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Abstract

In this paper, we study the averaging principle for neutral stochastic functional

differential equations (SFDEs) with Poisson randommeasure. By stochastic inequality,

Burkholder-Davis-Gundy’s inequality and Kunita’s inequality, we prove that the

solution of the averaged neutral SFDEs with Poisson randommeasure converges to

that of the standard one in Lp sense and also in probability. Some illustrative examples

are presented to demonstrate this theory.

Keywords: averaging principle; neutral SFDEs; Lp convergence; convergence in

probability; Poisson randommeasure

1 Introduction

Since Krylov and Bogolyubov [] put forward the averaging principles for dynamical sys-

tems in , the averaging principles have received great attention andmany people have

devoted their efforts to the study of averaging principles of nonlinear dynamical systems.

For example, the averaging principles for nonlinear ordinary differential equations (ODEs)

can be found in [, ]. For the averaging principles of nonlinear partial differential equa-

tions (PDEs), we refer to [, ].

With the developing of stochastic analysis theory, many authors began to study the aver-

aging principle for stochastic differential equations (SDEs). Khasminskii [] first extended

the averaging theory for ODEs to the case of stochastic differential equations (SDEs) and

studied the averaging principle of SDEs driven by Brownianmotion. After that, there grew

an extensive literature on averaging principles for SDEs. Freidlin and Wentzell [] pro-

vided a mathematically rigorous overview of fundamental stochastic averaging method.

Golec and Ladde [], Veretennikov [], Khasminskii and Yin [], Givon et al. [] stud-

ied the averaging principle to stochastic differential systems in the sense of mean square

and probability. On the other hand, Stoyanov and Bainov [], Kolomiets and Melnikov

[], Givon [], Xu et al. [] established the averaging principle for stochastic differential

equations with Lévy jumps. They proved that the solutions of averaged systems converge

to the solutions of original systems in mean square under the Lipschitz conditions.

On the other hand, Yin and Ramachandran [] studied the asymptotic properties of

stochastic differential delay equation (SDDEs) with wideband noise perturbations. By

adopting the martingale averaging techniques and the method of weak convergence, they
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showed that the underlying process yε(t) converges weakly to a random process xε(t) of

SDDEs as ε → . Tan and Lei [] investigated the averaging method for a class of SDDEs

with constant delay. Under non-Lipschitz conditions, they showed the convergence be-

tween the standard form and the averaged form of SDDEs. Furthermore, Xu et al. [] and

Mao et al. [] also extended the convergence results [, , , ] to the case of stochastic

functional differential equations (SFDEs) and SDDEs with variable delays, respectively.

SDDEs and SFDEs are well known to model problems from many areas of science and

engineering, the future state of which is determined by the present and past states. In

fact, many stochastic systems not only depend on the present and past states but also in-

volve the derivatives with delays as well as the function itself. In this case, neutral SDDEs

(SFDEs) has been used to described such systems. In the past few years, the theory of neu-

tral SDDEs (SFDEs) has attracted more and more attention (see e.g. [–]). However,

to the best of our knowledge, there is no research about using the averaging methods to

obtain the approximate solutions to neutral SDDEs (SFDEs). In order to fill the gap, we

will study the averaging principle of neutral SFDEs with Poisson randommeasure. By us-

ing the averaging method, we give the averaged form of neutral SFDEs () and show that

the pth moment of solution to equation () is bounded. Then, applying the stochastic in-

equality, Burkholder-Davis-Gundy’s inequality and Kunita’s inequality, we prove that the

solution of the averaged neutral SFDEs with Poisson random measure () converges to

that of the standard one () in Lp sense and also in probability under the Lipschitz con-

ditions. Meantime, we relax the Lipschitz condition and obtain the averaging principle

for neutral SFDEs with Poisson random measure () under non-Lipschitz conditions. It

should be pointed out that the previous works [, , –, , ] on averaging principle

mainly discussed L strong convergence for stochastic differential equations and they do

not imply Lp (p > ) strong convergence. Moreover, since the neutral term is involved, the

proof of the main results are much more technical. The results obtained of this paper are

a generalization and improvement of some results in [, , , , , , ].

The rest of this paper is organized as follows. In Section , we introduce some prelimi-

naries and establish our main results. In Section , some lemmas will be given which will

be crucial in the proof of the main results, Theorems . and .. Section  is devoted to

the proof of the main results. Finally, two illustrative examples will be given in Section .

2 Averaging principle andmain results

Throughout this paper, let (�,F ,P) be a complete probability space equipped with some

filtration (Ft)t≥ satisfying the usual conditions. Here w(t) is an m-dimensional Brow-

nian motion defined on the probability space (�,F ,P) adapted to the filtration (Ft)t≥.

Let τ > , and D([–τ , ];Rn) denote the family of all right-continuous functions with left-

hand limits ϕ from [–τ , ]→ Rn. The space D([–τ , ];Rn) is assumed to be equipped with

the norm ‖ϕ‖ = sup–τ≤t≤ |ϕ(t)|. Db
F

([–τ , ];Rn) denotes the family of all almost surely

bounded, F-measurable, D([–τ , ];Rn) valued random variable ξ = {ξ (θ ) : –τ ≤ θ ≤ }.
For any p ≥ , let L

p
F

([–τ , ];Rn) denote the family of all F measurable, D([–τ , ];Rn)-

valued random variables ϕ = {ϕ(θ ) : –τ ≤ θ ≤ } such that Esup–τ≤θ≤ |ϕ(θ )|p <∞.

