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Abstract: The objective of the present analysis is the investigation of “hybrid convection” induced 
by the joint influence of imposed vibrations (g-jitters) of desired amplitude and frequency and 
surface-tension-induced forces in a non-isothermal liquid layer. This study may be regarded as the 
natural extension of an earlier work by other authors (Shevtsova, Nepomnyashchy and Legros, 
Phys. Rev. E 67, 066308, 2003) where the focus was on convection driven by interacting 
thermocapillarity and steady gravity. As in that work, conditions are considered for which the 
unperturbed (vibration-less) Marangoni flow would be characterized by the emergence and 
propagation of a classical hydrothermal wave, namely, a supercritical thermofluidynamic 
disturbance propagating continuously in the upstream direction. A number of numerical results are 
analysed and discussed. Regimes of quasi-stationary rolls, standing waves, traveling waves and 
modulated (pulso-traveling) disturbances are identified in the considered space of parameters. Most 
interestingly, it is observed that traveling waves can reverse their direction of propagation in some 
specific regions of the phase space. 

PACS: 47.20.Dr, 47.20.Ky, 47.54.-r,47.11.Bc 

I. Introduction 
 

In the present work we consider “mixed convection” induced by the joint influence of surface-

tension-induced forces and imposed vibrations (g-jitters) of desired amplitude and frequency in a 

non-isothermal liquid layer. 

The latter kind of convection, generally referred to as “thermovibrational flow”, initially studied 

due to its perturbing and undesired influence on microgravity experiments [1,2], has recently 

witnessed a renewed and significant theoretical interest because it has been understood that 

adequate knowledge of it may be used for the elaboration of a new strategy of flow control.  

The use of vibrations may be regarded as a rather new and yet less investigated technique to be used 

more universally (Simonenko and Zen’kovskaja [3]) than traditional methods used in crystal growth 

and other technological processes because it is not restricted to electrically conductive melts (as is 

the case for magnetic fields). Vibrations and related effects could be applied without limitations for 

effective flow control also in situations in which the working fluid is organic. 

A proper introduction of the topic considered in the present work and its collocation in a relevant 

research historical background should perhaps start from the simple remark that although many 

studies have been appearing in the literature over the last two or three decades for “pure” 

Marangoni flow (both theoretical and experimental, see, e.g., Zebib et al. [4], Bucchignani [5], Sato 

et al. [6] and, in particular, Schwabe [7] for rich and exhaustive reviews on the subject) and “pure” 
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thermovibrational flow (Lyubimova et al. [8], Gabdrakhmanov and Kozlov [9], Savino and Lappa 

[10], Mialdun et al. [11], Shevtsova et al. [12]) the interaction dynamics of this these modes of 

convection are still obscure.  

Some important analyses are available for the companion case of convection driven by interacting 

thermocapillarity and steady gravity, see e.g., Parmentier et al. [13], Burguete et al. [14] and the 

works by Nepomnyashchy and coworkers (Nepomnyashchy and Simanovskii [15,16], Shevtsova et 

al. [17], Nepomnyashchy et al. [18]). Despite the potential important applications mentioned above, 

however, studies expressly addressing the mixed thermocapillary-thermovibrational problem are 

rare and sparse ([19-30]). Moreover, most of existing numerical investigations were based on 

analytic solutions (valid under the assumption of an infinitely extended layer) and/or on the typical 

concepts and methods of the linear stability analysis. 

Most recently, [31] reconsidered this specific subject addressing its potential application to the 

control of convection patterning and strength in shallow rectangular cavities of finite extent 

(A=length/height=4) with relevance to the most widely used technologies for the growth of single-

crystalline materials from the melt. Although the Navier-Stokes equations were solved in their 

complete and non-linear form, however, the numerical simulations were restricted to the case of low 

Prandtl number liquids (silicon, Pr=0.01), steady Marangoni flow and (an even more limiting 

assumption) vibrations of low amplitude and high frequency satisfying the conditions for which the 

socalled simplified Gershuni’s mathematical model becomes applicable (by which the effective 

time required for the numerical simulations can be significantly shortened, Gershuni and 

Zhukhovitskii [32,33]). On the numerical side, some other developments deserve attention; among 

them the study by Grassia and Homsy [21,22], who considered the infinite parallel Marangoni flow 

subjected to gravitational modulation at low frequencies where the Gershuni's model is no longer 

applicable in various directions; these authors assumed as base unmodulated Marangoni flow the 

popular “return flow solution” and employed a quasi-steady approach, in the limit of a very low 

forcing frequency. 

The new idea here is to somehow control the basic features of surface-tension-driven convection 

(not only the typical patterning behaviour in steady conditions but also the onset and properties of 

emerging oscillatory flow, etc.) in a geometry of finite extent via imposed vibrations without 

resorting to any specific assumptions on their frequency and amplitude. 

From the theoretical viewpoint, it is important to mention that the dynamics of mixed 

thermocapillary-thermovibrational represent yet a rather complex challenge to researchers in the 

domain of fluid mechanics and heat transfer, because of the fact that it appears very difficult, if not 

to say practically impossible, to formulate any theory that can reasonably predict “a priori” the non-

linear properties of the resulting flow in terms of patterning behaviour and related waveforms. 

Numerical simulations are adversely affected in terms of computational resources and costs by the 

very high (both spatial and temporal) resolution required to capture the resulting delicate dynamics. 

A thorough understanding of the underlying physics is also still lacking because of their inherent 

complexities and involvement of different spatial and temporal scales. 
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II. Mathematical Model 

 

A. The Geometry 

 

We consider a liquid layer with free liquid/gas interface parallel to the x axis and characteristic 

depth L=d (Fig.1), laterally delimited by solid walls, one cooled, the other heated, adiabatic 

conditions on the remaining boundaries. The system aspect ratio (A), defined as its length-to-depth 

ratio (  /d) is fixed to 20. The value of the Prandtl number (Pr=where  is the fluid kinematic 

viscosity and  is the thermal diffusivity) is Pr=15. Moreover, no steady residual gravity is present. 
The vibrations are contained in the xy plane, being directed along a generic direction n̂  forming an 

angle  with the free interface.  

 

B. The vibrations or g-jitters 

 
Figure 1: Sketch of fluid layer subjected to vibrations with arbitrary direction applied in the plane 
of the basic 2D flow. 

