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Abstract

Severalmethods have been proposed in the literature to improve free electron laser output by

transforming the electron phase-space before entering the FEL interaction region. By utilizing ‘beam

by design’with novel undulators and other beam changing elements, the operating capability of FELs

may be further usefully extended. This paper introduces two new suchmethods to improve output

from electron pulses with large energy spreads and the results of simulations of thesemethods in the

1D limit are presented. Bothmethods predict orders ofmagnitude improvements to output radiation

powers.

1. Introduction

The free electron laser (FEL) is an important scientific research tool that uses a relativistic electron beam to

generate coherent radiation from themicrowave through to the hard x-ray. At shorter wavelengths into the

x-ray, this is unlockingmany new areas of science in diverse fields such as: warm-densematter studies [1]; short

pulse protein diffraction [2] andmedicine/surgery [3]. Current x-ray FELs [4, 5] and those under construction

[6], are unique laboratory sources of high power coherent x-rays. They are driven by electron beams generated

from radio-frequency linear accelerators, which can be up to a few kilometres long.

Many ideas are nowbeing proposed to enhance and improve FEL output, towards shorter wavelengths,

shorter output pulse durations, improved temporal coherence [7] andmulti-colour operation [8]. These

improvements extend the original high-gain FEL designwhere the electron beam from an accelerator is simply

injected into a long undulatorwhere the collective FEL interaction generates coherent output. The newmethods

rely uponmanipulation of the electron beam in phase-space, using lasermodulators andmagnetic chicanes,

either prior to injection into the FEL, or sequentially along the undulator as the FEL interaction progresses.

Proposals also exist to reduce the overall lengths of FEL facilities by replacing the RF-linacs with plasma-

wakefield accelerators [9, 10]. These accelerators have large accelerating gradients about 10 103 4− times larger

thanRF-linacs. However, the electron bunches generated so far are limited by a relatively large energy spread

which inhibits any useful FEL interaction. Aswith the above proposed enhancements,methods thatmanipulate

the electron beams have been proposed thatmay helpmitigate the detrimental effects of energy spread. These

include stretching the beam longitudinally before injection into the FEL to reduce the localized energy spread

[11], or transversely dispersing the electron beam to give a correlated transverse energy distribution and then

matching this into a transverse gradient undulator [12].

Using a combination ofmodulators and chicanes, it is also possible to Fourier-compose electron pulses of

simple geometric shapes in longitudinal electron beamphase-space e.g. rectangular, triangular, and sawtooth

[13]. Suchwaveform synthesis of the electron beam can also be utilized to generate phase-correlated harmonic

beam structures that can then perform analogouswaveform synthesis of the coherent light emission from the

beam structures.

The electron beamparameters andmanipulations described above can be very difficult, if not impossible, to

model using conventional FEL simulation codes, which average the FEL interaction over a resonant radiation
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wavelength limiting both the radiation bandwidth that can bemodelled and the range of electron energies,

correlated or uncorrelated, within the beam.

In this paper the un-averaged FEL simulation code PUFFIN [14] is used to simulate potentially useful

electron beamundulator emission that would not be possible using conventional averaged FEL simulation

codes.

Firstly, a newmethod using electron beamphase-spacemanipulation is investigated, thatmay allow a FEL to

operate with larger electron beam energy spreads which, for example,may assist the drive towards plasma-

accelerator driven FELs. Themethod constructs a series of energy-chirped electron pulses (beamlets), each of

differentmean energy, vertically stacked in energy in phase-space. The localized, or ‘slice’, energy spread of each

beamlet is smaller than the original, unmodified beam fromwhich the beamlets are constructed. Previouswork

has usedmultiple beams generated individually by a photocathode illuminated bymultiple light pulses to

generate different colour pulses from a FEL [15].Here, however, the beamlets are generated froma single

electron pulse.

Secondly, an example is presented of whatmay be possible using Fourier-synthesized electron beams [13].

