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Abstract

A model is presented for the nonlinear interaction between a large amplitude laser and semicon-

ductor plasma in the semi-relativistic quantum regime. The collective behavior of the electrons

in the conduction-band of a narrow-gap semiconductor is modeled by a Klein-Gordon equation,

which is nonlinearly coupled with the electromagnetic (EM) wave through the Maxwell equations.

The parametric instabilities involving the stimulated Raman scattering and modulational instabil-

ities are analyzed theoretically, and the resulting dispersion relation relation is solved numerically

to assess the quantum effects on the instability. The study of quasi-steady state solution of the

system and direct numerical simulations demonstrate the possibility of the formation of localized

EM solitary structures trapped in electrons density holes.

PACS numbers: 73.63.Hs,73.43.Lp,52.35.Mw
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The magnitude and response time of different types of optical nonlinearities such as soli-

tons in semiconductors is a subject of considerable interest, as the optical solitary waves

have important applications in all-optical signal processing [1]. Parametric amplifications of

oscillations have been observed in n-doped narrow-gap semiconductors, where the nonlinear

optic effects come from the nonparabolicity of the conduction band [2]. The conduction

electrons can be reasonably taken as a high-density semiconductor plasma with a fixed neu-

tralizing ionic background. The band structure of InSb leads to a non-parabolic conduction

band [3], which gives rise to a momentum-dependent effective mass of the electrons near the

bottom of the conduction band, formally resembling that of relativistic electrons [4–6], but

with a smaller effective rest mass and with an effective speed of light that is several orders

of magnitude smaller than the speed of light in vacuum. Similar properties apply to the

two-dimensional gas of massless and massive Dirac fermions in graphene [7, 8] where the

electrons are modeled by a Dirac equation. Hence, the collective dynamics of conduction

electrons with a velocity-dependent mass may simulate some aspects a relativistic quantum

plasma. In the past, relativistic effects in gaseous quantum plasmas have been invoked by

using collective Klein-Gordon, Dirac, quantum electrodynamic, and quantum fluid equations

[9–16] to model the interaction with large amplitude electrostatic (ES) and electromagnetic

(EM) waves. For semiconductor plasmas, the interaction with a large amplitude laser can

give rise to a variety of linear and nonlinear excitations, such as the beat wave generation

of plasmons [17] and electron wake field acceleration [18]. The pseudo-relativistic velocity-

dependent mass increase due to a large amplitude EM wave can lead to nonlinear effects

such as self-focusing of EM radiation [5], parametric instabilities [6], a modulational insta-

bility and saturation in the form of a chain of soliton structures [19], multi-dimensional

self-trapping of EM pulses [20], and the self-organization of vortex solitons [21] in narrow-

gap semiconductors. The pseudo-relativistic and quantum effects on ES nonlinear structures

have recently been investigated [22].

The quantum effects have attracted much attention due to important applications in

modern semiconductor quantum devices, such as spintronics, nanotubes, quantum dots and

quantum wells [23, 24]. In semiconductor devices, the quantum effects are significant when

the de Broglie wavelength of the charged carriers is comparable to the characteristic spatial

scales of the system, and the effect of quantum tunneling then has to be taken into account

for semiconductor quantum plasmas [25, 26]. The formation of solitons has been investigated
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in semiconductor quantum plasma [27, 28], taking into account the wave dispersion due to

charge separation and quantum recoil and the nonlinearities coming from the large amplitude

ES potential and from the quantum statistical and exchange-correlation effects.

In this Letter, we present a model that includes both the pseudo-relativistic and quan-

tum tunneling effects for the interaction of intense laser light with semiconductor plasmas.

Parametric amplification due to the Raman and modulational instabilities are studied with

our new model, as well as the possibility of localized nonlinear EM structures in the form of

solitons accompanied by a local depletion of the conduction electron densities.

In narrow-gap semiconductors, the conduction electrons have a small effective mass and

exhibit a significant degree of nonparabolicity. The dynamics of the conduction band elec-

trons is governed by a pseudo-relativistic Hamiltonian in the form [4–6]

E =
(
p2c2∗ +m2

∗c
4
∗

)1/2
, (1)

where c∗ = (Eg/2m∗)
1/2 plays the role of the speed of light, m∗ is the effective rest mass

of an electron at the bottom of the conduction band, and Eg is the width of the energy

gap separating the valence and conduction bands. For the semiconductor InSb, the effective

speed of light is c∗ ≈ 3 × 10−3c, where c is the speed of light in vacuum. The Hamiltonian