 
By modelling vibrations as a sinusoidal displacement varying in time as   nts ˆt)bsin(  , where 

b and  (=2f) are its amplitude and angular frequency, respectively, it is known that, in the 

absence of other forces or effects and for a given fluid, i.e. for a fixed value of the Prandtl number, 

the properties of the emerging thermovibrational flow  can be characterized in terms of two 

independent nondimensional parameters only, the nondimensional frequency (  ) and the 

associated Rayleigh number (Ra): 

 




2L
             (1a) 

 






32 TLb
Ra T            (1b) 

 

 where T is the thermal expansion coefficient and T the imposed temperature difference. 
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Since the displacement   nts ˆt)bsin(  , can be considered exactly equivalent to an acceleration 

  t)sin( 


gtg   (where n̂ b 2

g ) and because the specificity of this alternating acceleration 

is that its linear effects have a zero-time averaged value, in the following we will use the terms 

“vibrations”, “system shaking or forcing”, “gravity modulation”, “periodic acceleration”, and “g-

jitters” as synonyms.  

 

C. The balance equations 

 

Scaling time, velocity, pressure and temperature by L2/, /L, 2/L2 (where  is the fluid density) 

and T, respectively, defining the temperature as T=( T Tm )/T where T  is the dimensional 

temperature and mT  a reference value, and using the canonical Boussinesq approximation to 

account for the effects of buoyancy, the nondimensional momentum equation can be written as: 

 

  ntTRaVVVp
t

V
ˆ)sin(PrPr 2 




       (2) 

 

Accordingly, the continuity and energy equations can be cast in compact form as: 

 

 V 0           (3) 

 

  TTV
t

T 2



         (4) 

 

D. The Boundary conditions 

 

Obviously, such equations must be supplemented with the adequate kinematic and thermal 

boundary conditions, which, by indicating with u and v the velocity components along x and y, 

respectively, reduce to 

 

u=0, v=0 and T=1/2 at x=A/2        (5a) 

u=0, v=0 and T/y =0 at y=-1/2        (5b) 

v=0, u/y=-MaT/x and T/y =0 at y=1/2      (5c) 

 

where  Ma = TTL/          (6) 

 

is the well-known Marangoni number (T being the derivative of the surface tension with respect 

to temperature). Equation (5c) enforces a flow by tangential variation of the surface tension. The 

motion (thermocapillary or Marangoni convection) immediately results whenever a temperature 

gradient exists along the considered interface, no matter how small (see, e.g., [34,35]). 

 



Physical Review E, Accepted for publication on April 18th 2016 
 

 5

E. The Numerical method 

 

Balance equations and related boundary conditions (1-6) have been solved numerically by a time-

explicit finite-difference method (primitive-variable approach) based on a rectangular mesh and a 

staggered collocation of fluid-dynamic variables. In particular, forward differences in time and 

central-differencing schemes in space (second order accurate) have been used to discretize the 

energy and momentum governing equations. The related solution strategy is not discussed here, the 

interested reader being referred to various books and articles in the literature for an exhaustive 

treatment.  

Here we limit ourselves just to providing some useful information about the grid refinement study 

and the strategy that we had to implement to guarantee a proper resolution of all spatial and 

temporal scales involved in the considered phenomena.  

 
Grid Nx  Ny HTW 
      200  20 50.4 
      400  20 48.0 
      300  30 47.5 
      400  30 47.2 
      600  30 47.1 

 
Table I: Grid Refinement Study: Angular frequency of the Hydrothermal Wave as a function of 
mesh resolution (Pr15, A=20, Ma=3x104) 

 

As sensitive parameters for the spatial grid refinement study, we have considered the angular 

frequency of the hydrothermal wave representing the typical supercritical state of pure Marangoni 

flow (see Sect. IIIA). The minimum mesh required to guarantee independency of such a frequency 

from the used  spatial resolution has been found to be 30 points per unit nondimensional length. 

Accordingly a mesh with 600 points in the x direction and 30 points in the y direction has been used 

for all simulations (i.e. 30 grid points per unit nondimensional length along both spatial horizontal 

and vertical directions, see Table I). The criterion for the selection of the temporal resolution (i.e. 

the time integration step) has been based on the combination of three independent requirements:  

 

 22

22

1 Pr2

1

yx

yx
t




            (7a) 

 

 xvyu

yx
t





maxmax

2 2

1
          (7b) 

 

M
t


2

3   where M=1000          (7c) 
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 321 ,,min tttt           (8) 

 

where the first two inequalities are the well-known conditions for the numerical stability of the 

diffusive and convective contributions, respectively, while the third one is an even more restrictive 

limitation coming from the need to “resolve” with a sufficient number M of time steps (a minimum 

of 103) the period of oscillation of the imposed vibrations. The first condition depends on the spatial 

resolution only. The second has been found to be the dominant limitation at high values of the 

Rayleigh number Ra defined by eq. (1b), whereas the third becomes effective only at relatively 

high values of the angular frequency (=104). 

 

G. Validation 

 

Validation of the numerical algorithm has been attained via comparison with the numerical results 

by Shevtsova et al. [17] for the case of mixed thermocapillary-thermogravitational convection 

(steady gravity). Their numerical results were obtained for values of the characteristic parameters 

relatively close to those considered here (A=24.7, Pr=13.9). In particular we refer to their 

simulations for Ma=18154.5 and Ra=2578 (Bodyn=Ra/Ma=0.142, Grid 600x100) for which they 

could clearly measure the frequency of the emerging traveling wave as HTW=45.28. By using such 

values of the aspect ratio, Prandtl number and Marangoni number, and simply setting  =0 and 

Ra=2578 in our code (with a mesh 600x30), we could obtain a frequency 46.03 differing by 1.6% 

with respect to the value reported in their work. 

 

III. Results 

 

We concentrate on the following specific conditions: fixed values for the aspect ratio and Prandtl 

and Marangoni numbers (A=20, Pr=15, Ma=3x104), the nondimensional angular frequency of the 

acceleration disturbance and the associated Rayleigh number spanning over several orders of 

magnitude. More precisely,  is allowed to vary in the interval HTW1x104 (where HTW is the 

angular frequency of the hydrothermal wave produced by pure Marangoni flow), and the Rayleigh 

number spans the range 0Ra3x106. By introducing a specific parameter measuring the relative 

importance of vibrational and Marangoni effects as:  

 

Ma

Ra
L

b
B

T

T 
 


 2

2

          (9) 

the last condition is equivalent to 0B102.  

More specifically, for each interval 10n-1Ra<10n with 4n7 and 10n-1<10n with 2n5, 

numerical simulations have been performed for Ra=a10n-1 and = b10n-1 considering for a values 

1, 3, 5 and 10 and for b 1 and 5, respectively. This resulted in a total of approximately 160 

simulations. 
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Moreover, we limited ourselves to considering two-dimensional flow having in mind that such an 

idealized setting will help us in using it to infer the general principles which drive complex patterns 

in more realistic situations (in which vibrations and Marangoni flow can also display components 

along the third dimension, the subject of a companion paper). 

 

A. Pure Marangoni flow and the Classical Hydrothermal wave 

 

To fully understand the influence of inertial (vibrational) effects on the supercritical state of 

Marangoni flow, we begin our analysis from the simplest possible situation, i.e. that of unperturbed 

(vibration-less) thermocapillary convection. It is known (see, e.g., [30]) that for this case, the 

socalled “hydrothermal waves” (HTW) always correspond to the preferred mode of instability 

(Smith and Davis [36]). These wave are known to have weak components in the flow spanwise 

direction in the high-Pr case [37-39], which supports our assumption of two-dimensional flow. A 

remarkable feature common to all cases is that the disturbance always travels in a direction with a 

component in the direction opposite to that of the surface flow (upstream).  

 

 
 

Figure 2: Oscillatory instability of Marangoni flow in a liquid layer (Pr15, A=20, Ma=3x104, Ma 
based on the depth; adiabatic free surface; cold side on the left, hot side on the right; the isolines of 
the stream-function (max=43.3, 3.1) are shown in four snapshots (plane (x,y)) evenly 
distributed during one period of oscillation HTW=2/HTW): The location of the cells near the cold 
side at different time moments indicates the propagation of a wave to the right, i.e. in the upstream 
direction; a single roll is steadily located near the hot wall as a consequence of the strong 
temperature gradient established in the boundary layer adjacent to the right wall (for illustration 
purposes, in the figure above the depth of the fluid layer is two times its real dimension).   
 

As shown in Fig. 2, in practice, the hydrothermal wave itself looks as a chain of cells moving from 

the cold side towards a motionless rolls on the hot side with a given angular frequency (HTW = 

47.1 for A=20, Pr=15, Ma=3x104). The stationary roll existing near the right wall is maintained by 

the strong temperature gradient established in the lateral boundary layer. The moving train of 

moving cells “feels” the presence of this roll by decaying in the region where this roll is located. 

When a roll “dies” in proximity to the hot side, a new roll is created at the cold side thereby 
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preserving the average number N of convective cells present in the cavity at any instant (N7 for 

the present conditions).  

 

B. The thermovibrational flow and its properties 

 

Before embarking into the systematic analysis of hybrid thermocapillary-thermovibrational 

convection, following the same practice undertaken in Sect. IIIA for Marangoni flow, we recall here 

some fundamental properties of pure thermovibrational convection (which will prove very useful in 

the interpretation and categorization of mixed flows considered later). 

It is known (see, e.g., [2, 10]) that in the presence of an imposed acceleration disturbance of given 

angular frequency , the velocity field V will be, in general, made up by the sum of two 

contributions, an average value V  plus a periodic oscillation of amplitude 'V  ( VVV ' ) 

oscillating in time at the same acceleration frequency  of the imposed disturbance (or at 

frequencies that are multiple of ). In the absence of pre-existing flows of other natures, this 

average (steady) contribution V  should be regarded essentially as a consequence of the non-linear 

nature of the balance equations, which (by virtue of such a non-linearity) are able to produce a flow 

that has a non-zero finite steady component although the imposed alternating force does not possess 

such a property. 

The same concept applies to any scalar field (e.g. the temperature) associated with the considered 

convective field. As a result of such a convective field, the scalar variables can be also thought of as 

quantities consisting of a steady plus an oscillatory part (T=T +T').  

The relative “weight”of the two contributions, in general, is a part of the problem, i.e. it cannot be 

predicted “a priori”; different situations may occur, depending on the oscillation frequency. For 

instance, it is known that at high frequencies a regime can be attained where the oscillatory velocity 

and temperature contributions are relatively large while the related time-average steady 

contributions are small. At smaller frequencies, the situation is reversed, with the oscillatory 

contributions being very strong with respect to the mean ones.  

 

C. The High frequency regime 

 

When vibrations are superimposed on an already developed convective flow (of thermocapillary 

nature in our case) the situation becomes even more complex in terms of system response and 

related non-linearities. The effect of vibrations strongly depends on the shaking direction relative to 

the prevailing temperature gradient. In particular, it is known that, in the limit of high frequency () 

and small displacement (
L

T
b T


) (see Birikh at al. [19]), the mean vibration force is a bulk 

driving action induced by temperature gradients normal to the vibration axis, an important feature 

of this force being that, if temperature distortions, with respect to the purely diffusive case, are 
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induced by another type of convection, average vibrational flows arise in such a way as to permit 

the isotherms to turn and again become perpendicular to the vibration direction. 

Accordingly, vibrations are expected to exert a damping action on pre-existing Marangoni 

convection if applied in the same direction of the imposed temperature gradient (along the 

liquid/gas interface in the present case). 

 

 

 

 

 
 

Figure 3: Mixed Marangoni-vibrational flow (Ma=3x104, =104, Ra=3x104, B=Ra/Ma=1, =0, 
vibrations parallel to liquid/gas interface, max=43.75, 3.1, streamlines are shown in four 
snapshots evenly distributed during the timeframe HTW. The additional bottom contour map shows 
a snapshot of the related temperature field.  
 
 

Some results along these lines are shown in Fig. 3 which illustrates the stages of evolution of 

supercritical Marangoni flow in the presence of imposed vibrations with =104 and Ra=3x104 

(B=1, =0).  

As expected, some mitigation of the typical features of the hydrothermal wave can be observed. 

Indeed, this Figure shows that the velocity of propagation of rolls changes along the cavity, as the 

rolls can be clearly seen to decelerate in the course of their migration from the cold side towards the 

hot side. Their velocity decreases until it vanishes completely at a certain location; there the typical 

spatiotemporal behaviour of the traveling wave is taken over by a different mechanism by which 

rolls occupy fixed positions in time.  

Most interestingly, the resulting flow pattern can be ideally split into two different regions:  

A group of cells spatially spreading periodically towards the hot side (i.e. moving upstream), 

represents a first circulation system. Such a group of rolls is bounded from the left (where such rolls 

are being continuously created) by the cold wall and from the right (where their propagation 

velocity decays) by a second multicellular region where convection displays a quasi-steady 

behaviour. This region is characterized by a relatively stable pattern consisting of corotating quasi-
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stationary rolls. Although these rolls undergo some weak growth and decay in time, they maintain 

stable positions (thereby, creating a ‘barrier’, i.e. a resistance to the propagation of the rolls being 

continuously created at the cold side and spreading towards the hot side).  

Interestingly, due to the impact of the moving rolls coming from the cold side, an intermediate 

region is created where the local patterning behaviour consists of the alternance of two distinct 

corotating rolls and a single vortex formed by the periodic merging of such rolls. As a result of the 

co-existence of three different regions, the number of convective rolls present at any instant in the 

layer increases with respect to the case of pure Marangoni flow (N=8 for the present conditions). 

Most interestingly, Fig. 4 shows that if the considered Rayleigh number is increased by one order of 

magnitude (Ra=3x105) while retaining the same frequency of shaking (=104), the multicellular 

flow where convection displays a quasi-steady behaviour becomes the dominant mode of 

convection (it extends to the entire layer). The number of rolls present at any time in the layer 

increases from a total of 8 (for Ra=3x104) to N=10. Cells spatially spreading periodically towards 

the hot side are no longer a feature of the system. A second set of cells, however, appears 

periodically in proximity to the bottom wall (Figure 4b). Such cells have a very limited extension 

along the y direction and display a clockwise sense of circulation (i.e. they may be seen as a 

counter-rotating system of circulation with respect to the classical Marangoni flow). 

 

 

 
 
Figure 4: Mixed Marangoni-vibrational flow (Ma=3x104, =104, Ra=3x105, B=Ra/Ma=10, 
=0, vibrations parallel to liquid/gas interface, min= -9.5, max=50.5, 4.3, streamlines are 
shown in two snapshots).   
 
 

When vibrations are rotated by 90 (resulting oscillatory acceleration perpendicular to the imposed 

temperature gradient), in line with the general expectations related to the Birikh’s principle, we 

found changes induced in the HTW to be barely appreciable for Ra=3x104. For this case the 

qualitative mechanism with cells migrating continuously in the upstream direction is retained, 

although for larger values of Rasome wave “modulation” effects due to the application of 

vibrations become noticeable. 
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D. Gravitationally modulated HTWs at intermediate frequencies 

 

As already discussed to a certain extent in Sect IIIB, there is a strong dependence of both types of 

vibrations-induced contributions (average and periodic) on the acceleration frequency. Amplitudes 

of the periodic (oscillatory) contributions tend quickly to increase with a decrease in the forcing 

frequency. Conversely the average quantities are less dependent on  so that at low frequencies one 

may expect the steady contribution to become negligible in comparison with the unsteady one. As a 

result, the general Birikh’s law discussed in Sect IIIC (about the expected effect of the mean 

vibration force) is no longer applicable at low and intermediate frequencies and the influence of 

vibrations on supercritical Marangoni flow becomes essentially unpredictable (i.e. it has to be 

assessed on a case-by-case basis). 

As a first step towards this end, numerical simulations performed yet for Ra=3x104 and =0, but 

decreasing the angular frequency by one order of magnitude (i.e. =103), reveal that vibrations 

directed along the liquid/gas interface are no longer able to induce the changes (in terms of 

patterning behaviour and spatio-temporal dynamics) observed for =104. Indeed, apart from some 

weak modulation of the rolls intensity, the velocity field (not shown) does not display significant 

changes with respect to the case of pure thermocapillary flow (the reader being referred again to 

Fig. 2, which shows rolls continuously propagating in the upstream direction). 

At this frequency, the order of magnitude of the Rayleigh number has to be increased to produce a 

significant effect. As an example, Fig. 5, illustrates the convective field for =103, Ra=3x105 in 

the case of vibrations parallel to the liquid/gas interface. For this value of the Rayleigh number, the 

travelling wave is completely replaced by a new mechanism with rolls at fixed locations which 

“pulsate” in time. (i.e. disturbance nodes growing and shrinking alternately in time without 

undergoing an appreciable displacement in the streamwise direction). A more-in-depth analysis of 

Figure 5 also reveals that the classical dynamics seen in Fig. 2 (pure Marangoni flow) and Fig. 3 

(=104, Ra=3x104), characterized by convective rolls all rotating in the anticlockwise direction 

(and all being part of a larger circulation system with fluid moving continuously from the hot side 

to the cold side along the free interface and then flowing back along the bottom wall), is no longer a 

feature of the flow. Regions of reversed flow, in fact, appear periodically at the free interface, which 

correspond to the emergence of clockwise-oriented cells alternatively distributed among the 

anticlockwise-oriented rolls (see, e.g., frames (g-h)) as witnessed by the negative value of the 

streamfunction associated with them. Accordingly, the number of rolls present in the layer at any 

instant ranges between N=9 (when all rolls have the same sense of circulation, see, e.g., frames (b-

e)) and N=16 (see frames (g-h), where the flow may be seen as a set of 8 couples of  counter-

rotating cells). 
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Figure 5: Mixed Marangoni-vibrational flow (Ma=3x104, =103, Ra=3x105, B=Ra/Ma=10, 
=0, vibrations parallel to liquid/gas interface, min= -55.5, max=99.2, 8.14, streamlines are 
shown in eight snapshots evenly distributed during the timeframe  =2/). The additional bottom 
contour map shows a snapshot of the related temperature field. 

