
Strathprints Institutional Repository

Hawker, G. S. and Bukhsh, W. A. and Gill, S. and Bell, K. R. W. (2016) 

Synthesis of wind time series for network adequacy assessment. In: 

Proceedings of the 19th Power Systems Computation Conference. 

Institute of Electrical and Electronics Engineers Inc., pp. 1-7. , 

This version is available at http://strathprints.strath.ac.uk/56169/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42593564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


Synthesis of wind time series for network adequacy

assessment

G. S. Hawker, W. A. Bukhsh, S. Gill, K. R. W. Bell

Institute for Energy and Environment,

Department of Electronic and Electrical Engineering,

University of Strathclyde, Glasgow, United Kingdom.

{graeme.hawker, waqquas.bukhsh, simon.gill, keith.bell}@strath.ac.uk

Abstract—When representing the stochastic characteristics of
wind generators within power system simulations, the spatial and
temporal correlations of the wind resource must be correctly
modelled to ensure that reserve and network capacity require-
ments are not underestimated. A methodology for capturing
these correlations within a vector auto-regressive (VAR) model
is presented, and applied to a large-scale reanalysis dataset of
historical wind speed data for the British Isles. This is combined
with a wind speed-to-power conversion model trained against
historically metered data from wind farms on the Great Britain
(GB) electricity system in order to derive a lightweight model
for simulating injections of wind power across a transmission
network. The model is demonstrated to adequately represent
ramp rates, both at a site and network level, as well as the
individual correlations between sites, while being suitable for
network adequacy studies which may require the simulation of
many years of operation.

Index Terms—wind energy, wind power modeling, meteorology,
autoregression.

I. INTRODUCTION

The growth in wind generation in electricity markets has

added additional complexity to power system modeling, with

an increased background of non-synchronous generation and

the requirement for adequate representation of the stochastic

characteristics of wind generators. It is well-understood that

wind is spatially correlated over large scales [1], and a

failure to correctly model such correlations in power system

simulations will lead to an over-smoothing of aggregate wind

power and an underestimation of the required reserve capacity

and inter-area flows on an electricity network [2].

Previous approaches to this problem fall into three broad

categories: the direct use of historic wind farm generation

data, e.g. [3]; direct use of wind data (either from historical

or reanalysis data) through a deterministic wind speed-to-

power conversion process, e.g. [4],[5],[6]; or the creation of

a statistical model which seeks to characterise and reproduce

the stochastic properties of the wind resource, e.g. [7], which

analyses covariance in power output between sites; [8], which
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uses a Markov chain Monte Carlo (MCMC) approach; or

[9], which uses copulas for their ability to model non-linear

dependence structures as well as signals with non-Gaussian

marginal distributions. [10] and [11] illustrate the smoothing

effect of interconnection of multiple sites, and the demon-

stration of correlated output between locations in this manner

points towards the need for models which can represent spatial

correlations.

The use of historical or reanalysis meteorological data

makes the assumption that historical conditions adequately

represent all future operational conditions, which is dependent

on the length of the dataset in use. In power system analyses

which aim to identify edge cases, such as contingency scenar-

ios for network adequacy studies, the tails of the distribution

of possible operating conditions are of particular interest, and

these may not be captured within existing data [12].

A statistical model, alternatively, aims to synthesise wind

time series from a set of equations which correctly charac-

terise the auto-correlative nature of the wind resource, and

potentially allowing the generation of much larger amounts

of time series data than may exist in historical datasets. This

can also greatly reduce the computational burden, by allowing

wind power data to be created as it is required by a wider

simulation, rather than having to handle and store data in

bulk. However, in such approaches it is key that the temporal

and spatial correlations of the natural resource are correctly

characterised, in order that the variability of wind injections

across an electrical network adequately captures the variety of

likely operating states.

The suitability of auto-regressive processes to modeling

wind speeds, in order to preserve such correlations, has been

previously demonstrated in e.g. [13] and extended to modeling

of wind power in [14], [15], [16]. This paper aims to extend

that work by selecting and parameterising a wind model

suitable to a particular electricity system, and improving the

modeling of actual power injections through the use of detailed

metered wind generation data.

