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Abstract A new planktonic ecosystem model was constructed for the Eastern Bering Sea based on obser-

vations from the 2007–2010 BEST/BSIERP (Bering Ecosystem Study/Bering Sea Integrated Ecosystem Research

Program) field program. When run with forcing from a data-assimilative ice-ocean hindcast of 1971–2012, the

model performs well against observations of spring bloom time evolution (phytoplankton and microzooplank-

ton biomass, growth and grazing rates, and ratios among new, regenerated, and export production). On the

southern middle shelf (578N, station M2), the model replicates the generally inverse relationship between ice-

retreat timing and spring bloom timing known from observations, and the simpler direct relationship between

the two that has been observed on the northern middle shelf (628N, station M8). The relationship between

simulated mean primary production and mean temperature in spring (15 February to 15 July) is generally pos-

itive, although this was found to be an indirect relationship which does not continue to apply across a future

projection of temperature and ice cover in the 2040s. At M2, the leading direct controls on total spring pri-

mary production are found to be advective and turbulent nutrient supply, suggesting that mesoscale, wind-

driven processes—advective transport and storminess—may be crucial to long-term trends in spring primary

production in the southeastern Bering Sea, with temperature and ice cover playing only indirect roles. Sensi-

tivity experiments suggest that direct dependence of planktonic growth and metabolic rates on temperature

is less significant overall than the other drivers correlated with temperature described above.

1. Introduction

The Eastern Bering Sea (EBS) hosts extremely rich pelagic and benthic fisheries and also experiences strong

interannual variation in both fisheries recruitment and the underlying physics and plankton biology [Hunt

et al., 2011; Coyle et al., 2011; Stabeno et al., 2012a]. This paper uses a new planktonic ecosystem model to

integrate diverse observations from The Bering Sea Project (BEST/BSIERP, Bering Ecosystem Study/Bering

Sea Integrated Ecosystem Research Program: Wiese et al. [2012]) and to answer the question: What controls

variation in spring primary production (in both magnitude and timing) across the range of warm and cold

annual conditions seen over the past 40 years? This question is part of a larger class of problems in global

change biology: the response of planktonic systems to multiple drivers; in particular, the response of high-

latitude marine ecosystems to changing temperature, ice-linked phenology, and other mesoscale processes

when the relationships among these processes are themselves changing. We use a new future model pro-

jection of temperature and ice cover in the 2040s to sketch one possible future for the Bering Sea, and to

comment on the problem of prediction under multiple, highly correlated drivers.

1.1. Interannual Variation and Links From Climate to Food Webs

The EBS is a broad (>500 km) shelf system, divided by persistent fronts into inner (<50 m water depth), middle

(50–100 m), and outer (100–200 m) domains [Coachman, 1986]. Seasonal ice cover is controlled by a balance of

southward advection from Bering Strait and in situ melting and dispersion, and thus by a combination of wind
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forcing and temperature [Stabeno et al., 2012a]. The northern shelf (>608N) consistently sees seasonal ice cover,

while ice cover on the southern shelf is highly variable: at the long-termmooring site M2 (Figure 1) [Stabeno et al.,

2012a], the period of ice cover varied from several months to effectively zero among the years of the 2000s.

Hydrography and currents in the EBS respond strongly to variations in the strength and position of the

Aleutian Low [Danielson et al., 2011a] and other North Pacific-scale drivers [Rodionov et al., 2007; Danielson

et al., 2011b]. The warm anomaly of the early 2000s and the cold anomaly of the late 2000s (Figure 1) have

received much attention [e.g., Grebmeier et al., 2006; Coyle et al., 2011; Sigler et al., 2014], largely because

these anomalies left large imprints on fisheries recruitment and zooplankton composition. Large crustacean

zooplankton were a much larger fraction of the late-summer mesozooplankton community on the southern

shelf in cold years of the 2000s [Eisner et al., 2014]. The pattern on the northern shelf was consistent with

this, but both the environmental and the biological contrast there were much smaller. A reduction in large

copepod and euphausiid abundance is thought to drive both bottom-up and top-down stresses on juvenile

pollock and salmon [Hunt et al., 2011; Coyle et al., 2011].

Several factors could contribute to warm year/cold year variation in large zooplankton abundance at the

end of the productive season: variation in total productivity of their phytoplankton and microzooplankton

prey; direct temperature effects on summer growth and development and on winter metabolic losses; tim-

ing of prey availability and match/mismatch with the zooplankters’ ontogenetic cycle. Prey productivity and

timing can be further broken down into its pelagic and ice-algal components [Cooper et al., 2013], and ice

algae may be particularly important from a timing perspective [Durbin and Casas, 2014; Daase et al., 2013].

A follow-on model study will consider this full array of factors linking climate to large zooplankton, whereas

the present study is concerned with pelagic phytoplankton and microzooplankton production in spring

(February–July), the most productive period of the year [Stabeno et al., 2012a; Sigler et al., 2014]. The model

presented here was designed to answer the question: how much, and by what mechanisms, does environ-

mental variation between cold and warm conditions affect phytoplankton and microzooplankton produc-

tion and energy input into the pelagic and benthic food webs?

Figure 1. (a) Annual-mean temperature averaged over 0–35 m water depth on the EBS middle-outer shelf, from the BESTMAS model. Averages are shown for the northern (>608N: dashed) and

southern (<608N: solid) shelves. (b) Annual-maximum ice cover and date of ice retreat (the last date on which ice cover> 10%) averaged over four contrasting sets of years (Figure 1a, colored

dots, also from BESTMAS).
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Figure 1 shows the warm and cold

years of the 2000s in the context of

the even colder period of the early

1970s and the potentially even

warmer conditions that could arrive

by mid-century, according to a model

hindcast/projection—described in

detail below—using BESTMAS (Bering

Ecosystem Study Ice-ocean Modeling

and Assimilation System: Zhang et al.

[2010a]). Average surface water tem-

perature varies coherently between

the northern and southern shelves

(Figure 1a) and is accompanied by

variation in ice cover (Figure 1b).

Note that in the north, this is felt pri-

marily as variation in ice-retreat tim-

ing of 1–2 month, whereas in the

south, not only is the variation in tim-

ing even greater, but the extent of

maximum ice cover varies latitudi-

nally by hundreds of km as well. Ice

cover regulates pelagic production

via both light penetration and stratification. Note that in ice-free areas of the EBS, thermal stratification

can be intense [Stabeno et al., 2012b] but, counterintuitively, summer stratification is not well correlated

with surface temperature [Ladd and Stabeno, 2012]. Nutrient availability depends on both stratification

and horizontal transport [Danielson et al., 2011a].

1.2. Multidecadal Variation

It is likely that as the earth, and high latitudes in particular, continue to warm over coming decades, this set of

environmental drivers will not all change in familiar proportions. The multidecadal, anthropogenic shift in the

thermodynamic budget of the region is a fundamentally different mechanism from the mesoscale atmos-

pheric variability that drives interannual anomalies in temperature, ice cover, transport, and storminess, and

thus we should not expect multidecadal trends in water temperature, ice cover, advective nutrient replenish-

ment, and turbulent mixing to follow the same correlation lines as recent interannual variability. Indeed, the

model projection used in this study (Figure 2; see section 2.1 below), depicts one possible future in which

novel combinations of ice influence and mean temperature are commonplace by the 2040s, especially in the

south.

The question then arises: as higher temperatures come to the EBS and other polar and subpolar regions,

are the higher temperatures themselves likely to be the driver of crucial ecological shifts in the plankton, or

important mainly as a proxy for correlated mechanisms (e.g., changes in ice-linked phenology or weather

patterns)? A number of recent studies have argued for the former, drawing on the metabolic theory of ecol-

ogy [Brown et al., 2004] and related empirical studies to argue that differences in the temperature depend-

ence of photosynthesis and respiration, or the net temperature responses of phytoplankton and their

grazers, will lead to a tipping point for Arctic planktonic ecosystems with 58C–68C of additional warming

[Rose and Caron, 2007; Holding et al., 2013; Alcaraz et al., 2014]. A model like the one constructed and eval-

uated here is well suited to testing the internal consistency of this hypothesis: i.e., if the premise of differen-

ces in physiological temperature sensitivities is granted, does the conclusion of tipping-point behavior

follow? (Note that this question is different from asking whether Arctic marine ecosystems are likely to

show tipping-point behavior in general, a question larger than any specific mathematical model.) We will

show that over the range of conditions experienced in the EBS, and projected to be experienced there over

coming decades, direct physiological responses to temperature in fact have only minor consequences com-

pared with environmental correlates of temperature that modulate the light and nutrient environment for

phytoplankton.

Figure 2. Relationship between ice cover and temperature, averaged 15 February

to 15 July for the northern and southern middle-outer shelf separately, for each of

the BESTMAS model years shown in Figure 1. Regression lines are shown for four

subsets (north/south and hindcast/future).
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2. The Model

2.1. Physical Hindcast and Forecast

The BESTMAS (Bering Ecosystem Study ice-ocean Modeling and Assimilation System) model has been

described and validated in detail by Zhang et al. [2010a] and Zhang et al. [2012]. The model domain covers

the Northern Hemisphere north of 398N, with highest horizontal resolution along the Alaskan coast and in

the Eastern Bering Sea. Average grid spacing in the Bering Sea is 7 km, ranging from 2 km along the Alaskan

coast to 12 km along the Aleutian Chain. Twenty-six ocean grid cells across Bering Strait allow a good con-

nection between the Bering Sea and the Arctic Ocean.