 

 

In the following we will classify the emerging solutions as: travelling (TR) and standing (SR) rolls 

solutions (or as travelling (TW) and standing (SW) waves, respectively) depending on whether the 

prevailing oscillatory mode is featured by disturbance nodes propagating along the x direction, or 

growing and shrinking alternately in time at fixed positions. 
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Figure 6: : Mixed Marangoni-vibrational flow (Ma=3x104, =103, Ra=3x105, B=Ra/Ma=10, 
=/2, vibrations perpendicular to liquid/gas interface, min= -26.5, max=76.1, 7.3 streamlines 
are shown in eight snapshots evenly distributed during the timeframe HTW, 420). The 
additional bottom contour map shows a snapshot of the related temperature field. 

  

 

Most notably, an even more dramatic change in the emerging dynamics with respect to those 

obtained for = can be produced when the direction of vibrations is changed to make them 

perpendicular to the liquid/gas interface (=, Ra=3x105,=/2). 

Figure 6 clearly indicates that for such circumstances the cells spatially spread from the hot side 

towards the cold side (i.e. they move downstream). This means the nodes of the gravitationally 

modulated wave have reversed their direction of propagation with respect to the vibration-less 

condition (recall pure hydrothermal waves propagate in the upstream direction as extensively 

discussed in the preceding text). This may be seen as a first practical occurrence of the principle by 

which the application of a proper modulation strategy may be used to induce a desired spatio-

temporal change resulting in disturbance nodes travelling in the positive (upstream) or negative 

(downstream) direction, or not travelling at all (a standing wave). 
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Most interestingly, when the wave reverses its sense of propagation, the related angular frequency 

(420) is much larger than the typical angular frequency of the HTW (47.1), which clearly 

indicates a significant modification of the fundamental mechanism of instability. 

Like the case of vibrations parallel to the interface, also for =/2, clockwise-oriented rolls 

separating anticlockwise rotating cells emerge. In this case, however, as noticeable in Fig. 6, their 

longitudinal (along x) size is very limited (it never reaches the same size of anticlockwise-oriented 

cells). On average the number of anticlockwise rolls is N=9. 

Interestingly, an analysis of the associated temperature field reveals the existence of 10 thermal 

plumes originating from the bottom wall and extending towards the free surface, resembling those 

that would be typical of a classical layer heated from below and subjected to standard gravity 

(Rayleigh-Bénard convection). It can be therefore argued that the mechanism driving instability has 

a strong component of buoyancy nature (i.e. related to the inertial action produced by vibrations; the 

reader is referred to Sect. IV for some additional insights into these dynamics).  

 

 

 

 
 
Figure 7: Marangoni-vibrational flow (Ma=3x104, =103, Ra=1x106, B=Ra/Ma=33, =/2, 
vibrations perpendicular to liquid/gas interface, min= -169.5, max=178.5, 24.85, streamlines 
are shown in eight snapshots evenly distributed during the timeframe  =2/, 193). The 
additional bottom contour map shows a snapshot of the related temperature field. 
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An increase in the Rayleigh number (Ra=1x106, =/2, Fig. 7) determines an increase in size of 

the clockwise-oriented rolls. Figure 7, showing the typical sequence of stages evolution in the 

period 2/, indicates that although counterclockwise rolls are the dominant mode of convection in 

frames (f-h), in the other stages of evolution they have the same size as the clockwise-oriented ones 

(as also confirmed by min and max whose absolute values are almost equal). Moreover, 

comparison of frames (a) and (h) leads to the conclusion that the direction of propagation of 

convective disturbances is still in the downstream direction. The related angular frequency, 

however, experiences a decrease with respect to the value measured for Ra=3x105. 

An additional increase in the Rayleigh number further reduces the velocity of the disturbances, 

which drops from -420 for Ra=3x105 to -193 for Ra=1x106 to -48 only for Ra=3x106 (Figure 

8).  

In line with the expectations naturally resulting from the observed decrease of the disturbance 

angular velocity for increasing values of the Rayleigh number, only standing waves have been 

obtained for values of the Rayleigh number higher than 3x106. 

 

 

 
 
Figure 8: Marangoni-vibrational flow (Ma=3x104, =103, Ra=3x106, B=Ra/Ma=102, =/2, 
vibrations perpendicular to liquid/gas interface, min= -415.8, max=340, 54, streamlines are 
shown in eight snapshots evenly distributed during the timeframe  =2/, =48). 
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A further decrease in the frequency of forcing (=102) confirms the trend discussed in the 

preceding text about the relative importance of vibration-induced steady (averaged) and oscillatory 

velocity (and temperature) contributions. In such conditions the time-averaged departure from the 

basic solution induced by the vibrational effect is very small with respect to the oscillatory 

component of such a departure. The related effects involve significant temporal modifications to the 

earlier flow solutions (the supercritical Marangoni flow), which depend basically on the intensity of 

the forcing (the Rayleigh number Ra) and its direction. 

In particular, vibrations in the vertical direction (=90°) are expected to generate time-dependent 

vorticity due to coupling with the applied horizontal temperature gradient (this alternately 

cooperating or competing with the Marangoni flow over a cycle of the modulation, Grassia and 

Homsy [21]), while vibrations applied along the layer (=0°) to produce vorticity only when 

coupled to vertical convected temperature gradients (produced by the pre-existing Marangoni flow). 

Present numerical simulations for =102 indicate that, by virtue of mechanisms depicted above, the 

flow at Ra=3x105 is rather turbulent for both =0° and =90° (not shown) in comparison to earlier 

cases at higher values of . 

 

 
 
Figure 9: Mixed Marangoni-vibrational flow (Ma=3x104, =102, Ra=3x104, B=Ra/Ma=1, =0, 
vibrations parallel to liquid/gas interface, min= -23.9, max=73.5, 5.73, streamlines are shown 
in eight snapshots evenly distributed during the timeframe  =2/). 
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Interestingly, for =0° and Ra=3x104  (see Figure 9), the interplay between the imposed horizontal 

vibrations over a cycle of the modulation and temperature gradients produced by Marangoni flow 

leads to a periodic response consisting of the temporal alternance of two main circulation systems. 

One of them is represented by a counterclockwise oriented elongated cell where fluid moves 

continuously on the free surface from the hot side towards the cold side (and then back to the hot 

side along the bottom wall). The other is a more complex configuration in which an extended region 

of reversed flow appears at the free surface. This region corresponds to the presence of an elongated 

(70 % of the overall system horizontal size, see, e.g., frames (e)-(g)) single convective cell rotating 

in the clockwise direction, while the remaining part of the layer is occupied by two rolls of lower 

size still rotating in the anticlockwise sense (located in proximity to the lateral walls). 

