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Abstract

Perfect deterministic amplification of arbitrary quantum states is prohibited by quantummechanics,

but determinism can be achieved by compromising betweenfidelity and amplification power.We

propose a dynamical scheme for deterministically amplifying photonic Schrödinger cat states, which

show great promise as a tool for quantum information processing. Our protocol is designed for

strongly coupled circuit quantum electrodynamics and utilizes artificial atomic states and external

microwave controls to engineer a set of optimal state transfers and achieve highfidelity amplification.

We compare analytical results with full simulations of the open, driven Jaynes–Cummingsmodel,

using realistic device parameters for state of the art superconducting circuits. Amplificationwith a

fidelity of 0.9 can be achieved for sizable cat states in the presence of cavity and atomic-level

decoherence. This tool could be applied to practical continuous-variable information processing for

the purification and stabilization of cat states in the presence of photon losses.

1. Introduction

Superpositions of two large coherent states with opposite phases, called Schrödinger cat states (SCSs) [1, 2], have

great potential to open new avenues of research for quantum technology, including continuous-variable (CV)

quantum communication [3], fault-tolerant quantum computation [4–6], CV teleportation [7], and quantum

metrology [8, 9]. There is therefore particular interest in deterministic amplification schemes for these states, in

order to protect them fromphoton loss in addition to studying fundamental aspects of amplification. If

moderate sized SCSs—large enough that the coherent states have little overlap, but small enough to prevent

excessive decoherence by photon loss—can be produced and stabilized, then fault-tolerant CVquantum

computing is possible using only linear optics. It is known that two identical SCSs can deterministically produce

a larger SCS [10, 11], while several high-fidelity probabilisticmethods of amplifying SCSs have recently been

developed in quantumoptics [7, 12].

Quantumphysics does not allow perfect deterministic amplification of unknown quantum states because

additional quantumnoise is inevitably introduced by the amplification process [13]. Themost commonly

studiedmethods of high fidelity amplification of coherent states (i.e. G∣ ∣a añ  ñ for G 1> ) are based on

probabilistic addition and subtraction of single photons [14]. Thefidelity and amplification factorG of these

processes vary differently with input amplitudeα, depending on the amplification operator that is implemented

[15–17]. For example, the probabilistic amplification operators aaˆ ˆ† and a 2( ˆ )† have recently been investigated

[17]. Such schemes are always restricted by the tradeoff between amplification factor and fidelity, as perfect

amplification is forbidden by the no-cloning theorem [15].

The recent rapid development of superconducting circuit technology has provided a possible new platform

for scalable quantum systems. The Josephson junction nonlinearity allows the realization of superconducting
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artificial atoms (qubits)which can be strongly coupled to 3D cavities containing nonclassicalmicrowave states.

Sufficiently large SCSs for applications in quantum information ( 2a » ) [18, 19] and generalized Fock states

[20] have recently been generated inmicrowave cavities with the assistance of superconducting qubits.

Moreover, enhanced stabilization of SCSs in a cavity has recently been reported using a specially designed lossy

environment [18, 21], with the aimof producing robust quantummemory [22]. This loss engineering could also

provide a complementary (continuous)method of SCS amplification in circuit QED. Further progress in using

these states for information processing, however, requires that we understand the limits of control in a large state

space (in principle infinite-dimensional for aCV cavity state) and the use of pulse control techniques in

experimental setups has so far been limited. Amplification of SCSswould benefit a wide range of hybrid-state

quantum technologies, and enable a new type of quantum computationwithin the framework of circuit-

quantum electrodynamics (circuit QED) [23].

In this paper, we propose a scheme for amplifying an SCS in superconducting circuits. The key benefit of this

atom-assistedmethod is that it is deterministic while other amplification schemes in optics are highly

probabilistic. Heralded opticsmethods add and remove photons through a beamsplitter and successful

amplification of the input state occurs conditionally on detection of the photons. In our scheme, atomic excited

states can repeatedly be prepared by controlledmicrowave pulses and the core of the amplification operation is

performed as a unitary generalized xs operation on the dressed atomic-photonic states. Consequently, it does

not require any specific loss engineering to achieve stabilisztion of the state. Our scheme is based on the

observation that applying the bare two-photon shift operation [2], E m m m: 22( ˆ ) ∣ ⟶ ∣
† ñ + ñ" , one ormore

times to an even/odd SCS shifts the number state distributionwhile preserving their relative amplitudes.We

achieve this by using a set of overlappingmicrowave pulses to climb the Jaynes–Cummings (JC) ladder. This

technique is also applicable to other protocols where precise state transfers are required.We analyse and

simulate the operation Ê
†
and E 2( ˆ )

†
acting on an even SCS ( 1.5a = ) in a cavity–qubit system in the presence

of decoherence [24],findingmicrowave pulse controls which perform all the state-transfers requiredwith high

fidelity andwithin the decoherence time of realistic circuit QED systems based on transmons and high-Q

cavities.

2. Theoretical E 2( )
†̂

amplification of SCSs

Wegeneralize the notion of amplification to the case where an initial even/odd SCS

SC , 1∣ (∣ ∣ ) ( ) a añ = ñ  - ña a
 

with some normalization  a
, is transformed by an operation Â into a state A SCˆ ∣ ña

 , which approximates a

larger SCS

A SC c k b kSC SC , 2
k

k

0

∣ ˆ ∣ ∣ ∣ ( )åñ » ñ = + ñá ñ
a a a¢
 

=

¥


with a a¢ > and b 0> . Due to destructive interference between ∣añand ∣ a- ñ, even SCSs have only even
photon numbers while odd SCSs have only odd photon numbers. The amplitudes ck are determined by the

amplification operator Â.

If we choose the amplification operator to be the two-photon shift operator applied l times

A E m l m2 , 3l

m

2

0

ˆ ( ˆ ) ∣ ∣ ( )
† å= = + ñá

=

¥

the Fock state amplitude distribution is simply shifted and the normalization of the outcome state is preserved. It

can therefore be performed deterministically in principle [25]. Figure 1 shows the results of applying E 2( ˆ )
†

to

both even and odd SCSs and calculating the overlap of an amplified SCS E SC2( ˆ ) ∣
† ña

 with a target SCS SC∣ ñ
a¢
 ,

where thefidelities are calculated as

ESC SC . 42 2
∣ ∣( ˆ ) ∣ ∣ ( )

† = á ñ
a a


¢
 

Wequantify the amplification by the valueG, defined by Ga a¢ = whichmaximizes , giving the closest

SCS to E SC2( ˆ ) ∣
† ña



G Earg max SC SC . 5
G

G
2 2

∣ ∣( ˆ ) ∣ ∣ ( )
†= á ña a¢ ¢

 

In general, themaximumfidelity max approaches 1 for largeα butG also tends to 1, indicatingminimal

amplification of very large SCSs, but stabilization of the input SCS persists.We show fidelities

between E SC2( ˆ ) ∣
† ña

 and ideal amplified state SCG∣ ña
 for 1.0, 1.5, 2.0, 2.5a = . The max+ are 0.854, 0.947,

0.974, 0.988, corresponding to G 1.725, 1.377, 1.229, 1.151» , while the max- are 0.681, 0.866, 0.960, 0.987
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with G 1.902, 1.422, 1.235, 1.151» . Interestingly, for 1.5a < , E 2( ˆ )
†

works better for even SCSs because

SC 0∣ ña»
- is approximately a one-photon-Fock state.When shifted, this amapped to a three-photon Fock state,

which is very different to any odd SCS andwe find that 0.8max <- for 1.0a = . This behavior disappears for

1.5a because ∣añ is sufficiently orthogonal to ∣ a- ñ. Thus, wewill focus on how to implement the

amplification procedure for an SCSwith 1.5a = , in the range of interest for CVquantum information

processing.

3. Implementation in circuit QED

CircuitQEDprovides an ideal regime for amplification of SCSs, due to the large nonlinearities and strong

couplings that can be achieved.Wefirst outline our scheme for performing a single Ê
†
operation on a cavity

field, with further details of the implementation in the following sections. This operation can be applied twice to

achieve E 2( ˆ )
†

, and therefore amplification of SCSs. The protocol, shown infigure 2, is as follows: (1) an SCS

c nSC n n0∣ ∣ñ = å ña


=
¥ is initially prepared in the cavity, where the cn vanish for odd (even) n for even (odd) SCSs,

with the qubit in e∣ ñ. (2)An adiabatic sweep is used to bring the qubit frequency qw from far off-resonance to the

resonator frequency rw , where the eigenstates of the system are dressed qubit-cavity states [24]. This slowly

transfers the bare system into a superposition of dressed states c n,n n0 ∣å + ñ=
¥ . (3)A state-transfer scheme

Figure 1. Fidelities  between E SC2( ˆ ) ∣
† ña

 and amplified state SC∣ ñ
a¢
 for 1.0, 1.5, 2.0, 2.5a = . Themaximum fidelities

approach 1 for largeαwhile the amplification rate defined in equation (5) also goes to unity, demonstrating the fundamental tradeoff

between thefidelity and amplification rate. For small α, E 2( ˆ )
†

works better for even SCSs, but this difference between even and odd
SCSs disappears for 1.5a > as ∣añ and ∣ a- ñ become non-overlapping.

Figure 2. STIRAP-type pulse sequence to realize Ê
†
for nth number state n∣ ñ. (Top)An adiabatic sweep of the qubit frequency qw into

resonance with the cavity rw transforms the initial state e n,∣ ñ into the dressed state n,∣+ ñ. Next amicrowave field is applied to the
n n, , 1∣ ∣- ñ « - + ñ transitionwith time dependent Gaussian amplitude tn

1 ( ) and frequency n
1w (yellow dotted–dashed line),

followed by another field driving the second transition ( n n, , 1∣ ∣+ ñ « - + ñ) with envelope tn
2 ( ) and frequency n

2w (purple
dashed line). For an SCS, the n, 1∣- + ñ state is unpopulated hence does not participate in the dynamics. Themicrowave frequencies

are detuned by nD from the n, 1∣- + ñ state but satisfy the two-photon transition condition, n2 1n n
1 2w w l- = + . After the

pulse sequence, a further adiabatic sweep of the transmon frequency back out of resonance disentangles the atom from the cavity,

resulting in the state g n, 1∣ + ñ. The action on the cavity state is n E n n 1∣ ˆ ∣ ∣
†ñ  ñ = + ñ. (Bottom) If the input state is an even SCS

given by c nn∣å ñ, a set of pulses t t,n n
1 2{ ( ) ( )}  acting on each number state produces the outcome state c n 1n∣å + ñ.

3
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adapted from the original idea of stimulated Raman adiabatic passage (STIRAP) in cavity-QED [26–29] is

performed. Instead of using a bare atomicΛ-level configuration, we use a set ofΛ-type systems in the dressed JC

model, with dynamical control provided by varying localfluxes [30, 31]. Pairs of overlappingGaussian

microwave pulses are applied to the effective three-level systems n n n, , , , , 1{∣ ∣ ∣ }+ ñ - ñ - + ñ to transfer the

populations into the state c n,n n0 ∣å - ñ=
¥ , via the n, 1∣- + ñ states. (4)Thefirst step is reversed, sweeping qw

away from rw to disentangle thefinal cavity state from the qubit, leaving it in the state c n 1 SCn n0 ∣ ∣å + ñ » ñ
a=

¥
¢


which has a a¢ > and opposite parity.

To repeat the operation, the qubitmust be reset from g∣ ñ to e∣ ñby a furthermicrowave pulse, but it is now

sufficiently far detuned that the cavity state is not significantly affected. Finally, after the second Ê
†
operation, we

apply a selective number-dependent arbitrary phase (SNAP) gate to correct relative phases between Fock states

that are acquired during the operation. This technique has been already demonstrated in a protocol tominimize

phase distortions due to self-Kerr interactions [32].

3.1. Adiabatic sweep of qubit frequency qw
Wemodel a transmon qubit coupled to a cavity by a generalized JCHamiltonian

H a a j j a j k a k j
2

, 6
t

j

j

j k

j kr
q

,

,
ˆ ˆ ˆ ∣ ∣ ( ˆ ∣ ∣ ˆ∣ ∣) ( )† †å åw

w
l= + ñá + ñá + ñá

for transmon energy levels j k g e f h, , , , ,{ }= ¼ and transmon-cavity couplings j k,l . As shown infigure 3,

when the transmon frequencies are far from resonancewith the cavity, the bare states are given by j n,∣ ñwith
transmon state j and photon number n, while they become dressed states near resonance.We now approximate

the transmon as a two-level system as, in practice, the additional levels of the transmon donot negatively affect

the protocol.We discuss the impact of including a third transmon level in appendix B. Considering only two

transmon levels, g e,{∣ ∣ }ñ ñ , the eigenstates are

n e n g n, cos , sin , 1 , 7n n∣ ∣ ∣ ( )q q+ ñ = ñ + + ñ

n e n g n, sin , cos , 1 , 8n n∣ ∣ ∣ ( )q q- ñ = - ñ + + ñ

where e gq q qw w w= - is the qubit transition frequency, g e,l l= is the qubit–cavity coupling, and

n2 tan 2 1n
1( )q l d= +- , with q rd w w= - . Note that n e n, ,∣ ∣+ ñ » ñ and n g n, , 1∣ ∣- ñ » + ñ for large

δ, so if we start in e n,∣ ñ far from resonance, the state adiabatically becomes n,∣+ ñas rw approaches resonance

0d » . This process requires the use offlux-tunable qubits. In realistic devices withmultiple transmon levels,

this sweepingmust be performed slowly enough to prevent leakage of population to higher levels.

3.2. Protocol for state-transfer on even SCSs in circuit-QED

The key element of our Ê
†
operation is an efficient state transfer from n,∣+ ñ to n,∣- ñwhich is performed on

individual number states usingΛ-type sets of levels. Once the initial, dressed state is prepared amicrowave field

isfirst applied between n,∣- ñ and n, 1∣- + ñ with time dependent amplitude

t t Texpn n
1 1

2 2( ) ∣ ∣ [ ( ) ]  t= - - and frequency n
1w , followed by anotherfield driving the

n n, , 1∣ ∣+ ñ « - + ñ transition ( t t Texpn n
2 2

2 2( ) ∣ ∣ [ ( ) ]  t= - + , n
2w ). Both drives are detuned by nD from

Figure 3.Energy level structure of a transmon coupled to a cavitywith 2 6rw p = GHz and 2 0.1l p = GHz [30]. Solid lines indicate
two sets ofΛ-type dressed levels n n n, , , , , 1{∣ ∣ ∣ }+ ñ - ñ - + ñ suitable for state-transfers and dashed lines are other eigenstates of
theHamiltonian in equation (6) [24, 33]. The labels on the right-hand side are the product states that approximate the eigenstates for
large positive detunings q r(w w l-  ).
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their respective transitions, while still satisfying the two photon condition n2 1n n
1 2w w l- = + , which

ensures that the intermediary n, 1∣- + ñ state is not populated. The pulses have a region of overlap,
determined by the temporal offset τ. For efficient transfer of n n, , 1∣ ∣+ ñ  - + ñ, we require

T2 1( )t > - and T 10∣ ∣  [34].

A pair of pulses is used to transfer each number state with significant population. For an even SCS, all odd-

number states are unpopulated, so theΛ systems are effectively independent of each other. This spacing of

occupied and unoccupied states also prevents spectral crowding and the driving of unwanted transitions. The

pulses are performed in themanifolds of dressed states n n n, , , , , 1{∣ ∣ ∣ }+ ñ - ñ - + ñ , in order, from the nth to

0thmanifold. After all pulse sets and disentanglement from the qubit, this leaves the final state

c n E c n1n n∣ ˆ ∣
†

å + ñ = å ñ.We see that Ê
†
flips the even SCSs to odd.Note that the analytical (theoretical)fidelity

between SC∣ ñ
a¢
- and E SCˆ ∣

† ña
+ is given by

ESC SC . 92
∣ ∣ ˆ ∣ ∣ ( )

† = á ñ
a a

+-
¢
- +

Figure 4(b) shows that themaximum theoreticalfidelity max+- is higher than 0.99 between E SC1.5
ˆ ∣

† ñ+

and SC1.78∣ ñ- .

The scheme discussed here is compatible with the existing protocol for creating SCSs in [19], while

conventional STIRAP and two-tone red sideband transitions have also been demonstrated inΛ-type

superconducting systems [34–36].

3.3. Protocol for E 2( )
†̂

and SNAP gates

In contrast to cavityQEDSTIRAP setups, where atoms are passed through the cavity [27],π-pulses can be used

to reset the qubit state g e∣ ∣ñ  ñ directly without affecting the cavity state [19], and hence E 2( ˆ )
†

can, in

principle, be performed by repeating the protocol. The overall fidelity is reduced byKerr-type nonlinearities in

the dressed cavity, causing defects which accumulate over time.However, these distortions can be significantly

reduced by using a SNAP gate [32] to compensate for the relative phases acquired by different number states.

These gates have been experimentally demonstrated in a dispersively coupled superconducting cavity-qubit

system. The dispersive energy shifts of the cavity due to the qubit allow individual Fock states to be addressed by

microwaves drives of appropriate frequencies. Thus, nmicrowaves can perform a sumof phase gates on Fock

states m∣ ñ given by S m mexp i
m

n
msnap 0

1
( )∣ ∣å= F ñá=

-
. As the procedure is limited by the decoherence time and

these distortions, we examine both Ê
†
and E 2( ˆ )

†
including qubit and cavity decoherence, alongwith corrections

by SNAP gates.

4. