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Abstract

This paper presents a numerical study involving the deformation of contact faces in the metal-to-metal seal in a typical pressure

relief valve. The valve geometry is simplified to an axisymmetric problem, which comprises a simple geometry consisting of only

3 components. A cylindrical nozzle, which has a valve seat on top, contacts with a disk, which is preloaded by a compressed

linear spring. All the components are made of AISI type 316N(L) steel defined using the multilinear kinematic hardening model

based on monotonic and cyclic tests at 20◦C. In-service observations show that there is a limited fluid leakage through the valve

seat at operational pressures about 90% of the set pressure, which is caused by the fluid penetrating into surface asperities at the

microscale. Nonlinear FEA in ANSYS using the fluid pressure penetration (FPP) technique revealed that there is a limited amount

of fluid penetrating into gap, which is caused by the plastic deformation of the valve seat at the macroscale. Prediction of the

fluid pressure distribution over the valve seat just before the valve lift is addressed in this study considering the FPP interaction on

multiscale. This is the principal scope, since it allows adjustment of the valve spring force in order to improve the leak tightness.

Keywords: Contact, Finite element analysis, Metal-to-metal seal, Plasticity, Safety valve, Type 316 steel

1. Introduction

1.1. Problem statement

Leak tightness is one of the most important requirements to

ensure correct operation of the valve components and specifi-

cally static seals. This paper presents an extended description5

of the investigation by Gorash et al. (2015) into static sealing

and how advanced computational techniques might be used to

understand and improve the design of static seals. In this paper

only structural behaviour issues associated with conventional

spring loaded safety valves have been investigated when metal-10

to-metal sealing is required.

Static sealing is a fluid structure coupled problem where the

degree of leak tightness is dictated by the local and global de-

formation of the contact surfaces. The leakage paths result from

gaps at the contact faces and are at a geometrical scale of the15

surface asperities which are at the micron scale. The contact

face global geometry is at a macro scale where its resulting de-

formation is due to the global force loading which in the case

of a safety valve is determined by the spring forces and the op-

erating pressures. This coupling between fluid and structure at20

geometric scales that range from the micro to the macro im-

poses considerable challenges to the analysis of the problem.

Below the detailed results of the study by Gorash et al. (2015)

are presented focusing on the development of computational

analysis methods for the design of static metal-to-metal seals25

that address different scales. The investigation is limited to
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global deformation at a macroscale with some initial simplified

coupling from the micro- to macroscale via pressure penetra-

tion and an imposed pressure variation across the sealing face.

1.2. Background30

The safe relief of pressure is of utmost importance in in-

dustry to protect equipment from being subjected to pressures

above their maximum ratings. Over-pressure can have poten-

tially fatal consequences for the surrounding staff, cause dam-

age to the plant equipment involved and have possibly damag-35

ing environmental repercussions. Pressure relief valves (PRVs),

as discussed by Malek (2006), are commonly used as a safety

device in industrial processes to provide a self-regulating pres-

sure release. The PRV is a type of valve used to control or

limit the pressure in a system or vessel, which can build up by40

a process upset, instrument or equipment failure, or fire. The

pressure is relieved by allowing the pressurised fluid to flow

through the valve orifice out of the system. The operation, typ-

ical structure and different types of the PRV are addressed in

detail by Malek (2006) and Hellemans (2009).45

Song et al. (2013) observed that in actual usage PRVs can

sometimes start to release fluid prior to their set pressures Pset.

This is particularly true when Pset is defined as the opening

pressure and can result in a degradation of leak tightness for

operation pressure Pop, which is typically 90% of Pset. This50

study models the structure of the valve seat-disc interface in or-

der to look at the fluid pressure penetration effects. Advanced

FEA is used to investigate and quantify the influence of these

effects on a spring force, which is required to provide a reliable

leak tightness for pressures below Pset.55
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This study focusses on spring-operated metal-seated PRVs

since they are not limited in temperature and pressure, when

compared to the elastomer-seated PRVs, which have much more

preferable leak tightness (Hellemans, 2009). This range of valves

often operate at high temperatures (> 300◦C) which exclude the60

use of discs with soft seals, meaning that metal-to-metal con-

tacts between the seat and disc are required to form the basis

of fluid sealing. Fluid leakage is a major concern for metal-to-

metal contacts across the entire range of operation, not just as

the system pressure tends towards the set pressure Pset.65

1.3. Previous research

There is a significant body of work existing in this and re-

lated areas, ranging in scope from dynamic analyses of PRV,

operating motions, sealing efficiency to complex mathematical

modelling of realistic surface defects.70

One of the earliest collection of advanced studies address-

ing testing and analysis of PRVs performance was compiled by

Singh & Bernstein (1983). The book covers the topics of test

facilities design, safety valve experiments, analysis of PRVs

performance, and loads on discharge piping.75

A transient analysis was carried out by Song et al. (2010)

that focused on the effects of fluid flow on the valve disc. A de-

formable mesh is used to more realistically simulate the open-

ing of the valve disc with CFD. The analysis is primarily useful

to aid in understanding the behaviour of the valve, in partic-80

ular the disc, once the set pressure has been reached. Then

Song et al. (2013) produced a dynamic analysis of a PRV with

the aim of creating a model to accurately predict the closing

(blowdown) characteristics of a spring-loaded PRV.

As well as for spring-loaded PRVs, an important work has85

been done to investigate the behaviour of pilot-operated PRVs.

Dasgupta & Karmakar (2002) simulated the dynamic response

of a PRV using a bond graph method. Several key parameters

were identified, which were associated with the valve opera-

tion, and primarily related to the geometrical design of the main90

valve and the configuration of the pilot valve.

