. The ‘smart methodology’ proposed by Kefal et al. (2015) is followed to determine 

the optimum sensor locations for performing iFEM analyses of the parallel mid-body. First of all, 

hydrodynamic analysis of the containership is performed for beam sea waves. As an output, 

oscillatory pressures acting on the hydrodynamic panels, rigid body motions of the containership, 

and hydrodynamic section forces including vertical and horizontal bending moments and 

torsional moments are obtained. Secondly, several direct FEM analyses of the parallel mid-body 

are performed using the hydrodynamic wave bending and torsion moments. Then, 

experimentally measured strains are simulated by strains obtained from high-fidelity finite 

element solutions. Thirdly, three different iFEM analyses of the parallel mid-body are performed 

utilizing the simulated sensor strains obtained for three different cases. These are (1) pure 

vertical bending case, (2) pure horizontal bending case and (3) pure torsion case. Finally, the 

effect of sensor locations and number of sensors are assessed with respect to the solution 

accuracy of each iFEM analysis. 
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2. Inverse finite element formulation for shells (Kefal et al., 2016) 

2.1. Quadrilateral inverse-shell element 

The four-node quadrilateral inverse-shell element (iQS4), developed by Kefal et al. (2016), is 

adopted to demonstrate the iFEM formulation for shells. The iQS4 element has six displacement 

DOF per node including a hierarchical drilling rotation (Fig. 1). As a result of the inclusion of 

drilling rotations, the iQS4 element has two beneficial features: (1) singular solutions can be 

simply avoided when modelling complex shell structures, (2) for membrane problems, iQS4 

element has less tendency toward shear locking. In fact, these features make the iQS4 an 

efficient and practically useful element.  

First of all, a set of convenient coordinate frames of reference are defined to guarantee the 

geometric uniqueness of the assembled shell structure. A local coordinate system ( , , )x y z  serves 

as the element frame of reference, with its origin (0,0,0)  located at the centroid of mid-plane 

quadrilateral. It is assumed that the shell element has a uniform thickness 2h , and that 

 ,z h h    defines the thickness coordinate (Fig. 1). Herein, displacement, strain, and stress 

field of the iQS4 element is formulated using the local coordinate system. To assemble element 

matrices into a global system of equations, suitable transformation matrices defining the local to 

global transformations can easily be established with the element nodes referred to the global 

coordinates ( , , )X Y Z . Details of how to allocate the local coordinate system at the centroid of 

mid-plane quadrilateral and establish the transformation matrices defining the local to global 

transformations are summarized in Appendix A.  

The nodal DOF, consisting of positive x translations iu , positive y translations iv , and positive 

clockwise drilling rotations zi , define the u  and v  membrane displacements as 

4 4

1 1

( , ) i i i zi

i i

u x y u N u L
 

     (1a) 

4 4

1 1

( , ) i i i zi

i i

v x y v N v M
 

     (1b) 
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The DOF of positive z translation 
iw  and positive counter clockwise rotations around the x- and 

y- axes, xi  and 
yi , define the transverse displacement w  and two bending rotations 

x  and 
y  

by  

4 4 4

1 1 1

( , ) i i i xi i yi

i i i

w x y w N w L M 
  

       (2a) 

4

1

( , )x x i xi

i

x y N  


   (2b) 

4

1

( , )y y i yi

i

x y N  


   (2c) 

where iN  is bilinear isoparametric shape functions, iL  and iM  are the anisoparametric shape 

functions. These shape functions are analogous to four-node flat shell element described by Cook 

(1994) and MIN4 (Mindlin-type, four-nodes) element provided by Tessler and Hughes (1983). 

The three components of the displacement vector of any material point within the element can be 

described as: 

( , , )x x yu x y z u u z    (3a) 

( , , )y y xu x y z u v z    (3b) 

( , , )z zu x y z u w   (3c) 

where xu  and 
yu  are the in-plane displacements and zu  is the transverse displacement 

(deflection) across the uniform shell thickness.  

For brevity, linear strain-displacement relations of linear elasticity are expressed in terms of 

nodal displacement vector, eu , as  

( ) ( )e e m e k e

b z z  İ = e u k u B u B u  (4a) 

( )e s e

s İ = g u B u  (4b) 

with 

T

b xx yy xy     İ  (4c) 

T

s xz yz    İ  (4d) 
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and 

1 2 3 4

T
e e e e e   u u u u u  (4e) 

with ( 1,2,3,4)
T

e

i i i i xi yi ziu v w i     u  (4f) 

where the matrices mB , kB , and sB  contain derivatives of the shape functions. The explicit 

forms of the shape functions iN , 
iL , and 

iM , and mB , kB , and sB  matrices are given in 

Appendix B.  

The membrane strains ( )ee u  are associated with the stretching of the middle surface. 

