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Abstract—The large scale integration of renewable energy
sources (RES) challenges power system planners and opera-
tors alike as it can potentially introduce the need for costly
investments in infrastructure. Furthermore, traditional market
clearing mechanisms are no longer optimal due to the stochastic
nature of RES. This paper presents a risk-aware market clearing
strategy for a network with significant shares of RES. We propose
an electricity market that embeds the uncertainty brought by
wind power and other stochastic renewable sources by accepting
probabilistic offers and use a risk measure defined by conditional
value-at-risk (CVaR) to evaluate the risk of high re-dispatching
cost due to the mis-estimation of renewable energy. The proposed
model is simulated on a 39-bus network, whereby it is shown that
significant reductions can be achieved by properly managing the
risks of mis-estimation of stochastic generation.

Index Terms—conditional value-at-risk; market clearing; op-
timal power flow; risk analysis.

NOMENCLATURE

Sets

B Buses, indexed by b.

L Lines (edges), indexed by l.

G Generators, indexed by g.

W Wind generators, indexed by w.

D Demands, indexed by d.

Bl Buses connected by line l.

Lb Lines connected to bus b.

Gb Generators located at bus b.

Db Loads located at bus b.

Sb Scenarios, indexed by s.

Parameters

bl Susceptance of line l.

τl Off-nominal tap ratio of line l.

PG−
g , PG+

g Min., max. real power outputs of conventional

generator g.

PD
d Real power demand of load d.

fg(p
G
g ) Cost function for generator g.

γ Prescribed probability level.

CPP
w Purchase price at node w.

CS
g Cost of committing generator at bus g.

R±
g Min./max. regulation of generator g.

PW+
w Max. real power generation from wind farm w.

∆PW
w,s Change in wind power generation forecast.

η Threshold level for the loss function.

ω Weighting on the risk measured as defined by

CVaR.

Variables

pG
g Real power output of generator g.

pW
w,s Real power output of wind generator w.

θb,s Voltage phase angle at bus b.

pL
l,s Real power injection at bus b into line l (which

connects buses b and b′).

∆PG
g,s Regulation of conventional generator g.

∆PG±
g,s Upward/downward regulation of conventional gen-

erator g.

ug Unit commitment variable for generator g.

I. INTRODUCTION

Modern power systems are in a midst of a comprehensive

change, primarily driven by the liberalisation of electricity

markets and an increased focus on renewable energy sources

(RES). Over the last decade, there has been a substantial in-

crease in the installed capacities of RES challenging practices

in both transmission system planning and operation [1], as well

as in the electricity markets, given that they were designed

under the domination of dispatchable and fully predictable

sources of energy [2]. Consequently, the support mechanisms

that were put in electricity markets to safeguard stochastic

producers from the price volatility brought by the intermittent

and uncertain nature of RES tend to become inefficient as

shares of RES increase and imbalance costs are transferred to

the consumers [3], [4]. Such developments highlight the need

for electricity markets that embed the very nature of RES in

the market mechanism itself, first by replacing deterministic

offers (e.g. point forecasts) with probabilistic estimates (e.g.

quantiles), and secondly by including risk-aware dispatching

mechanisms that are robust enough to accommodate the un-

derlying uncertainties inherent to modern power systems.

In this context, there has been significant academic interest

in addressing several of the challenges brought by RES. Most

of the day-ahead clearing optimisation models are posed as



two-stage stochastic programming problems [5], where often

the first stage of the problem is to schedule conventional

generators and second stage realises the uncertainties from

RES. Authors in [6] consider the deployment of reserve

capacity in their stochastic programming model and propose

an energy-only settlement where the capacity is ‘converted’

to energy through the market mechanism. One limitation

of such approach is that the participants can speculate and

therefore influence the market clearing mechanism. This issue

is addressed by [7] where the authors propose a single auction

that clears the market and arranges the financial settlement,

which may require the flexible generators to accept losses

for some wind power production realisation. Furthermore,

the aforementioned stochastic optimisation approaches that

minimise expectation, are risk-neutral. However, for some

cases it is important to model risk-averse or risk-taker policies,

specifically when operational uncertainty is considered.