Abid & Nash (2004) carried out a parametric study on the

effects of geometry on sealing between two metal flanges using

the FEA approach. This research is related to the simulation of

PRV opening by virtue of its discussion of sealing effects be-95

tween metal faces. The authors concluded that using a positive

taper on the faces (i.e. the inner edge in contact, slight gap at

outer edge) provides the best sealing characteristics.

A 3D non-linear elasto-plastic sequential transient analy-

sis was performed by Griffin et al. (2012) for shakedown and100

fatigue assessments of fine radii within the PRV. The analy-

sis utilised temperatures and heat transfer coefficients that were

calculated from a separate 3D CFD analysis of fluid flow and

heat transfer during operation of the valve. The use of elasto-

plastic techniques combined with an innovative and fine mesh-105

ing strategy allowed through-life strain ranges at very fine in-

ternal features to be calculated.

The series of works (Marie et al., 2003; Marie & Lasseux,

2007; Vallet et al., 2008, 2009; Ledoux et al., 2011) presents

the development of experimental and theoretical approaches to110

characterise liquid leakage through the metal contact seal. An

experimental facility for measuring liquid leakage over a wide

range of tightening conditions was developed by Marie et al.

(2003). The numerically predicted “permeability” of the con-

tact was compared to experiments. Marie & Lasseux (2007) fo-115

cused on an original experimental setup and procedure designed

to measure the fluid micro (or nano) leak rate with great preci-

sion over several orders of magnitude. The issue of sealing per-

formance of metal gaskets using a deterministic approach was

addressed by Vallet et al. (2008, 2009). The analysis was fo-120

cused on rough surfaces exhibiting fractal properties with the

overall purpose to study the validity of the use of synthetic

fractal surfaces as a representation of real ones. Ledoux et al.

(2011) used complex mathematical models to generate surfaces

with realistic defects, and suggested that leakages occur through125

sealing faces due to surface defects, and that the seal perfor-

mance can be improved by surface defects shape optimisation.

Understanding, predicting and controlling the behaviour of

surfaces in contact at micro/nano-scale have been extensively

studied by Thompson et al. Thompson (2007) focused on the130

development of a multi-scale FE-model to predict thermal con-

tact resistance between real surfaces which exhibited both sur-

face form and roughness. Thompson & Thompson (2010b) pre-

sented methods for generating, using, and operating on non-

uniform irregularities for the incorporation of probabilistic rough135

surfaces in ANSYS, which resemble natural and man-made sur-

faces. Thompson & Thompson (2010a) discussed the benefits,

techniques, challenges, and considerations associated with the

incorporation of measured surfaces in FE-models. Thompson

(2011) focused on determining the modelling considerations140

and parameters necessary to accurately model real surfaces and

to validate FE-models in the absence of experimental data.

Recently, the series of works (Darby, 2013; Aldeeb et al.,

2014; Darby & Aldeeb, 2014) investigated the dynamic response

of PRVs in vapour or gas service including mathematical mod-145

elling, experimental investigation and model validation. This

study presents a model for the opening lift dynamic response of

a PRV, which accounts for the effects of unstable dynamic re-

sponse through a set of five coupled nonlinear differential equa-

tions. The set is solved numerically to predict the position of the150

valve disk as a function of time for given parameters.

Chabane et al. (2012) did experimental and theoretical stud-

ies of the force exerted by the pressure on a disk of a PRV, which

is essential for a correct design of the spring and the inner ring.

To understand the forces, a PRV was modified and the spring155

removed; a force measurement tool was mounted to measure

the forces exerted at different inlet pressures at lift. These tests

were conducted for several ring settings. Measurements were

made using incompressible fluid on a water test loop.

There has been relatively little work done into analysing160

the behaviour of the contact surfaces during the valve opening

in terms of the valve structure. However, some progress has

been achieved by Johnson (2013), who implemented a struc-

tural analysis of a spring loaded PRV through two loading phases.

The FE-analyses were carried out in ANSYS, and included ef-165

fects such as lateral internal pressure on the seat, friction in the

contacts and nonlinear geometry.
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Figure 1: Concept of macro-micro effects interaction in the contact area of metal-to-metal seal considering Fluid Pressure Penetration (FPP): a) simplified valve

structure, b) explanation of macro-micro interaction, c) fluid pressure on the macroscale, d) fluid pressure on the microscale, e) surface roughness.

2. Concept of contact behaviour

The proposed analysis concept is applied to an investigation

of contact behaviour in a typical spring-operated PRV with a170

medium size orifice “J” according to API Standard 526. An

important fact is that the disc and seat are both made of the

austenitic stainless steel AISI 316N(L). As shown in Fig. 1, an

idealised model of the PRV consists of the following three basic

components:175

• Cylindrical nozzle defined by the radius of orifice Ror and

the length of valve seat Lseat.

• Relatively rigid disc, which keeps the nozzle closed dur-

ing the normal operation of the valve.

• Linear longitudinal spring, which is initially compressed180

and prevents lifting of the disc during normal operation.

The degree of spring compression is adjusted to fit the Pset,

which usually is more than 5-10% higher than the normal Pop

as mentioned by Hellemans (2009). Therefore, the spring force

is approximately equal to the force produced by the internal185

pressure, when it reaches the value of Pset, and applied to the

disc surface corresponding to the orifice area. Since the system

pressure, which represents the macroscopic pressure Pma, is 5-

10% below the set pressure during the normal operation, the

orifice is kept tightly closed by the disc, providing a reliable190

seal through the difference of forces applied to the disc.

Described as above, this operation is true only for an ide-

alised (perfectly elastic) model of the PRV. Since the real engi-

neering material, which is used for the seat-disc pair, is quite far

from having uniform contact and perfectly elastic, the following195

contact behaviour concept has been proposed and illustrated in

Fig. 1. This concept is formulated for elasto-plastic behaviour

of material and based upon two structural behaviour assump-

tions, which are confirmed by structural analysis and practical

observations.200

Preliminary structural studies have shown that the internal

edge of the contact face of the valve seat is subjected to sig-

nificant plastic deformation on the macroscale as shown on top

of Fig. 1b, which is caused by the non-uniform contact condi-

tions over the contact face. This non-uniformity is produced205

by a particular degree of nozzle and disc global deformation.

It leads to the localised high contact pressure on the internal

edge, which undergoes some yielding under the spring preload.

It was further noted that even a small amount of plastically de-

formed material slightly distorts the valve seat and creates a gap210

between the contact surfaces.

An initial Fluid Pressure Penetration (FPP) structural study

showed that pressurised fluid penetrates into the contact gap,

as shown schematically in diagram Fig. 1c. This increases the

effective area of orifice exposed to the full system pressure and215

decreases the effective area of contact. Therefore, an actual

value of Pset may be significantly lower than the one, which has

been used for the spring force calculation. Thus, contact area

reduction is observed at the macroscale confirmed by an initial

FE-analysis. Based on diagram Fig. 1c, it would mean that the220

fluid would not penetrate any further in the anaylsis. This is not

what is practically observed.

Some limited degree of leakage is always practically ob-

served in the metal-seated valves within the whole range of

operational pressures. Since the contact is not perfectly tight,225
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Figure 2: Experimental stress-strain curves of AISI type 316N(L) steel at 20◦C after Chaboche et al. (1979) and their fittings with the R-O (1) and MLKH models

there is a FPP in the valve seat over the whole contact face.

Moreover, microscopic studies confirm that the contact surface

is not ideal as depicted in Fig. 1e, although it is lapped to a

”mirror” finish. This degree of surface roughness and presence

of non-uniform asperities at the microscale allows pressurised230

fluid to penetrate into the contact. It develops a particular pres-

sure distribution over the contact face, as shown on diagram in

Fig. 1d. This depends on the type of fluid and its compressibil-

ity and is discussed in more detail in Sec. 4.2.

Therefore, the FPP effects are observed at two different scales235

– macroscopic and microscopic (Fig. 1b microscale is based on

a pressurised gas). Since they both are assumed to exist in the

same location, there should be some kind of non-linear interac-

tion between them. Prediction of the pressure distribution over

the contact face as a result of this interaction is a way to as-240

sess an additional component of the upward force produced by

pressure in the contact area. Therefore, the spring force can be

calculated more accurately as a sum of “orifice” For and “seat”

Fseat components as shown in Fig. 1a. An advanced iterative

FEA procedure using ANSYS is implemented for the prediction245

of the pressure profile as a result of macro-micro interaction as

shown on diagram in Fig. 1b. This iterative FEA procedure is

described in detail in Sec. 4 of this paper.

3. Material characterisation and modelling

The critical components of the PRV (seat and disk) are usu-250

ally manufactured from AISI type 316N(L) steel due to ap-

propriate mechanical properties of this steel grade. Common

use is for superheater piping, pressure vessels, heat exchang-

ers and other components exposed to elevated temperatures up

to 650◦C, as indicated in previous works (Gorash et al., 2012;255

Gorash & Chen, 2013). The physical characteristics of this steel

makes it an optimal material for a valve seat with high local

contact stresses under corrosion-fatigue conditions and high-

temperature exposure. Referring to experiments (Chaboche et al.,

1979), at room and high temperatures the material behaviour260

of the steel AISI type 316N(L) is viscous and rate-dependent.

Therefore, an accurate description of the plastic deformation is

essential for the comprehensive material modelling to address

structural integrity and operational issues.

Since all the dynamic effects of valve lifting and resetting265

are neglected, a PRV operation is assumed to be quasi-static

for FE-simulation in ANSYS. Therefore, the viscoplastic ma-

terial behaviour of the steel AISI type 316N(L) is simplified to

rate-independent plasticity neglecting viscous effects. Among

the variety of plasticity models, the following formulations are270

considered for the FEA based upon the available monotonic

and cyclic experiments Chaboche et al. (1979) at 20◦C and high

4



Table 1: Material parameters of AISI type 316N(L) steel at 20◦C corresponding

to the plasticity models including R-O (1) and EPP models

Type
Ramberg-Osgood EPP

B (MPa) β σy (MPa)

Monotonic 551.18 0.1075 282.6

Cyclic 2379.07 0.3553 261.5

Averaged — — 272.04

with E = 194 (GPa) and ν = 0.27

after Karditsas & Baptiste (1995)

strain rate regime ε̇ = 10−4
− 10−3 s−1 shown in Fig. 2:

1. Elastic-perfectly-plastic (EPP) fit presented by isotropic

model with no-hardening and yield stress σ̄y in ANSYS;275

2. Smooth Ramberg-Osgood (R-O) fit presented by multi-

linear kinematic hardening (MLKH) model in ANSYS;

3. Combined hardening/softening Chaboche model.

Experimental data for AISI type 316N(L) steel at 20◦C by

Chaboche et al. (1979) is presented by two sets of data points280

shown in Fig. 2. The first set is a monotonic tensile stress-

strain curve (SSC) in coordinates [εtot;σ] shown as blue dots

in Fig. 2, while the second set is a result of many cyclic tests,

which were performed at different constant ∆εtot in coordinates

[∆εtot/2;∆σ/2] shown as red dots in Fig. 2. It should be noted285

that ∆εtot was measured when the stress response stabilised af-

ter a number of cycles. An important observation concern-

ing cyclic effects can be discerned from the comparison of the

monotonic and cyclic SSCs. AISI type 316N(L) steel demon-

strates mixed hardening-softening cyclic behaviour, which was290

comprehensively studied and modelled by Nouailhas et al. (1985).