Therefore, mB  matrix contains the derivatives of the shape functions associated with the 

membrane behaviour. Furthermore, ( )ek u  and ( )eg u  are the bending curvatures and the 

transverse shear strains, respectively. Hence, kB  and sB  matrices contain the corresponding 

derivatives of shape functions used to define bending behaviour of the element. Note that the 

plane-stress assumption 0zz   within the theory implies that the transverse-normal strain zz  

does not contribute to the strain energy. 

2.2. Input data from in-situ strain sensors 

Discrete in-situ strain measurements obtained from on-board sensors are crucial for the iFEM 

methodology. Conventional strain rosettes or embedded fibre-optic sensor networks such as 

Fibre Bragg Grating (FBG) sensors and Sensing Fibre Optic Cables can be used to collect large 

amount of on-board strain data. With today’s technology, most of the strain sensors potentially 

offer a number of advantages for installation as they are lightweight, high speed, and not affected 

by electromagnetic interference and do not require re-calibration once installed. In order to 

calculate membrane and bending section strains experimentally, the in-situ strain rosettes should 

be located on top and bottom surfaces of the iQS4 element as shown in Fig. 2. 

The experimentally measured (in-situ) membrane section strains i

e  and curvatures i

k  that 

correspond to their analytic counterparts, ( )e ue  and ( )k ue  given by Eq. (4), can be determined 

from the measured surface strains at n  discrete locations ( , , )i i ix y h x  ( 1,..., )i n  located 
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within the element. These in-situ section strains are computed as follows (Tessler and Spangler, 

2005) 

 1

2
i i i

   e İ İ  (5a) 

 1

2
i i i

h

   k İ İ  (5b) 

where 

T

i xx yy xy i
        İ  (5c) 

and 

T

i xx yy xy i
        İ  (5d) 

are the measured surface strains, with the superscripts ‘+’ and ‘–’ denoting the quantities that 

correspond to the top and bottom surface locations, respectively. 

Although the experimentally measured surface strains can be used to compute the in-situ 

membrane strains 
i

e  and bending curvatures 
i

k , they cannot be directly used to calculate the in-

situ transverse shear strains 
i

g . A smoothing procedure, called the Smoothing Element Analysis 

(Tessler et al. 1998, 1999), enables the first-order derivatives of 
i

k  to be accurately computed 

and subsequently used to obtain the transverse shear strains 
i

g . It is noted, however, that in the 

deformation of thin shells, the contributions of 
i

g  are much smaller compared to the bending 

curvatures 
i

k . Since most of the marine structures are generally suitable to be modelled by using 

thin shells, the 
i

g  contributions can be safely omitted in the iFEM formulation. 

2.3. Weighted least-squares functional of inverse finite element method 

The inverse finite element method (iFEM) reconstructs the deformed shape of a discretized 

structure by minimizing a weighted least-squares functional with respect to the nodal DOF of the 

entire discretization. For an individual inverse element, this functional, ( )e

e u , accounts for the 

membrane, bending and transverse shear deformations and is expressed according to Tessler et 

al. (2011) by   
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2 2 2

( ) ( ) ( ) ( )e e e e

e e k gw w w        u e u e k u k g u g  (6a) 

The squared norms expressed in Eq. (6a) can be written in the form of the normalized Euclidean 

norms  

 22

1

1
( ) ( )

e

n
e e

i i

iA

dxdy
n

 



  e u e e u e  (6b) 

   
2

22

1

2
( ) ( )

e

n
e e

i i

iA

h
dxdy

n

 



  k u k k u k  (6c) 

 22

1

1
( ) ( )

e

n
e e

i i

iA

dxdy
n

 



  g u g g u g  (6d) 

where eA  represents the mid-plane area of the element. The weighting constants ew , kw , and 
gw  

in Eq. (6a) are positive valued and are associated with the individual section strains. They control 

the complete coherence between the analytic section strains and their experimentally measured 

values. Their proper usage is especially critical for the problems involving relatively few 

locations of strain gages. When every analytic section strain has a corresponding measured in-

situ value (
i

e , 
i

k , and 
i

g ), the weighting constants are set as 1e k gw w w    in Eqs. (6b-6d). 

In the case of a missing in-situ strain component, the corresponding weighting constant is set 

to be small, e.g., 510  , and Eqs. (6b-d) take on the reduced form 

2
2( ) ( )

e

e e

A

dxdy e u e u  with ( )ew   (7a) 

 2 2 2( ) 2 ( )
e

e e

A

h dxdy k u k u  with ( )kw   (7b) 

2
2( ) ( )

e

e e

A

dxdy g u g u  with ( )gw   (7c) 

where implementation of Eqs. (7) is performed on the component-by-component basis.  