In this context, conditional value-at-risk (CVaR) is a risk

measure that captures the variability of risk and can allow

to implement different risk policies. Authors in [8] propose

a stochastic optimal power flow (OPF) model that gives

optimal policies regarding scheduling of controllable devices

within a power network based on chance constraints. Solutions

depend on how the probabilistic constraints are formulated

with the model relying on access to the variance of forecast

errors. This is partially addressed in [9] with a more straight-

forward implementation of CVaR, where a stochastic OPF

model captures risks of demand-generation imbalances caused

by wind power using the risk measure CVaR. The model is

based on DC power flow, while unit commitment (UC) is not

considered as part of the problem. Both approaches in [8], [9]

contribute on the overall discussion, however they face some

limitations: i) risk is only associated to a part of operational

uncertainty and ii) they are based on conventional market

clearing mechanisms using only deterministic offers.

In this paper, we address the existing limitations by propos-

ing a model that produces a robust optimal policy consisting

of day-ahead generation schedules that minimise the total cost

of generation. Furthermore, the proposed model manages the

risk of imbalances due to stochastic generation with stochastic

producers’ offers modelled as probabilistic estimates, instead

of point forecasts, following [10]. In doing so, we shift

towards a more realistic model whereby a market can extract

the inherently imperfect estimates of stochastic production,

instead of relying on transmission system operators’ (TSOs’)

presumed perfect estimates.

We contribute to the state of the art by proposing a

two-stage stochastic programming formulation that takes into

consideration the effects of unit commitment decisions on

the optimal policy, while using a CVaR risk measure in a

market where stochastic producers report probabilistic offers.

The proposed formulation is tractable as it can account for

a large number of scenarios for the future power system

operation. Finally, we give insights into questions about risk

measures and modelling details including network constraints

and technical restriction and test the proposed model on a

39-bus network with real world data from RES. Through

numerical simulations we demonstrate the impact of inaccurate

forecasts of low predictive value, while we show that by

carefully managing the overall risk of system, a more robust

policy can be obtained.

The rest of the paper is organised as follows: In Section

II we define uncertainty and risk management in the context

of electricity markets, while Section III introduces the general

formulation, described in detail in Section IV. In Section V we

numerically evaluate the proposed model and lastly in Section

VI we conclude and give future research directions.

II. UNCERTAINTY AND RISK ASSESSMENT IN ELECTRICITY

MARKETS

In this section, we provide a general framework regarding

uncertainty and risk assessment in electricity markets. In

Section II-A, we model uncertainty in stochastic production,

while in Section II-B we describe the bidding process in a

market designed to accommodate probabilistic offers. Finally,

in Section II-C we formally define the risk measure in consis-

tence with literature [8].

A. Uncertain production

Let a stochastic producer, such as a wind farm, face

an upper limit PW+
w in its output, defined by the specific

technical specifications of the deployed wind farm units w

and let the real-time generation pWw,s,t be equal to ywP
W+
w ,

where yw ∈ [0, 1] is a realisation of the random variable Y

which models the producer’s stochastic output. The variable

Y follows a distribution G defined by a set of parameters θ

s.t. Y ∼ G(y; θ), where θ can be equal to mean and variance

depending on the definition of the used distribution.

B. Modelling probabilistic offers from stochastic producers

We consider an electricity market that accepts probabilistic

offers from the stochastic producers, instead of the deter-

ministic offers e.g. point forecasts. Based on the stochastic

framework introduced in [10], producers are asked to submit

their predictive distributions that in essence are estimates of

distribution G. Stochastic producers can report a CDF, a set

of quantiles, or in case of a parametric distributions producers

can report the parameters of a known distribution. Let θ̂w be

the set of reported parameters during the bidding stage of a

day-ahead market. The parameter set θ̂w defines distribution

F (y; θ̂). It should be noted that G may not necessarily be

equal to F , as F represents the predictive distribution and G

the actual distribution of the stochastic output. In terms of the

parameter sets, let θ̂w = ǫθw, with ǫ representing the imperfect

nature of an estimate. This parameter demonstrates the impact

of possible errors in estimation or possible strategic behaviour

on behalf of the producers.

The use of predictive distributions has a significant influence

on the optimal solution of a two-stage stochastic model of

the day-ahead market. The finite set of scenarios that models

stochastic production is sampled from the predictive distri-

bution F as it is the only distribution available to the market



and system operators prior to the actual production. Given this

intrinsic link between the day-ahead schedule and expected

balancing stage it becomes clear that the reported offers in the

day-ahead market can heavily influence the optimal policy.

C. Risk measures

Due to the use of probabilistic offers, it is important for

a market operator to derive a summary statistic from the

predictive distribution and clear the day-ahead market based on

it. In this paper, we assume that this statistic is the mean which

the market operator can either extract from the reported CDF,

the empirical CDF derived from the set of quantiles given that

µ =
∫∞

0
(1 − F (t))dt, or just by using the reported value in

case of a parametric predictive distributions. The selection of

the mean is a necessary link with the existing electricity market

setup where it is a common practice for stochastic producers to

use point forecasts that correspond to conditional expectation

estimates [11].