The range of small plastic strains corresponding to∆εtot
≤ 0.9%

is characterised by isotropic softening marked by the grey area

in Fig. 2, while the range of large plastic strains corresponding

to ∆εtot > 0.9% is characterised by isotropic hardening.295

Since both experimental SSCs in Fig. 2 demonstrate some

level of scatter, the first step in data analysis for the material

model formulation is curve fitting. The conventional R-O equa-

tion by Ramberg & Osgood (1943) is optimal for such curve

fitting since it was formulated to describe the non-linear rela-300

tionship between stress and strain in materials near their yield

points. It is especially useful for metals that harden or soften

with plastic deformation, showing a smooth elastic-plastic tran-

sition, that is found in AISI type 316N(L) steel. The equations

for the monotonic and cyclic SSCs are as follows:305

εtot =
σ

E
+

(

σ

B

)1/β

and
∆εtot

2
=
∆σ

2 E
+

(

∆σ

2 B

)1/β

, (1)

where ∆εtot is the total strain range and ∆σ is the total stress

range (MPa) for each cyclic test respectively; B and β are ma-

terial constants. The elastic properties used in both R-O and

elastic-perfectly-plastic (EPP) models are the Young’s modulus310

E in MPa and the Poisson’s ratio ν.

The elastic material properties at 20◦C given in Table 1

are taken from Karditsas & Baptiste (1995). Using the defined

value of E, the total strain εtot in the experimental curves is de-

composed into elastic and plastic strain. Then the plastic com-315

ponent εp of strain is fitted using the the least squares method

by the following relations, which are derived from the Eq. (1):

σ = B
(

εp)β and
∆σ

2
= B

(

∆εp

2

)β

, (2)

where the resultant values of R-O material constants (B and β)

are reported in Table 1. The coefficients of determination are320

R2 = 0.992 for the monotonic SSC and R2 = 0.986 for the

cyclic SSC respectively. The values of R2
≃ 1 and the visual

comparison of the fitting accuracy in Fig. 2 prove the basic ap-

plicability of the R-O fits. The R-O fits for monotonic SSC

(blue line in Fig. 2) and cyclic SSC (red line in Fig. 2) are then325

used to identify the constants for all three material models in-

cluding EPP, MLKH and Chaboche, which are used for FEA.

The only necessary material constant for the EPP model to

be defined is the yield stress σy. It is estimated using Eq. 2

with plastic strain value εp = 0.002 corresponding to the con-330

ventional 0.2% offset from the elastic response on the SSCs, as

explained in Fig. 2 with dashed lines. The obtained values of

σy for monotonic and kinematic curves are given in Table 1.

Since these values are not significantly different, a simple av-

eraged value σy = 272.04 MPa is considered for FEA with the335

EPP model. The corresponding simulated SSC using averaged

σy is shown in Fig. 2 with a green line.

Referring to ANSYSr Help (2013b), three general types

of isotropic and kinematic hardening models are available in

ANSYS: bilinear, multilinear, and nonlinear. Each of the hard-340

ening models assumes a von Mises yield criterion and includes

an associated flow rule. The EPP model is a special case of the

bilinear isotropic hardening model with a user-specified initial

yield stress σy and tangent modulus Ep = 0 representing con-

stant size of the yield surface. It requires only three material345

parameters (E, ν and σy) from Table 1 to be used for FEA.

Since the EPP model is not able to reflect different hard-

ening rate in monotonic and cyclic response, the multilinear

kinematic hardening (MLKH) model is applied to describe both

types of SSCs. The backstress tensor for the MLKH model350

ANSYSr Help (2013b) evolves so that the effective stress ver-

sus effective strain curve is multilinear with each of the lin-

ear segments defined by a set of user input stress-strain points.

These points are provided in the form of 2-column table with

plastic strain vs. stress defined by Eq. (2), which specifies355

the hardening behaviour. Both monotonic and cyclic material

data tables using corresponding constants from Table 1 are con-

sidered for FEA with the MLKH model. The results of the

MLKH model verification in ANSYS with a single cyclic FE-

simulation of a uniaxial specimen at ∆εtot=6% are shown in360

Fig. 2. It confirms the absence of any cyclic effects and an ideal

match of the experiments (Chaboche et al., 1979) by the MLKH

model with two different material data tables.
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4. Advanced structural FEA of the PRV operation

4.1. FE-model of the PRV with BCs and loadings365

Since our main focus is an investigation of the structural be-

haviour only in the contact area, the available 3D CAD-model

of the PRV was drastically simplified. The FE-model intended

for an analysis is axisymmetric and consists of only 3 compo-

nents (spring, disc and nozzle) as illustrated in Fig. 3. The most370

important component – seat, top part of the nozzle, is repro-

duced in detail, while the representation of the disc and spring

is significantly simplified. The spring is compressed by appli-

cation of the particular vertical displacement ∆sp to its top end.

This displacement∆sp actuates a particular sealing force, which375

corresponds to a predefined Pset as explained in the next section.

The spring force keeps the disc in balance, when the internal

pressure P reaches the corresponding value of Pset. The inter-

nal pressure P is applied to all interior faces of the nozzle and

disc except two lines, which form the contact pair. This con-380

tact pair has an activated FPP feature, which allows the change

of the pressure conditions automatically according to the con-

tact conditions. In this case it propagates an internal pressure

P into the contact gap, when it opens due to plastic deforma-

tion of the internal edge of the contact face. This relatively385

new numerical technique available in ANSYS enables a macro-

component of the pressure penetration as introduced in Fig. 1c.