The sea ice component of BESTMAS is an eight-category thickness and enthalpy distribution (TED) sea ice

model [Hibler, 1980; Zhang and Rothrock, 2001] that employs a teardrop viscous-plastic rheology [Zhang

and Rothrock, 2005], a mechanical redistribution function for ice ridging [Thorndike et al., 1975; Hibler, 1980],

and a line successive relaxation (LSR) dynamics model to solve the ice momentum equation [Zhang and

Hibler, 1997]. The TED ice model also includes a snow thickness distribution model following Flato and Hibler

[1995]. It assimilates satellite ice concentration and SST data following Lindsay and Zhang [2006]. The ocean

model is based on the Parallel Ocean Program (POP) developed at Los Alamos National Laboratory [Smith

et al., 1992; Dukowicz and Smith, 1994], and incorporates forcing from eight tidal constituents. Open bound-

ary conditions at 398N are taken from a global ice-ocean modeling and assimilation system [Zhang, 2005].

Atmospheric forcing is taken from daily NCEP/NCAR Reanalysis data (National Centers for Environmental

Prediction/National Center for Atmospheric Research: Kalnay et al. [1996]). Model forcing also includes fresh-

water river runoff into the Bering and Arctic seas. For the Bering Sea, monthly climatological runoffs of the

Anadyr, Yukon, and Kuskokwim Rivers are used [Zhang et al., 2010a]. Zhang et al. [2010a] demonstrated that

BESTMAS is able to capture much of the observed spatiotemporal variability of sea ice extent and thickness,

the basic wind-forced and tide-forced features of upper ocean circulation, and seasonal and interannual var-

iability of surface ocean temperatures at mooring site M2 (Figure 3).

This study uses daily output from a BESTMAS hindcast 1971–2012, similar to the period analyzed by Zhang

et al. [2012]. It also uses a projection of conditions 2040–2050, which was created by randomly resampling

Figure 3. Study area and sites of model-data comparisons. Long-term mooring sites M2 and M8 [Stabeno et al., 2012a], along with PROBES

Station 12 [Sambrotto et al., 1986], are marked with 50 km radius circles, the area over which model time series were extracted from

particle-path ensembles. The bounds for CTD matchups with the ‘‘IEB60’’ model experiment (see text) are marked by light and dark green

rectangles for spring and summer 2009, with individual CTD stations marked by small circles. The 50, 100, 150, and 200 m isobaths are also

shown.
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years from the hindcast and adding a

linear temperature trend to the atmos-

pheric forcing. The trend used is 88C

by 2100, close to the observed trend

1977–2012, and also close to the

ensemble mean of IPCC global climate

model projections for the Arctic Ocean

[IPCC, 2007; Wang et al., 2012]. We will

refer to this model projection as ‘‘the

2040s’’ for brevity, although of course

if the course of future warming differs

from the mean of current models, con-

ditions like those depicted by this

model run might arise sooner or later

than the 2040s. Note that this

approach does not attempt to resolve

future change in mesoscale atmos-

pheric patterns or storm frequency

and intensity.

2.2. Ecosystem Model

The ecosystem model is a relatively

simple, six-compartment nitrogen budget (Figure 4), which tracks NO3, NH4, phytoplankton biomass P,

microzooplankton biomass Z, and small and large detritus DS, DL. This model structure is a simplification of

an initial model version containing two phytoplankton classes, microzooplankton, stage-resolved copepods,

and euphausiids. Extensive experiments varying both the structure and parameter values in this model

(�200,000 cases) led to the conclusion that the added complexity offered no improvement in performance

against the phytoplankton/microzooplankton observations shown below (section 3). This finding is consist-

ent with the more formal investigation of model complexity by Ward et al. [2013]. Note also that in contrast

to the microzooplankton, whose measured and modeled grazing rates are comparable to phytoplankton

community growth rates, Campbell et al. [2016] determined mesozooplankton grazing to be <8% of pri-

mary production during bloom conditions, and so it is not surprising that the effect of omitting them from

the model on both growth and export in spring falls within parameter uncertainty. (This might not be the

case during summer or full-year simulations.)

The ecosystem model was not run fully coupled to BESTMAS in three dimensions, but rather in ensembles

of one-dimensional, flow-following water-column environments. Time series of depth-resolved tempera-

ture T and vertical tracer diffusivity j, along with photosynthetically available radiation PAR0 at the water

surface under ice, were extracted from BESTMAS following the trajectories of particles that track the

0–35 m depth-average currents. Particles were released 15 February of each model year, one per horizon-

tal grid cell. These depth-versus-time fields form individual, noninteracting environments in which the

ecosystem model is run. Each environment spans the entire water column with time-varying bottom

depth, and has 15 vertical levels with resolution concentrated at the surface. Once initialized with a profile

of nitrate concentration on 15 February, there are no exchanges through the sidewalls or bottom of each

environment. This approach neglects horizontal gradients below the euphotic zone and nonlinear inter-

actions between neighboring plankton communities, but the massive scale of the shelf system relative to

typical near-surface currents [Stabeno et al., 2012b] and—crucially—the limited duration of our simula-

tions (150 days) make the method appropriate, as it would not be for, say, yearlong simulations of a nar-

row shelf. This method offers huge gains in computational efficiency relative to a three-dimensional

coupled model and therefore the opportunity to properly explore the model parameter space. The

Lagrangian basis of the extracted physical forcing time series overcomes the worst of the limitations of

one-dimensional Eulerian plankton models, which are in fact still widespread and useful tools [Fasham

et al., 2006; Bagniewski et al., 2011], many others).

With one exception (the IEB60 ensemble described below), each of the ensembles used in this study

was constructed as the set of particle trajectories that pass within 50 km of a given station at some

Figure 4. Structure of the ecosystem model. Solid arrows denote growth and dot-

ted arrows denote regeneration pathways.
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point within the simulation period (5). This hybrid Lagrangian/Eulerian method may appear roundabout

compared with simply running a conventional, fixed-in-space, one-dimensional model at station, but it

offers the crucial advantage of resolving (depth-averaged) lateral transport past each station, an ability

which we will show is important to the interpretation of results at M2 (section 3.2). Each model simula-

tion runs 15 February to 15 July of a given year, resolving the spring bloom and the transition into

summer. This period was selected to match the seasonal coverage of BEST/BSIERP observations, 2007–

2010.

Initial profiles of nitrate are constructed as an empirical function of water-column depth H alone:

NOinitial
3 ðz;HÞ52

z

H
NObot

3 1 11
z

H

� �

NOsurf
3 (1a)

where

NObot
3 5ð42mmolm23Þ H2

ð116mÞ21H2
(1b)

NOsurf
3 5ð24mmolm23Þ H2

ð86mÞ21H2
(1c)

Values in (1b) and (1c) are based on Type III fits to bottle samples within 10 m of the bottom and 2 m of

the surface, respectively, from spring 2009 BEST observations [Mordy et al., 2012]. Because of the sim-

plicity of this initial condition, interannual variation in over-winter replenishment of the nutrient pool is

only partially resolved. A full treatment of this mechanism probably requires a fully coupled 3-D

simulation.

The model equations are as follows:

dP

dt
5qPlðE;NO3;NH4ÞP2qZ IðPÞZ2qRmPP2qPmaggP

2
1mixing (2)

dZ

dt
5�qZ IðPÞZ2qZmZZ

2
1mixing (3)

dDS

dt
5ð12�2fexÞqZ IðPÞZ1qRmPP2qRrreminDS1sinking1mixing (4)

dDL

dt
5qPmaggP

2
2qRrreminDL1sinking1mixing (5)

dNH4

dt
52fj

uNH4NH4

Ntot

qPlP1fexqZ IðPÞZ1qRrreminðDS1DLÞ2qRrnitrNH41mixing (6)

dNO3

dt
52fj

NO3

Ntot

qPlP1qRrnitrNH41mixing (7)

See Table 1 for a summary of definitions and parameter values. Briefly, phytoplankton population growth is

a balance among individual growth (the l term), microzooplankton grazing, mortality, and aggregation;

microzooplankton population growth is a balance between prey assimilation and mortality; and the detrital

pools are controlled by a balance between these biological loss and uptake terms, remineralization, sinking,

and nitrification. The factors qP, qZ, and qR represent the temperature dependencies of phytoplankton

metabolism, zooplankton metabolism, and respiration/bacterial metabolism respectively, each controlled

by a Q10 factor, e.g.,

qP � Q
T=10�C
P (8)

where T is temperature. The base model case uses a Q10 of 2 for phytoplankton growth and 2.8 [Hansen

et al., 1997] for processes mediated by bacteria and zooplankton. The implications of this and a spectrum of

alternate choices are considered in section 3.4 below. Note that QZ is applied to both the growth/ingestion

of the explicitly modeled microzooplankton and also the growth/ingestion of their implicit predators, i.e.,

microzooplankton mortality.
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2.3. Phytoplankton Growth

Individual phytoplankton growth and nutrient uptake are considered equivalent in this model, as in many

NPZ-style models. Specific growth rate l depends on light and nutrients as

l5
aE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2E21l
2
0

p

 !