Let {p̄ = p̄(t), t ≥ } be a stationary Ft-adapted and Rn-valued Poisson point process.

Then, for A ∈ B(Rn – {}),  /∈ the closure of A, we define the Poisson counting measure
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N associated with p̄ by

N
(

(, t]×A
)

:= #
{

 < s ≤ t, p̄(s) ∈ A
}

=
∑

t<s≤t

IA
(

p̄(s)
)

,

where # denotes the cardinality of the set {·}. For simplicity, we denoteN(t,A) :=N((, t]×
A). It is well known that there exists a σ -finite measure π such that

E
[

N(t,A)
]

= π (A)t, P
(

N(t,A) = n
)

=
exp(–tπ (A))(π (A)t)n

n!
.

This measure π is called the Lévy measure. Moreover, by Doob-Meyer’s decomposition

theorem, there exists a unique {Ft}-adaptedmartingale Ñ(t,A) and a unique {Ft}-adapted
natural increasing process N̂(t,A) such that

N(t,A) = Ñ(t,A) + N̂(t,A), t > .

Here Ñ(t,A) is called the compensated Poisson random measure and N̂(t,A) = π (A)t is

called the compensator. For more details on Poisson point process and Lévy jumps, see

[–].

Consider the following neutral SFDEs with Poisson random measure

d
[

x(t) –D(xt)
]

= f (t,xt)dt + g(t,xt)dw(t) +

∫

Z

h(t,xt , v)N(dt,dv), ()

where xt = {x(t + θ ) : –τ ≤ θ ≤ } is regarded as a D([–τ , ];Rn)-valued stochastic pro-

cess. f : [,T] × D([–τ , ];Rn) → Rn, g : [,T] × D([–τ , ];Rn) → Rn×m and h : [,T] ×
D([–τ , ];Rn) × Z → Rn are both Borel-measurable functions. The initial condition x is

defined by

x = ξ =
{

ξ (t) : –τ ≤ t ≤ 
}

∈L

F

(

[–τ , ];Rn
)

,

that is, ξ is an F-measurable D([–τ , ];Rn)-valued random variable and E‖ξ‖ < ∞.

To study the averaging method of equation (), we need the following assumptions.

Assumption . LetD() =  and for all ϕ,ψ ∈D([–τ , ];Rn), there exists a constant k ∈
(, ) such that

∣

∣D(ϕ) –D(ψ)
∣

∣ ≤ k‖ϕ –ψ‖. ()

Assumption . For all ϕ,ψ ∈ D([–τ , ];Rn) and t ∈ [,T], there exist two positive con-

stants k, k such that

∣

∣f (t,ϕ) – f (t,ψ)
∣

∣

 ∨
∣

∣g(t,ϕ) – g(t,ψ)
∣

∣

 ≤ k‖ϕ –ψ‖

and

∫

Z

∣

∣h(t,ϕ, v) – h(t,ϕ, v)
∣

∣

p
π (dv) ≤ k‖ϕ –ψ‖p, p≥ . ()
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Assumption. For allϕ ∈ D([–τ , ];Rn) and t ∈ [,T], there exist two positive constants

k, k such that

∣

∣f (t,ϕ)
∣

∣

 ∨
∣

∣g(t,ϕ)
∣

∣

 ≤ k
(

 + ‖ϕ‖
)

and

∫

Z

∣

∣h(t,ϕ, v)
∣

∣

p
π (dv) ≤ k

(

 + ‖ϕ‖p
)

, p ≥ . ()

Let C,([–τ ,T]× Rn;R+) denote the family of all nonnegative functions V (t,x) defined

on [–τ ,T] × Rn which are continuously twice differentiable in x and once differentiable

in t. For each V ∈ C,([–τ ,T]× Rn;R+), define an operator LV by

LV (t,x, y) = Vt

(

t,x –D(y)
)

+Vx

(

t,x –D(y)
)

f (t, y)

+



trace

[

g⊤(t, y)Vxx

(

t,x –D(y)
)

g(t, y)
]

+

∫

Z

[

V
(

t,x –D(y) + h(t, y, v)
)

–V
(

t,x –D(y)
)]

π (dv), ()

where

Vt(t,x) =
∂V (t,x)

∂t
, Vx(t,x) =

(

∂V (t,x)

∂x
, . . . ,

∂V (t,x)

∂xn

)

,

Vxx(t,x) =

(

∂V (t,x)

∂xi ∂xj

)

n×n

.

Similar to the proof of [], we have the following existence result.

Theorem . If Assumptions .-. hold, equation () has a unique solution in the sense

of Lp.

Now, we study the averaging principle for neutral SFDEs with Poisson randommeasure.

Let us consider the standard form of equation ()

xε(t) = x() +D(xε,t) –D(x) + ε

∫ t



f (s,xε,s)ds

+
√

ε

∫ t



g(s,xε,s)dw(s) +
√

ε

∫ t



∫

Z

h(s,xε,s, v)N(ds,dv), ()

where the coefficients f , g , and h have the same assumptions as in (), (), and ε ∈ [, ε]

is a positive small parameter with ε is a fixed number.

Let f̄ (x) : D([–τ , ];Rn) → Rn, ḡ(x) : D([–τ , ];Rn) → Rn×m and h̄(x, v) : D([–τ , ];Rn) ×
Z → Rn bemeasurable functions, satisfying Assumptions . and ..We also assume that

the following condition is satisfied.