The micro-component is taken into account by the application

of a non-uniform pressure distributed over the contact face as

shown in Fig. 1d. Both application locations of micro- and390

macro-components of pressure are shown in Fig. 3 with hatched

areas. The actual form of pressure distribution depends on the

compressibility of fluid, and it is defined by the function of pres-

sure dependent on the radial coordinate as explained in the next

subsection. The contact area, where the micropressure is ap-395

plied, is variable and changes in order to avoid an overlap with

the macropressure. It should be noted that 80 solid and con-

tact FEs are created over the contact face in order to obtain a

high-resolution representation of the pressure profile before the

valve lift as shown in Fig. 1d.400

The FE-model in Fig. 3 consists of the following FE types:

• 7412 PLANE183 – 8-node axisymmetric structural solid,

• 1 COMBIN14 – 2-node longitudinal linear spring-damper,

• 150 CONTA172 – 2D 3-node surf-surf contact (for disk),

• 80 TARGE169 – 2D 3-node target segment (for nozzle),405

which in total comprise 7643 FEs. For more details regarding

all these FE types please refer to ANSYSr Help (2013a).

6



FE-model setup:
- FE size controls
- spring setup
- contact & FPP

2D valve geometry

Material character.:
1. Material models
2. Mechanical props

Input parameters:
1. Type of fluid
2. Spring stiffness
3. Set pressure Ps

4. Operation pres.

5. Guess of the FPP
area depth

P

D

o

FPP

Parametric relations:
1. Total sealing force
2. Spring parameters
2. Spring displ. ∆sp

Solution setup:
- BCs
- Loadings
- Solver

FPP
area
depth

valve
lifts?

yes

no

–1FE +1FE

d
e

c
re

a
s
e

in
c
re

a
s
e

Guessing of the area for
micro pressure application

lifts at
at the end of
load step?

no
Postprocessing:
- contour plots
- force vs displacement
- applied pressure
distribution

solve

- quasistatic
- large displ. on
-

∆

3)

3 steps solution:

1) apply

2) 0

sp

→ P

P P

op

op set→

yes

input preprocess

Output:

P Dset ↔ FPP

DFPP

Figure 4: Flowchart of the iterative FEA to predict the pressure distribution over the valve seat contact area

p
re

s
s
u
re

contact face Lseat
contact face

p
re

s
s
u
re

p
re

s
s
u
re

Pset

contact faceLseat Lseat

ca b

gap overlap
Pset

Pset

match

} }

DFPP DFPP DFPP

Figure 5: Explanation of the procedure shown in Fig. 4: a) valve lifts too late (P > Pset) , b) valve lifts too early (P < Pset), c) converged solution (P = Pset)

4.2. Pressure profiles and sealing force

The microscopic component of the FPP is applied to the

contact face using an analytical function, which needs to be410

defined in ANSYS as dependent on internal pressure, geometric

parameters and type of fluid. Müller & Nau (1998) provided a

general analytical expression for a pressure drop in a uniform

annular seal gap filled with a fluid as follows:

p(x) = p1

[

1 −
(

1 − γ2
) x

L

]n

, (3)415

where L is a length of a seal gap; p1 – internal pressure and p2

– external pressure; so the pressure ratio is γ = p2/p1, and n is

a power-law exponent, which is dependent on the type of fluid,

e.g. n = 0.5 for gas and n = 1 for liquid.

Equation (3) may be extended to the case of a plane contact420

gap in the valve. Since the profile of microscopic pressure dis-

tribution remains the same, the mathematical form of pressure

drop in the seal gap before valve opening is slightly changed to

P(r) = Pset

[

rout − r

rout − rfpp

]n

, (4)

where Pset – set pressure corresponding to the balance of forces425

applied to the disk, n – exponent dependent on the type of fluid

(0.5 for gas and 1 for liquid), rout – outer radius of the contact

area, rin – inner radius of the contact area or radius of the orifice,

rfpp – radius of fluid pressure penetration (FPP). It should be

noted that (rin < rfpp ≤ rout) if FPP is available, and rfpp = rin430

if FPP is unavailable. The pressure drop profiles for gas and

liquid corresponding to different values of Pset used in PRVs

are illustrated in Fig. 6.

Integrating Eq. (4) by r over the length of the valve seat

(Lseat = rout − rin) from rin to rout, an average value of the pres-435

sure within the pressure profile is obtained in analytical form:

P̄ =
Pset

1 + n
. (5)

Based upon the proposed concept, the total force, which

needs to be actuated in the spring during its preload in order to

lift the valve at a set pressure Pset, consists of three components:440

1. Orifice force or force produced by pressure Pset acting on

the surface of the disc corresponding to the area of the

orifice (refer to Fig. 1a):

For = Pset π r2
in, (6)
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2. Macro-fluid force, which is calculated assuming a stepped445

distribution of pressure in the area of the macroscopic

FPP (refer to Fig. 1c):

Fma = Pset π
(

r2
fpp − r2

in

)

, (7)

3. Micro-fluid force, which is calculated using the average

pressure (5) over the area of the microscopic FPP (refer450

to Fig. 1d):

Fmi = P̄ π
(

r2
out − r2

fpp

)

. (8)

Thus, referring to Fig. 1b an additional “seat” component of

the spring force is:

Fseat = Fma + Fmi, (9)455

and the total spring force is (refer to Fig. 1a):

Ftot = For + Fseat. (10)

4.3. FE-analysis setup and solution

An advanced FE-analysis in this study was developed and

automated using APDL-script. It enables essential flexibility460

and makes this study parametric since all important parameters

can be changed and adjusted. The analysis flow consists of sev-

eral steps as illustrated in Fig. 4:

1. Preliminary operations including parametric calculations.

2. Preprocessing including FE-model and solution setup.465

3. Solution including solver setup and running solution.

The key analysis procedure is an iterative guessing of the

depth Dfpp of the macroscopic FPP, which is expressed in terms

of the number of FEs Nfpp along the contact face from the in-

ternal edge up to the boundary of macroscopic FPP as shown470

in Figs 1b & 1c. Since the horizontal dimension of each FE

along the contact face is DFE = Lseat/80 as shown in Fig. 3, the

output parameter is defined as Dfpp = Nfpp · DFE. The objec-

tive of this process is a fitting of microscopic FPP described by

the function (4) to actual macroscopic FPP, which is obtained475

from the FEA results. This procedure needs to be implemented

since the degree of contact face global deformation, which de-

fines the macroscopic FPP, is unknown for each combination of

loading. In other words, this procedure is a manual coupling of

the macro-component of the FPP with the micro-component by480

variation of rfpp = rin + Dfpp in the function (4).

When correctly guessing the value of rfpp, the valve lifts

exactly at Pset without a gap or overlapping of the macro- and

micro-components of FPP, as shown in Fig. 4. In the case of

a gap, when the valve doesn’t lift for P ≤ Pset as explained in485

Fig. 5a, Dfpp is decreased by 1 FE length DFE. While in the

case of an overlap, when the valve lifts too early as explained

in Fig. 5b, Dfpp is increased by 1 FE length DFE. Once this

iterative procedure has converged to the lift of the valve when

P = Pset as explained in Fig. 5c, the main results are output in490

the form of values pair: Pset and corresponding Dfpp for each

combination of fluid and material.

5. Analysis of the results

In order to provide a high resolution of results, the FEA

have been performed for the wide range of pressures Pset com-495

prising 21 values (1.98 – 23.0 MPa). The five set pressures

(1.98, 5.1, 10.2, 15.3, 18.6 MPa) belong to typical standard val-

ues, which are used to set up the valves considered in this study.

Moreover, each of these 21 simulations has been done for two

different types of fluid (liquid or gas) and two different types of500

plastic material response (monotonic or cyclic). These make up

a total of 84 FE-simulations, which were manually controlled

to give a converged pressure profile on the contact face similar

to Fig. 1c. It should be noted that each variant of FE-analysis

required at least five attempts to achieve a converged result.505

Therefore, about 500 FE-simulations have been performed in

this study. The overall number of simulations could be sig-

nificantly reduced and optimised, if the procedure for micro-

macro pressure interaction described in previous section was

automated. Automation would require development of user-510

defined APDL-script or FORTRAN subroutine, which would

replace the interactive manual procedure shown in Fig. 4 by an

automatic adjustment of the area for micro-pressure application

according to the current depth of FPP on macroscale.

5.1. Global deformation515

In the first instance, the results characterising global defor-

mation of the valve were obtained. An example of these results

is given in Fig. 7a for total displacement in µm and equivalent

von Mises stress in Fig. 7b. This illustrates the change of global

structural response with increase of internal pressure from zero520

up to the set pressure of 18.6 MPa for the case of a liquid and

cyclic material response. Under the spring preload when the

valve is not in operation, the disc is deflected by the spring force

much more than the nozzle (as shown in Fig. 7a), although it is

relatively massive and stiff. However, it deforms elastically in525
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Figure 7: Change of total displacement (a) and equivalent von Mises stress (b) with increase of internal pressure up to the set pressure of 18.6 MPa

contrast to the valve seat at the top of the nozzle, which is rela-

tively small and compliant. Therefore, the valve seat undergoes

significant elastic and plastic deformation, which is caused by

the compressive load from the disc acting on the contact area. It

results in four localised spots of significant stress concentration530

primarily in the corners of the valve seat as shown in Fig. 7b.

This is explained in more detail in the next paragraph.

Under operation conditions when the internal pressure is in-

creased up to 90% of Pset or in the extreme case of valve lifting,

the disc is deflected less, because of the balance of forces ap-535

plied to it. However, the top of the nozzle including the valve

seat is exposed to internal pressure and undergoes significant

deformation, which expands and rotates the valve seat as shown

in Fig. 7a. Since the type and direction of the load applied to

the nozzle changes during operation, the stress concentration540

shifts from the valve seat to the top part of the internal surface

of the nozzle. When compared to the preload condition, the

stress level reduces drastically, and stress distribution becomes

more uniform. Since the contact is frictionless, the distribution

of displacement, stress and strain is discontinuous in the contact545

face, when an internal pressure is applied.

More attention needs be paid to the local deformation of the

valve seat, since this location governs the performance of the

whole component. As mentioned above, the valve seat is ex-

posed to the static peak loading in the idle conditions, when no550

internal pressure is applied. Depending on the value of Pset and

corresponding spring load, the valve seat may undergo global

plastic deformation, which is partly reversed during the action

of the internal pressure. However not only is the degree of Pset

important for the distribution of the plastic strain over the valve555

seat. More important is the type of material response, which

tends to change gradually with the number of cycles of the

valve lifting and reseating. Significant change of plastic strain

distribution is caused primarily by the cyclic softening of the

material, when it becomes more compliant to the plastic defor-560

mation. This effect results in a larger amount of material under-

going plastic deformation, when the stabilised cyclic response

of material is achieved after a number of operation cycles.

The importance of softening effect on the global plastic de-

formation of the valve seat is shown in Fig. 8 with the dis-565

tribution of equivalent plastic strain plotted across the contact

face. When the material response is monotonic (see Fig. 8a),

the plastic yielding of the contact face is restricted close to the

internal and external edges for high values of Pset and negligible

for low values of Pset. So in the beginning of valve operation,570

the contact face undergoes mostly elastic deformations. How-

ever, with the accumulation of operation cycles, the full contact

face tends to undergo major plastic yielding even at low Pset, as

shown in Fig. 8b. It should be noted that cases shown in Figs

8a and 8b present the limiting cases of the contact face con-575

dition. In order to obtain a history of plastic strain evolution

between these two cases, a cyclic transient FE-simulation using

9



0.00

0.05

0.10

0.15

0.20

0.25

0.30

e
q

u
iv

a
le

n
t 

p
la

s
ti
c

s
tr

a
in

, 
%

0.00

0.05

0.10

0.15

0.20

0.25

0.30

e
q

u
iv

a
le

n
t 

p
la

s
ti
c

s
tr

a
in

, 
%

cyclic softening
and hardening

ba

contact face length (mm)
internal edge external edge

contact face length (mm)
internal edge external edge

liquid, monotonic
material response

liquid, cyclic
material response

18.6 MPa

15.3 MPa

10.2 MPa

18.6 MPa

15.3 MPa

10.2 MPa

5.1 MPa

1.98 MPa

Figure 8: Change of equivalent plastic strain (%) distribution over the contact face of nozzle (valve seat) with cyclic operation for the standard values of set pressure:

(a) monotonic material response, (b) cyclic material response

Chaboche-type material models needs to be implemented.

5.2. Equation fitting of FEA results

Obtained FEA results for the depth of FPP are shown in580

Fig. 9 in the form of dots and triangles for all values of Pset

and in the form of pressure profiles over the contact face for 5

standard values of Pset (1.98, 5.1, 10.2, 15.3, 18.6 MPa). Fig-

ure 9a shows results for a liquid, and Fig. 9b – for a gas. Note

that in Fig. 9 black dots denote the boundaries between macro-585

scopic and microscopic FPP for monotonic material response.

Black triangles denote the boundaries for cyclic material re-

sponse. Similarly, the difference in colour shade of pressure

profiles denote either monotonic or cyclic material response.

The degree of macroscopic FPP increases non-linearly with an590

increase of Pset for both types of fluids. However, the particular

depth of global FPP Dfpp and corresponding length of effective

contact area (Leff = Lseat − Dfpp) is quite different for liquid

and gas. The other important effect should also be noted that

the effective contact length Leff drastically decreases with cyclic595

operation of the valve. It may be observed that the results for

cyclic and monotonic material response are identical for liquid

and Pset = 1.98 MPa in Fig. 9a and for gas and Pset = 5.1 MPa in

Fig. 9b. The reason is that below these values of set pressure no

macroscopic FPP is available since material response is elastic.600

The numerical results were fitted by analytical functions, as

shown in Fig. 10, which were subsequently used for the formu-

lation of relations for additional “seat” component of the spring

force. In order to improve the quality of extrapolation, the fit-

ting was implemented for an extended range of set pressures605

Pset comprising 21 values (1.98 – 23.0 MPa), which are shown

in Fig. 9 with black dots and triangles. The number of finite

elements (FEs) involved in FPP at the macroscale Nfpp versus

set pressure Pset is fitted by a smoothing function. The function

is dependent on the set pressure Pset and uses an approximation610

of the Heaviside step function H (Pset):

Nfpp (Pset) = Fhi (Pset) H (Pset)+

Flo (Pset) [1 − H (Pset)] ,
(11)

where the specific formulations of the step function H (Pset) and

fitting functions for the low pressure Flo (Pset) and high pressure

Fhi (Pset) domains are different for all 4 cases analysed:615

a) Gas and monotonic material response:

H (Pset) = 0.5 + 0.5 tanh

(

Pset − 21.3

4.6

)

,

Fhi (Pset) = 0.8 Pset and

Flo (Pset) = 0.05 Pset;

(12)

b) Liquid and monotonic material response:

H (Pset) = 0.5 + 0.5 tanh

(

Pset − 20.0

4.3

)

,

Fhi (Pset) = 0.96 Pset and

Flo (Pset) = 0.05 Pset;

(13)

c) Gas and cyclic material response:620

H (Pset) = 0.5 + 0.5 tanh

(

Pset − 10.5

2.0

)

,

Fhi (Pset) = 0.8 Pset and

Flo (Pset) = 0.1 Pset;

(14)
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d) Liquid and cyclic material response:

H (Pset) = 0.5 + 0.5 tanh

(

Pset − 10.0

2.5

)

,

Fhi (Pset) = 4.3 P0.56
set and

Flo (Pset) = 0.27 Pset.

(15)

The graphical comparison of the numerical results with their

fits is illustrated in Fig. 10. One can conclude that the proposed625

fit using analytical functions (11) - (15) provides a good rep-

resentation of the FEA output and, therefore, it can be used in

FEA-based assessment of the spring force. The number of FEs

in FPP at the macroscale (11) is then transformed into the func-

tion for corresponding radius of FPP as630

rfpp (Pset) = rin +
Lseat

80
Nfpp (Pset) . (16)

Using the value of rfpp defined by Eq. (16), an additional “seat”

component of the spring force is obtained from Eqs (7) - (9):

Fseat (Pset) = Pset π
([

r2
fpp (Pset) − r2

in

]

+

+ 1
1+n

[

r2
out − r2

fpp
(Pset)

])

.