Ntot

kmin12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kminNtot

p
1Ntot

� �

l0 (9)

The maximal rate l0 was based on summer observations by Zeeman and Jensen [1990], temperature cor-

rected using a Q10 of 2 and a seasonal temperature difference of 78C. Nutrient limitation follows the

optimal-uptake scheme of Smith et al. [2009] in which, consistent with global observations [Collos et al.,

2005], the effective half-saturation kmin12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kminNtot

p
increases with nutrient concentration from a minimum

value kmin, based on an optimization of intracellular resources for cell-surface uptake and internal transport.

Ntot5NO31uNH4NH4 is effective total nutrient concentration, where uNH4 is a preference for NH4 defined

by analogy with a common formulation of grazing on multiple prey types [Gentleman et al., 2003].

Photosynthetically available radiation (PAR) at a given depth, E(z), is attenuated from BESTMAS-derived sur-

face PAR E0 (0.43 shortwave radiation) by both seawater and overlying phytoplankton:

Table 1. Free Parameters of the Ecosystem Modela

Parameter Symbol Value Units Source

Phytoplankton

Maximum P growth rate l0 1.2 day21 Summer data [Zeeman and Jensen, 1990],

temperature corrected

Light attenuation by seawater attsw 0.05 m21

Light attenuation by phytoplankton attP 0.006 m21
lM N21 1% light level and chl concentration,

spring 2009 ice-free stations

(E. Cokelet, personal communication, 2015)

Initial growth-light slope, winter awin 0.01 ðWm22Þ21
d21

Initial growth-light slope, summer asum 0.16 ðWm22Þ21
d21 Sambrotto et al. [1986], bloom maximum

Light level of awin/asum transition Ecrit 30 Wm22

Width of awin/asum transition DE 5 Wm22

Minimum half-saturation for NO3 kmin 0.16 lM N Collos et al. [2005]

Preference for NH4 uNH4 2

Phytoplankton C:N ratio 9 mol:mol Spring 2009 observations

[Sambrotto et al., 2016]

Chlorophyll:N ratio 2.2 mg:lM C : chl550 at bloom stations

Phytoplankton mortality mP 0.03 day21

Phytoplankton loss via aggregation magg 0.009 (lM N)21 d21

Zooplankton

Max microzooplankton ingestion rate I0 3.4 day21 Dilution experiments, spring

2009 [Sherr et al., 2013]

Grazing half-saturation K 1 lM N Sherr and Sherr [2009]

Microzooplankton growth efficiency � 0.3 Hansen et al. [1997]

Fraction of grazing excreted to NH4 fex 0.35

Microzooplankton mortality mZ 1.5 day21

Regeneration and Export

Small detritus sinking rate wS 3 m d21

Large detritus sinking rate wL 100 m d21

Detrital remineralization rate rremin 0.05 day21

Nitrification rate rnitr 0.03 day21 cf. Zhang et al. [2010b]

Temperature Dependence

Q10 for phytoplankton QP 2 Bissinger et al. [2008]

Q10 for zooplankton QZ 2.8 Hansen et al. [1997]

Q10 for bacterial respiration QR 2.8

Initial Conditions

Integrated phytoplankon P 6 lM N m prebloom chlorophyll, spring 2009

[Lomas et al., 2012]

Integrated microzooplankton Z 0.4 lM N m prebloom C biomass, spring

2009 [Sherr et al., 2013]

Small detritus DS 0

Large detritus DL 0

Nitrate NO3 equation (1) Mordy et al. [2012]

Ammonium NH4 0

a
lM N � mmol nitrogen m23. All rates are reported at 08C. Parameter values calculated from local data are in bold.
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EðzÞ5E0

ðsurface

z

ðattsw1attPPðzÞÞ dz (10)

In contrast to most simple NPZ models, the initial slope of the growth-light curve a is not fixed but

rather varies seasonally. This behavior is based on observations by Sambrotto et al. [1986], who found

that a increased more than fourfold over 8 days in the lead-up to the spring bloom in the southeastern

Bering Sea in 1981 (Figure 5). Over these 8 days, the mixed layer shoaled from >60 m to <20 m, sug-

gesting a release from light limitation. For simplicity, we have ignored the simultaneous increase in l0

seen in those observations; allowing seasonal increase in either of these parameters would likely pro-

duce qualitatively similar model behavior, and varying both would be redundant. Either physiological

shifts or community shifts might lead to this sort of variability in a. In general, shade-adapted phyto-

plankton show lower l0 (i.e., maximum photosynthetic rate) than high-light adapted communities

[Palmer et al., 2011], and both ice cover and high levels of turbulent mixing in ice-free areas in winter/

early spring would lead to shade adaptation [Cianelli et al., 2004; Palmer et al., 2011]. Note that these

high-latitude observations run exactly contrary to the assumption of optimality-based models like Pah-

low and Oschlies [2013] in which phytoplankton dynamically allocate their resources in order to maxi-

mize instantaneous growth rate.

In our model, a changes between a winter/prebloom value awin and a spring bloom/summer value asum, in

response to a light index Eeff:

a5awin1
1

2
ðasum2awinÞ 11tanh

Eeff2Ecrit

DE

� �

(11)

Eeff uses a few essential scalings to represent light conditions as experienced by phytoplankton taking into

account both surface light E0 and turbulent diffusivity j:

Figure 5. (a) Modeled time histories of a according to equation (11) for each hindcast year at mooring M2. Black dots show the two values

measured at PROBES Station 12 (see Figure 3) in 1981 [Sambrotto et al., 1986, Figure 14]. The rate of increase between these two values is

consistent with the range of rates of increase that arise in the model. (b) Black dots give daily values of the surface light-limitation coeffi-

cient aE0ðl201a
2E20Þ

21
(see (9)) as a function of surface PAR E0, across all hindcast years at M2. The upper and lower bounds on this func-

tional response, corresponding to a5asum and a5awin respectively, are shown as red and blue lines. Scatter in the functional response

arises from the dependence of a on turbulent mixing in addition to E0.
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Eeff5E0exp 2attsw

ffiffiffiffiffiffiffiffiffiffiffiffi

max j

l0

r� �

(12)

The square-root quantity is proportional to the depth over which a near-surface population is mixed in one

doubling time. This formulation is inexact—appropriate as a scaling law only—but in the absence of a

detailed physiological model of how the phytoplankton accomplish this change in a, and with the constants

Ecrit and DE determined by tuning, further detail was deemed to be unwarranted. This scheme for a pro-

duces rates of change in light sensitivity consistent with the observations by Sambrotto et al. [1986] (Figure

5a; slope of model curves in spring versus two observational values). A more specific rationale for this

scheme over the alternatives is discussed in section 3.1.1.

2.4. Grazing, Losses, and Regeneration

Phytoplankton in the model are subject to both a constant linear mortality mP representing viral lysis and

predation by mesozooplankton, and also a density-dependent loss to the fast-sinking DL pool representing

aggregation of diatom blooms. The model performs distinctly better (with respect to f-ratio and e-ratio: sec-

tion 3.1.1) with both of these loss terms included than it does with either alone.

A generally larger loss is explicit grazing by microzooplankton Z. The community grazing rate g, as meas-

ured by dilution experiments [Sherr et al., 2013; Stoecker et al., 2013a] is given by

gP � qZ IðPÞZ (13)

where I(P) is the microzooplankton ingestion rate, here assumed to follow a simple saturating response:

IðPÞ5I0
P

K1P
(14)

I0 was determined empirically (3.46 1.4 day21) by taking the mean of gP=Z (see 13) over seven dilution

experiments from spring 2009 [Sherr et al., 2013] in which P > 400 mg C m23, i.e., P � K , with K estimated

coarsely from the laboratory experiments reviewed by Sherr and Sherr [2009] as 1 mmol N m23. As did

Banas et al. [2009], we credit the descriptive power of our very simple NPZ formulation (Figure 4) largely to

the availability of a local, empirical constraint on microzooplankton grazing.

Microzooplankton mortality is quadratic. This form replicates the time-evolution of mesozooplankton preda-

tion as captured by an expanded version of the model with explicit, stage-resolved, Calanus-like copepods.

Other predators whose production is timed differently relative to the spring bloom would lead to mortality

on microzooplankton with a different functional form.

Slow-sinking and fast-sinking detrital pools export material from the surface layer. Estimates of overall

e-ratio (vertical export as a fraction of primary production) by Cross et al. [2012] (0.296 0.12 at 40 m depth

for the seasonal range modeled here) were used to constrain the choice of DS sinking rate ws. The model

proved to be insensitive to DL sinking rate as long as the value is on the order of 10 m d21 or higher. The

detrital pools remineralize to NH4 and NH4 nitrifies back to NO3 at relatively low rates compared with values

commonly assumed in temperate plankton models, but similar to those used by Zhang et al. [2010b] in an

Arctic model. This geographic variation is broadly consistent with the explicit temperature dependence QR

assumed here.