This is thefirst simulation of the output from suchwaveforms in a FEL-type system. A Fourier-synthesized

electron pulse with a rectangular wave structure in phase-space is used to generate radiation in a series of

undulator-chicanemodules similar to those used in amode-locked FEL amplifier [16]. The ‘discontinuous’

regions of the square electron pulse form larger current regions that can emit significant coherent spontaneous

emission (see e.g. [17]). This coherent emission is periodically superimposed using a sequence of undulator-

chicanemodules and is shown to be able to generate significant output powers. This cannot strictly be called a

FEL as little FEL interaction takes place.

Themethods simulated here are clearly not to be considered as specific FEL design proposals, rather they are

intended to demonstrate future possibilities and potential as electron beamgeneration advances beyond that of a

simple linear beammodel.

2. Beamlets

2.1. Beamlets—description ofmethod

In the FEL, a relativistic electron beamofmean electron energy m cr e
2γ amplifies radiation in an undulator of

period uλ and rmsmagnetic field strengthBu. The resonant radiationwavelength amplified is given by

(1 ) 2r u u r
2 2λ λ ā γ= + . The high-gain amplification process is characterized by the gain length lg, where an initial

radiation power P0 is amplified exponentially as a function of the distance z through the undulator as

P z P z l( ) exp( 3 )g0= [18].With an electron beam energy of rγ , the gain lengthmay bewritten, neglecting

radiation diffraction and for no electron beam energy spread 0σ =γ , as:
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is the is the FEL (or Pierce) parameter, a B k¯u u u∝ is the undulator parameter, pω is the peak (non-relativistic)

plasma frequency of the beam, and Ipk is the peak current. For good amplification, the electron beam energy

spread σγ must satisfy the ‘cold beam’ limit of:

1. (3)p

r

σ
σ

ργ
= ≪

γ

Optimal FEL gain is seen to occurwhen Ipk ismaximized and σγ minimized. Themethod described belowuses

electron beamphase-spacemanipulation tomodify both of these parameters in an attempt to improve the FEL

output potential of beamswith large energy spreads defined as having a 1pσ ≳ .

Inwhat follows, it will be seen that it is possible to take an electron beamwith an initially large energy spread

( 1pσ ≳ ), which inhibits FEL lasing, andmanipulate it to generate a series of ‘beamlets’, each of which has a

significantly smaller energy spread ( 1pb
σ < ) that allowsmore efficient FEL lasing and greater output powers.

Themethod first generates a series of energy chirped beamlets stacked vertically in longitudinal phase-space

before they are injected into the FEL amplifier. As the FEL interaction occurswithin the undulator further

manipulation is required to ensure the radiation interactionwith the chirped electron beamletsmaintains a

resonant interaction. A similarmethodwas proposed in [19] but, without the further beammanipulation
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introduced here, the length through the undulator that the resonant FEL interaction could bemaintainedwas

limited.

In thefirst stage before injection into the FEL, the electron beam is passed through amodulating undulator

and dispersive chicane, resulting in the beamphase-space shown infigure 1. This phase-space is similar to the

firstmodulator-chicane section used in the echo enhanced harmonic gainmethod [20]. Themodulator-chicane

sections perform the following consecutive transforms on the electron beamphase-space coordinates:

z
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where the subscript 0 denotes the initial, untransformed coordinates, z ct z l¯ ( ) c2 = − is the coordinate in a

window travelling at the speed of light scaledwith respect to the cooperation length l 4c rλ πρ= of the FEL

interaction, Δγ is the energymodulation amplitude, n r1λ λ= is themodulation period scaledwith respect to

the resonantwavelength and D k Rr 56ρ= is the scaled dispersive strength of the chicane.With this scaling, a

resonant electron of energy rγ will fall behind a resonant radiationwavefront a distance lc on propagating one
gain length lg through the undulator [21].

It has been observed that in regimeswhere large dispersion is applied that the noise statistics of the

macroparticles that simulate the electrons in the dispersed beam can become incorrect. This occurs as the beam

sampling in z̄2 is transformed into the γ dimensionwhen rotated in phase-space, and vice versa. To ensure the

correct noise ismodelled, the functional formof the final electron beamphase-space is used to initialize the

beambefore application of the noise algorithm [22] and simulation using Puffin.

AGaussian distribution for both dimensions of the initial beamphase-space is assumed:
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where: z̄c is the electron pulse centre and z, ¯2
σγ are the standard deviations in γ and z̄2 respectively.

By applying similarmodulation and dispersive transforms to those outlined in [20], thefinal beam

distribution function obtained is:

Figure 1.The scaled longitudinal electron beamphase-space distribution function given by equation (7) f z p(¯ , )2 (using p rather than
γ) after transformation by a beammodulator and dispersive chicane.
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Figure 1 plots the scaled longitudinal phase-space distribution function of the electrons after the

modulation-dispersive section and before injection into the FEL undulator using the scaled energy

parameter p ( )j j r rγ γ ργ= − with the following parameters: 0.04 rΔγ γ= , D = 268.51, n = 68, 0ϕ = ,

2 rσ ργ=γ (or 2pσ = ), 1200,rγ = 1.6 10 2ρ = × − and 28.97z̄2
σ = . Themodulation and dispersion of the

beam is seen to create a stacked structure of energy chirped ‘beamlets’, slice sections of which are seen to have an

energy spreadwhich is reduced from the initial untransformed beamwith 2pσ = . Under certain conditions,

each beamletmay then emit and amplify radiation independently of the other beamlets. The combined output

from each of the beamletsmay then give improved radiation output over the untransformed beam.

To illustrate how themethod functions in the FEL undulator, a simplified version of the beamlet phase-space

is shown infigure 2, which consists of a series of chirped, zero energy spread, electron beamlets of differentmean

energies stacked in phase-space. The chirp causes the radiation fromone section of the chirped beam to drift out

of resonance as it propagates into electronswhich are resonant at a different wavelength. This impedes the FEL

gain process. This effectmay be successfully counteracted by using an appropriate undulator tapering to

maintain the electron-radiation resonance [23]. (These results have been reproduced using the simulation

methods used here and are in very good agreement [24].)Here, a different approach is demonstrated using a

periodic series of undulator-chicanemodules withmultiple beamlets. The beamlets are periodically delayed by

the chicanes so as tomaintain a resonant interactionwith the radiation generated by electrons of the same energy

from the other beamlets. (Simulations using thismethod on the simple beamlet structure offigure 2 have been

performed and presented elsewhere [24].) In the electron beam frame therefore, the radiation is passed from

beamlet to beamlet so that it always interacts with electrons of a similar energy somaintaining a resonant

interaction and giving an improved FEL interaction. This is achieved bymaking the slippage of a radiation

wavefront through the electrons in each undulator-chicanemodule equal to the spatial separation of the

beamlets. The enhanced slippage can also be expected to result in the generation of a series ofmodes in the

Figure 2. Scaled longitudinal phase-space of the electrons for the simplified beamletmodel. For a given energy the beamlets are
separated spatially by z̄2Δ and for a given z̄2 the beamlets are separated by p rΔ Δγ ργ= . A chicane delay of the electrons corresponds

to a positive shift in z̄2. A series of chicanes slip the electrons forward in z̄2 so that they interact with the same resonantwavelength as
emitted by the previous beamlet.
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radiation spectrum similar to that of [16]which demonstrated that an undulator-chicane lattice will amplify

side-band radiationmodes that are separated by:

s4 ¯, (8)rΔω ω πρ=

where s̄ is the slippage length in scaled units of z̄2 in one undulator-chicanemodule [16].

The FEL parameter Ipk
1 3ρ ∝ , where Ipk is the electron pulse peak current, and is ameasure of FEL efficiency.