Assumption . For any ϕ ∈ D([–τ , ];Rn) and p≥ , there exist three positive bounded

functions ψi(T), i = , , , such that



T

∫ T



∣

∣f (t,ϕ) – f̄ (ϕ)
∣

∣

p
dt ≤ ψ(T)

(

 + ‖ϕ‖p
)

,
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T

∫ T



∣

∣g(t,ϕ) – ḡ(ϕ)
∣

∣

p
dt ≤ ψ(T)

(

 + ‖ϕ‖p
)

,

and



T

∫ T



∫

Z

∣

∣h(t,ϕ, v) – h̄(ϕ, v)
∣

∣

p
π (dv)dt ≤ ψ(T)

(

 + ‖ϕ‖p
)

,

where limT→∞ ψi(T) = .

Then we have the averaging form of the standard neutral SFDEs with Poisson random

measure

yε(t) = y() +D(yε,t) –D(y) + ε

∫ t



f̄ (yε,s)ds +
√

ε

∫ t



ḡ(yε,s)dw(s)

+
√

ε

∫ t



∫

Z

h̄(yε,s, v)N(ds,dv), ()

where y() = x(), y = x.

Obviously, under Assumptions .-., the standard neutral SFDEs with Poisson ran-

dom measure () and the averaged one () have a unique solutions in Lp, respectively.

Now, we present our main results which are used for revealing the relationship between

the processes xε(t) and yε(t).

Theorem. Let Assumptions .-. hold. For a given arbitrary small number δ >  and

p≥ , there exist L > , ε ∈ (, ε], and β ∈ (, ) such that

E
∣

∣xε(t) – yε(t)
∣

∣

p ≤ δ, ∀t ∈
[

,Lε–β
]

, ()

for all ε ∈ (, ε].

The proof of this theorem will be shown in Section .

Remark . In particular, when p = , we see that the solution of the averaged neutral

SFDEs with Poisson random measure converges to that of the standard one in second

moment.

With Theorem ., it is easy to show the convergence in probability between the pro-

cesses xε(t) and yε(t).

Corollary . Let Assumptions .-. hold. For a given arbitrary small number δ > ,

there exists ε ∈ [, ε] such that for all ε ∈ (, ε], we have

lim
ε→

P
(

sup
<t≤Lε–β

∣

∣xε(t) – yε(t)
∣

∣ > δ

)

= ,

where L and β are defined by Theorem ..
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Proof By Theorem . and the Chebyshev inequality, for any given number δ > , we can

obtain

P
(

sup
<t≤Lε–β

∣

∣xε(t) – yε(t)
∣

∣ > δ

)

≤ 

δ
p


E
(

sup
<t≤Lε–β

∣

∣xε(t) – yε(t)
∣

∣

p
)

≤ cLε–β

δ
p


.

Let ε → , and the required result follows. �

Next, we extend the averaging principle for neutral SFDEswith Poisson randommeasure

to the case of non-Lipschitz condition.

Assumption . Let k(·), ρ(·) be two concave nondecreasing functions from R+ to R+

such that k() = ρ() =  and
∫

+
up–

kp(u)+ρp(u)
du = ∞. For all ϕ,ψ ∈D([–τ , ];Rn), t ∈ [,T],

and p ≥ , then

∣

∣f (t,ϕ) – f (t,ψ)
∣

∣ ∨
∣

∣g(t,ϕ) – g(t,ψ)
∣

∣ ≤ k
(

‖ϕ –ψ‖
)

,

[∫

Z

∣

∣h(t,ϕ, v) – h(t,ψ , v)
∣

∣

p
π (dv)

]

p

≤ ρ
(

‖ϕ –ψ‖
)

.

()

Remark . As we know, the existence and uniqueness of solution for NSFDEs under the

above assumptions were proved by Bao and Hou [], Ren and Xia [] and Wei and Cai

[]. If k(u) = ρ(u) = Lu, then Assumption . reduces to the Lipschitz conditions (). In

other words, Assumption . is much weaker than Assumption ..

Theorem . If Assumptions . and . hold, then there exists a unique solution to equa-

tion () in the sense of Lp.

Proof The proof is similar to Ren and Xia [] and Wei and Cai [], and we thus omit

here. �

Theorem . Let Assumptions ., ., and . hold. For a given arbitrary small number

δ > , there exist L > , ε ∈ (, ε], and β ∈ (, ) such that

E
∣

∣xε(t) – yε(t)
∣

∣

 ≤ δ, ∀t ∈
[

,Lε–β
]

, ()

for all ε ∈ (, ε].

Proof The proof of this theorem will be shown in Section . �

Similarly, with Theorem ., we can show that the convergence in probability of the

standard solution of equation () and averaged solution of equation ().

Corollary . Let Assumptions ., ., and . hold. For a given arbitrary small number

δ > , there exists ε ∈ [, ε] such that for all ε ∈ (, ε], we have

lim
ε→

P
(

sup
<t≤Lε–β

∣

∣xε(t) – yε(t)
∣

∣ > δ

)

= ,

where L and β are defined by Theorem ..
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Remark . If jump term h = h̃ = , then equation () and () will become neutral SFDEs

(SDDEs) which have been investigated by [–]. Under our assumptions, we can show

that the solution of the averaged neutral SFDEs (SDDEs) converges to that of the standard

one in pth moment and in probability.