Let µwP
W+
w be the summary statistic used to clear the day-

ahead market and let ∆PW+
w,s be the change in the generation

availability corresponding to the scenario s for the generator

w in the time period t, respectively. The wind power output

for the generator w is modelled as follows:

0 ≤ pW
w,s ≤ PW+

w +∆PW+
w,s (1)

Now, integration of renewable energy sources, especially

wind power, requires careful assessment of risk when it comes

to commitment of conventional power plants. Normally TSOs

er towards risk averse policy. They tend to commit more

conventional generation than required in order to account for

potential power imbalances [12]. However such a risk averse

policy is not optimal as it may result in large amounts of

renewable energy being curtailed when it comes to clearing

the market in the real-time. Therefore there is a need for

a risk-aware policy that takes into account the uncertainties

from the stochastic producers and optimally manages the risk

and rewards in a power system. Risk measures like value-at-

risk (Var) and CVaR are two risk assessment measures that

are used largely in the financial industry to manage assets.

It is commonly known that CVaR is a superior measure

for risk when compared to VaR [13]. Given a cost function

L(x, ξ) : X × Ξ → R, the γ − CVaR is:

φγ(x) =
1

1− γ

∫

L(x,ξ)≥ηγ(x)

L(x, ξ)p(ξ)dξ (2)

where ηγ(x) is γ − VaR.

Calculation of γ − CVaR is equivalent to minimisation of

the following function:

Fγ(x, η) = η +
1

1− γ

∫

ξ∈Ξ

[L(x, ξ)− η]+p(ξ)dξ (3)

Let the cost function be a linear function describing the cost

of real power purchased at a spot market. The above equation

can then be approximated such that:

F̂γ(p
W
w , η) = η +

1

1− γ
E

[
∑

w∈W

CPP
w [PW

w − pW
w,s]− η

]+

(4)

where CPP
w is the purchase price of power at the bus w.

III. CONCEPTUAL FRAMEWORK

Our conceptual framework is as follows: a TSO has to de-

termine the commitment of conventional power plants. There

is a great level of uncertainty from generation from the wind

power producers that will obviously effect the commitment

of conventional power plants. In this situation, a transmission

system needs to find a decision that optimally balances the

risks of over-committing expensive conventional generation

versus under-utilisation of low cost and clean generation from

wind power and other stochastic producers.

We model this problem as a two-stage stochastic program-

ming problem. The TSO has full access to producers’ prob-

abilistic offers, publicly available from the market operator

and can now measure the risk of extreme a-priori using a

regulariser defined in terms of the CVaR (F̂γ(p
W, η) in Section

II-C). Through this model we investigate if the mean of the

scenarios is a good estimate to use in the day-ahead market

and determine the appropriate risk level.

The general form of a two-stage stochastic program [5] is

min cTx+ EξQ(x, ξ) (5a)

subject to

Ax = b, (5b)

x ≥ 0, (5c)

where x is a vector of decision variables and Q(x, ξ) =
min{qTy : Wy = h − Tx, y ≥ 0} is the optimal value of

the second stage problem.

The first stage decision variables determine which conven-

tional generator will come online for the day-ahead operation

of the power system along with their operating points and these

decisions are represented by a vector x. In the second stage of

the problem, full information is received on realisation of the

random process determined by the vector ξ, and corrective ac-

tions are taken. Corrective actions for the day-ahead decisions

are rescheduling of conventional generators and curtailment

from the wind power producers. These corrective actions are

modelled as a recourse actions: affecting the values of first

stage variables and hence influence the objective function

of the problem. In next section we give the mathematical

formulation of the problem.

IV. PROBLEM FORMULATION

Consider a power network with the set of buses B. Let G
be the set of conventional power plants and S be the set of

scenarios from the wind power producers. The constraints and

objective function of our optimisation problem are



A. Power flow

Let pG
g be the real power generation from the conventional

generator g. The power balance equations are given as, ∀b ∈
B, s ∈ S:

∑

g∈Gb

(
pG
g +∆pG

g,s

)
+

∑

w∈Wb

pW
w,s =

∑

d∈Db

PD
d +

∑

l∈Lb

pL
l,s (6)

where pW
w,s denotes the real power bid from the renewable

generator w, PD
d denotes the real power demand d and pL

l,s is

the flow of real power in the line l in scenario s, respectively.