When considering individual beamlets a FEL parametermay also be defined for each beamlet: I ,b b
1 3ρ ∝ where

Ib is localized (slice) current of the beamlet. (Note that as the beamlet energy is chirped, themean pulse energy rγ ,

is used in the definition of bρ .) Other beamlet parameters are also defined as p ( )b j r b rγ γ ρ γ= − and a beamlet

scaled slice energy pb
σ . For a beamlet to lase independently its slice energy spreadmust then satisfy:

1. (9)p

b r
b

b
σ

σ

ρ γ
= <

γ

(Note here, that themean pulse energy rγ is used in the definition of pb
σ rather than a local ‘slice’ value bγ . This

can be considered a reasonable approximation for the inequality (9), so long as bγ does not differ significantly
from rγ .) The beamlet slice energy spread pb

σ and instantaneous fractional FEL parameter b 0ρ ρ , where 0ρ is the

FEL parameter of the untransformed beam, can be calculated and are shown infigures 3 and 4 towards the

higher energy andmid-sections of the electron pulse respectively.

The energy spread condition for FEL lasing of equation (9)may be usedwith the FEL radiation bandwidth

saturation 2rΔω ω ρ≈ [25] to define theminimumenergy separation Δγ of the beamlets so that the gain

bandwidths of each beamlet do not overlap:

2. (10)
b r

Δγ

ρ γ
≳

At the centre of the electron pulse the beamlets split into pairs [26], i.e. two per halfmodulation period, while for

the electron pulse higher and lower energies, formed by themodulation extrema, the beamlet pairsmerge into

single beamlets as seen in figures 3 and 4.

Both the energy spread condition (9) and beamlet separation condition (10) are seen infigure 3 to be

satisfied for the higher energy regions of the beamlets. (These conditions are also satisfied at the lower energy

Figure 3.Top panel: detail of the higher energy beamlet phase-space distribution function of equation (7)with a single beamlet
delineated bywhite dashed lines. The original untransformed beamhad a scaled energy spread of 2pσ = . The values of the scaled

energy spread pb
σ (middle) and b 0ρ ρ (bottom)were calculated for the single beamlet as a function of z̄2. Towards the pulse head

(z̄ 1052 < ) the electron pulse is diffuse with a larger energy spread pb
σ and smaller bρ . Nearer the centre of the pulse

( z105 ¯ 125,2< < ) the scaled energy spread decreases as the local density, and bρ increase.However, further towards the pulse centre
z̄ 1252 > the energy spread increases further as the beamlet spilts into two identifiably separate beamlets, while the value of bρ

tends towards amore constant value. The condition for lasing of the beamlet of 1pb
σ < is seen to be satisfiedwithin this the head of

the pulse (and is also satisfied at the lower energy beamlets of the tail). The energy separation between beamlets is also seen to satisfy
condition (10) so that each beamlet can lase independently. The energy separation between beamlets does not change significantly
with z̄2, as neither does the longitudinal separation of beamlet regions with the same energy. Towards the centre of the pulse however,
the beamlet structures have amore complicated phase-space structure.
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regions of the beamlets, but are not shown.)However, the condition placed on the beamlets’ energy separation

(10) is not always satisfied at the pulse centre where the beamlets are formed in pairs, as seen infigure 4.Hence,

the undulator-chicane slippage length is set equal to the beamlet separation for the higher and lower energy

regions of the pulsewhere the energy separation of the beamlets is approximately a constant.