The former circulation system can be seen as a result of the joint action of the Marangoni effect and 

the Rayleigh-Bénard convective mode that is excited when the system is temporarily subjected to an 

acceleration acting along the positive x direction (i.e. in the part of the cycle when the stratification 

induced along the x direction by the imposed temperature gradient is unstable with respect to the 

acceleration). In this configuration the body force, which acts to displace the hot light fluid by the 

cold heavy fluid, tends to enhance the basic Marangoni return flow.  

Figure 9 also shows that the multicellular character of convective systems (with many rolls) seen 

for higher values of  is significantly reduced in such circumstances. This clearly indicates that the 

oscillatory nature of the thermofluid-dynamics field and the related large-scale disturbances must be 

ascribed essentially to the imposed forcing rather than to the existence and propagation of a 

hydrothermal wave of thermocapillary origin.  

When vibrations perpendicular to the liquid surface are considered (see Figure 10, =90° and 

Ra=3x104), comparison with the earlier simulations performed for =and  Ra=3x105, makes 

it immediately evident that a Rayleigh number decreased by one order of magnitude is no longer 

sufficient to support the reversal of direction of propagation of the wave seen in Figure 6. 
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Figure 10: Mixed Marangoni-vibrational flow (Ma=3x104, =102, Ra=3x104, B=Ra/Ma=1, 
=/2, vibrations perpendicular to liquid/gas interface, min= -8, max=47.8, 4, streamlines are 
shown in eight snapshots evenly distributed during the timeframe  =2/). 

 

 

The rolls in Figure 10, in fact, display again the classical motion in upstream direction which is 

typical of the canonical Marangoni supercritical flow (the reader is referred in particular to the left 

part of the figure). Nevertheless a large-scale disturbance traveling in the same direction of the 

surface flow (downstream) can be still identified. Originating from the hot side it propagates on the 

background flow causing a visible weakening of the rolls. Under the impact of such a disturbance, 

any roll belonging to the Marangoni multicellular structure is weakened for a limited time until the 

disturbance moves to the next roll in the downstream direction. Such a disturbance travels with the 

angular velocity of the forcing acceleration (). 
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Figure 11: Mixed Marangoni-vibrational flow (Ma=3x104, =102, Ra=1x105, B=Ra/Ma=3.3, 
=/2, vibrations perpendicular to liquid/gas interface, min= -29, max=57.6, 6.2, streamlines 
are shown in eight snapshots evenly distributed during the timeframe  =2/). 

 

An increase in the Rayleigh number from Ra=3x104 to 105, does not change the general qualitative 

behaviour. Two disturbances propagating in opposite directions can be still clearly identified 

(Figure 11). Some quantitative changes, however, must be taken into account. Indeed, it can be seen 

that the convective disturbance of buoyant nature is now strong enough to cause the emergence of 

clockwise oriented cells in some stages during a cycle of modulation (more precisely, when the 

vibration-induced acceleration is directed from the bottom wall towards the free surface, i.e. in 

positive y direction; frames (a-c)). Buoyancy also makes the disturbance travelling downstream the 

dominant mode of convection when the acceleration is reversed (acceleration directed from the 

surface towards the bottom wall, i.e. in the negative y direction; frames (d-h)).  
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E. Resonant States 

 

In this section we briefly investigate the possible existence of “resonances”, i.e. of special 

convective (resonant) states in which the frequency of the mechanical vibrations is equal to the 

“natural” frequency related to an oscillatory instability of the “base” flow (in our case the travelling 

HTW that occurs in the unmodulated case). 

This may be regarded as a special case of situations where the frequency of forcing and the 

frequency of the hydrothermal wave related to Marangoni flow have the same order of magnitude 

(see the simulations discussed in Sect. IIID for =102).  

It is shown here how special types of spatiotemporal resonances can arise for =HTW because this 

condition permits selection of different interacting spatial modes. Accordingly, a wider flexibility in 

possible oscillatory behaviours (which can form) is allowed. 

 

 
 
Figure 12: Mixed Marangoni-vibrational flow (Ma=3x104, =HTW, Ra=3x104, B=Ra/Ma=1, 
=0, vibrations parallel to liquid/gas interface, min= -27.4, max=73, 5.9, streamlines are 
shown in eight snapshots evenly distributed during the timeframe HTW). 

 

Along these lines, Figure 12 indicates that when the case of horizontal vibrations is considered, 

although the dynamics resemble those already discussed for =102 (with the periodic emergence of 

a region of reversed flow and the interface), the pattern displays a richer variety of oscillatory 



Physical Review E, Accepted for publication on April 18th 2016 
 

 21

modes. Indeed, two main stages of oscillatory behaviour can be observed in a period 2/, with 

rolls propagating in the upstream direction at the beginning (frames (a-d)) as expected for pure 

Marangoni flow, and then moving in the opposite direction when the main circulation system driven 

by the joint action of Marangoni effects and buoyancy is taken over by the elongated clockwise 

oriented cell responsible for the reversed flow at the interface. 

 

 

 
Figure 13: Mixed Marangoni-vibrational flow (Ma=3x104, =HTW, Ra=3x104, B=Ra/Ma=1, 
=/2, vibrations perpendicular to liquid/gas interface, min= -7.7, max=49.5, 4.1, streamlines 
are shown in eight snapshots evenly distributed during the timeframe HTW).  
 

Again, two counteracting effects can be observed in the case of vibrations perpendicular to the 

interface (Figure 13). Rolls propagate in the upstream direction as in the vibration-less case, but 

their motion is slowed down by a disturbance periodically emerging at the hot size and propagating 

to the other (cold) side over a period. Such a disturbance causes a weakening of the rolls it meets, 

and, at the same time, it promotes the formation of a single elongated cell (via the coalescence of 

weakened component rolls). 