2.5. Tuning and Validation Experiments

Two data sets were used for tuning and validation (Figure 3). First, we assembled a process-rich time series

resolving an intense ice-edge spring bloom near 608N in late April/early May 2009 from a variety of 2009

BEST/BSIERP observations [Lomas et al., 2012; Mordy et al., 2012; Stabeno et al., 2012b; Stoecker et al., 2013a;

Sherr et al., 2013; Sambrotto et al., 2016]. Figure 3 shows an ensemble of 98 model particle trajectories that

intersect the region where the bloom peak was sampled (1748W–1768W, 598N–608N) on 27 April 2009 during

the spring BEST/BSIERP cruise. The trajectories diverge over the following months, and so observations over

a larger area (173.758W–176.258W, 58.58N–61.258N) were selected from the summer cruise to represent the

fate of the sampled bloom community. Time series of BESTMAS forcing along these 98 trajectories are shown

in Figure 6 (note the temporary ice retreat in March 2009 described by Miksis-Olds et al. [2013]) and spring

and summer cruise observations along with model results are shown in Figure 7. This observational data set

(‘‘IEB60’’) served as the primary standard for parameter tuning.
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Second, Sigler et al. [2014] report

statistics describing bloom timing

and other metrics at four long-

term mooring stations along the

70 m isobath. We constructed

model time series at M2 and M8,

the northernmost and southern-

most of these (Figures 3 and 8) and

compared them with the Sigler

et al. [2014] statistics. This served

as a test of the spatial and tempo-

ral portability of the model, and

also a basis for tuning Ecrit and DE.

Values for attsw, awin, mP, magg, mZ,

wS, and rremin were determined

through a series of Monte Carlo

experiments in which model runs

using random combinations of

parameters (n � 100,000, along-

side another 100,000 exploring

structural variants) were compared

with a suite of biomass, rate, and

ecosystem-function metrics at

IEB60. The same analysis was used

to verify the appropriateness of a

priori values for l0, attP, attsum, I0,

rnitr, and biomass initial conditions.

Sources for these and other param-

eter values are given in Table 1.3. Results

3.1. Model Validation

3.1.1. Evolution of an Ice-Edge

Spring Bloom

The time course of the spring

bloom at IEB60 is shown in Figure

7, and metrics of model performance are listed in Table 2. Nitrate in the upper 35 m declined precipitously

as phytoplankton biomass increased to very high levels (Figures 7a and 7b). Observations of nitrate around

27 April shown great variability (0–15 mmol m23) but this appears to be explicable by variation in ice cover

and light within this 100 km region (Figure 6, spread in model ensemble). Error in nitrate in July (Figure 7a)

is probably a combination of errors in vertical structure near the pycnocline—some of the high observatio-

nal values represent pycnoclines shallower than 35 m, rather than cross-pycnocline fluxes—but also a fail-

ure of our model to reproduce the intermittent resupply of nitrate to the surface layer via patchy wind

mixing. This may reflect the limits of our Lagrangian ensemble approach compared with a full three-

dimensional biogeochemical simulation.

The model captures the timing of the spring bloom within a few days (Figure 7b). Data in this region of the

shelf from other BEST field years [Sambrotto et al., 2016] confirm the approximately 20 day spin-up time of

the bloom. Peak integrated biomass (measured by two independent data sets: Lomas et al. [2012] and Sam-

brotto et al. [2016]) is biased low in the model by 21% even after extensive tuning, because error in this met-

ric is involved in a strong tradeoff with errors in e-ratio and prebloom biomass. Bias in summer

phytoplankton biomass is smaller in absolute terms but higher in relative terms; we did not weight this

time period as strongly in the parameter-tuning process.

Note that the model value for light attenuation by phytoplankton attP was chosen based on a detailed,

unpublished calculation of 1% light level at spring 2009 BEST stations in relation to chlorophyll concentra-

tion (E. Cokelet, personal communication, 2015). The value used for attsw is an ad hoc downward adjustment of

the estimate from that analysis (from approximately 0.1 to 0.05 m21). This adjustment proved to be necessary

Figure 6. Forcing time series for the IEB60 ensemble (see Figures 3 and 7) extracted

from BESTMAS.
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to capture the magnitude of the IEB60 bloom without distortions in other metrics. We speculate that this artifi-

cial reduction in light attenuation compensates for bias in the vertical structure of turbulent mixing either in

BESTMAS or in our one-dimensional reimplementation. At IEB60, our ad hoc adjustment in attsw is equivalent to

a change of 0.15 day21 in mean growth rate over the euphotic zone, enough to cause a twofold change in bio-

mass accumulation over 5 days. It would only take a bias of 4 m in the depth over which euphotic-zone phyto-

plankton are mixed in the model—a bias smaller than our vertical resolution—to have a comparable effect on

growth rate. These extreme sensitivities suggest that beyond a factor of 2 or so, it would be unwarranted to

place special emphasis on any model’s skill at reproducing absolute chlorophyll concentration in this region,

compared with other timing or functional metrics.

The model reproduces observed rates and rate ratios at IEB60 well. Four independent observational esti-

mates of phytoplankton community growth rate, from microzooplankton dilution experiments and 14C, 13C,

and 15N uptake experiments, are shown in (Figure 7c). The model ensemble-average time series of l (Figure

Figure 7. Time history of an ice-edge bloom in spring 2009 from observations and the model. Individual model cases—responses to the 98 individual forcing trajectories in the IEB60

ensemble (Figures 3 and 6)—are shown as gray lines, and the ensemble mean as a black line. Solid circles denote standing-stock measurements (nitrate and phytoplankton: light and

dark green; microzooplankton: red), while open circles denote rate measurements (microzooplankton dilution experiments: red; 14C, 13C, 15N uptake experiments: blue, light green, dark

green). Red bars in Figures 7c and 7e denote areal means from Stoecker et al. [2013a] (north/mid-north, middle/outer, in that study) over the duration of the summer 2009 cruise. An

empirical estimate of mean export ratio 61 std dev (red) is shown along with the model value in Figure 7d (inset). Data sources are discussed in the text.
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7c) matches the observations as well as well the four observational time series match each other, following

the dilution experiment data (red) most closely. In spring (but not in summer), the model ensemble actually

replicates the severalfold near-instantaneous variance of the observations, suggesting that this variance

could be the result of physically forced, <100 km scale variation in bloom evolution.

The ratio of new, nitrate driven to total primary production (f) was estimated from the ratio of NO3 to NH4

uptake (Figure 7d) [Sambrotto et al., 2016]. The f-ratio decreased from �1 at the height of the bloom to

�0.3 in July (Figure 7d), and the model—despite inclusion of only one phytoplankton compartment—repli-

cated this shift. The mean e-ratio for the spring-summer analysis period is also shown in Figure 7d, as esti-

mated by Cross et al. [2012] for the middle-outer shelf as a whole and for the model at IEB60, where the

modeled value falls within the range of empirical uncertainty.

Figure 8. Example of an ensemble of surface-layer particle trajectories used as the environment for a seasonal model run. (a) Blue lines indicate particles passing within 50 km of moor-

ing station M2 (red circle) at some point within the 15 February to 15 July model run in 2002 (an example year). (b) The same particle paths, plotted as latitude versus time; each continu-

ous line represents a distinct ecosystem model run. The segments of these trajectories< 50 km from M2 are shown in red. Final model time series at M2 were constructed by averaging

across the highlighted segments.

Table 2. Detailed Metrics of Model Performance at IEB60, Spring-Summer 2009a

Variable Time Period Obs. Value Model Value

NO3, 0–35 m (lM N) 10–11 Apr (prebloom) 16.5 17.4

26–30 Apr (early bloom) 7.7 15.0

6–7 May (late bloom) 1.9 1.6

26 Jun to 6 Jul (summer) 4.3 0

Integrated phytoplankton

(g C m22)

10–11 Apr 0.86 1.7

26–30 Apr 34 10

6–7 May 47 37

26 Jun to 6 Jul 2.0 11

Integrated microzooplankton

(g C m22)

10–11 Apr 0.0028 0.0055

26–30 Apr 0.066 0.016

6–7 May 0.18 0.11

Phytoplankton specific growth

rate (day21)

10–11 Apr 0.091 0.024

26–30 Apr 0.38 0.41

6–7 May 0.19 0.24

26 Jun to 6 Jul 0.22 0.21

Specific grazing rate (day21) 10–11 Apr 0 0.0076

26–30 Apr 0.15 0.019

6–7 May 0.17 0.12

26 Jun to 6 Jul 0.24 0.17

f-ratio 26–30 Apr 0.94 0.99

6–7 May 0.71 0.50

26 Jun to 6 Jul 0.31 0.46

e-ratio 15 Feb to 15 Jul �0.29 0.26

aSources: Mordy et al. [2012], Lomas et al. [2012], Cross et al. [2012], Sherr et al. [2013], Stoecker et al. [2013a], and Sambrotto et al.

[2016].
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Finally, the model also captures microzooplankton biomass and grazing rate during the bloom (Figures 7e

and 7f). Summer observations of microzooplankton biomass [Stoecker et al., 2013b] were not sufficiently

resolved in the vertical to estimate in situ integrated biomass with confidence, and thus are not included.