(1) can be used to model electrons on length-scales large enough that quantum tunneling

effects can be neglected, and can then be used to construct a Vlasov equation for the wave

dynamics of the Fermi-Dirac distributed electrons [5, 6]. To model relativistic and quantum

spin and tunneling effects on equal footing would involve to use the Dirac equation for a

single electron as a basis to construct a corresponding relativistic quantum kinetic equation

via a Wigner transform or some other approach. Such a model would be too complicated to

use in practice. We here use two simplifying assumptions: i) that spin effects are relatively

small due to the absence of a strong magnetic field, and ii) kinetic effects are small due to

the low temperature of the plasma. The dispersive effects due to the electron degeneracy

pressure is also neglected with the assumption of a not too dense plasma; a moderately

doped InSb plasma has a density of ∼ 1023m−3 while the density of a weakly doped InSb

plasma is ∼ 1020 m−3 [19], which are about 5–8 orders of magnitude smaller than typical

metallic densities. That spin effects are neglected allows us to use a Klein-Gordon equation

(instead of the Dirac equation) for the electrons, which can then be used for a single-particle

wave-function representing an ensemble of electrons. By the substitution E → ih̄∂/∂t and
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p → −ih̄∇ in Eq. (1), where h̄ is the Planck constant divided by 2π, we obtain the Klein-

Gordon equation (KGE) for a free conduction electron as

h̄2
∂2ψ

∂t2
− h̄2c2∗∇2ψ +m2

∗c
4
∗ψ = 0, (2)

where ψ is the conduction electron wave function. In order to study the laser beam inter-

action with a semiconductor quantum plasma, we next let ψ represent an ensemble of con-

duction electrons and use the charge and current densities as sources for the self-consistent

EM scalar and vector potentials φ and A. The EM potentials are introduced into the KGE

(2) with the substitutions ih̄∂/∂t→ ih̄∂/∂t+ eφ and −ih̄∇ → −ih̄∇+ eA, resulting in

W2ψ − c2∗P2ψ −m2
∗c

4
∗ψ = 0, (3)

where the energy and momentum operators are W = ih̄∂/∂t + eφ and P = −ih̄∇ + eA,

respectively. Using the Coulomb gauge ∇ · A = 0, the self-consistent vector and scalar

potentials are governed by the EM wave equation and Poisson’s equation, respectively, as

∇2A− 1

u2
∂2A

∂t2
− 1

u2
∇∂φ

∂t
= −µ0je, (4)

and

∇2φ = −1

ε
(ρe + en0), (5)

where the electric charge and current densities are obtained as

ρe = − e

2m∗c2∗
[ψ∗Wψ + ψ(Wψ)∗] , (6)

and

je = − e

2m∗

[ψ∗Pψ + ψ(Pψ)∗] , (7)

respectively. The charge and current densities obey the continuity equation ∂ρe/∂t+∇· je =
0. Here, µ0 is the magnetic vacuum permeability, ε is the effective dielectric permittivity

of the lattice, −e is the electron charge, and n0 is the unperturbed density of the electrons

and of the positive neutralizing ionic background. For the semiconductor InSb, the effective

dielectric permittivity is ε = 16ε0 where ε0 is the vacuum electric permittivity and u =

1/
√
εµ0 is the effective light speed in the semiconductor lattice. Systems similar to (3)–

(7) have been used in the past to describe relativistic interactions with electrromagnetic

waves in gaseous quantum plasmas [9, 11, 13, 14], the difference being that the present
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model for a semiconductor plasma contains the effective speed of light c∗ for the dynamics

of the electrons and the effective speed of light u for the propagation of the EM wave in the

semiconductor lattice.

We now consider the instability of a pseudo-relativistically intense circularly polarized

electromagnetic (CPEM) wave propagating in a semiconductor quantum plasma. To inves-

tigate the growth-rates of the stimulated Raman and modulational instabilities, we linearize

our system by introducing ψ = [ψ̃0+ψ̃1(r, t)] exp(−iγAm∗c
2
∗t/h̄), A = A0(r, t)+A1(r, t), and

φ(r, t) = φ1(r, t), where γA =
√
1 + e2A2

0/m
2
∗c

2
∗ is the pseudo-relativistic gamma factor due

to the quivering motion of an electron in the laser field, A0 is the amplitude of the CPEM

carrier waveA0, and ψ̃0 is assumed to be constant. The equilibrium quasi-neutrality requires

that ψ̃0 is normalized such that |ψ̃0|2 = n0/γA [14]. We now introduce the Fourier representa-

tions ψ̃1 = ψ̂+ exp(−iΩt+iK ·r)+ψ̂− exp(iΩt−iK ·r), φ1 = φ̂ exp(−iΩt+iK ·r)+ c.c., A0 =