The power flow equations are given as, ∀l ∈ L, ∀s ∈ S:

pL
l,s = −

bl

τl
(θb,s − θb′,s) (7)

where b and b′ are the two ends of the line l. Voltage angles

at the two ends of the line l = (b, b′) are denoted by θb,s
and θb′,s, respectively. We consider the DC model of power

flow [14]. The second stage recourse variables ∆pG
g,s in (6) are

modelled in terms of the upward and the downward regulation

variables s.t.

∆pG
g,s = ∆pG+

g,s −∆pG-
g,s (8a)

0 ≤ ∆pG+
g,s ≤ R+

g (8b)

0 ≤ ∆pG-
g,s ≤ R−

g (8c)

where R+
g,t, R−

g,t are the permissible upward and downward

regulation of the generator g in the time period t, respectively.

B. Unit commitment

Given the single-dimensional time framework we employ

in this research, the unit commitment constraints are straight-

forward. Specifically, let ug , the unit commitment status of

generator g, be equal to 1 if the generator is online and is

0 otherwise. Furthermore, generation from the conventional

generators is bounded by the following inequality constraints:

ugP
G−
g ≤ pG

g ≤ PG+
g ug (9)

where PG−
g , PG+

g are the lower and the upper bounds on the

generation output of the generator g, respectively.

C. Operating constraints

The line flow limits are given by the following set of

constraints: ∀l ∈ L

− Pmax
l ≤ pL

l,s ≤ Pmax
l (10)

where Pmax
l is the real power capacity limit of the line l.

D. Objective function

Let λw,s be the probability of the scenario s for the

renewable generator w. The objective is to minimise the cost

of generation from the conventional generators, and optimally

utilise the generation from the RES while initiating the demand

response from the distribution system operators. Note that we

do not consider ramping cost of the generators between the

time intervals. Day-ahead cost is given as:

CDA
g (pG

g ) = f(pG
g ) + CS

gug (11)

where f(pG
g ) is cost of generation and CS

g is the cost of com-

mitting generator g. Close to real-time operation the system

operator has an improved estimate of the actual generation

from stochastic sources and the generator may need to get

regulated in order to meet the demand. The cost of such

regulation is given by the following equation:

CREG
g (∆pG

g,s) =
(
CR+

g ∆pG+
g,s + CR-

g ∆pG-
g,s

)
(12)

where CR+
g is the up-regulation cost and CR-

g is the down-

regulation cost of generator g respectively. The overall objec-

tive function of the proposed optimisation model is as follows:

z =
∑

g∈G

CDA
g (pG

g ) + E
(
CREG

g (∆pG
g,s)

)
+ ω

∑

w∈W

F̂β(p
W
w , η)

(13)

where ω is the weighting on the risk measure, F̂β is a risk

measure as defined in the equation (4).

E. Overall formulation

The overall formulation of the problem is given as follows:

min z
(
pG
g , p

W
w,s,∆pG

g,s

)
(14a)

subject to

(1, 4, 6− 10) (14b)

where
(
pG
g , p

W
w,s,∆pG

g,s

)
are the decision variables. Depending

on the objective function f(pG
g,t), the overall problem is a

linear or a quadratic program (LP or QP). We use CPLEX

12.06 [15] called from a PYOMO [16] model to solve the

problem.

V. NUMERICAL RESULTS

In this section, we simulate the proposed model on a 39-bus

test network derived from the New England test case in [17],

and modified as shown in Fig. 2. In this context, three fossil

fuel generators at buses 33, 34 and 36 are replaced by wind

generation with twice the capacity of original generation and

more realistic costs where derived from [18]. With these mod-

ifications the conventional generation accounts for 63% of the

total capacity of the generation in the network. Furthermore,

following common practice in literature (c.f. [19]), the cost of

up-regulation is assumed to be 10% higher than the day-ahead

cost of generation and cost of down-regulation is 9% less than

the day-ahead cost of generation. The risk quantile, γ, is equal

to 0.95 and 50 scenarios are considered for the experiments,

unless otherwise stated.

In our simulations, we assume zero cost of generation from

wind power [19]. Moreover wind power from the producer

w can be curtailed continuously to zero at the price of

CW
w . Wind power production uncertainty is modelled by a

Beta distribution in consistence with the related literature (cf.



Fig. 1. Modified 39 bus system with 6 conventional generators and 3 wind
power producers.
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[19], [20]), without this restricting our assumptions regarding

uncertainty and risk measurement in Section II and the the-

oretical framework in Section IV. Beta distribution that we

use for the experiments is defined by mean and variance s.t.