Only one of the July dilution experiments described by Stoecker et al. [2013a] fell within the narrow

matchup region for the IEB60 ensemble and so the absolute in situ grazing rate is not as well constrained in

summer, but the ratio g=l for the ensemble in July is consistent with the observed ratio of rates for broader

spatial averages in the Stoecker et al. [2013a] data set (Figures 7c and 7e).

Over the course of these observations at IEB60, the >5lm fraction of phytoplankton biomass changes sig-

nificantly, from �0.5 before the bloom to �1 during the bloom to �0.2 in July (not shown). This data set

is thus a complex test of a simple, 1-P NPZ model like ours, although it is parameterized to allow two

modes of time variation in community functional responses (nutrient half-saturation and growth-light ini-

tial slope: see above) which can be taken in part to represent species composition shifts. As mentioned

above, we ran extensive Monte Carlo experiments in a version of the model with a second phytoplankton

compartment which was allowed its own nutrient and light responses, a distinct mortality rate, and a dis-

tinct susceptibility to microzooplankton grazing. We did not find any parameterization among these 2-P

model cases that noticably outperformed the 1-P model version described here. Replicating the time evo-

lution of the >5lm biomass fraction proved to be a major constraint on parameter combinations, but a

constraint that was only weakly related to other skill criteria. At the same time, our Monte Carlo experi-

ments clearly indicated that seasonal variation in a as described above was essential to reproducing the

magnitude of ice-edge spring blooms while avoiding spurious late winter blooms. (Note that likely bias in

the model light field is in the wrong direction to resolve the issue [Ladd and Bond, 2002], and that the ear-

liest spring 2009 biomass and rate observations (Figure 7, below) are difficult to reconcile with any top-

down explanation.)

3.1.2. Patterns of Bloom Timing

The diversity of simultaneous BEST/BSIERP observations allows us to verify the consistency of stocks, rates,

and functional relationships during the IEB60 bloom event to a degree seldom possible with field data. A

separate question, however, is whether the model, tuned to the IEB60 data set, is able to capture the diver-

sity of spring bloom time histories across subregions and across years in the EBS. Figure 9a shows the rela-

tionship between ice-retreat timing tice (the date on which ice cover drops below 10%) and bloom timing

tbloom (the date of maximum integrated biomass) for all hindcast years at M2 and M8. The results replicate

the essential pattern described by Hunt et al. [2002, 2011] and more recently quantified by Brown and Arrigo

[2013] and Sigler et al. [2014] using satellite and moored observations, respectively. At M8, tice and tbloom are

close and well correlated, indicating an ice-retreat-triggered bloom in all years. At M2, the same association

is seen in some years, but when tice is earlier than yearday 80, the spring bloom is delayed until May or early

June. The model replicates this qualitative pattern (after tuning of Ecrit and DE, but not other parameters,

against the M2 data shown here). Year-by-year comparisons between observed and predicted tbloom are

quite good at M8 (Figure 9b), with a Willmott skill score of 0.86, where 1 represents a perfect model and 0 a

model that performs no better than the mean of the observations [Willmott, 1981]. At M2 (Figure 9c), skill is

significant (0.68) but errors of up to a month occur in some years. Comparisons of modeled and observed

tbloom at PROBES Station 12 [Sambrotto et al., 1986, Figure 3] are also shown in Figure 9c to extend the

record.

Brown and Arrigo [2013] also report satellite-based tbloom at M2 for nine ice-free years that overlap with the

Sigler et al. [2014] moored observations. Remarkably, these two observational time series disagree with

each other to the same extent as the model disagrees with either of them. Root-mean-square differences

between model and mooring, model and satellite, and mooring and satellite are 16, 19, and 21 days, respec-

tively (n5 9). Differences among the means are smaller (5, 1, and 4 days for the same three comparisons).

This suggests that the date of maximum chlorophyll is an inherently noisy or ill-defined metric and that

apparent signals with variance less than 2 weeks or so may not be significant.

3.2. Drivers of Interannual Variability

Full time series of modeled near-surface temperature, ice cover, and integrated phytoplankton and micro-

zooplankton biomass at M8 and M2 are shown in Figures 10 and 11. Hindcast years have been resorted by

mean temperature to better show relationships. A few patterns are evident by inspection: at M8, warm con-

ditions are associated with earlier ice retreat, the timing of the spring bloom and ice retreat are closely
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associated, and microzooplankton biomass follows phytoplankton biomass, although somewhat integrated

and smoothed. At M2, spring bloom timing follows ice-retreat timing in the minority of years when ice is

present, but does not show a monotonic relationship with mean temperature overall. Modeled phytoplank-

ton blooms at M2 are intermittent, with multiple peaks in most years, as seen in moored fluorometer obser-

vations there [Stabeno et al., 2012a]. This intermittency is likely to contribute to the noisiness of the date of

maximum chlorophyll as a timing metric.

There are a large number of confounded correlations among variables in these results, which complicate

their mechanistic interpretation. In this section, we use a systematic correlation analysis and some ancillary

model experiments to determine which relationships between environmental conditions and phytoplank-

ton responses are actually causal in our modeled northern and southern EBS.

Modeled primary production is positively correlated with temperature at both M2 and M8 (Table 3 and Figure

12). Either direct effects or indirect correlates of temperature could be responsible, however. By ‘‘direct

effects,’’ we mean the appearances of temperature within the ecosystem model equations: these include

direct physiological effects (like the Q10 dependence of phytoplankton maximum growth rate) and

community-metabolism effects (like the imposed difference in Q10 responses for phytoplankton and zoo-

plankton). We will return to these community dynamics in more detail later, but for now the crucial result is

Figure 9. (a) Relationship between spring bloom timing and ice-retreat timing at M2 and M8 from observations [Sigler et al., 2014] (open

circles) and the model (solid dots). Years with no ice at M2 or ice retreat earlier than 15 February (the start of the NPZ simulation period)

are plotted at 15 February, rather than omitted. (b and c) Date of the spring bloom maximum (as in Figures 9a and 9b) over time. Model

time series are shown as lines, observations as open circles. Black line/crosses in Figure 9c show M2 results; for Probes Station 2, compare

red circles (obs.) with red crosses (model).
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that modeled primary production changes only marginally when we turn off all these direct temperature

effects entirely. Figure 13 shows a comparison between mean 15 February to 15 July integrated primary pro-

duction at M2 and M8 in the model base case and in a variant in which we set QP5QZ5QR51, so that all bio-

logical rates maintain their 08C base value across all conditions. Results at M8 are essentially indistinguishable,

Figure 10. Model time series of (c and d) vertically integrated phytoplankton and microzooplankton biomass at M8 in relation to (a and b)

temperature and fractional ice cover, for every year in the model hindcast and future projection. Years have been sorted by mean surface

temperature within the hindcast and projection periods, in order to show patterns more clearly; individual years are labeled at top and

bottom, color-coded, and staggered by decade.
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and at M2 show a simple, close-to-linear bias. As one would expect, results from an intermediate case in which

QP5QZ5QR52 (the QP base value) fall in between the case shown in Figure 13 and the 1:1 line.

The implication is that direct effects of temperature play only a small role in determining which model years

have higher primary production than others. Results for tbloom (not shown) are noisier but likewise indicate no

overall causal role on the interannual scale we are considering. Among the correlates of temperature, then,

Figure 11. Time series for all years in the model hindcast and projection, as in Figure 10, for station M2.
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which are most directly responsible for interannual variation in bloom timing and mean spring primary pro-

duction (hereafter PP) in the north and the south?

1. tbloom at M8: mean spring fractional ice cover ice, mean PAR at the water surface (under-ice when ice is

present) E0 , and the mean of the composite light index defined above Eeff are all well correlated with

tbloom (Figure 12 and Table 3) and with each other (Table 4). The most straightforward interpretation is

that ice cover controls light availability and thereby the timing of the bloom.

2. tbloom at M2: in the south, however, neither surface light availability (ice; E0 ) nor turbulent mixing (�j, the

0–35 m, 1 April to 15 July turbulent diffusivity) is well correlated with tbloom by itself, but the composite

light index Eeff , which combines these surface and subsurface effects on light availability, is a moderately

good predictor (r25 0.52: Table 3). This is consistent with the classic picture (see section 3.1.2) in which

ice retreat controls bloom timing at M2 in some years while early spring storms delay the bloom in

others.

3. PP at M8: primary production in the north is correlated with the same factors as tbloom, and inversely with

tbloom, implying that interannual variation in PP mainly reflects the position of the bloom within the 15

February to 15 July analysis window (see Figure 10).

4. PP at M2: here the correlation with tbloom is weakly positive, indicating different dynamics. PP is corre-

lated with ice and E0 overall (Figure 12) but these relationships fail to explain twofold variation in PP

among ice-free years. The best correlate of PP at M2 is mean temperature, but this is necessarily an indi-

rect relationship, as discussed above. The next best correlate is mean along-shelf transport urot , calcu-

lated from the net motion 15 February to 15 July of particle trajectories that intersect M2 (see Figure 8).

The component of net displacement oriented 1208 was taken as along-shelf transport. (In our Lagrangian

model setup, this metric indicates the water depth of the starting positions of each year’s ensemble of

Table 3. Coefficients of Determination r2 Between Forcing and Phytoplankton-Response Variables Across Model Hindcast Years, 1971–

2012a

T35 ice tice E0 Eeff �j urot

tbloom, M8 (North) 0.82 0.88 0.83 0.90 0.79

PP , M8 (North) 0.43 0.55 0.58 0.65 0.60 0.26

tbloom, M2 (South) 0.30 0.52

PP , M2 (South) 0.64 0.53 0.48 0.47 0.46 0.54

aOnly correlations significant at the 0.1% confidence level are shown. Forcing variables included are 0–35 m mean temperature T35
(8C), mean fractional ice cover ice , date of ice retreat tice (yearday), mean PAR at the water surface E0 (W m22), mean light index Eeff (W

m22; see equation (12)), mean 0–35 m turbulent diffusivity �j (m22 s21), and mean along-shelf transport urot (km d21). Response varia-

bles are date of spring bloom maximum tbloom and mean integrated primary production PP (g C m22 d21). All means are taken over the

entire simulation period, 15 February to 15 July, except �j , which is taken 1 April to 15 July.

Figure 12. Relationships between six environmental forcing metrics and two metrics of the phytoplankton response, at M2 (orange) and M8 (blue). Each symbol represents one model

hindcast year, averaged 15 February to 15 July except as otherwise noted. Cf. Table 3.
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one-dimensional cases, and thus the

nitrate initial condition (equation (1).)

Since we are analyzing results as Euler-

ian time series extracted from the

Lagrangian ensemble (Figure 8), urot

can also be interpreted in a conven-

tional way as the strength of advection

of deep water nutrients past the sta-

tion.) The residuals between PP and

urot at M2 (not shown) are in turn cor-

related with �j. This correlation is posi-

tive, suggesting the effect of

turbulence on nutrient supply, not

light limitation as above. Consistent

with this interpretation, the slope

between interannual variations in PP

and NOinitial
3 , relative to their 1971–

2012 means, is steeper than 1:1 (Figure

14), whereas ancillary model experi-

ments in which we manipulated

NOinitial
3 directly (varying the leading

coefficients in (1c) and (1b) by 630%)

show an almost exactly 1:1 relationship

(Figure 14). This suggests that multiple mechanisms of interannual variation in nutrient supply—one lat-

eral, one vertical—are at work simultaneously at M2, both of them correlated with seasonal-mean

temperature.

3.3. Implications for Future Change

The importance of distinguishing causal from merely correlated environmental drivers becomes clear when

we switch our focus to longer-term change in the model. Figure 15 shows tbloom and PP at M2 in relation to

a subset of the drivers shown in Figure 12. Here the 1971–1976 cold period is distinguished from the gener-

ally warmer period that followed (1977–2012: see Figure 1) and from the 2040s projection discussed above.

The relationships that we identified above as causal remain consistent across the full model run, whereas

relationships that we identified as indirect do not (most dramatically, compare Figures 15a and 15b). In this

model run, the mean difference in bloom timing between warm and cold years described by the original

Oscillating Control Hypothesis [Hunt et al., 2002])—later blooms in warmer years—appears to be contingent

on a particular decadal-scale regime, and does not continue to hold farther into either the past or the

future. (Predictions based on ice cover

rather than temperature are more con-

sistent: not shown.)

Likewise, 2040s PP in this model projec-

tion falls well below an extrapolation

based on regression to temperature

across the model hindcast years (bias

of 0.5 g C m22 d21, comparable to the

mean difference in this model

between warm and cold years of the

2000s). Relationships with Eeff and �j

suggest why: these proximate con-

trols on light and nutrient limitation

are similar across the model hindcast

and projection, even as seasonal-

mean temperature changes by >28C.

This result is as likely to be a

Figure 13. Comparison between mean primary production in the model base

case and an alternate parameterization with direct effects of temperature

omitted (QP5QZ5QR51), across hindcast years.

Table 4. Coefficients of Determination r2 Among Forcing Variables Across

Model Hindcast Years, 1971–2012a

ice tice E0 Eeff �j urot

M8 (North)

T35 0.81 0.83 0.80 0.61 0.34

ice 0.87 0.92 0.74

tice 0.93 0.75 0.26

E0 0.86

Eeff
�j

M2 (South)

T35 0.73 0.67 0.65 0.68 0.28

ice 0.80 0.95 0.47

tice 0.73 0.52

E0 0.25 0.32

Eeff
�j 0.34

aOnly correlations significant at the 0.1% confidence level are shown. Varia-

bles are defined as in Table 3.
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methodological artifact as a proper

prediction, since the model projection

used here is driven by a trend in the

regional thermodynamics but not

trends in the mesoscale dynamics

that control seasonal flushing and

storm mixing. Given the diagnosis of

environmental drivers based on the

model hindcast, there is no reason to

think that we can extrapolate future

change in tbloom or PP in the southern,

increasingly ice-free EBS from gross

measures of surface temperature and

ice cover (Figure 2). This cautionary

result appears to be true for either

statistical or dynamical extrapolations.

3.4. Trophic Coupling in Spring

Some researchers have suggested that

in high-latitude systems, the degree of

coupling between primary and second-

ary zooplankton production is highly

temperature dependent and that this

dependence is a major factor in structur-

ing those ecosystems. Rose and Caron

[2007], for example, suggest that microzooplankton grazing is limited by low temperatures to the point that it

cannot keep up with phytoplankton growth at near-freezing temperatures, and that this partial decoupling is a

major driver of the intense algal blooms often seen at high latitudes. Our model—or rather, the measured com-

munity growth and grazing rates at �08C that the model is based on [Sherr et al., 2013]—is inconsistent with

this hypothesized mechanism, and thus consistent with Sherr and Sherr [2009] and Franzè and Lavrentyev

[2014]. When we compare time histories of microzooplankton and phytoplankton biomass at M2 and M8 (Fig-

ure 16a), we do see a greater time lag between the phytoplankton and their grazers at the colder site (phase-

space trajectories more elliptical at M8, more linear at M2). Superficially this seems to corroborate the Rose and

Caron [2007] hypothesis of a greater decoupling in colder conditions, but when we turn off direct temperature

effects in the model (QP5QZ5QR51), the pattern persists almost unchanged (Figure 16a, dashed versus solid

lines). The relative phasing of phytoplankton and microzooplankton at these model stations must be controlled

not by the metabolic mechanisms Rose and Caron [2007] proposed, but rather by other aspects of the environ-

ment, perhaps the suddenness of ice-retreat-regulated spring blooms relative to those in ice-free conditions

(Figures 12g and 16a). Furthermore, in the seasonal average, the model shows very little variation in the relation-

ship between phytoplankton and microzooplankton production (Figure 16b): the latter is a near-constant frac-

tion of the former. Microzooplankton appear to be tightly coupled to their prey even at the lowest

temperatures observed in this system.

Other studies have suggested that the different temperature responses in autotrophs and heterotrophs will

drive a restructuring of high-latitude ecosystems as those systems continue to warm. Many studies have

found temperature sensitivity in zooplankton and marine bacteria to be higher than that of phytoplankton

[Pomeroy and Wiebe, 2001; Vaquer-Sunyer et al., 2010; Chen et al., 2012], although the effective Q10 values of

these sensitivities are highly variable and the commonly assumed difference between heterotroph and

autotroph responses is not universally observed [Robinson and Williams, 1993]. (Some of the variability in

these past results may arise from inappropriateness of the Q10 functional form as opposed to a linear [Mon-

tagnes et al., 2003] or Arrhenius-type response [Brown et al., 2004]; we have kept our analysis in terms of Q10

because of its familiarity.) The metabolic theory of ecology is also generally taken to predict a difference in

temperature sensitivity between photosynthesis and respiration [Brown et al., 2004; L�opez-Urrutia et al.,

2006], and this hypothesis has motivated experimental studies [Holding et al., 2013] and empirical and theo-

retical arguments that with �58C of warming, polar ecosystems pass a tipping point where respiration

Figure 14. (blue) Relationship between initial NO3 concentration (vertical mean

and mean across ensemble members) and 15 February to 15 July mean primary

production across model hindcast years at M2. (red) Comparison between model

base case (mean of hindcast years/blue symbols) and two alternate model cases

in which initial NO3 was adjusted upward and downward by 30%. Values are

shown as percent change relative to model base-case mean.
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exceeds photosynthesis and carbon flows change fundamentally. A model like ours cannot test the ultimate

validity of this ‘‘metabolic tipping point’’ hypothesis (i.e., whether the premise of a sensitivity difference is

correct, or whether the conclusion of a tipping point accurately predicts the future), but the model does

provide a framework in which we can impose the premise and test whether the conclusion follows, in EBS-

like conditions.

Figure 17 shows results of two final ensembles of model cases in which the model was forced by spring

2009 conditions at M8 (a relatively cold year and location) and spring 2004 conditions at M2 (relatively

warm conditions) under an array of combinations of QP and QZ5QR. A range of estimates of these parame-

ters from the literature (converted where necessary from activation energies over 228C–88C) are shown for

Figure 15. Modeled mean primary production and date of spring bloom in relation to selected environmental metrics at M2, for the

1971–1976 cold period (green, open triangles), 1979–2012 period (orange circles), and 2040s projection (black, solid triangles). Orange and

green symbols together correspond to the orange symbols in Figure 12.