Correspondingly, isotherms display a very interesting alternance of almost horizontal isotherms 

(vertical stratification induced by the Marangoni effect) and plumes (of Rayleigh-Bénard origin) 

originating from the bottom wall due to buoyancy. 
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IV. Discussions 

 

Having finished a description of the patterning behaviour and some related quantitative details (as a 

function of vibration direction, frequency and Rayleigh number) we now turn to interpreting the 

results described in the previous sections under an alternate point of view that may provide a more 

rigorous characterization and classification of all solutions. In particular, we will show how the 

problem becomes at once more manageable and more intuitive if it is cast in the form of maps in the 

phase space.  

 

 
Figure 14: Map of spatiotemporal states and waveforms as a function of acceleration amplitude and 
frequency in the case of vibrations parallel to the layer (=0). Legend:  Oscillatory State with 
Counter-rotating Cell (OSCC); Upstream Travelling Wave (TW); Pulso-Travelling (Upstream) 
Wave (PTW); Standing Wave (SW); Quasi-stationary State (QS); Mixed Travelling Quasi-
stationary State (MTQS); Turbulence (T).  
 

 

A summary in the case of vibrations directed along a direction parallel to the liquid layer is shown 

in Fig. 14. In this map, a diagram with  as abscissa and Ra as ordinate, three distinct regions can 

be clearly discerned. The first one is the region of “standard” HTW emergence, that is the area of 

the space of parameters (Ra, ) where the hydrothermal wave produced by Marangoni flow seems 

to be unaffected (at least from a qualitative standpoint) by the presence of vibrations (regardless of 

their acceleration amplitude and frequency). From a purely technical standpoint, this region would 

correspond to “safe” conditions for the execution of an ideal space experiment aimed at studying 

the formation mechanism of hydrothermal waves induced by Marangoni flow.  
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The opposite situation, i.e. the region in which a flow having clearly recognizable characteristics 

can no longer be identified (turbulent conditions), is also present in Figure 14 (this should be 

regarded as the worst case as opposed to the ideal situation discussed before).  

A region also exists, which separates the two limit situations above. As the reader may easily 

realize, this is region where the interesting and exotic dynamics described in the earlier sections 

occur.  

Here, in the direction of identifying in a unique and consistent way the spatio-temporal behaviour of 

the emerging oscillatory solution when initial disturbances saturate their amplitude, we classify 

definitely the solutions as: travelling (TR), standing (SR) rolls solutions (equivalent to travelling 

(TW) and standing (SW) waves, respectively), quasi-stationary (QS) convection and “mixed” states, 

namely patterns which display at the same time features pertaining to more than one of these 

fundamental modes of convection. No definition is perfect, and it is hard to disentangle a definition 

from a property, but the following categorization captures the essential aspects of the observed 

phenomena. 

By the first category we intend solutions where a clear direction of propagation of the fluid-

dynamic disturbance can be identified. The second type of flow consists of rolls “pulsating” at fixed 

positions along the horizontal extension of the layer (undergoing a remarkable periodic growth and 

decay in time and eventually a change in the sense of rotation).  

This pattern shows an appearance that is totally different from the travelling wave. In physics, a 

standing wave, is a wave (a disturbance oscillating in time) that remains in a constant position. In 

general, this phenomenon emerges as a result of the interference (superposition) of two waves 

having the same amplitude and same angular frequency , but travelling in opposite directions. 

This typically results in a field with no net disturbance transport on average along the propagation 

direction of the two component waves (the x axis in the present case for which we consider a liquid 

layer). In terms of patterning behaviour, the final effect is a series of nodes (disturbance zero 

amplitude) and anti-nodes (disturbance maximum amplitude) at fixed locations along x.  

The essentially stationary nature of the resulting pattern distinguishes the third case (QS 

convection) from the other phenomena. It is termed in this way because of the gently “fluctuating” 

nature of rolls, which change neither their position along x, nor their sense of rotation.  

The last category is given by patterns with a more or less regular spatio-temporal behaviour that can 

be seen as a combination of portions of patterns pertaining to different fundamental classes or as 

states displaying the fundamental properties of two different variants at the same time. A typical 

example along these lines is the “pulso-travelling mode” (PTW), i.e. rolls that undergo a change in 

strength while they migrate along the x-direction. 
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Figure 15: Map of spatiotemporal states and waveforms as a function of acceleration amplitude and 
frequency in the case of vibrations perpendicular to the layer (=90). Legend: Counter-propagating 
Disturbances (CD); Upstream Travelling Wave (TW); Reversed Travelling Wave [this wave travels 
in the downstream direction] (RTW); Pulso-Travelling Wave (PTW); Pulso-Travelling Reversed 
Wave (PRTW); Standing Wave (SW); Turbulence (T). 

 

A direct comparison of Fig. 15, summarizing the results for the case in which the angle formed by 

g-jitters and free liquid/gas interface is =90, with Fig. 14 leads to the more or less immediate 

realization that vibrations perpendicular to the liquid layer are, in general, less “dangerous” than 

those acting along the x axis. The region of classical HTW occurrence is much more extended with 

respect to the case =0. Also, a notable shrinkage of the region of turbulent behaviour can be 

observed.  

Interestingly, in such a case some additional varieties (in terms of characteristics of the emerging 

pattern) occur which are not present in the =0 case; we refer, in particular, to Figs. 6-7 and 10-11, 

which lead to the definition of two new categories of patterns as further described below. 

The first class (Fig. 6-7) is hereafter referred to as “reversed travelling wave” (RTW) owing to the 

sense of propagation of the disturbances, which now travel continuously in the downstream 

direction. 

The second new variant is the “mixed-traveling mode” (denoted by CD in Fig. 15), i.e. the 

oscillatory state resulting from the coexistence of two distinct disturbances traveling in opposite 

directions with different amplitudes and angular velocities (Figs. 10-11). 
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This second type of solution can be met moving along the vertical traverse at =100. The standard 

HTW existing for Ra<104 is replaced by the mixed-traveling mode with counterpropagating 

disturbances for 104<Ra<105 before a transition to turbulence occurs at higher values of Ra. 

These specific dynamics may be seen as a consequence of the increased ability of inertial 

disturbances to interfere with the delicate mechanisms supporting the HTW when they are 

perpendicular to the layer and their angular frequency is comparable to the angular frequency of the 

hydrothermal wave, i.e. when these two quantities have the same order of magnitude O()=O(). 