Furthermore, iFEM also permits the use of ‘strain-less’ inverse elements – the type of 

elements that do not have any in-situ section-strain measurements. For these ‘strain-less’ 

elements, all squared norms in Eqs. (7) are multiplied by the small weighting constants 

510e k gw w w      . Therefore, an iFEM discretization can have very sparse measured strain 
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data, and yet the necessary interpolation connectivity can still be maintained between the 

elements that have strain-sensor data.  

By virtue of these assumptions, all strain compatibility relations are explicitly satisfied so that 

Eq. (6a) can be minimized with respect to the nodal displacement DOF, giving rise to  

( )
0

e
e e ee

e


  


u

k u f
u

 (8a) 

or simply 

e e ek u f  (8b) 

where ek  is the element left-hand-side matrix, ef  is the element right-hand-side vector that is a 

function of the measured strain values, and eu  is the nodal displacement vector of the element.  

The element ek  matrix can be explicitly written in terms of the mB , kB , and Bs  matrices and 

their corresponding weighting constants ew , kw , and 
gw , and is given by  

        2
2

e

T T T
e m m k k s s

e k g

A

w w h w dxdy  k B B B B B B  (8c) 

The ef  vector is a function of the number of strain sensors within the element as well as the 

measured section-strain values, and is given by 

        2

1

1
2

e

n
T T T

e m k s

e i k i g i

iA

w w h w dxdy
n

  



  f B e B k B g  (8d) 

Once the element (local) matrix equations are established, the element contributions to the 

global linear equation system of the discretized structure can be performed as 

KU F  (9a) 

with 

 
1

nel
T

e e e

e

K T k T  (9b) 

 
1

nel
T

e e

e

F T f  (9c) 
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 
1

nel
T

e e

e

U T u  (9d) 

where Te  is the transformation matrix of the nodal DOF of an element from the local to the 

global coordinate system (explicitly given in Appendix A), K  is the global left-hand-side matrix 

(symmetric matrix and independent of the measured strain values), U  is the global nodal 

displacement vector, F  is the global right-hand-side vector (function of the measured strain 

values), and the parameter nel  stands for the total number of inverse finite elements. 

The global left-hand-side matrix K  includes the rigid body motion mode of the discretized 

structure. Therefore, it is a singular matrix. By prescribing problem-specific displacement 

boundary conditions, the resulting system of equations can be reduced from Eq. (9a) as 

R R RK U F  (10) 

where RK  is a positive definite matrix (always non-singular), and thus it is invertible. The 

solution of Eq. (10) is very fast because the matrix RK  remains unchanged for a given 

distribution of strain sensors and its inverse should be calculated only once during the length of 

the real time monitoring process. However, the right-hand-side vector FR  is dependent on the 

discrete surface strain data obtained from in-situ strain sensors. Hence, it needs to be updated 

during any deformation cycle. The matrix–vector multiplication 1K FR R

  gives rise to the 

unknown DOF vector UR , which provides the deformed structural shape at any real-time. 

Finally, the global displacement response can be assessed by computing the total displacement as  

2 2 2

TU U V W    (11)  

where U , V , and W  are the translations (displacements) along the global X-, Y-, and Z-axes, 

respectively.  

By using the evaluated displacement values, the continuous strain field throughout the 

structure can be obtained. Furthermore, the constitutive relationship between stress and strain 

will allow determination of stress distribution. For instance, the constitutive relationship for 

isotropic materials can be defined based on the plane-stress assumption  0zz   as  

m e k e

b b b b bz  ı D İ D B u D B u
 (12a) 
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s e

s s s s ı D İ D B u
 (12b) 

where  

T

b xx yy xy     ı
 (12c) 

T

s xz yz    ı
 (12d) 

and  

 
2

1 0

1 0
1

0 0 1 2

b

E







 
      

D  (12e) 

 
1 0

0 12 1
s

E


 

    
D

 (12f) 

are the reduced form of general isotropic stiffness matrix, with E  and   denoting elastic 

modulus and Poisson’s ratio of the isotropic material, respectively. Once the stress components 

at any point inside the iQS4 element domain are calculated using Eqs. (12), transformation of the 

stress components from the local to the global coordinate system can be performed as 

 T eı T ı T
 (13a) 

where 

0

xx xy xz

e

xy yy yz

xz yz

  
  
 

 
   
  

ı

 (13b) 

XX XY XZ

XY YY YZ

XZ YZ ZZ

  
  
  

 
   
  

ı

 (13c) 

and T  is the stress transformation matrix of an element from the local to the global coordinate 

system which is explicitly given in Appendix A. Finally, a suitable failure criterion can be used 

for damage detection as part of the SHM process. For instance, three-dimensional global stress 

components can be converted to an equivalent stress using the von Mises failure criterion as 
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       2 2 2 2 2 21
6