In this paper, a statistical wind model based on a Vector

Auto-Regressive (VAR) process is presented and demonstrated

for the electricity network of Great Britain (GB). In Section

II, the statistical formulation is presented, followed by an

application of the model to wide area historical reanalysis

data for the British Isles (covering GB and relevant offshore



development zones) in Section III. The conversion of wind

speed to actual power injections into the transmission network,

using historical recorded wind generation data, is covered in

Section IV, and the results of synthesising power time series

are compared to historical data in Section V. The paper ends

with a discussion of the applicability of the presented model

to network adequacy and similar power system analyses in

Section VI.

The contribution of this paper is in demonstrating the appli-

cation of statistical wind and power models to large volumes

of wind and power data covering a national electricity system,

to both demonstrate the validity of reducing that data to a more

concise form, as well as demonstrating the applicability of the

approach to studies requiring the generation of a large number

of steady-state or dynamic scenarios across a network with a

high penetration of wind power. The use of a statistical model

also allows the extrapolation of the methodology to project

output of future sites, such as to model future scenarios for a

network following increased growth in wind power.

II. A VECTOR AUTO-REGRESSIVE (VAR) WIND MODEL

An n -variable vector autoregression of order p, VAR(p), is a

system of n linear equations, with each equation describing the

dynamics of one variable as a linear function of the previous

p lags of every variable in the system, including its own

p lags [17]. As a VAR model assumes stationarity of the

underlying process, it is necessary to remove cyclically varying

components of the wind speed. In [16], an inspection of

seasonal and diurnal components is undertaken in the context

of auto-regressive models, and that de-trending process is

followed here.

The wind time series is modelled as including two determin-

istic components (Eq.1), representing the annual and diurnal

trends respectively. For each measured wind node, harmonic

analysis is used to derive an annual function (Eq.2) with

Fourier terms Ω, 2Ω and 3Ω, with Ω representing the annual

angular frequency. This is subtracted from the raw dataset, and

a diurnal function (Eq.3) with Fourier terms ω and 2ω derived

with ω representing the diurnal angular frequency is derived

from the residuals. The remainder is termed the ’de-trended’

value ydt.

ydt(t) = y(t)− ya(t)− yd(t) (1)

ya(t) =a0 + a1sin(Ωt+ b1) + a2sin(2Ωt+ b2) (2)

+ a3sin(3Ωt+ b3)

yd(t) = c0 + c1sin(ωt+ d1) + c2sin(2ωt+ d2) (3)

Further partitioning of data prior to the application of Eq. 3

may be appropriate for locations subject to seasonal variance

in diurnal trends - this is discussed further in section III.

The generalised vector auto-regressive (VAR) process of

order p for the de-trended data at n nodes can be expressed

by Eq. 4:

~ydt(t) = ~Φ1~ydt(t− 1) + ~Φ2~ydt(t− 2) + ... (4)

+ ~Φp~ydt(t− p) + ~e(t)

where ~ydt(t) is the vector of size n comprising the detrended

values for all nodes at time t, and ~Φ1, ~Φ2... ~Φp are the n × n

matrices describing the inter-relationships between the nodes

at time lags 1,2...p. ~e(t) is a Gaussian noise term.

Through the use of Eqs. 1 through 4, a model of time lag

p capable of synthesising time series data for a wind field

comprising n nodes, including initial values for ~y(t−1),~y(t−
2)...~y(t−p), can be represented by pn2+(p+12)n parameters.

Simulated wind data is synthesised iteratively, by deriving

the next term of the detrended process via Eq. 4, and adding

the annual, diurnal and noise terms at each node.

III. DERIVATION OF A VAR MODEL FOR THE BRITISH

ISLES

The NASA Modern-Era Retrospective Analysis for Re-

search and Applications (MERRA) [18] is a state of the art

historical reanalysis of global atmospheric observations from

the Goddard Earth Observing System (GEOS-5), covering

34 years of observations from weather stations, balloons,

satellites, ships and aircraft, and resolved to a gridded global

model covering all major meteorological parameters.

Figure 1. Snapshot of wind speeds at 50m AGL over the British Isles at
midnight on the 1st of January 2015, interpolated from the MERRA dataset.

The MERRA dataset contains nodes corresponding to a

gridded mesh with resolution 1

2
degrees latitude by 2

3
degrees

longitude. In the latitude of the British Isles, this corresponds

to a grid of approximately 55 by 44km. The dataset includes a

set of 3 wind vectors averaged across each grid square at 2m,

10m and 50m above ground level, with a temporal resolution

of 1 hour. A snapshot of this data for the British Isles is shown

in Fig. 1.