(1/2)Â0 exp(−iω0t+ik0·r)+ c.c., andA1 = [Â+ exp(−iω+t+ik+·r)+Â− exp(−iω−t+ik−·r)]
+ c.c., where ω± = ω0 ± Ω and k± = k0 ±K, and c.c. stands for complex conjugate. Sepa-

rating different Fourier modes and eliminating the Fourier coefficients, we find the nonlinear

dispersion relation

1 +
1

χ̃e

=
(c2∗K

2 − Ω2 + ω2
pe/γA)

[4γ2Am
2
∗c

4
∗ − h̄2(Ω2 − c2∗K

2)]

×
[
c2∗e

2|k+ × Â0|2
k2+DA(ω+,k+)

+
c2∗e

2|k− × Â0|2
k2−DA(ω−,k−)

]
,

(8)

where ωpe =
√
n0e2/m∗ε is the effective quantum semiconductor plasma frequency and the

EM sidebands are governed by DA(ω±,k±) = u2k2± − ω2
± + ω2

pe/γA. The carrier wave A0

obeys the nonlinear dispersion relation (see Ref. [14]) ω0 =
√
u2k20 + ω2

pe/γA. The electric

susceptibility in the presence of the laser field is given by

χ̃e(Ω, K) =
ω2
pe[4γ

2
Am

2
∗c

4
∗ − h̄2(Ω2 − c2∗K

2)]

γA[h̄
2(Ω2 − c2∗K

2)2 − 4γ2Am
2
∗c

4
∗Ω

2]
. (9)

In the absence of EM waves (A0 = 0), the dispersion relation 1 + χ̃e = 0 supports ES

electron plasma waves and pair branches in quantum plasmas [11, 14] and semiconductor

quantum plasmas [22]. In the limits c∗ → c and u → c, the dispersion relation (8) governs

the relativistic parametric interaction between an EM wave and a gaseous quantum plasma

[14].

It should be noted that for frequencies ω0/ωpe > 2/
√
γA and the corresponding wavenum-

bers k0u/ωpe >
√

3/γA, the dispersion relation (8) governs the three-wave resonant Raman
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scattering instability, in which the laser decays into a frequency-downshifted EM sideband

and a plasma oscillation. For this instability, |DA(ω−,k−)| ≪ |DA(ω+,k+)|, so that the term
proportional to 1/DA(ω+,k+) can usually be neglected. The resonance condition for the

maximum growth rate is then approximately given by 1+χe(Ω, K) ≈ 0 and DA(ω−,k−) ≈ 0.

For very short wavelengths of the laser, the quantum tunneling (quantum recoil) effects be-

come important for the plasma oscillations. On the other hand, when ω0/ωpe
<∼ 2/

√
γA

(corresponding to k0u/ωpe
<∼

√
3/γA), the dispersion relation (8) supports the modulational

instability [19], which is a four-wave coupling where the laser decays into two neighbor-

ing EM sidebands and a non-resonant plasma oscillation. In this case, |DA(ω−,k−)| and
|DA(ω+,k+)| are of the same order and have to be kept in the dispersion relation. The

modulational instability typically saturates by the formation of solitary wave structures.

To proceed with the numerical evaluation of the nonlinear dispersion relation, we choose

a coordinate system such that the right-hand CPEM wave takes the form Â0 = (x̂+ iŷ)Â0,

and the CPEM wave vector is k0 = k0ẑ, where x̂, ŷ and ẑ are units vectors in the x, y

and z directions. Without loss of generality, we choose a coordinate system such that the

perturbation wave vector for the plasma density oscillations can be written K = Kzẑ+Kyŷ.

We now assume that the wave frequency is complex valued, Ω = ΩR + iΩI , where ΩR is

the real frequency and ΩI the growth-rate, and solve numerically the dispersion relation (8)

for Ω. We consider typical parameters for semiconductor InSb plasma as [19] m∗ = me/74,

ε = 16ε0, c∗ = c/253, and n0 = 1020m−3. The amplitude of the CPEM wave is e|Â0|/m∗c∗ =

1. The dimension-less quantum parameter H = h̄ωpe/m∗c
2
∗ = 0.0074 obtained from the

InSb semiconductor parameters is a measure of the importance of quantum effects in the

system. In the left-hand column of Fig. 1, we have plotted the growth rate as a function

of the wave numbers Kz and Ky, for k0u/ωpe = 12, which corresponds to a wavelength

of 3.23 × 10−5 m for H = 0.0074, which is in the Thz regime. In Fig. 1, the stimulated