2
VM XX YY XX ZZ YY ZZ XY XZ YZ                 

 (14) 

3. iFEM analysis of a Panamax containership 

3.1. Panamax containership model 

The body plan of S175 containership, given by Wu and Hermundstad (2002), is used as a 

‘parent ship hull form’ in order to design a Panamax containership. Firstly, the hull form of the 

Panamax containership is obtained performing several hull form transformations of the S175 

containership. These transformations are (1) linearly scaling based upon the characteristic 

breadth, and (2) linearly lengthening the parallel mid-body. Once the design of the hull form is 

completed, a typical mid-ship section is also designed for the Panamax containership. Isometric 

view of the hull surface below the draft waterline and mid-ship section drawings are depicted in 

Figs. 3 and 4, respectively. 

For clarity, only one global Cartesian coordinate system ( , , )X Y Z  serves as containership 

frame of reference, with its origin (0,0,0)  located at the still waterline and aligned vertically 

with the ship’s centre of gravity. The X-, Y-, and Z-axes of the coordinate system point out the 

bow, portside, and opposite direction of gravity, respectively. According to the global coordinate 

system, when the containership is loaded at its design draft, the containership has the general 

particulars as listed in Table 1.  

Parallel mid-body of the containership is composed of three full and two half cargo holds and 

is defined over the domain m[ 51.6 , 51.6 ]mX   . Each ends of the cargo hold are separated 

with watertight bulkheads and each cargo hold is equally subdivided into two cargo 

compartments with a non-watertight bulkhead. Each cargo compartment has longitudinal space 

of 12.48 m because they are designed for stowing 2x20 foot long containers. During the design 

of the containership, longitudinal frame spacing methodology is adopted and each cargo 

compartment is supported with three transverse frames. Moreover, both watertight and non-

watertight transverse bulkheads have length of 1.56 m and each bulkhead is supported with a 

transverse frame at both ends. For simplicity, all the structural components including plates, 

stiffeners, and transverse frames have been designed to have the uniform thickness of 30 mm and 

they are made of steel having elastic modulus of E=210 GPa and Poisson’s ratio of Ȟ=0.3. In 
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order to represent the complexity of the structure more clearly, an isometric view of the parallel 

mid-body is illustrated in Fig. 5.  

3.2. Hydrodynamic-FEM analysis of the containership 

In this study, the above stated parallel mid-body is analysed using the iFEM/iQS4 

methodology to monitor the multi-axial deformations and stresses of the Panamax containership. 

For each iFEM case study, optimum strain-sensor locations are determined utilizing ‘the smart 

system/methodology’ proposed by Kefal et. al. (2015). Firstly, hydrodynamic loads acting on the 

containership is calculated performing a hydrodynamic analysis. Secondly, an accurate reference 

solution is established performing a direct FEM analysis. Then, the FEM deflections and 

rotations are used to compute the simulated sensor strains. Finally, the iFEM analysis of the 

parallel mid-body is performed using the simulated sensor strains. In-house hydrodynamic and 

FEM codes developed by Kefal and Oterkus (2014) are used for the hydrodynamic-FEM 

analysis.  

The total weight of the containership is distributed along the length between perpendiculars as 

depicted in Fig. 6. At this loading condition, the containership is assumed to float with zero 

forward speed in beam sea waves. Using a full hydrodynamic model consisted of 4,912 flat 

quadrilateral panels, the hydrodynamic analysis is performed. As a result, six DOF motions and 

hydrodynamic pressures of the containership are obtained for unit wave amplitude and wave 

frequencies ranging from 0.05 rad/s to 1.2 rad/s. The nonzero rigid body motion amplitudes, 

namely sway, heave, and roll motions, are presented in Figs. 7 and 8, respectively. 

At any section along the length, hydrodynamic section forces can be calculated using the six 

DOF motions, the hydrodynamic pressures, and the total weight distribution. For open-decked 

ships such as containerships, beam sea wave loads have a great impact on the strength of the 

structure due to torsional and warping stresses induced by torsional moments. As can be seen 

from Fig. 8, the roll motion amplitude significantly increases between wave frequencies of 0.2 

rad/s and 0.4 rad/s. This result clearly demonstrates the wave frequency interval where the 

torsional wave moments become the most critical loading component. Therefore, vertical and 

horizontal wave bending moments, My and Mz, and torsional wave moments, Mx, at section 
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X=0 m are compared between the wave frequencies ranging from 0.2 rad/s to 0.4 rad/s as 

depicted in Fig. 9. 

As can be seen from Fig. 9, 0.31 rad/s is the most critical wave frequency for performing the 

structural analysis, so that vertical and horizontal wave bending moments, My=20686 kNm/m 

and Mz=23261 kNm/m, respectively, and torsional wave moment, Mx=18446 kNm/m, at 0.31 

rad/s, are chosen as load input for the following direct FEM analysis. For clarity, total 

hydrodynamic pressures P due to the oscillation at wave frequency of 0.31 rad/s are plotted over 

the underwater panels of the containership as depicted in Fig. 10. 

Structural analysis of the parallel mid-body is performed for three different loading cases. 

They are (1) pure vertical bending case, (2) pure horizontal bending case and (3) pure torsion 

case. For each loading case, the suitable moment obtained from hydrodynamic analysis is 

uniformly applied along the length of the parallel mid-body. The resultant deformations due to 

these three loading scenarios may be symmetric/antisymmetric with respect to XZ- and/or YZ-

planes. Moreover, geometry of the parallel mid-body is symmetric with respect to both XZ- and 

YZ-planes. Therefore, only one-fourth of the mid-body is modelled instead of modelling the 

entire mid-body. The translations along the normal axis and the rotations around the in-plane 

axes are constrained for symmetry boundary condition, while the rotation around the normal axis 

and the translations along the in-plane axes are constrained for anti-symmetry boundary 

condition. For each loading case, the boundary conditions (BC) imposed to XZ- and YZ-planes 

are listed in Table 2. Once the boundary conditions are applied to the FEM model, an accurate 

reference solution is established performing a convergence study. The most refined mesh 

consists of 246,484 shell elements, possessing 1,428,738 DOF. After the execution of direct 

FEM analysis for each loading case, experimentally measured strains, 
i

İ  and 
i

İ , are simulated 

by strains obtained from the FEM analyses. 

3.3. iFEM case studies of the containership  

Three different iFEM analyses of the parallel mid-body are performed utilizing the simulated 

sensor strains obtained for pure vertical bending case, pure horizontal bending case, and pure 

torsion case, respectively. A different strain-rosette network is used for each iFEM analysis of 

the mid-body. The resulting deformations of the mid-body exhibit both stretching and bending 
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response due to the complexity of the structural topology. Hence, the strain-rosettes have to be 

placed on both the top and bottom surfaces of the plates. To take the advantage of the symmetry 

and remain consistent with the above stated boundary conditions, only one-fourth of parallel 

mid-body is discretised using iQS4 elements in the following iFEM analyses. Moreover, the hull 

structure is made up with thin shells so the weighting constants for transverse shear strains are 

set as 510gw   in the following iFEM analyses.  

In the first case study, i.e. pure vertical bending case, the iQS4 model of the parallel mid-body 

has 15,318 elements with top- and bottom-surface strain rosettes located within 327 select 

elements as shown in Figs. 11 and 12. For an iQS4 element which has no in-situ strain 

components, the corresponding weighting coefficients are set to 10
-5

. 

In Fig. 13, the contour plot for the TU  displacement is depicted for the first iFEM analysis. 

Although only one-fourth of the mid-body is analysed using the iQS4 mesh presented in Figs. 11 

and 12, the results are illustrated using an iQS4 mesh corresponds to the entire parallel mid-body 

for a better visualization of the deformed shape. Remarkably, the deformed shape of the mid-

body confirms the pure vertical bending of the structure (Fig. 13). To investigate the accuracy of 

iFEM predictions for the TU  displacement, the percent difference (PD) between iFEM and direct 

FEM results for TU  displacement can be computed for each node i  as 

  , ,

,max

100%

iFEM FEM

T i T i

T FEM

T

U U
PD U

U


   (15) 

where 
,

iFEM

T iU  is iFEM prediction for the TU  displacement at node i , 
,

FEM

T iU  is direct FEM 

prediction for the TU  displacement at node i , and 
,max

FEM

TU  is direct FEM prediction of the 

maximum TU  displacement. In Fig. 14, contour plot of  TPD U  is shown for the first iFEM 

analysis. As can be seen from Fig. 14, the maximum  TPD U  is equal to 7.248% and the 

maximum  TPD U  is located at the node where the maximum TU  displacement is occurred 

(Fig. 13). Therefore, this result clearly demonstrates the superior accuracy of the iFEM solutions 

for displacement monitoring. 
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Once the structural deformed shape is obtained, the von Mises stresses, VM , on the top 

surfaces of the shells are calculated. In Fig. 15, the contour plot for the VM  stress is presented 

for the first iFEM analysis. Moreover, the accuracy of iFEM predictions for the VM  stress is 

examined by calculating the percent difference between iFEM and direct FEM predictions for 

VM  stress at each node i  as 

  , ,

,max

100%

iFEM FEM

VM i VM i

VM FEM

VM

PD
 





   (16) 

where 
,

iFEM

VM i  is iFEM prediction for the VM  stress at node i , 
,

FEM

VM i  is direct FEM prediction for 

the VM  stress at node i , and 
,max

FEM

VM  is direct FEM prediction of the maximum VM  stress. In 

Fig. 16, contour plot of  VMPD   is shown for the first iFEM analysis. The maximum 

 VMPD   is equal to 12.569% and its location is identical to the location of the node where the 

maximum VM  stress is occurred (Figs. 15 and 16). Therefore, this result confirms superior 

precision of the iFEM solutions for stress monitoring. These results also confirm the strain-

sensor locations depicted in Figs. 11 and 12 are the optimum locations for performing an 

accurate shape- and stress-sensing of the Panamax containership subjected to vertical wave 

bending moment. 

In the second case study, i.e. pure horizontal bending case, the iQS4 model of the parallel 

mid-body has 15,318 elements with top- and bottom-surface strain rosettes located within 413 

select elements as shown in Figs. 17 and 18. For an iQS4 element which has no in-situ strain 

components, the corresponding weighting coefficients are set to 10
-5

. 

In Fig. 19, the contour plot for the TU  displacement is demonstrated for the second iFEM 

analysis. Similar to the first iFEM case study, a better visualization of the deformed shape is 

achieved using an iQS4 mesh corresponds to the entire parallel mid-body. As can be seen from 

the Fig. 19, the deformed shape of the mid-body is identical to the pure horizontal bending of the 

structure. To demonstrate the accuracy of iFEM predictions for the TU  displacement, contour 

plot of  TPD U  for the second iFEM analysis is shown in Fig. 20. According to Figs. 19 and 

20,  TPD U  is approximately equal to 5.5% at the location where the maximum TU  
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displacement is occurred. Hence, this result clearly demonstrates remarkable precision of the 

iFEM solutions for shape-sensing. 

In Fig. 21, the contour plot for the VM  stress calculated at the top surfaces of the shells is 

presented for the second iFEM case study. Also, the accuracy of iFEM predictions for the VM  

stress is examined by presenting contour plot of  VMPD   as shown in Fig. 22. As can be seen 

from the Figs. 21 and 22,  VMPD   is around 8% at the location where the maximum VM  

stress is occurred. Consequently, this result confirms high precision of the iFEM solutions for 

stress-sensing. Furthermore, these results verify that the strain-sensor locations presented in Figs. 

17 and 18 are the optimum locations for performing a precise displacement and stress monitoring 

of the Panamax containership exposed to horizontal wave bending moment. 

In the third case study, i.e. pure torsion case, the iQS4 model of the parallel mid-body has 

15,318 elements with top- and bottom-surface strain rosettes located within 442 select elements 

as shown in Figs. 23 and 24. For an iQS4 element which has no in-situ strain components, the 

corresponding weighting coefficients are set to 10
-5

. 

In Fig. 25, the contour plot for the TU  displacement is demonstrated for the third iFEM 

analysis. An iQS4 mesh that represents the entire parallel mid-body is utilized for a better 

visualization of the deformed shape. As can be seen from Fig. 25, the deformed shape of the 

mid-body exhibits the pure torsion of the structure. According to Figs. 13, 19, and 25, the 

maximum TU  displacement induced due by torsional moment is much larger than the maximum 

TU  displacement caused due to vertical and horizontal bending moments. This result proofs the 

significance of hull girder torsion loading on containerships floating in beam sea waves. In Fig. 

26, contour plot of  TPD U  is depicted in order to investigate the accuracy of iFEM predictions 

for the TU  displacement found in the third iFEM case study. As can be seen from Figs. 25 and 

26,  TPD U  is approximately equal to 7.1% at the location where the maximum TU  

displacement is occurred. Hence, this result clearly indicates the significant precision of the 

iFEM solutions for displacement monitoring. 
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In Fig. 27, the contour plot for the VM  stress calculated at the top surfaces of the shells is 

presented for the third iFEM case study. Additionally, in order to examine VM  stress found in 

the third iFEM case study, contour plot of  VMPD   is shown in Fig. 28. According to Figs. 27 

and 28,  VMPD   is approximately 10.7% at the location where the maximum VM  stress is 

occurred. Hence, this result proofs superior precision of the iFEM solutions for stress 

monitoring. These results also validate that the strain-sensor locations demonstrated in Figs. 23 

and 24 are the optimum locations for performing a precise shape- and stress-sensing of the 

Panamax containership subjected to torsional wave moment. According to the results found in 

the three different iFEM case studies, it can be concluded that iFEM is a superior, powerful, and 

innovative technology for the structural health monitoring of marine structures. 

4. Concluding remarks 

Displacement and stress monitoring of a Panamax containership is accomplished based on 

iFEM methodology. The iFEM algorithm reconstructs the full-field displacements, strains, and 

stresses of a structure from discrete in-situ strain measurements. The iFEM formulation is based 

on a least-squares variational principle originally developed by Tessler and Spangler (2005). 

Herein, a recently developed four-node quadrilateral inverse-shell element (iQS4) is utilized for 

performing the shape- and stress-sensing of the containership. The parallel mid-body of the 

containership is modelled using iQS4 elements as a representative of the global structural model. 

Firstly, the hydrodynamic analysis of the Panamax containership is performed for the beam sea 

waves. Secondly, the direct FEM analysis of the mid-body is performed using the hydrodynamic 

wave bending and torsion moments as input. Then, the FEM deflections and rotations are used to 

compute the simulated sensor strains. Thirdly, three different iFEM analyses of the parallel mid-

body are performed utilizing the simulated sensor strains obtained for three different cases. 

These are (1) pure vertical bending case, (2) pure horizontal bending case and (3) pure torsion 

case. Based on the same iQS4 mesh, a different network of strain-sensors is proposed for each 

iFEM analysis. Then, the deformed shape and von Mises stresses of the containership are 

reconstructed using in-situ strain data obtained from each proposed network of strain-sensors. 

According to the accuracy of the displacement and stress results, the optimum strain-sensor 

locations are identified and clearly demonstrated for each iFEM case study. Hence, the numerical 
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results confirmed the robustness of the iFEM methodology for monitoring multi-axial 

deformations and stresses of a Panamax containership floating in beam sea waves. 
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Appendix A 

The global coordinates of the iQS4 element nodes are given as 

  ( 1,2,3,4)
T

i i i iX Y Z i X
 (A.1) 

Each edge length, 
id , and global coordinates of each edge mid-point, ic , can be calculated as 

( 1,2,3,4; 2,3,4,1)

2

i j i

j i

i

d

i j

 
  

 


X X

X X
c

 (A.2) 

Using Eq. (A2), global coordinates of mid-plane quadrilateral centroid can be defined as 

4

1

4

1

k k

k

k

k

d

d










c

C

 (A.3) 

Unit normal vector to the mid-plane quadrilateral, n , and unit vectors along local y- and x- axis, 

p and l , can respectively be computed as: 





A B

n
A B

 (A.4a) 





A B

p
A B

 (A.4b) 

 l p n  (A.4c) 

where 

3 1 A X X
 (A.4d) 

4 2 B X X
 (A.4e) 

are diagonal vectors, with A pointing out from node-1 to node-3, whereas B pointing out from 

node-2 to node-4. Using Eq. (A1), Eq. (A3), and Eqs. (A4b-c), local coordinates of the iQS4 

element nodes can be determined as 
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 
 

 1,2,3,4
i i

i i

x
i

y

   
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X C l

X C p
 (A.5) 

With the unit vectors n , p , and l , given in Eqs.(4a-c), the transformation matrix of the nodal 

DOF of an element from the local to the global coordinate system can be defined as 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

e

 
 
 
 
 
   
 
 
 
 
  

T

T

T

T
T

T

T

T

T
 (A.6a) 

where 

T
T T T   T l p n

 (A.6b) 

is the stress transformation matrix from the local to the global coordinate system. 
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Appendix B 

The shape functions iN , 
iL , and 

iM , which are used to describe both membrane and bending 

capability of the iQS4 element as given in Eqs. (1a-b) and Eqs. (2a-c), are respectively defined as 

1

(1 )(1 )

4

s t
N

 
  (B.1) 

2

(1 )(1 )

4

s t
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  (B.2) 
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(1 )(1 )

4

s t
N

 
  (B.3) 
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s t
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  (B.4) 

2

5
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s t
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 
  (B.5) 
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s t
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 
  (B.6) 
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(1 )(1 )

16

s t
N

 
  (B.7) 

2

8

(1 )(1 )

16

s t
N

 
  (B.8) 

and  

1 14 8 21 5L y N y N   (B.9) 

2 21 5 32 6L y N y N   (B.10) 

3 32 6 43 7L y N y N   (B.11) 

4 43 7 14 8L y N y N   (B.12) 

1 41 8 12 5M x N x N   (B.13) 

2 12 5 23 6M x N x N   (B.14) 

3 23 6 34 7M x N x N   (B.15) 

4 34 7 41 8M x N x N   (B.16) 

Note that 
ijx and 

ijy can be expressed in terms of local coordinates of iQS4 element as 
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( 1,2,3,4; 1,2,3,4)
ij i j

ij i j

x x x
i j

y y y

      
 (B.17) 

and the parent space coordinates are defined as  , 1, 1s t   . 

The derivatives of shape functions mB , kB , sB  which are given in Eqs. (4a-b) are defined as 

1 2 3 4

m m m m m   B B B B B  (B.18) 

1 2 3 4

k k k k k   B B B B B  (B.19) 

1 2 3 4

s s s s s   B B B B B  (B.20) 
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Fig. 1. (a) Four-node quadrilateral inverse shell element, iQS4, depicted within global (X, Y, Z) 

and local (x, y, z) frames of reference; (b) Nodal degrees-of-freedom corresponding to local 

(element) coordinates (x, y, z). 