Results of a FEL interaction using an untransformed (no beamlets) pulse with large energy spread 2pσ =
and of the transformed (beamlet) pulse are shown infigure 5. As expected, for the pulsewithout beamlets and

the large energy spread, only small scaled peak powers of A 102 4∣ ∣ ∼ − are observed in the simulation.However,

for the transformed pulsewith beamlets that have smaller energy spread, 1pb
σ < , and that arematched to the

undulator-chicanemodules, powers 2–3 orders ofmagnitude greater are observed. For themodulation period

of 68 rλ used here (n = 68),matchingwas achieved using undulatormodules of 20 periods and isochronous

chicane slippages of 48 rλ . It is seen that the FEL lasing is greater for the lower energy beamlets of the pulse

around z̄ 4002 ∼ . This preferential FEL interaction and amplification of the lower frequency is consistent with

the scaling of the FEL parameter 1ρ γ∝ − which gives greater values and so strength of interaction, for lower

beam energies. In the simulations here, the gain length of the higher to lower energy beamlets is up to∼50%

larger. Evidence of themodal structure in the spectrum is also observed in the scaled power spectrum (inset),

consistent with the undulator-chicane systemwhich from (8) gives amode spacing of 0.0147Δω = .

Significant bunching of the electrons in one of the lower energy beamlets, with amean value of scaled energy

p ( ) 5r rγ γ ργ〈 〉 = 〈 〉 − ≈ − , is also observed as shown in figure 6. Note from the lower plot for the spectrum that

the electrons are bunched at a lower frequency 0.85rω ω ≈ than themean resonant frequency of the electron

pulse. This frequency shift from resonance is consistent with the lowermean energy of the electrons as

p2 0.16rΔω ω ρ≈ 〈 〉 = and is in agreement with the radiation frequency spectrumoffigure 5. Electron
bunching is also observed in a higher energy beamlet ofmean scaled energy p 4〈 〉 ≈ , shown infigure 7.Here, the

bunching is seen to be at a less advanced stage, but can be expected to reach saturation on further propagation

through the undulater-chicane lattice.

3. Fourier synthesized electron beams

Further types of phase-space transformation of an electron pulse prior to generating radiation have been

proposed and called ‘beam-by-design’ [7]. An example is investigated here to demonstrate the potential of such

beam transformation prior to injection into the FEL and the subsequent transformation in the FEL emission

stage using a series of undulator-chicanemodules. An electron pulse consisting of a series rectangular shaped

distributions in phase-space can be generated [13] and contains a periodic series of current ‘spikes’. These

current spikes are a source of coherent spontaneous emissionwhichmay, through a series of periodic

Figure 4.As figure 3, but around the centre of the electron pulse about themean pulse energy. The beamlets are seen to ‘spilt’ into two
separate beamlets.While the scaled energy spread requirement for lasing 1pb

σ < , is satisfied, the beamlet energy separation

condition (10) is only satisfied for a small region of beamlets about the pulse centre. The beamlets are therefore unlikely to lase
independently with non-overlapping bandwidths, so that the effective energy spread for the interaction is increased, decreasing the
ability of achieving significant FEL lasing.

6

New J. Phys. 17 (2015) 083017 J RHenderson et al



superpositions enabled by chicanes, generate significant radiation output from an undulator-chicane lattice.We

note that othermethods can generate similar beam structures, e.g. the E-SASE approach [27], however the

methods of [13] are used here to demonstrate the types ofmore exotic interaction thatmay bemodelled using

non-averaged simulation codes such as PUFFIN.

Figure 5.A comparison of the scaled radiation temporal power and spectral power (insets) for an untransformed electron pulse
(panels (a) and (b)) and transformed pulse of beamlets (panels (c) and (d)), when propagated through a simple undulator and an
undulator-chicane lattice respectively and interaction length of z̄ 30≈ . The (red) box shows the position of the electron pulse relative
to the radiation (the head of the pulse is to the left.)Note the different lengths of the electron pulses due to differing dispersive effects of
the chicanes. The beamlets propagating through a simple undulator (panel (c)) are seen to give a small improvement to the output
from the untransformed beam through both a simple undulator and an undulator-chicane system ((a) and (b) respectively.) The
improvement in output from the beamlets is increased significantly when they are propagated through thematched undulator-
chicane lattice as shown in panel (d). The undulator-chicane lattice amplifies side-band radiationmodes generated by the undulator-
chicanemodules and are separated by 0.0147Δω = as seen from the panel (d) inset and in agreement with themode-spacing relation
of (8). For all results shown in thisfigure the radiationfield has been filtered about the resonant frequency 0.5 1.5rω ω< < to
eliminate low frequency coherent spontaneous emission.