Raman instability takes place in a narrow circular region for large wavenumbers where the

resonance condition of the instability is fulfilled. The modulational instability is visible for

small values of |Kyu/ωpe| <∼ 1 and |Kyu/ωpe| <∼ 7. In the right-hand column of Fig. 1, we

investigate the instability of a CPEM dipole wave field with k0 = 0, where the modulational

instability dominates. The modulational instability has a positive growth-rate for relatively

small wavenumbers with |Kyu/ωpe| <∼ 0.4 and |Kyu/ωpe| <∼ 0.6. For moderately doped

samples, the quantum parameter H becomes relatively large. This leads to a reduction of
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the growth rate of the Raman instability, while the quantum diffraction effects have little

influence on the modulational instability at small wavenumbers.

We have used a collisionless model for the electrons, even though the collision time for

electrons in semiconductors is comparatively short [19]. The collisionality depends on the

level of doping, the quality of the sample, and the temperature of the semiconductor plasma.

The mobility of the electrons in InSb plasma is high, but due to their small effective masses,

the measured mean collision time due to collisions with charged particles is in the range τ0 =

10−11–10−13 s in a InSb plasma at a temperature of Te = 77K. However, the high laser field

significantly increases the collision time and drives the plasma towards a collisionless state.

The relaxation time scales as τr = τ0(E/E0)
3/2 [29, 30], where E0 ≈ 3kBTe/2 ≈ 1.6×10−21 is

the average kinetic energy of the unperturbed state and E ≈ m∗c
2
∗(γA−1) ≈ 7×10−21 is the

average kinetic energy in the presence of the field. Hence, we get τr ≈ 10τ0 = 10−10–10−12 s.

The Raman instability (cf. left panel of Fig. 1) develops on a time-scale of τi = ω−1
I ≈

50ω−1
pe ≈ 4 × 10−11s, while the modulational instability develops on τi ≈ 10ω−1

pe ≈ 10−11s.

Hence, in an InSb plasma in the lower range of collisionality τ0 ∼ 10−11, the collisionless

assumption could remain justified, while at higher collisionality such as τ0 ∼ 10−13, the

growth-rate of the instability could be decreased or the instability could be quenched by

collisions.

FIG. 1: The normalized growth rate ΩI/ωpe of the stimulated Raman scattering (left

column) and modulational instability (right column) in the nonlinear interaction of a

pseudo-relativistic intense CPEM wave with an InSb semiconductor quantum plasma.

We next investigate the possibility of localized CPEM wave excitations in semiconduc-

tor quantum plasma. It is convenient to first introduce a new wave-function Ψ(z, t) via

the transformation ψ(r, t) = Ψ(z, t) exp(−im∗c
2
∗t/h̄). To study quasi-steady state struc-

tures propagating with a constant speed v0, we assume that φ = φ(ξ) and A2 = A2(ξ),

where ξ = z − v0t and A2 = |A|2. The CPEM wave vector potential is of the form
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A = A(ξ)[x̂ cos(k0z − ω0t) − ŷ sin(k0z − ω0t)]. It is convenient to introduce the eikonal

representation Ψ = P (ξ) exp[iθ(ξ)], where P and θ are real-valued. The boundary condi-

tions for the localized structures are A = 0, P =
√
n0, φ = 0, and d/dξ = d2/dξ2 = 0 at

|ξ| = ∞. Then, using a formalism similar as in Ref. [14], with k0 = ω0v0/u
2, we obtain

the phase from dθ/dξ = (v0m∗γ
2
2/h̄)[(eφ/m∗c

2
∗ + 1) − n0/P

2], and the coupled system of

equations

d2A

dξ2
+
ω2
pe

u2

[
λ+ γ21

(
1− P 2

n0

)]
A = 0, (10)

d2P

dξ2
+
m2

∗c
2
∗γ

4
2

h̄2

[(
eφ

m∗c2∗
+ 1

)2

− v20
c2∗

n2
0

P 4
− γ2A
γ22

]
P = 0. (11)

d2φ

dξ2
=
en0γ

2
2

ε

[(
eφ

m∗c2∗
+ 1

)
P 2

n0

− 1

]
. (12)

where λ = ω2
0/ω

2
pe−γ21 is a nonlinear eigenvalue, and γ1 = 1/

√
1− v20/u

2, γ2 = 1/
√
1− v20/c

2
∗

and γA =
√
1 + e2A2/m2

∗c
2
∗ are pseudo-relativistic gamma factors. The coupled system (10)–

(12) describes the profile of EM solitary waves in a quantum semiconductor plasma. We

solved the system (10)–(12) as a nonlinear boundary value problem with the boundary

conditions eA/m∗c∗ = eφ/m∗c
2
∗ = 0 and P/

√
n0 = 1 at the boundaries ξωpe/u = ±20. The

spatial domain is numerically resolved with 4000 intervals, and the second-derivatives in the

system (10)–(12) are approximated by centered second-order approximations. The resulting

nonlinear system of equations is then solved numerically by Newton’s method. We choose

the same parameters as in Fig. 1. The numerical solutions are displayed in Fig. 2. As seen

in Fig. 2, the local depletions of the conduction electron density P associated with a single

maximum of the localized vector potential A and a localized positive potential φ for v0 = 0.

For v0 = 0.52u, we instead have the plasma wake oscillations as illustrated by scale potential

eφ/m∗c
2
∗ in right column of Fig. 2. Hence, an EM pulse creates an oscillatory wake that

extends far away from the propagating soliton. In classical InSb semiconductor plasmas, the

wake field also forms when the laser pulse length is comparable to the inverse of the plasma

frequency [18].

In order to study the dynamics of the localized CPEM packets, we have carried out

numerical simulations of the KGE-Maxwell system of equations (3), (4) and (5) in the

slow varying envelope approximation limit. We have here restricted our study to one space
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FIG. 2: The spatial profiles of the vector potential, the conduction electron density and

the scalar potential (top to bottom panels) for v0 = 0 (left column) and v0 = 0.52u (right

column) with the frequency shift λ = −4.

dimension, along the z-direction, and have written our governing equations in the form

2iω0

(
∂A

∂t
+ vg

∂A

∂z

)
+ u2

∂2A

∂z2
+ ω2

pe

(
1− P 2

n0

)
A = 0,

(
ih̄
∂

∂t
+ eφ+m∗c

2
∗

)
ψ̃ = W,

(
ih̄
∂

∂t
+ eφ+m∗c

2
∗

)
W + h̄2c2∗

∂2ψ̃

∂z2
− γ2Am

2
∗c

4
∗ψ̃ = 0,

∂2φ

∂z2
=

e

2m∗c2∗ε
(ψ∗W + ψW ∗)− en0

ε
.

(13)

where we have used the transformation ψ = ψ̃ exp(−im∗c
2
∗t/h̄). The group velocity is

vg = k0u
2/ω0. We use a pseudo-spectral method for calculating the spatial derivatives, and

the standard 4th-order Runge-Kutta method to advance the solution in time. The spatial

domain is from zωpe/u = 0 to zωpe/u = 40 with 2048 intervals in space, with periodic

boundary conditions. We carry out the simulation from time ωpet = 0 to ωpet = 200 using

the time step ωpe∆t = 2 × 10−6. The initial conditions are A = m∗c∗/e, ψ̃ =
√
n0, W = 0,

and φ = 0. Small-amplitude noise (random numbers) of order 10−2m∗c∗/e is added to A to

give a seed for any instability. We use the same semiconductor parameters as in Figs. 1 and

2, with k0 = 0 so that A initially represents an oscillating dipole field. The numerical results

are shown in Fig. 3. We found that the instability grows and saturates at time ω0t ≈ 100.
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FIG. 3: The dynamics of the normalized CPEM vector potential eA/m∗c∗ (left),

conduction electron density |ψ|2/n0 (middle), and scalar potential eφ/m∗c
2
∗ (right) in an

InSb semiconductor quantum plasma.

The CPEM waves collapse and form localized solitary wave structures, where the maxima of

the vector A is accompanied by depletions of the conduction electron density and maxima

of the scalar potential. Small-scale spatial oscillations are excited in the electron density

due to quantum diffraction effects. The scalar potential also has high frequency oscillations

in time near the plasma frequency as illustrated in right-hand column of Fig. 3.

In summary, we have developed a model for the interaction between intense EM waves

and a pseudo-relativistic semiconductor quantum plasma. Our nonlinear model is based on

the coupled Klein-Gordon and Maxwell equations for the relativistic-like electron dynamics

and the EM fields. A nonlinear dispersion relation is derived for the growth-rates of the

Raman scattering and modulational instabilities in the presence of pseudo-relativistically

intense CPEM waves. In the nonlinear regime, we have theoretically and by simulations

demonstrated the localization and collapse of large amplitude CPEM waves into solitary

EM wave packets in semiconductor quantum plasmas.
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