Remark . If the neutral term D(·) =  and D̃(·) = , then equation () and () will

reduce to SFDEs (SDDEs) with jumps which have been studied by [, ]. Hence, the

corresponding results in [, ] are generalized and improved.

3 Some useful lemmas

In order to prove our main results, we need to introduce the following lemmas.

Lemma . Let p >  and a,b ∈ Rn. Then, for ǫ > ,

|a + b|p ≤
[

 + ǫ


p–
]p–

(

|a|p + |b|p
ǫ

)

.

Lemma . Let p >  and a,b > . Then, for ǫ > ,

ap–b ≤ ǫ(p – )

p
ap +



pǫp–
bp, ap–b ≤ ǫ(p – )

p
ap +



pǫ
p–


bp.

Lemma . Let p >  and a,b ∈ Rn. Then, for any δ ∈ (, ),

|a + b|p ≤ |a|p
( – δ)p–

+
|b|p
δp–

.

Lemma . Let φ : R+ × Z → Rn and assume that

∫ t



∫

Z

∣

∣φ(s, v)
∣

∣

p
π (dv)ds < ∞, p≥ .

Then there exists Dp >  such that

E

(

sup
≤t≤u

∣

∣

∣

∣

∫ t



∫

Z

φ(s, v)Ñ(ds,dv)

∣

∣

∣

∣

p)

≤ Dp

{

E

(∫ u



∫

Z

∣

∣φ(s, v)
∣

∣


π (dv)ds

)

p


+ E

∫ u



∫

Z

∣

∣φ(s, v)
∣

∣

p
π (dv)ds

}

.

The proof of Lemma . and Lemma . can be found in [], the proof of Lemma .

can be found in [, ] and the proof of Lemma . can be obtained from Lemma . by

putting ǫ = δ
–δ

. The following lemma shows that if the initial data are in Lp (p ≥ ) then

the solution of averaged neutral SFDEs with Poisson random measure will be in Lp.

Lemma . Let Assumptions . and . hold. If the initial data ξ ∈ L
p
F

([–τ , ];Rn) for

some p ≥ , then for any t ≥ , the unique solution yε(t) of equation () has the property

that

E sup
–τ≤s≤t

∣

∣yε(s)
∣

∣

p ≤ C, ()

where C = [( + C̃)E‖ξ‖p + C̄
(–k)

pT]e
C̄

(–k)
p T

.
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Proof By the Itô formula to V (t, yε(t) –D(yε,t)) = |yε(t) –D(yε,t)|p, we obtain

∣

∣yε(t) –D(yε,t)
∣

∣

p

=
∣

∣yε() –D(y)
∣

∣

p
+

∫ t



LV
(

yε(s), yε,s, s
)

ds

+ p
√

ε

∫ t



∣

∣yε(s) –D(yε,s)
∣

∣

p–[
yε(s) –D(yε,s)

]⊤
ḡ(yε,s)dw(s)

+

∫ t



∫

Z

{
∣

∣yε(s) –D(yε,s) +
√

εh̄(yε,s, v)
∣

∣

p

–
∣

∣yε(s) –D(yε,s)
∣

∣

p}
Ñ(ds,du), ()

where

LV (x, y, t) = pε
∣

∣x –D(y)
∣

∣

p–[
x –D(y)

]⊤
f̄ (y)

+
p(p – )


ε
∣

∣x –D(y)
∣

∣

p–∣
∣ḡ(y)

∣

∣



+

∫

Z

[
∣

∣x –D(y) +
√

εh̄(y, v)
∣

∣

p
–

∣

∣x –D(y)
∣

∣

p]
π (dv).

Taking the expectation on both sides of (), one gets

E sup
≤s≤t

∣

∣yε(s) –D(yε,s)
∣

∣

p

≤ E sup
≤s≤t

∣

∣yε() –D(y)
∣

∣

p
+ E sup

≤s≤t

∫ s



pε
∣

∣yε(σ ) –D(yε,σ )
∣

∣

p–

×
[

yε(σ ) –D(yε,σ )
]⊤
f̄ (yε,σ )dσ

+ E sup
≤s≤t

∫ s



p(p – )


ε
∣

∣yε(σ ) –D(yε,σ )
∣

∣

p–∣
∣ḡ(yε,σ )

∣

∣


dσ

+ E sup
≤s≤t

∫ s



p
√

ε
∣

∣yε(σ ) –D(yε,σ )
∣

∣

p–[
yε(σ ) –D(yε,σ )

]⊤
ḡ(yε,σ )dw(σ )

+ E sup
≤s≤t

∫ s



∫

Z

{
∣

∣yε(σ ) –D(yε,σ ) +
√

εh̄(yε,σ , v)
∣

∣

p

–
∣

∣yε(σ ) –D(yε,σ )
∣

∣

p}
N(dσ ,du)

= E sup
≤s≤t

∣

∣yε() –D(y)
∣

∣

p
+


∑

i=

Ii. ()

By Lemma . and Assumption ., we get

E sup
≤s≤t

∣

∣yε() –D(y)
∣

∣

p ≤
[

 + ǫ


p–



]p–
(

∣

∣yε()
∣

∣

p
+

|D(y)|p
ǫ

)

≤
[

 + ǫ


p–



]p–
(

∣

∣yε()
∣

∣

p
+
k
p
‖y‖p

ǫ

)

.
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Letting ǫ = k
p–
 ,

E sup
≤s≤t

∣

∣yε() –D(y)
∣

∣

p ≤ ( + k)
pE‖ξ‖p. ()