(17)

6. Discussion and conclusions635

Using Fig. 11a, the additional “seat” components of the

spring force estimated analytically can be compared to those,

which are based upon FEA. The analytical estimation is done

considering microscopic FPP only, i.e. using Eq. (8) for the

whole seat contact area. The FEA-based estimation is done640

considering a micro-macro interaction and Eq. (17) based on

numerical results fitted by the functions (11)-(15). The compar-

ison shows that the differences between gas and liquid, and an-

alytical and FEA-based results are quite significant. Firstly, the

analytic “seat” component of the spring force for gas is 33.3%645

larger than the one for liquid estimated by Eq. (8) for all set

pressures because of the difference in shape of corresponding

pressure profiles. Secondly, deviation of FEA-based force from

analytical predictions is much more significant for liquid than

for gas, as shown in Fig. 11b. Thirdly, deviation increases with650

increase of Pset, as shown in Fig. 11b. For example, in the case

of Pset = 18.6 MPa, liquid and cyclic material response, the

difference between additional spring forces is about 27%.

Referring to Hellemans (2009), metal-seated spring valves

with operating pressures between 90% and 95% of Pset do not655

stay tight for long and usually get damaged after a couple of op-

erations. This fact was confirmed by the advanced FE-analysis

implemented in this study using monotonic and cyclic material

properties. The effective contact area of the valve seat changes

significantly during the cyclic operation of the valve. In this re-660

gard, a spring force required to provide a leakage tightness of

the valve needs to be adjusted correspondingly after each reset-

ting. The results of the analysis demonstrate that the required

alteration of the spring force during cyclic operation may be

over a quarter of its initial value. Analyses of the macro de-665

formation of the valve seat/disc under various pressures using

quasistatic structural FEA with FPP technique revealed that:

• Macro deformation is important and affects sealing (ef-

fective contact) area;
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• Cyclic material response affects the structural behaviour;670

• The type of fluid effects the contact pressure distribution.

Improved analytical functions for a component of the pres-

sure distribution acting on the contact surface (11) - (17) are

formulated for the particular valve seat geometry and are depen-

dent on Pset based upon FEA results. However, these functions675

are valid only for limiting cases of the valve operation (1st cycle

and stabilised cyclic response). In order to extend the proposed

formulation to the whole range of operation time, a transient

cyclic FE-analysis using e.g. unified Chaboche material model

needs to be done. Based upon these results, time or number680

of cycles might be introduced into a function for sealing force,

which would enable an automatic self-adjustment of the valve.

Future work in continuation of this research in the first in-

stance needs to consider experimental validation of the theo-

retical assumptions from this study by measuring spring force685

of the PRV. All theoretical outcomes of this research require

an experimental verification to confirm the validity of the pro-

posed concept and ideas. Particularly, an additional component

of the sealing force requires experimental identification in order

to compare it with a theoretically defined one. For this purpose690

the experimental rig has been designed in CAD SolidWorks as

shown in Fig. 12a, which consists of 3 major components:

1. High pressure cylinder with fluid,

2. Experimental stand,

3. PRV installed on top of the stand.695

There is a number of additional components required for this

experimental rig like safety valves, relief valves, high pressure

supply, pressure transducers, inlet and outlet flanges, etc. Addi-

tional modifications are done to the valve as shown in Fig. 12b

in order to install the force transducer for measuring spring700

force during operation. An old stem is replaced with a new stem

containing the force transducer inside. An additional space in-

side of the valve is provided by installation of the spacer be-

tween the valve casing and bonnet. The designed experimental

rig has been recently manufactured and assembled as shown in705

Fig. 12c, and it is ready to be used for further research.

Other future work in continuation of this research includes:

1. Literature review to understand PRV leak tightness in a

static closed state near the the set pressure point;

2. Automation of the spring force adjustment according to710

Dfpp at a macroscale to maintain a consistent seal;

3. Consideration and estimation of high temperature effects

for material response and sealing performance;

4. Transient FEA of the cyclic PRV operation using Chaboche

material model with kinematic and isotropic hardening;715
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5. Experimental investigation of surface form, waviness and

roughness and their consideration in simulations;

6. Multiscale study of the contact interface using the repre-

sentative volume element (RVE) method to consider de-

formation on asperities level for representative area;720

7. Parametric study of the sealing efficiency of PRV by in-

troduction of taper as proposed by Abid & Nash (2004).

Finally, it should be noted that some progress in research has

already been achieved for the objectives no. 1 (Anwar et al.,

2015), 2-4 (Anwar et al., 2016b) and 5 (Anwar et al., 2016a).725
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Nomenclature

Abbreviations855

BC Boundary Condition

EPP Elastic-Perfectly-Plastic

FE Finite Element

FEA Finite Element Analysis

FPP Fluid Pressure Penetration860

MLKH Multilinear Kinematic Hardening

PRV Pressure Relief Valve

SSC Stress-Strain Curve

Variables, Constants

σ stress865

∆σ stress range

ε strain

∆ε strain range

εtot total strain

εp plastic strain870

E Young’s (elasticity) modulus

µ Poisson’s ratio

Ep tangent (plasticity) modulus

σy, σ̄y nominal and average yield stress

B, β R-O model constants875

Pset, Pop set and operational pressure

Lseat length of valve seat

Ror radius of orifice

∆sp spring displacement

n fluid type power-law exponent880

rin, rout inner and outer radii of the valve seat

rfpp,Dfpp,Nfpp radius, depth and number of FEs of the macro-

scopic FPP correspondingly

For, Fma, Fmi orifice, macro-fluid and micro-fluid components

of the spring force correspondingly885

Fseat, Ftot additional “seat” component of spring force and

total spring force correspondingly

Subscripts, Superscripts

el elastic

pl plastic890

vM von Mises

eq equivalent

tot total
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