Figure 6.Electron bunching in a lower energy beamlet at z̄ 30≈ . The top panel plots the charge-weighted electron phase-space
distribution ; themiddle plots the bunching parameter of the beamlet at the fundamental radiation frequency, and the bottomplots
the bunching spectrumof the beamlet.
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3.1. Themodel—coherent emission from rectangular electron pulses

Anew approach to produce so-called ‘RF-function’ electron beamswas introduced in [13]. AnRF-function

generator produces a series of repeatedwave forms by combining sine-waves of different frequencies as in a

Fourier series. In a similar fashion, an electron pulse can be createdwith a phase-space that consists of repeated

‘waveforms’ bymodulation the electron beamusing a series of seeded undulatormodulators using different seed

wavelengths, amplitudes and phases. Following the notation of [13], here a rectangular beam shape in phase-

space using a triplemodulator-chicane lattice is synthesized and subsequent radiation generation following

injection into an undulator chicane-lattice ismodelled using PUFFIN.

While in [13] an infinity long electron beamwas assumed, here, afinite electron pulse with an initial

Gaussian distribution in both z̄2 and γ is assumed, as given by equation (6). As detailed in the appendix, the same

Fourier synthesis as outlined in [13] is applied using the beammodulation transforms given by equation (4) and

the energy dispersion transforms of equation (5).

In electron phase-space, the vertical segments of the rectangular waveform generate regions of enhanced

current, albeit with a larger energy spread. Each period therefore contains two current ‘spikes’which can

generate significant coherent spontaneous emissionwhen their width is of a similar scale to a resonant

wavelength [17].However, due to electron beamdispersion in the undulator, the sharpness of the current spikes

reduce on propagation, resulting in diminishing coherent emission. This dispersion of the current spikesmay be

compensated for by the use of chicane systemswith a negative dispersion to allow formore prolonged coherent

emission. The design of chicane delay systemswith negative dispersion have been previously designed and tested

as part of an accelerator lattice [28] and are also necessary for generating the RF-function beam shapes [7, 13]. If

the slippage per undulator-chicanemodule is alsomade equal to the current spike separation, then the radiation

is propagated from spike to spike and, if correctly phased, can facilitate the constructive interference of the

coherent emission from each current spike in each newundulatormodule.

3.2. Results—coherent emission from rectangular electron pulses

The following simulations use the same electron pulse parameters as the previous section, i.e., the electron

pulse’s large energy spread is prohibitive to FEL gain. The phase-space distribution of the electron beam for the

rectangular waveformwas constructed from the analysis of the appendix for three undulator-chicanemodules

using the following parameters in D[ , ]Δγ : D n[ 10 ; 3 (2 )]r1 1 1 1Δγ σ ργ π Δγ= =γ ; D D[ 4; 3 ]2 1 2 1Δγ Δγ= = − ;

D D D[ 16; 3 4 9 4]3 2 3 2 1Δγ Δγ= = − = , with n 201,2,3 = , 01,2ϕ = and 3ϕ π= .

The initial current profile of the electron pulse contains a series of current spikes at half themodulation

period corresponding to 10 resonant radiationwavelengths or 10 4 2πρ× ≈ in units of z̄2. On injection into an

undulator, these spikes act as a periodic series of phase correlated coherent emitters which, for a relatively short

interaction length of z̄ 1)≈ , generate a broadmodal radiation spectrum as seen figure 8.However, it is seen that

alternate current spikes have dispersed to leave a series ofmore prominent current spikes at twice the initial

Figure 7.Electron bunching in a higher energy beamlet at z̄ 30≈ . The top panel plots the charge-weighted electron phase-space
distribution; themiddle plots the bunching parameter of the beamlet at the fundamental radiation frequency; and the bottomplots
the bunching spectrumof the beamlet.
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spacing of z̄ 42Δ ≈ . This is reflected in the temporal separation of the larger radiation spikes separated by

z̄ 42Δ ≈ ). This also agrees with to the spectrum inwhich a series ofmodes are generatedwith separation, from

equation (8), of 0.05rΔω ω ≈ about the resonant frequency.