Indeed, an increase in  at constant Ra=105 beyond =3x102, determines a suppression of this 

fascinating behaviour, with the emergence of a pulso-travelling mode at =103 and recovery of a 

classical HTW at =104. 

Even more interesting are the dynamics encountered when moving along a vertical traverse at 

=103. For Ra>3x104, the fairly regular classical HTW (see, e.g., Fig. 2) is replaced by a pulso-

travelling mode at Ra=105; a further increase in Ra, however, determines a change in the sense of 

propagation of the disturbance thereby producing the aforementioned “reversed travelling wave” 

(Figs. 6-7).  

 

 

 
Figure 16: Reversed travelling wave - Disturbance Angular velocity (absolute value) as a function 
of Rafor =103 (the solid line is a polynomial fit with degree 2 indicating that in this regime the 
disturbance angular velocity decreases quadratically with the Rayleigh number). 

 

Given the strong increase displayed by the related angular velocity (in comparison to the pure 

Marangoni flow) when the change in the sense of propagation occurs, it can be argued that the 

disturbance is essentially thermovibrational in nature. Its sense of propagation, however, must be 

still ascribed to the presence of Marangoni flow.  

The general principle established by the linear stability analysis by Smith and Davis [36] implies 

that in the case of a basic-state flow-induced temperature distribution along y corresponding to a 

positive vertical temperature gradient, disturbances should always travel in a direction with a 
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component in the direction opposite to that of the surface flow. Albeit, the wave travelling 

downstream clearly violates this principle, one must keep in mind that the base state in the cavity is 

characterized not only by a vertical temperature gradient but also by the tendency to transport fluid 

along the interface from the hot side to the cold side due to the Marangoni surface stresses. By 

breaking the in-plane isotropy that would characterize pure thermovibrational flow, the presence of 

these stresses may explain the observed sense of propagation of rolls.  

Beyond Ra=106, this solution displays again the typical properties of a mixed mode with rolls 

traveling and pulsating at the same time. A further increase in Ra strengthens the pulsating aspect 

of the rolls (Fig. 8) with respect to their traveling nature (their velocity of propagation tends to be 

reduced as Ra is increased, Fig. 16) until a pulsating-only behaviour (standing wave) is attained for 

Ra3x106. 

At this stage, it is also worth considering some comparison with some “similar” results available in 

the literature. Notably, Zebib [27] found vertical modulation in the limit of high frequencies (i.e. the 

Gershuni’s approximation) to stabilize the hydrothermal branch for any value of Pr. The influence 

of vibrations on the hydrothermal waves was reported as a function of a dimensionless parameter 

(W) defined as:  
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~

=b2Td4/2/Pr, respectively, where  is the rate of imposed 

uniform temperature increase along the x axis (T/   in our case).  

The hydrothermal waves were observed to be stabilized (i.e. to emerge at higher values of Ma) with 

increasing W. Most interestingly, in theoretical agreement with the present results the waves could 

reverse their direction of propagation, i.e. travel in the same direction as the free surface flow at 

particular values of W depending on Pr.  

For Pr=15, W was found to be 1.5x10-1 
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which, replacing aM
~

 and aR
~

with the equivalent expressions in terms of our Ra and Ma, reads: 

 
21222 102

~
10  MaxAaMRa           (11b) 

 

For Ma=3x104 and =103, this relationship gives finally a transition Rayleigh number Ra105, 

which is in good agreement with the present findings (wave travelling in the downstream direction 

emerging only for Ra>O(105).  
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V. Conclusions 

 

We have focused on the patterning behaviour and oscillatory response of a plane liquid layer 

supporting Marangoni flow to the application of inertial disturbances of given intensity and 

frequency. In particular, attention has been concentrated on a traveling wave (HTW), which of 

Marangoni convection represents a well-known solution.  

The hydrothermal wave appears as a train of rolls moving continuously from the cold side towards 

the hot one. This relatively simple description, however, is no longer applicable as soon as 

complications, such as external periodic perturbations of inertial nature are added to the considered 

problem. 

These perturbations can prevent HTW formation at all. In general, however, there exist, between 

this limiting classical solution and turbulent behaviours in space (and/or time), numerous 

intermediate situations. In particular, on the basis of the present numerical results it is possible to 

divide the regimes of modulated supercritical Marangoni convection into three main regions: (i) 

apparently unaffected HTWs, (ii) hybrid thermocapillary-thermovibrational waves, (iii) turbulent 

convection. The second region, in turn, can be further partitioned into a zoo of possible modes of 

convection.  

The numerical simulations have shown how, in general, the behaviour at a large scale of the system 

and the resulting properties of the flow arise from detailed structures on different scales. In such a 

context, some effort has been directed to separate expressly on such scales the features which 

characterize the pattern and create its recognizable identification. Accordingly, solutions have been 

classified in detail as: travelling, standing (pulsating), quasi-stationary and “mixed” modes. This 

last category, in turn, has been split into different variants; among them: a “pulso-travelling mode”, 

i.e. rolls that undergo a change in strength while they migrate along the x-direction and a “mixed-

traveling mode”, i.e. the oscillatory state resulting from the coexistence of two distinct disturbances 

traveling in opposite directions with  different amplitudes and angular velocities. 

We have found that both large and small rolls, appearing periodically, can affect the dynamics at 

small values of the vibrations nondimensional frequency. A more precise assessment of  the impact 

of vibrations frequency () and intensity (Ra), however, has revealed that for a fixed value of Ra 

a first regime exists where large-scale disturbances are the dominant mode of convection. As this 

frequency attains progressively larger values, the large-scale disturbance is taken over by 

disturbances on a smaller scale. An additional increase in  tends to suppress also these dynamics 

leading to a full recovery of the classical HTW. By contrast, increases in Ra at a constant value of 

 cause, in general, a transition to turbulence at relatively small values of  or a tendency to 

replace travelling waves with pulsating or stationary modes at larger  (103). 

We have proved that it is somehow possible to take advantage of modulation of Marangoni 

convection induced by physical vibrations of the overall system: 1) to induce a mitigation of the 

resulting convective disturbances; 2) to control convection patterning (i.e. induce spatiotemporal 
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convective patterns with desired features); and 3) to induce changes in the system hierarchy of 

bifurcations (modify threshold parameters and features of the supercritical states). 
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