Recalling Lemma ., there exists a ǫ >  such that

I ≤ pεE

∫ t



[

ǫ(p – )

p

∣

∣yε(s) –D(yε,s)
∣

∣

p
+



pǫ
p–


∣

∣f̄ (yε,s)
∣

∣

p
]

ds

≤ pεE

∫ t



[

ǫ(p – )

p
( + k)

p‖yε,s‖p +


pǫ
p–


∣

∣f̄ (yε,s)
∣

∣

p
]

ds. ()

By Assumption . and the basic inequality, we get

∣

∣f̄ (yε,s)
∣

∣

p ≤ (k)
p

(

 + ‖yε,s‖p
)

. ()

Letting ǫ =
√
k

+k
, it follows from () and () that

I ≤ pε
√

k( + k)
p–E

∫ t



(

 + ‖yε,s‖p
)

ds. ()

By Lemma . and Assumption ., we obtain

I ≤ p(p – )


εE

∫ t



[

ǫ(p – )

p
|yε(s) –D(yε,s)|p +



pǫ
p–




∣

∣ḡ(yε,s)
∣

∣

p
]

ds

≤ p(p – )


εE

∫ t



[

ǫ(p – )

p
( + k)

p‖yε,s‖p +
(k)

p


pǫ
p–




(

 + ‖yε,s‖p
)

]

ds.

Letting ǫ =
k

(+k)
,

I ≤ (p – )εk( + k)
p–E

∫ t



(

 + ‖yε,s‖p
)

ds. ()

For the estimation of I: by the Burkholder-Davis-Gundy’s inequality, there exists a posi-

tive constant Cp such that

I ≤
√

εCpE

[∫ t



∣

∣yε(s) –D(yε,s)
∣

∣

p–∣
∣ḡ(yε,s)

∣

∣


ds

]



.

Further, by the Young inequality and Assumption ., we deduce that

I ≤ 


E sup

≤s≤t

∣

∣yε(s) –D(yε,s)
∣

∣

p

+ εC
pk( + k)

p–E

∫ t



(

 + ‖yε,s‖p
)

ds. ()
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Finally, we will estimate I. Note N(dt,dv) = Ñ(dt,dv) + π (dv)dt and Ñ(dt,dv) is a mar-

tingale, one has

I ≤ E

∫ t



∫

Z

[
∣

∣yε(s) –D(yε,s) +
√

εh̄(yε,s, v)
∣

∣

p
–

∣

∣yε(s) –D(yε,s)
∣

∣

p]
π (dv)ds.

By the mean value theorem, we obtain

I ≤ pE

∫ t



∫

Z

[
∣

∣yε(s) –D(yε,s) + θ
√

εh̄(yε,s, v)
∣

∣

p–∣
∣

√
εh̄(yε,s, v)

∣

∣

]

π (dv)ds,

where |θ | ≤ . This, together with the basic inequality |a + b|p– ≤ p–(|a|p– + |b|p–),
implies that

I ≤ pCE

∫ t



∫

Z

[
∣

∣yε(s) –D(yε,s)
∣

∣

p–∣
∣

√
εh̄(yε,s, v)

∣

∣ +
∣

∣

√
εh̄(yε,s, v)

∣

∣

p]
π (dv)ds.

By Lemma ., Assumptions . and ., it follows that

I ≤ pC
[(

k + π (Z)
)

( + k)
p–

√
ε + k

√
ε
p]
E

∫ t



(

 + ‖yε,s‖p
)

ds. ()

Combining (), ()-(), we obtain

E sup
≤s≤t

∣

∣yε(s) –D(yε,s)
∣

∣

p ≤ ( + k)
pE‖ξ‖p + C̄

∫ t

t

E
(

 + ‖yε,s‖p
)

ds,

where

C̄ =
[

(p – ) +C
p

]

εk( + k)
p– + pε

√

k( + k)
p–

+ pC
[(

k + π (Z)
)

( + k)
p–

√
ε + k

√
ε
p]
.

On the other hand, by Lemma ., we have

E sup
≤s≤t

∣

∣yε(s)
∣

∣

p ≤ k

 – k
E‖ξ‖p + 

( – k)p
E sup

t≤s≤t

(
∣

∣yε(s) –D(yε,s)
∣

∣

p)

≤ C̃E‖ξ‖p + C̄

( – k)p
T +

C̄

( – k)p

∫ t

t

E‖yε,s‖pds,

where C̃ = k
–k

+ (+k)
p

(–k)
p . Consequently,

E sup
–τ≤s≤t

∣

∣yε(s)
∣

∣

p ≤ ( + C̃)E‖ξ‖p + C̄

( – k)p
T +

C̄

( – k)p

∫ t

t

E
(

sup
–τ≤σ≤s

∣

∣yε(σ )
∣

∣

p
)

ds.

Therefore, we apply the Gronwall inequality to get

E sup
–τ≤s≤t

∣

∣yε(s)
∣

∣

p ≤
[

( + C̃)E‖ξ‖p + C̄

( – k)p
T

]

e
C̄

(–k)
p T

.

The proof is complete. �
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4 Proof of main results

Proof of Theorem . By Lemma ., it follows that

∣

∣xε(t) – yε(t)
∣

∣

p
=

∣

∣xε(t) – yε(t) –
[

D(xε,t) –D(yε,t)
]

+
[

D(xε,t) –D(yε,t)
]
∣

∣

p

≤ |xε(t) – yε(t) – [D(xε,t) –D(yε,t)]|p
( – δ)p–

+
|D(xε,t) –D(yε,t)|p

δp–
. ()

Letting δ = k and taking the expectation on both sides of (), we have

E sup
≤t≤u

|xε(t) – yε(t)|p ≤
E sup≤t≤u |xε(t) – yε(t) – [D(xε,t) –D(yε,t)]|p

( – k)p–

+ kE sup
≤t≤u

∣

∣xε(t) – yε(t)
∣

∣

p
.

Consequently,

E sup
≤t≤u

∣

∣xε(t) – yε(t)
∣

∣

p ≤
E sup≤t≤u |xε(t) – yε(t) – [D(xε,t) –D(yε,t)]|p

( – k)p
, ()

where k ∈ (, ). Next, we will estimate E sup≤t≤u |xε(t) – yε(t) – [D(xε,t) –D(yε,t)]|p. From
() and (), we have

xε(t) – yε(t) –
[

D(xε,t) –D(yε,t)
]

= ε

∫ t



[

f (s,xε,s) – f̄ (yε,s)
]

ds

+
√

ε

∫ t



[

g(s,xε,s) – ḡ(yε,s)
]

dw(s)

+
√

ε

∫ t



∫

Z

[

h(s,xε,s, v) – h̄(yε,s, v)
]

N(ds,dv).

Using the elementary inequality |a + b + c|p ≤ p–(|a|p + |b|p + |c|p), it follows that for any
u ∈ [,T],

E sup
≤t≤u

∣

∣xε(t) – yε(t) –
[

D(xε,t) –D(yε,t)
]
∣

∣

p

≤ p–εpE sup
≤t≤u

∣

∣

∣

∣

∫ t



[

f (s,xε,s) – f̄ (yε,s)
]

ds

∣

∣

∣

∣

p

+ p–ε
p
 E sup

≤t≤u

∣

∣

∣

∣

∫ t



[

g(s,xε,s) – ḡ(yε,s)
]

dw(s)

∣

∣

∣

∣

p

+ p–ε
p
 E sup

≤t≤u

∣

∣

∣

∣

∫ t



∫

Z

[

h(s,xε,s, v) – h̄(yε,s, v)
]

N(ds,dv)

∣

∣

∣

∣

p

= J + J + J. ()
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By the Hölder inequality, we get

J ≤ p–εpup–E

∫ u



∣

∣f (s,xε,s) – f̄ (yε,s)
∣

∣

p
ds.

By Lemma . and Assumption ., it follows that for any ǫ > 

J ≤ p–εpup–E

∫ u



∣

∣f (s,xε,s) – f (s, yε,s) + f (s, yε,s) – f̄ (yε,s)
∣

∣

p
ds

≤ p–εpup–
[

 + ǫ


p–



]p–
E

∫ u



(
√
k

p‖xε,s – yε,s‖p
ǫ

+
∣

∣f (s, yε,s) – f̄ (yε,s)
∣

∣

p
)

ds.

Letting ǫ =
√
k

p–
,

J ≤ p–εpup–( +
√

k)
p

∫ u



E sup
≤σ≤s

∣

∣xε(σ ) – yε(σ )
∣

∣

p
ds

+ p–εpup( +
√

k)
pE



u

∫ u



∣

∣f (s, yε,s) – f̄ (yε,s)
∣

∣

p
ds.

Then Assumption . implies that

J ≤ p–εpup–( +
√

k)
p

∫ u



E sup
≤σ≤s

∣

∣xε(σ ) – yε(σ )
∣

∣

p
ds

+ p–εpup( +
√

k)
pψ(u)

(

 + E sup
≤t≤u

‖yε,t‖p
)

. ()

For the second term J of (): by the Burkholder-Davis-Gundy inequality, there exists a

Cp >  such that

J ≤ p–ε
p
CpE

(∫ u



∣

∣g(s,xε,s) – ḡ(yε,s)
∣

∣


ds

)

p


≤ p–ε
p
Cpu

p
 –E

∫ u



∣

∣g(s,xε,s) – ḡ(yε,s)
∣

∣

p
ds.

Similar to J, we get

J ≤ p–ε
p
Cpu

p
 –( +

√

k)
p

∫ u



E sup
≤σ≤s

∣

∣xε(σ ) – yε(σ )
∣

∣

p
ds

+ p–ε
p
Cpu

p
 ( +

√

k)
pψ(u)

(

 + E sup
≤t≤u

‖yε,t‖p
)

. ()

Since N(dt,dv) = Ñ(dt,dv) + π (dv)dt and using the basic inequality |a + b|p ≤ p–(|a|p +
|b|p), we have

J ≤ p–ε
p
 E sup

≤t≤u

∣

∣

∣

∣

∫ t



∫

Z

[

h(s,xε,s, v) – h̄(yε,s, v)
]

Ñ(ds,dv)

∣

∣

∣

∣

p

+ p–ε
p
 E sup

≤t≤u

∣

∣

∣

∣

∫ t



∫

Z

[

h(s,xε,s, v) – h̄(yε,s, v)
]

π (dv)ds

∣

∣

∣

∣

p

= p–ε
p
 (L + L). ()
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By Lemma ., there exists a Dp such that

L ≤ Dp

{

E

(∫ u



∫

Z

∣

∣h(s,xε,s, v) – h̄(yε,s, v)
∣

∣


π (dv)ds

)

p


+ E

∫ u



∫

Z

∣

∣h(s,xε,s, v) – h̄(yε,s, v)
∣

∣

p
π (dv)ds

}

. ()

By Assumptions . and ., we have

E

(∫ u



∫

Z

∣

∣h(s,xε,s, v) – h̄(yε,s, v)
∣

∣


π (dv)ds

)

p


≤ E

(

k

∫ u



‖xε,s – yε,s‖ ds

+ u


u

∫ u



∫

Z

∣

∣h(s, yε,s, v) – h̄(yε,s, v)
∣

∣


π (dv)ds

)

p


≤ E

[

k

∫ u



‖xε,s – yε,s‖ ds + uψ(u)
(

 + ‖yε,s‖
)

]

p


. ()

Using the basic inequality and the Hölder inequality, we obtain

E

(∫ u



∫

Z

∣

∣h(s,xε,s, v) – h̄(yε,s, v)
∣

∣


π (dv)ds

)

p


≤ 
p
–

{

E

[

k

∫ u



‖xε,s – yε,s| ds
]

p


+
[

uψ(u)
]

p
 +

[

uψ(u)
]

p
 E‖yε,s‖p

}

≤ 
p
–

{

(k)
p
 u

p
–

∫ u



E sup
≤σ≤s

∣

∣xε(σ ) – yε(σ )
∣

∣

p
ds

+
[

uψ(u)
]

p
 +

[

uψ(u)
]

p
 E‖yε,s‖p

}

. ()

Similar to the estimation of J, we derive that

E

∫ u



∫

Z

∣

∣h(s,xε,s, v) – h̄(yε,s, v)
∣

∣

p
π (dv)ds

≤ ( + k)E

∫ u



‖xε,s – yε,s‖p ds + ( + k)E

∫ u



∫

Z

∣

∣h(s, yε,s, v) – h̄(yε,s, v)
∣

∣

p
π (dv)ds

≤ ( + k)

∫ u



E sup
≤σ≤s

∣

∣xε(σ ) – yε(σ )
∣

∣

p
ds

+ ( + k)uψ(u)
(

 + E sup
≤t≤u

‖yε,t‖p
)

. ()

On the other hand, using the Hölder inequality, it follows that

L ≤ E sup
≤t≤u

{(∫ t



ds

)p–(∫ t



∣

∣

∣

∣

∫

Z

[

h(s,xε,s, v) – h̄(yε,s, v)
]

π (dv)

∣

∣

∣

∣

p

ds

)}

≤
[

uπ (Z)
]p–

E

∫ u



∫

Z

∣

∣h(s,xε,s, v) – h̄(yε,s, v)
∣

∣

p
π (dv)ds
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≤ ( + k)
[

uπ (Z)
]p–

[∫ u



E sup
≤σ≤s

∣

∣xε(σ ) – yε(σ )
∣

∣

p
ds

+ uψ(u)
(

 + E sup
≤t≤u

‖yε,t‖p
)

]

. ()

Hence, substituting ()-() into (), we get

J ≤ p–ε
p

[

Dp
p
–(k)

p
 u

p
 – + ( + k)

(

Dp +
(

uπ (Z)
)p–)]

×
∫ u



E sup
≤σ≤s

∣

∣xε(σ ) – yε(σ )
∣

∣

p
ds + p–ε

p

[

Dp
p
–

(

uψ(u)
)

p
 u

p
–

+ ( + k)
(

Dp +
(

uπ (Z)
)p–)

uψ(u)
]

(

 + E sup
≤t≤u

‖yε,t‖p
)

. ()

Combining with (), (), and (),

E sup
≤t≤u

∣

∣xε(t) – yε(t) –
[

D(xε,t) –D(yε,t)
]
∣

∣

p

≤ CεE

∫ u



sup
≤σ≤t

∣

∣xε(σ ) – yε(σ )
∣

∣

p
dt +Cεu

(

 + E sup
–τ≤t≤u

∣

∣yε(t)
∣

∣

p
)

, ()

where C = p–( +
√
k)

p(εp–up– + ε
p
–Cpu

p
–) + p–ε

p
–[Dp

p
 –(k)

p
 u

p
 – + ( +

k)(Dp + (uπ (Z))p–)], C = p–( +
√
k)

p(εp–up–ψ(u) + ε
p
–Cpu

p
–ψ(u)) + p–ε

p
 – ×

[Dp
p
 –(uψ(u))

p
 u

p
– + ( + k)(Dp + (uπ (Z))p–)ψ(u)]. Hence Assumption . and

Lemma . imply that

E sup
≤t≤u

∣

∣xε(t) – yε(t) –
[

D(xε,t) –D(yε,t)
]
∣

∣

p

≤ Cε

∫ u



E sup
≤σ≤t

∣

∣xε(σ ) – yε(σ )
∣

∣

p
dt

+Cεu( +C). ()

Inserting () into (),

E sup
≤t≤u

∣

∣xε(t) – yε(t)
∣

∣

p ≤ Cε

( – k)p

∫ u



E sup
≤σ≤t

∣

∣xε(σ ) – yε(σ )
∣

∣

p
dt

+
Cεu( +C)

( – k)p
.

Finally, by the Gronwall inequality, we have

E sup
≤t≤u

∣

∣xε(t) – yε(t)
∣

∣

p ≤ Cεu( +C)

( – k)p
e

Cεu

(–k)
p
.

Choose β ∈ (, ) and L >  such that for every t ∈ [,Lε–β ] ⊆ [,T],

E sup
t∈[,Lε–β ]

∣

∣xε(t) – yε(t)
∣

∣

p ≤ cLε–β ,
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where c = C(+C)
(–k)

p e
C

(–k)
p Lε–β

. Consequently, given any number δ, we can choose ε ∈
[, ε] such that for each ε ∈ [, ε] and for t ∈ [,Lε–β ],

E sup
t∈[,Lε–β ]

∣

∣xε(t) – yε(t)
∣

∣

p ≤ δ.

The proof is complete. �

Proof of Theorem . The key technique to prove this theorem is already presented in the

proof of Theorem ., so we here only highlight some parts which need to be modified.

By Assumption ., J of () should become

J ≤ p–εpup–p–E

∫ u



(

kp
(

‖xε,s – yε,s‖
)

+
∣

∣f (s, yε,s) – f̄ (yε,s)
∣

∣

p)
ds.

In fact, since the function k(·) is concave and increasing, theremust exist a positive number

cp such that

kp
(

|x|
)

≤ cp
(

 + |x|p
)

, for all p≥ .

Hence,

J ≤ cpC

∫ u



(

 + E sup
≤t≤u

∣

∣xε(s) – yε(s)
∣

∣

p
)

ds + cpCu

+ uCψ(u)
(

 + E sup
≤t≤u

‖yε,t‖p
)

, ()

where C = p–εpup–p. Similarly, J and J can be estimated as J. Finally, all of required

assertions can be obtained in the same way as the proof of Theorem .. The proof is

therefore completed. �

5 Examples

Example . Consider the following neutral stochastic differential delay equations:

d
[

x(t) – D̃
(

x(t – τ )
)]

= f̃
(

t,x(t),x(t – τ )
)

dt + g̃
(

t,x(t),x(t – τ )
)

dw(t)

+

∫

Z

h̃
(

t,x(t),x(t – τ ), v
)

N(dt,dv), ()

where τ >  is a constant delay and the coefficients of equation () satisfy Assump-

tions .-.. Obviously, if we define

D(ϕ) = D̃
(

ϕ(–τ )
)

, f (t,ϕ) = f̃
(

t,ϕ(),ϕ(–τ )
)

,

and

g(t,ϕ) = g̃
(

t,ϕ(),ϕ(–τ )
)

, h(t,ϕ, v) = h̃
(

t,ϕ(),ϕ(–τ ), v
)

,

then equation () will become equation (). It is naturally seen that equation () has

a unique solution in the sense of Lp. Meanwhile, similar to () and (), we can get the
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standard form of equation ()

xε(t) = x() +D
(

xε(t – τ )
)

–D
(

x(–τ )
)

+

∫ t



f
(

s,xε(s),xε(s – τ )
)

ds

+
√

ε

∫ t



g
(

s,xε(s),xε(s – τ )
)

dw(s)

+
√

ε

∫ t



∫

Z

h
(

s,xε(s),xε(s – τ ), v
)

N(ds,dv), ()

and the averaging form of equation ()

yε(t) = x() +D
(

yε(t – τ )
)

–D
(

y(–τ )
)

+

∫ t



f̄
(

yε(s), yε(s – τ )
)

ds

+
√

ε

∫ t



f̄
(

yε(s), yε(s – τ )
)

dw(s)

+
√

ε

∫ t



∫

Z

h̄
(

yε(s), yε(s – τ ), v
)

N(ds,dv). ()

Similar to the proof of Theorem . and Corollary ., we can show the convergence of the

standard solution of equation () and the averaged one of equation () in pth moment

and in probability.

Example . LetN(t) be a scalar Poisson processes. Consider neutral SFDEswith Poisson

processes of the form

d
[

xε(t) –D(xε,t)
]

= εf (t,xε,t)dt +
√

εh(t,xε,t)dN(t), ()

with initial data xε, = x = ξ (t), when –τ ≤ t ≤ . Here

D(x) = .x, f (t,x) = cos tx,

and

h(t,x) = ρ(x) =

⎧

⎪

⎨

⎪

⎩

, if x = ,

cx(logx–)α , if  < x≤ δ,

cδ(log δ–)α , if x > δ,

where α ≤ 

, c≥ , and δ ∈ (, ) is sufficiently small. Let

f̄ (yε,t) =


π

∫ π



f (t, yε,t)dt =



yε,t

and

h̄(yε,t) =


π

∫ π



h(t, yε,t)dt = ρ(yε,t).

Hence, we have the corresponding averaged equation

d
[

yε(t) – .yε,t

]

=



εyε,t dt +

√
ερ(yε,t)dN(t). ()
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Clearly, the coefficient ρ(·) does not satisfy the Lipschitz condition. It is a concave nonde-
creasing continuous function on [,∞] with ρ() =  and

∫

+

x

ρ(x)
dx = –



c

∫

+



x logx
dx = –



c

∫

+



logx
d(logx)

= –


c
log | logx|

∣

∣

∣

+
= ∞, if α =




,

∫

+

x

ρ(x)
dx =



c

∫

+



x(– logx)α
dx = –



c

∫

+



(– logx)α
d(– logx)

= –


c


–α + 
(– logx)–α+

∣

∣

∣

+
= ∞, if α <




.

Therefore, it follows that Assumption . is satisfied. Consequently, by Theorem . and

Corollary ., we see that the solutions of averaged equation () will converge to that of

the standard equation () in the sense of L and probability.
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