Figure 16. (a) Relative phasing of modeled phytoplankton and microzooplankton biomass, over the course of each hindcast spring at M2 (orange/yellow) and M8 (blue). Solid lines

show the model base case, dashed lines the alternate QP5QZ5QR51 parameterization with direct effects of temperature omitted. Time from 15 February to 15 July runs generally

counter-clockwise along these phase-space trajectories. (b) Relationship between primary and microzooplankton production across hindcast and projected future years at M2 and M8.
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comparison. As expected, as one moves from the balanced-response end of the parameter space (QP � QZ )

to the high-QZ end, export ratio decreases (Figures 17b and 17d), suggesting a shift toward a recycling com-

munity fueled increasingly by regenerated nutrients. Primary production does not collapse under this

increased grazing pressure but rather increases at both stations with increasing QZ, indicating that gains

due to increased nutrient retention outweigh the direct losses to grazing. It is important to note the modest

scale of the response of ecosystem function to QP, QZ: at M2 in 2004, for example, primary production only

varies 6% over the entire parameter range.

To more directly address the hypothesis of a polar-ecosystems tipping point at 58C of warming, we ran an

additional set of cases which duplicate the hindcasts shown in Figures 17a–17d but with 58C added uni-

formly (i.e., rate constants increased by Q
5=10
P ; Q

5=10
R ; Q

5=10
Z ). Percent changes in the six metrics are shown in

Figures 17e–17h. Results are consistent in direction with the sensitivity experiment in Figures 17a–17d:

increasing grazing rate relative to maximum phytoplankton growth rate decreases export and increases

mean primary production, to a modest degree (comparable to direct effects of temperature in the global

models reviewed by Laufk€otter et al. [2015]). None of the results here could be described as the passing of a

tipping point in plankton productivity.

Figure 17. (a–d) Primary production and export ratio as functions of imposed Q10 values for phytoplankton and zooplankton, averaged 10

April to 15 July, for 2009 at M8 (relatively cold conditions) and 2004 at M2 (warm conditions). The model base case is marked with a plus.

Literature estimates of QP and QZ are indicated at the margins of (d); one outlier (QZ5 6.2, the ‘‘Arctic’’ case reported by Vaquer-Sunyer

et al. [2010]) is off the scale. Note the narrow range on the color scales. (e–h) As in Figures 17a–17d, but showing relative change in each

metric between the case shown in Figures 17a–17d and a version in which temperature was uniformly raised 58C.
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4. Discussion

4.1. Implications for Higher Trophic Levels

As discussed above, large interannual variation in the recruitment of pollock, salmon, and other pelagics

have been linked to the relative abundance of lipid-rich zooplankton taxa in the EBS [Hunt et al., 2011; Coyle

et al., 2011]. It remains an open question how exactly temperature, ice cover, and primary production mag-

nitude and phenology combine to influence large zooplankton production, but this model study serves to

narrow the likely hypotheses. In short, it appears much more likely that climate change shapes mesozoo-

plankton production and composition through the timing of prey availability (both phytoplankton and

microzooplankton) than through the overall magnitude of prey production. Over recent decades (1979–

2012), our model suggests that total spring/early summer primary production has generally been higher in

warmer years, opposite to the observed variation in large zooplankton [Eisner et al., 2014]. At the same time,

the timing of the spring pelagic phytoplankton/microzooplankton bloom varies by a month or more

between cold and warm years, in the model as in long-term observations (Figure 9), which is more than

enough to have major interactions with copepod life histories [Varpe et al., 2007; Ji et al., 2010; Mackas et al.,

2012]. A number of recent studies [Søreide et al., 2010; Wassmann and Reigstad, 2011; Daase et al., 2013]

have suggested that this type of climate-linked phenological change could have critical impacts on the

future recruitment success of large arctic/subarctic copepod taxa like Calanus, in which life history and

reproductive strategy are closely tied to the spring bloom. Our model does not include in-ice algal produc-

tion, which may be critical to large copepods in this system [Durbin and Casas, 2014] as in others [Daase

et al., 2013]. If ice algal prey are available in February–March in cold years but not warm years in the south-

ern EBS, this would further amplify the modeled interannual timing pattern (Figures 9 and 12a), and work

against the variation in total production (Figure 12g).

4.2. Implications for the Metabolic Tipping-Point Hypothesis

We have argued that variation in spring bloom magnitude is modest on the interannual scale compared

with phenological and other environmental variation. It is, of course, still possible that on a longer time

scale, the planktonic ecosystem could prove to have a sigmoidal response to temperature [Holding et al.,

2013], with the multidecadal warming trend leading to only small effects in the short term but driving the

system past a tipping point at some point in the future. As discussed above, metabolic theory and recent

observational and experimental studies have proposed exactly this. Our model strongly suggests that even

if we grant the central premise—that respiration has a steeper temperature dependence than photosynthe-

sis—the consequences may not be what the metabolic tipping-point hypothesis suggests (Figure 17). Even

large variations in the temperature sensitivities of phytoplankton, zooplankton, and bacterial respiration

drive only modest overall effects on primary and export production, and increasing zooplankton/bacterial

rates actually increase total primary production in this model, rather than reducing it. For differences

between phytoplankton and zooplankton Q10 values in the vicinity of the median prediction found in the

literature (model base case; annotations, Figure 17b), we find that 58C of warming is accompanied by a 20–

30% increase in primary production.

Why would this model result be so different from, say, mesocosm studies of this topic such as Holding et al.

[2013]? We speculate that the issue is the complexity of the biogeochemical role played by microzooplank-

ton in a dynamic system where total primary production is controlled more by the physics of nutrient sup-

ply, as described above, than by grazing losses. It is true that the intense spring blooms seen in the

northern EBS appear to involve a transient escape from grazer control (Figure 16a), but on longer and

broader scales, it appears that nutrient regeneration by microzooplankton is actually essential to sustaining

the bloom after nitrate is exhausted.

Even in several-month averages, e-ratio and f-ratio are highly imbalanced in this system (Figure 7), despite

the close coupling of phytoplankton and their primary grazers (Figure 16). The nutrient budget of this wide

shelf system takes a full seasonal cycle or more to close (C. Mordy, personal communication, 2014), and this

may well be true for the primary production budget. We tentatively conclude that this ability to ‘‘evade

gravity’’ for months at a time—nutrients ascend the water column and the trophic ladder and do not come

down—is responsible for the result in which combinations of Q10 values that correspond to dramatic tip-

ping points in other analyses produce nothing of the kind in modeled spring dynamics here. The lag time

between peak rates of primary productivity and export appears to be similar in high-latitude [Green and
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Sambrotto, 2006] and tropical [Sambrotto, 2001] systems, suggesting that the insensitivity of

phytoplankton-microzooplankton interactions to temperature that we observe in the EBS may be a quite

general pattern. This is a hypothesis that requires empirical, rather than numerical, exploration.

5. Summary and Conclusion

A new planktonic ecosystem model was constructed for the EBS based on diverse observations from the

BEST/BSIERP field program: nitrate concentration, phytoplankton, and microzooplankton biomass, com-

munity growth, and grazing rates from dilution experiments, primary production rates from three other

independent methods, and f-ratio from stable-isotope NO3 and NH4 uptake experiments. When run

coupled to a data-assimilative ice-ocean hindcast of 1971–2012, the model performs well against in situ

observations of spring bloom time-evolution and multiyear statistics of bloom timing, across a gradient

of ice influence.

Capturing (1) the intensity of spring biomass accumulation at the northern IEB60 site in April–May and (2)

the rapidity of the bloom’s onset there while also capturing (3) the observed lack of a bloom at IEB60 during

the partial ice retreat in March and (4) the delay of the spring bloom until May or June in ice-free conditions

at M2 proved to be a major constraint on the model parameterization, especially given the additional con-

straints of (5) significant export out of the euphotic zone during spring and (6) significant microzooplankton

grazing during the IEB60 bloom maximum (see section 3.1.1). To our knowledge, no other NPZ model has

been shown to pass this precise of a multivariate test of bloom magnitude, timing, and internal dynamics at

specific Bering Sea stations (or indeed to have been tested against such a data set). We have included a

detailed set of metrics for the IEB60 test bed (Table 2) to encourage other modeling efforts to consider this

mechanistically detailed benchmark along with spatially comprehensive but mechanistically ambiguous

variables like chlorophyll.

This study examined only one projection of future climate, not an ensemble, and by a method that does

not resolve indirect effects of global climate on the mesoscale atmospheric patterns that drive interannual

variation in mixing and advection in the EBS. It captures, rather, the gross effect of the regional thermody-

namic trend (imposed via a middle-of-the-road estimate of 88C of air temperature increase by 2100) on sur-

face water temperature and ice cover. Even as temperature in the southern EBS moves outside the range of

historically observed conditions (Figure 2), the model projection does not find these novel combinations of

temperature and ice cover, in themselves, to drive total spring primary production or spring bloom timing

outside their historical ranges (Figure 15). This negative result required us to consider in detail whether tem-

perature and ice cover, the most obvious indices of climate impacts on subarctic seas, are the right indices,

or merely correlated historically with the right indices.