(µw, σ
2
w) = (0.55, 0.05) with parameters αw and βw defined

as:

α =
(1− µ)µ2

σ2
− µ, β =

(1− µ)a

µ
(15)

In the proposed day-ahead market setup, wind power pro-

ducers report parameters (µ̂w, σ̂
2
w) and it is entirely pos-

sible that both mean and variance are mis-estimated i.e.

(µ̂w, σ̂
2
w) 6= (µw, σ

2
w), with (µ̂w, σ̂

2
w). We simplify our analy-

sis by assuming that only the wind power producer located

in bus 34 may mis-estimate its parameters and by only

considering the mis-estimation of the mean. This translates

to (µ̂w, σ̂
2
w) = (ǫµw, σ

2
w) with ǫ ∈ [0.6, 0.7, · · · , 1.3, 1.4]

being a parameter which denotes the imperfect nature of

the estimate. Values less than 1 represent under-estimation

of the mean, and values above 1 represent over-estimation
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Fig. 3. Optimal exp. balancing costs for varying the regularisation weight ω.

of the mean. This simplification allows us to evaluate the

impact of mis-estimation on the overall day-ahead schedule

and real-time dispatch, a critical point of assessment for any

application of stochastic programming. In this context, in Fig.

2 we demonstrate the differences between the perfect and

imperfect estimates by plotting the cumulative distribution

function of the Beta distribution with the parameters used in

the simulation, alongside with the distributions that correspond

to over and under estimating of the mean of the actual Beta

distribution. As expected, the whole shape of the distribution

is affected by the mis-estimation of the mean. Equations (15)

give the relationship between α, β and the mean.

Fig. 3 shows the normalised optimal balancing costs while

varying the weighting ω on the CVaR risk measure. When the

weighting is zero, the model does not take into account the

costs introduced by the mis-estimation of wind. We observe

that as the weighting increases, the balancing cost decreases.

More conventional generation is scheduled in day ahead mar-

ket to minimise the mis-estimation in real time. Note that for

0 ≤ ω ≤ 0.4 generator at bus 30 (most expensive generator)

is not committed. But for values ω > 0.4 generator at bus

30 is committed. The absence of the risk measure defined by

CVaR (i.e. ω = 0), models a risk neutral policy of committing

the generators. However with a non-zero weight on the risk

measure we model a more robust and risk-aware policy.

Following the preceding analysis, we study the compu-

tational tractability of the proposed model, by plotting the

optimal cost with respect to the number of scenarios. In

Fig. 4 the solid red line represents the generation cost of

conventional generators with the dashed blue line showing the

expected optimal balancing cost. We observe that the estimated

balancing costs are zero in the deterministic case: when

only one scenario is considered, noting that the deterministic

case corresponds to the model with perfect information about

the future realisations. We further observe that the expected

balancing costs increase with the increase in number of

scenarios. However the day-ahead generation cost has a very

steady behaviour after 20 scenarios. This indicates that after

20 scenario adding more scenarios does not have a severe

influence on the generation cost.

Finally, we investigate the impact of imperfect information

by analysing the wind power producer at bus 34. Fig. 5 shows
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that both over and under estimation result in a significant

increase of the overall cost (i.e. balancing costs plus generation

costs). We observe that under-estimation costs are as high as

25% while over-estimation costs are as high as 15%. In the

first case, the commitment of expensive generators in main-

taining the demand and generation balance leads to increase

in generation costs, while for over-estimation generators face

additional costs in order to buy surplus from real time market,

hence higher balancing costs.

VI. CONCLUSION AND FUTURE WORK

This paper solves a unit commitment problem for a day-

ahead market that can accept probabilistic offers based on a

risk measure defined by the CVaR. We simulate this model

on the a 39-bus problem and show that considerable benefits

in terms of re-dispatch cost can be achieved by carefully

managing the risk of mis-estimation. We have also illustrated

that the mean of the distribution is an ideal candidate to plan

the day-ahead operation of a system.

For future research, we intend to extend the proposed

model so it captures more of the challenging aspects of a

power system. As a starting point, the single-dimensional

time framework will be extended so that the model can take

into consideration inter-temporal constraints. In doing so this

research can be extended to a multi-stage unit commitment

model that considers the minimum up and down times of the

generators. Furthermore, we intend to consider several mis-

estimating wind power producers and take into account the

correlation among different wind power producers. Finally,

we intend to challenge the use of the mean as the optimal

statistic for the clearing of the day-ahead market and examine

the effect of different statics on the optimal solution.
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