On propagating further through the interaction region to larger values of z̄ 20≈ , the right-hand panels of

figure 8 show that the energymodulation of the rectangular electron beam causes the electron beam to disperse

in the undulator degrading the visibility of the current spikes and so decreasing the coherent spontaneous

emission generated. Clearly, these dispersive effectsmean that there is no benefit in increasing the interaction

length over that of z̄ 20 1πρ= ≈ .

By using chicanes with a negative dispersion it is possible to partially compensate for the undulator

dispersion andmaintain a spiked current profile that can continue to emit CSE over a larger number ofmodules.

An example of this is shown infigure 9were the chicane dispersion is set equal the negative of the undulator
dispersion, i.e. D l̄= − [24]. The total undulator-chicane slippage for the radiationwas again set equal to the

current-spike separation, s̄ 10 4πρ= × . For this case, undulator-chicanemodules offive undulator periods and

five chicane slippage periodswere used. In this way, the CSE from successive undulator-chicanemodules

superimpose and constructively interfere increasing the radiation power emitted.

However, the radiationfields from each undulator-chicane do not superimpose coherently and the radiation

energy is seen (not shown) to scale approximately as the number of undulator-chicanemodules—a phase-

matched coherent superpositionwould give a radiation energy which scales as the square of the number of

undulator-chicanemodules. The reason for this non-coherent superposition is that the dispersion of the large

energymodulated beam in the undulators cannot be perfectly compensated for by the negative dispersion in the

chicanes. (Phase-space dispersion of electrons in the undulator is due to differences in the axial speed vz, while

electron dispersion in the chicanes is due to differences in the electron energy, γ.) This is observed from the slight

‘bowing’ of the rectangular structure of the electrons in phase-space infigure 9. Two possiblemethods to

improve this are to reduce the initial energymodulation of the rectangular wave (the results here are for a

Figure 8.The evolution of a rectangular electron beam in an undulator showing from top-to-bottom, the scaled radiation power A 2∣ ∣
as a function of z̄2, electron phase-space ( z, ¯r 2γ γ ) with detail inset, the scaled electron current as a function of z̄2 and the logarithmof

the scaled radiation power spectrum Ã 2∣ ∣ as a function of the scaled frequency rω ω . The series on the left plot the output for a scaled
distance through the undulator of z̄ 1≈ and on the right for z̄ 20≈ An electron pulse with an initially large energy spread has been
transformed into an electron pulse that contains a number of rectangular waveforms (see second plot on the left). The electron pulse
structure now contains a series of current spikes of spacing z̄ 42Δ ≈ .When this electron pulse passes through an undulator each
current spike acts as a source of coherent spontaneous emission. The radiation spectrum (bottompanels) shows a broad bandwith
modal structurewithmodes separation 0.05rΔω ω ≈ . As the electron pulse propagates along the undulator, the rectangular
waveformswill disperse, and increase the current spikewidths and reduce current spike amplitudes. As the current spikes’ ‘sharpness’
decreases the coherent radiation produced by the current spikes will also decrease. Because of this no amplification is seenwhen
passing such an electron pulse through a long undulator, as shown in the rhs of thisfigure.
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relatively large energymodulation) or to use a (hypothetical) optimized chicane designwhich has a nonlinear

dispersive strength as a function of γ. Here the latter is used and the results shown infigure 10.Now, the bowing

of the rectangular structure of the electrons in phase-space is seen to be removed and the power of the radiation

increased. The coherent radiation from each undulator-chicanemodule is nowphasematched and is

superimposing coherently after eachmodule. The radiation energy is now also observed to increase in

proportion to the square of the number ofmodules.