For this study, only the 50m AGL values are used, as these

are closest to the hub heights of modern wind generators. As a

statistical wind-to-power conversion is used in the next section

of this paper, extrapolation of wind speed to actual hub heights

is not necessary - however, if this was required for a deter-

ministic wind power model then the wind model presented



Figure 2. Fitted diurnal trends against hourly averages after annual detrending for node located at 55.5N,4.0W partitioned by season.

here could be repeated for the 3 height measurements and

extrapolated at the site location following the methodology

presented in [6].

Five years of data spanning the whole years 2010 to 2014

inclusive was retrieved from the MERRA dataset for the 552

nodes covering the British Isles as depicted in Fig. 1. For

each node, the best-fit parameters for Eq. 2 were derived, and

the best-fit parameters for Eq. 3 derived from the residuals.

As the diurnal trends in the British Isles appear to vary

significantly between seasons [16], the annual residuals were

first partitioned into 4 3-month datasets in order to derive

separate diurnal trends for each period - these are shown for

an example node in Fig. 2. The summed annual and diurnal

trends for one year are illustrated against the raw values for

a sample node in Fig. 3. Fig. 4 illustrates the normality of

the data once after detrending, which is required as the VAR

process assumes normality.

The matrices for a VAR(3) model were then fitted to

the remaining residuals across all nodes, using the Python

Statsmodels package1. 10 years of data was simulated from

the fitted model, using the final value of the training dataset

as initial values, and added to the annual and diurnal trends at

1http://statsmodels.sourceforge.net/

each node to produce the simulated wind time series for each

node.

IV. CONVERSION OF WIND SPEED TO POWER

The wind speed to power conversion model for a wind

generator at a specified location consists of two steps: firstly,

the weighted average ug of the wind speeds ui at the nearest

k weather nodes is calculated from a set of weightings

w1, w2, ..., wk, as in Eq. 5.

ug(t) =

∑k

i=1
wiui

∑k

i=1
wi

(5)

Secondly, the site power output value pg is linearly interpo-

lated by applying a discrete power curve function consisting

of wind speed/power pairs upc(m), ppc(m), as in Eq. 6.

pg(t) = ppc(m)

+
ug(t)− upc(m)

upc(m+ 1)− upc(m)
(ppc(m+ 1)− ppc(m)) (6)

where:

upc(m) <= ug(t) < upc(m+ 1)



Figure 3. Raw MERRA wind data from 2014 for node located at 55.5N,4.0W
with summed fitted annual and diurnal trends.

Figure 4. Distribution of wind speeds for node located at 55.5N,4.0W before
(solid line) and after (dashed line) detrending.

In order to derive the node weightings and power curve

speed/power pairs, metered energy data (on a half-hourly res-

olution) for wind generators participating in the GB Balancing

Mechanism was retrieved for the period 1st January 2013 to

31st March 2015. This includes all transmission-connected

wind generators, as well as larger embedded wind generators.

The geographical distribution of the sites for which data was

available throughout this period is shown in Fig. 5. Six further

sites were excluded from the dataset due to being subject to

significant export constraints during this period, leaving 46

generators totalling 4869MW of installed capacity. The data

was aggregated by hour to match the resolution of the MERRA

wind model.

Two filters were applied to the data in order to ensure, as far

as possible, the dataset captured normal generator operation:

1) A curtailment filter was applied to remove all hourly dat-

apoints where sites were subject to external constraints

by the GB System Operator, using reported Bid-Offer

Acceptance instructions from the published Balancing

Mechanism data2.

2www.bmreports.com

Figure 5. Location and relative capacities of the 46 wind generators used in
the power simulation for Great Britain. Some smaller sites are obscured by
larger generators in their vicinity.

2) A coarse availability filter was applied to remove hourly

datapoints where it appeared that the site was unable

to generate at non-nominal levels. This was achieved

by performing an initial run of the power-curve fitting

described below, and then filtering all points where the

total output of the site was below 20% of the expected

value, and the site was expected to be producing more

than 10% of its rated power.

The dataset was split into training data covering 1st January

2013 to 30th June 2014, and validation data covering 1st July

2014 to 31st March 2015.

The power curve and wind weightings were derived by

least-squares fitting against the filtered training data using the

Levenberg-Marquardt algorithm. The 4 nearest weather nodes

were used for each site, corresponding to the bounding points

of the gridded model. Initial node weightings were set to being

equal wi = 0.25 ∀i ∈ [1, 4], and the initial wind/power pairs

are for a current pitch-regulated wind generator, aggregated

across multiple turbines, as published in [19]. Power values

outside of the domain of this power curve are assumed to be

zero.

An example of a power curve generated by this process for

one wind generator is given in fig. 6, illustrating the datapoints

which were removed either due to being during periods of

external curtailment, or through the coarse availability filter

described above.

In order to synthesise power time series for each generator,

the derived node weightings and power curve values were

applied on a per-site basis to the wind time series generated

from the VAR(3) model.



Figure 6. Derived power curve for Whitelee 1 Wind Farm, showing filtered data points.

V. VALIDATION

The validation dataset specified in the previous section was

used to determine the accuracy of the derived power curves

to the metered wind generator output. The average R2 value

across all 46 wind generators was 0.839, with a range of

0.770 to 0.899. A large proportion of the error appears to be

generated around the rated power of the site, where a small

change in wind speed can have a large effect on the power

output, from turbines shutting down due to high wind speeds.

Other sources of error will include time-variant properties

such as site operational availability (other than that captured

by the data filter), local terrain effects in combination with

wind direction, and local turbulence conditions. An interesting

outcome was that the average r-squared value improved by

0.02 if the wind weightings used in Eq. 5 were not constrained

to positive values - this may reflect the temporal lag in weather

fronts moving across neighbouring MERRA nodes.

The outputs of the VAR simulation must be validated

according to two criteria: the extent to which spatial corre-

lations between wind locations are preserved, and the extent

to which rates of change of power are reproduced. It is not

possible to directly compare the VAR synthesis to measured

data and extract e.g. a Mean Absolute Error (such as for

a traditional forecasting methodology), as only the starting

vector of wind speeds ~y(t0) is derived from physical data.

Hence the distributions of linear and spatial correlations are

compared to that of the original data instead.

Figure 7. Comparison of linear correlation between randomly sampled node
pairs from the original MERRA wind data and the VAR(3) simulated wind
data.

Fig. 7 shows the spatial correlations between randomly sam-

pled wind node pairs in the original MERRA dataset compared

to the outputs of the VAR(3) model. This demonstrates a close

reproduction of the extent of spatial correlation observed in

the reanalysis data. While the VAR(3) model shows a slightly



Figure 8. Ramp rate distributions as a proportion of total rated power.

lower spatial correlation for node pairs located at significant

distances, the correlation values have a lower variance around

the best-fit line. One possible explanation for this difference

is that large-scale wind patterns are often driven by complex

weather systems which may lead to increased correlation over

significant distances during particular events - as the VAR

model is a statistical model rather than a meteorological one,

it is incapable of reproducing these events.

Fig. 8 shows the ramp rates at each wind generator, and the

total ramp rates for all generators in the system, derived as a

proportion of rated power (either for the individual site or the

total capacity of 4869MW). This shows that the distributions

of ramp rates for the simulated data are very similar to that

of the raw metered dataset. The simulated distributions show

a slightly higher variance (i.e. display proportionately greater

ramp rates) than in the original metered data.

VI. CONCLUSIONS

The statistical wind power model presented in this paper

demonstrates a means of representing wind injections into a

power network using a relatively low number of parameters

with few computational requirements compared to direct use of

large-scale numerical weather models. Similarly, the iterative

nature of the process of synthesising time series data means

that it can be used for ’just-in-time’ simulation without the

need for storage of large volumes of data. This makes it

particularly suitable for power system studies concerned with

issues such as network and reserve adequacy, which may

require the simulation of many years of operation in order

to analyse all possible operational scenarios.

The statistically-derived wind-to-power conversion model

provides a good fit against metered data, but use of, and

validation against, data from extant wind generation remains

difficult in terms of quantifying the impact of local conditions

both in terms of wind flow/turbulence and operational avail-

ability of turbines. While theoretical wind-to-power models

provide some ability to quantify these factors in power system

simulations, validation of such models against national-scale

datasets still requires these issues to be addressed.

It is noted that in this study, and others which use similar

data sources, large-scale wind datasets have (by necessity

of computational burden) a low temporal resolution, and a

power system planner may be interested in ramp rates and

correlations on a sub-hourly resolution. However, spectral

analysis of wind speeds shows a significant spectral gap at

a frequency of around 1 hour [20], suggesting that it may be

suitable to utilise a seperate statistical model - likely with a

high proportion of noise - to interpolate between hourly values

derived from a model such as has been presented.
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