 

 
Fig. 2. Discrete surface strains measured by strain rosettes within iQS4 element at 

 , ,i i ix y h x  locations. 
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Fig. 3. Isometric view of the hull surface below draft waterline. 

 

 
Fig. 4. Mid-ship section of the Panamax containership. 
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Fig. 5. Parallel mid-body of the Panamax containership. 

 

 

Fig. 6. Total weight distribution of the containership. 
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Fig. 7. Sway and heave motion amplitudes. 

 

 

Fig. 8. Roll motion amplitudes. 
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Fig. 9. Wave vertical and horizontal bending and torsional moments. 

 

Fig. 10. Contour plot of total hydrodynamic pressure P  at wave frequency of 0.31 rad/s. 
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Fig. 11. Discretization of one-fourth of parallel mid-body using 15,318 iQS4 elements with top- 

and bottom-surface strain rosettes located within 327 selected elements: Isometric view I. 

 

 
Fig. 12. Discretization of one-fourth of parallel mid-body using 15,318 iQS4 elements with top- 

and bottom-surface strain rosettes located within 327 selected elements: Isometric view II. 
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Fig. 13. Contour plot of TU  displacement for parallel mid-body modelled in Figs. 11 and 12. 

 

Fig. 14. Contour plot of  TPD U  percent difference for parallel mid-body modelled in  

Figs. 11 and 12. 
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Fig. 15. Contour plot of VM  stress for parallel mid-body modelled in Figs. 11 and 12. 

 

 

Fig. 16. Contour plot of  VMPD   percent difference for parallel mid-body modelled in Figs. 

11 and 12. 
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Fig. 17. Discretization of one-fourth of parallel mid-body using 15,318 iQS4 elements with top- 

and bottom-surface strain rosettes located within 413 selected elements: Isometric view I. 

 

 
Fig. 18. Discretization of one-fourth of parallel mid-body using 15,318 iQS4 elements with top- 

and bottom-surface strain rosettes located within 413 selected elements: Isometric view II. 
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Fig. 19. Contour plot of TU  displacement for parallel mid-body modelled in Figs. 17 and 18. 

 

 

Fig. 20. Contour plot of  TPD U  percent difference for parallel mid-body modelled in  

Figs. 17 and 18. 
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Fig. 21. Contour plot of VM  stress for parallel mid-body modelled in Figs. 17 and 18. 

 

 

Fig. 22. Contour plot of  VMPD   percent difference for parallel mid-body modelled in Figs. 

17 and 18. 
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Fig. 23. Discretization of one-fourth of parallel mid-body using 15,318 iQS4 elements with top- 

and bottom-surface strain rosettes located within 442 selected elements: Isometric view I. 

 

 
Fig. 24. Discretization of one-fourth of parallel mid-body using 15,318 iQS4 elements with top- 

and bottom-surface strain rosettes located within 442 selected elements: Isometric view II. 
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Fig. 25. Contour plot of TU  displacement for parallel mid-body modelled in Figs. 23 and 24. 

 

 

Fig. 26. Contour plot of  TPD U  percent difference for parallel mid-body modelled in  

Figs. 23 and 24. 
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Fig. 27. Contour plot of VM  stress for parallel mid-body modelled in Figs. 23 and 24. 

 

 

Fig. 28. Contour plot of  VMPD   percent difference for parallel mid-body modelled in Figs. 

23 and 24. 
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Table 1. General particulars of Panamax containership. 

General particular Value Unit 

Length between perpendiculars 291 m 

Breadth (moulded) 32.3 m 

Depth (moulded) 19.9 m 

Design draft (moulded) 12.1 m 

Block coefficient 0.73 m
3
/m

3
 

Displacement (at design draft) 85190.5 tonnes 

Vertical centre of gravity (from baseline) 12.1 m 

Vertical centre of buoyancy (from baseline) 6.4 m 

Longitudinal centre of gravity (from aft perpendicular) 141.2 m 

Longitudinal centre of buoyancy (from aft perpendicular) 141.2 m 

Radius of gyration around X-axis 10.834 m 

Radius of gyration around Y-axis 74.105 m 

Radius of gyration around Z-axis 74.105 m 

Radius of gyration for roll-yaw product of inertia 0 m 

 

Table 2. Constraint boundary conditions. 

Loading case XZ-plane YZ-plane 

Pure vertical bending case Symmetry BC Symmetry BC 

Pure horizontal bending case Anti-symmetry BC Symmetry BC 

Pure torsion case Anti-symmetry BC Anti-symmetry BC 

 

 

 

 