A comparison of a normal (untransformed beam) FEL amplifierwith themethods of beamlets of the

previous section and that of the Fourier synthesized rectangular beamof this section is given infigure 11which

plots how the scaled energyE of the radiation pulses evolves with the interaction length z̄ , where:

Figure 9.By using chicanes with a negative dispersion, the undulator dispersion of the rectangular sections of the electron beam can be
partially compensated for as seen here for z̄ 10≈ . In doing so the electron pulse can continue to emit coherent emission in each
undulatormodule. Here, each undulatormodule hasfive periods and each chicane delays the electron pulse by approximately five
resonant periods, tomatch the current spike separation.Note that there is small FEL interaction as evidence by electron
microbunching (not shown).

Figure 10.As figure 9, but nowusing an optimized chicanewhichmaintains the rectangular waveform electron pulse structure in
phase-space as it propagates through the undulator-chicane lattice. The rectangular electronwaveform emits coherent radiation in
each newundulatormodule which constructively interferes with the radiation in subsequent undulatormodules.
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( ) ( )E z A z z z¯ ¯, ¯ d¯ . (11)2 2∫= ∣ ∣
−∞

+∞

Before performing the integral in (11) thefieldwas first Fourier bandpassfiltered so that only contributions

about resonance in the interval 0.5 1.5rω ω< < are considered (this removes the significant low-frequency

CSE content). The introduction of the phase-space transform to generate electron beamlets is seen to increase

the exponential growth rate over the normal FEL interaction by a factor of approximately two.While the

rectangular electron beams are seen not to have an exponential gain, it is essentially a Coherent Spontaneous

Emission process, the starting powers aremuch greater than the FEL processes which start from spontaneous

shot noise. It should be noted that when theCSE simulations predict radiation powers that are a significant

fraction of the electron beam energy, that the effects of photon recoil should be included in themodel. These

effects are not included in the classical simulations presented here.

4. Conclusion

This paper has sought to demonstrate whatmay be possible when electron beams are transformed to alter their

properties before injection into a FEL-type system. It is stressed that themethods demonstrated here are not

proposals for any specific design or operational wavelength. Rather, they are used to demonstrate possible

research directions towards future light sources, some of which have already been envisaged [7].

Here, the focuswas to generate significant radiation output from electron beams that have insufficient beam

quality to lase under normal FEL operation. Thesemethodsmay be developed further andmademore specific

e.g. to the electron beams generated fromplasma accelerator sources which, to date, tend to have relatively high

energy spreads. Other possibilities, such asmultiple frequency generation, ultra-short pulses, chirped pulses

(possibly shorter wavelengths) and others, are potential research areas. One topic that is apparent, but has not

been explored here, is the introduction of tapered undulators into the design process. For example, the

introduction of tapered undulators,matched to compensate for the chirped beamlets of above, instead of using

chicanes, can be expected to produce interesting radiation output.

It is noted that the simulations presented here cannot bemodelled effectively, or at all, using simulation

codes that are used to successfullymodel the ‘normal’ types of FEL interactions. Unaveraged FEL codes, such as

the PUFFIN code used here, are required.
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AppendixA

Thefinal distribution function of a triple-modulator-chicane scheme is given below
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The energymodulation parameters 1,2,3Δγ , modulation frequencies n k kw1,2,3 1,2,3= andmodulation phases

1,2,3ϕ are associatedwith first, second and thirdmodulator sections respectively. Similarly D1,2,3 are the

dispersion factors for chicane 1,2 and 3. z, ¯2
σγ are the standard deviations in γ and z̄2. The resonant energy is

defined as r z̄ 0γ γ= < > ∣ = and the electron pulse centre is given by z̄c .
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