On the northern middle shelf, we found that ice cover straightforwardly controls spring bloom timing in the

model; that bloom timing controls interannual variation in spring primary production; and that temperature

and ice cover are correlated similarly across interannual and interdecadal scales (Figure 2). Thus, it is not

particularly important—in a strictly predictive sense, on the northern shelf in particular—whether the indi-

vidual sensitivities of phytoplankton to temperature, light, mixing, and so on are accurate or not in the

model. In contrast, the dependencies proved to be more subtle on the southern middle shelf. The model

hindcast suggests that bloom timing at M2 is controlled by surface (ice cover) and subsurface (turbulent

mixing) effects on light availability in combination, as in the Oscillating Control Hypothesis [Hunt et al.,

2011]. It suggests that total spring primary production at M2 is controlled not by bloom timing as at M8 but

by nutrient supply, with both advective transport and turbulent mixing contributing to interannual varia-

tion. (These patterns are summarized in Figure 18.) Crucially, both advection and wind mixing are processes

that our future projection does not resolve trends in, and that global-scale climate models are not likely to

predict accurately because of scale and their resolution of shelf processes.

These results are motivation for extremely careful spatial downscaling of climate projections in the Eastern

Bering Sea, with particular attention to flushing, retention, and vertical mixing on the shelf. Advances in this

area are very likely necessary even to determine whether total middle-shelf primary production in a warmer

world is likely to be higher or lower than the present era. Accurate prediction of future trends in bloom tim-

ing is likely to also require advances in our conceptual and numerical models of plasticity in phytoplankton

community light response, which turned out in this study to be both crucial and poorly constrained by
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available data. Our solution—allowing a to vary as a function of a synthetic parameter that involves both

surface light and subsurface mixing—is just one possibility among many. More generally, our numerical

experiments regarding community metabolism suggest that similar issues may well arise across many other

high-latitude systems, with direct effects of temperature on the plankton—although easier to conceptualize

than plasticity in functional responses or regional shelf dynamics—proving to play a smaller role in future

change than temperature’s indirect, imperfect correlates.

References

Alcaraz, M., J. Felipe, U. Grote, E. Arashkevich, and A. Nikishina (2014), Life in a warming ocean: Thermal thresholds and metabolic balance

of arctic zooplankton, J. Plankton Res., 36(1), 3–10.

Bagniewski, W., K. Fennel, M. J. Perry, and E. A. D’Asaro (2011), Optimizing models of the North Atlantic spring bloom using physical, chem-

ical and bio-optical observations from a Lagrangian float, Biogeosciences, 8(5), 1291–1307.

Banas, N. S., E. J. Lessard, R. M. Kudela, P. MacCready, T. D. Peterson, B. M. Hickey, and E. R. Frame (2009), Planktonic growth and grazing in

the Columbia River plume region: A biophysical model study, J. Geophys. Res., 114, C00B06, doi:10.1029/2008JC004993.

Bissinger, J. E., D. Montagnes, J. Sharples, and D. Atkinson (2008), Predicting marine phytoplankton maximum growth rates from tempera-

ture: Improving on the Eppley curve using quantile regression, Limnol. Oceanogr., 53(2), 487–493.

Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West (2004), Toward a metabolic theory of ecology, Ecology, 85(7), 1771–1789.

Brown, Z. W., and K. R. Arrigo (2013), Sea ice impacts on spring bloom dynamics and net primary production in the Eastern Bering Sea, J.

Geophys. Res. Oceans, 118, 43–62, doi:10.1029/2012JC008034.

Campbell, R. G., C. J. Ashjian, E. B. Sherr, B. F. Sherr, M. W. Lomas, C. Ross, P. Alatalo, C. Gelfman, and D. Van Keuren (2016), Mesozooplank-

ton grazing during spring sea-ice conditions in the eastern Bering Sea, Deep Sea Res., Part II, doi:10.1016/j.dsr2.2015.11.003, in press.

Chen, B., M. R. Landry, B. Huang, and H. Liu (2012), Does warming enhance the effect of microzooplankton grazing on marine phytoplank-

ton in the ocean?, Limnol. Oceanogr., 57(2), 519–526.

Cianelli, D., M. R. D’Alcal�a, V. Saggiomo, and E. Zambianchi (2004), Coupling mixing and photophysiological response of Antarctic plankton:

A Lagrangian approach, Antarct. Sci., 16(2), 133–142.

Coachman, L. K. (1986), Circulation, water masses, and fluxes on the southeastern Bering Sea shelf, Cont. Shelf Res., 5, 23–108.

Collos, Y., A. Vaquer, and P. Souchu (2005), Acclimation of nitrate uptake by phytoplankton to high substrate levels, J. Phycol., 41(3), 466–

478.

Cooper, L. W., M. G. Sexson, J. M. Grebmeier, R. Gradinger, C. W. Mordy, and J. R. Lovvorn (2013), Linkages between sea-ice coverage,

pelagic-benthic coupling, and the distribution of spectacled eiders: Observations in March 2008, 2009 and 2010, northern Bering Sea,

Deep Sea Res., Part II, 94, 31–43.

Coyle, K. O., L. B. Eisner, F. J. Mueter, A. I. Pinchuk, M. A. Janout, K. D. Cieciel, E. V. Farley, and A. G. Andrews (2011), Climate change in the

southeastern Bering Sea: Impacts on pollock stocks and implications for the oscillating control hypothesis, Fish. Oceanogr., 20(2), 139–156.

Figure 18. Summary of causal pathways from climate-linked environmental drivers to primary production magnitude and timing, for the

northern middle shelf (M8) and southern middle shelf (M2), as diagnosed from the model hindcast (Figures 12–14). This summary applies

to interannual-scale variation in spring/early summer processes in particular.

Acknowledgments

This work was supported by the

National Science Foundation through

grants ARC-1107187, ARC-1107303,

and ARC-1107588, for BEST Synthesis,

and PLR-1417365. Many thanks to

Phyllis Stabeno, Cal Mordy, and their

research groups for providing essential

observational data sets via the Bering

Sea Project Data Archive and for aiding

in their interpretation. N.S.B. would

also like to thank Lisa Eisner, Steve

Zeeman, Rolf Gradinger, Ned Cokelet,

and George Hunt for helpful

discussions. This is BEST-BSIERP Bering

Sea Project publication number 179.

All observational data used here are

archived at http://beringsea.eol.ucar.

edu/, and model output is available

upon request.

Journal of Geophysical Research: Oceans 10.1002/2015JC011449

BANAS ET AL. BERING SEA SPRING PLANKTON DYNAMICS 24

http://dx.doi.org/10.1029/2008JC004993
http://dx.doi.org/10.1029/2012JC008034
http://dx.doi.org/10.1016/j.dsr2.2015.11.003
http://beringsea.eol.ucar.edu/
http://beringsea.eol.ucar.edu/


Cross, J. N., J. T. Mathis, and N. R. Bates (2012), Hydrographic controls on net community production and total organic carbon distributions

in the eastern Bering Sea, Deep Sea Res., Part II, 65-70(C), 98–109.

Daase, M., S. Falk-Petersen, Ø. Varpe, G. Darnis, J. E. Søreide, A. Wold, E. Leu, J. Berge, B. Philippe, and L. Fortier (2013), Timing of reproduc-

tive events in the marine copepod Calanus glacialis: A pan-Arctic perspective, Can. J. Fish. Aquat. Sci., 70, 871–884.

Danielson, S., L. Eisner, T. Weingartner, and K. Aagaard (2011a), Thermal and haline variability over the central Bering Sea shelf Seasonal

and interannual perspectives, Cont. Shelf Res., 31(6), 539–554.

Danielson, S., E. Curchitser, K. Hedstrom, T. Weingartner, and P. Stabeno (2011b), On ocean and sea ice modes of variability in the Bering

Sea, J. Geophys. Res., 116, C12034, doi:10.1029/2011JC007389.

Dukowicz, J. K., and R. D. Smith (1994), Implicit free-surface method for the Bryan-Cox-Semtner ocean model, J. Geophys. Res., 99(C4),

7991–8014.

Durbin, E. G., and M. C. Casas (2014), Early reproduction by Calanus glacialis in the Northern Bering Sea: The role of ice algae as revealed

by molecular analysis, J. Plankton Res., 36(2), 523–541.

Eisner, L. B., J. M. Napp, K. L. Mier, A. I. Pinchuk, and A. G. Andrews (2014), Climate-mediated changes in zooplankton community structure

for the eastern Bering Sea, Deep Sea Res., Part II, 109, 157–171.

Fasham, M. J. R., K. J. Flynn, P. Pondaven, T. R. Anderson, and P. W. Boyd (2006), Development of a robust marine ecosystem model to pre-

dict the role of iron in biogeochemical cycles: A comparison of results for iron-replete and iron-limited areas, and the SOIREE iron-

enrichment experiment, Deep Sea Res., Part I, 53(2), 333–366.

Flato, G. M., and W. D. Hibler (1995), Ridging and strength in modeling the thickness distribution of Arctic sea ice, J. Geophys. Res., 100(C9),

18,611–18,626.
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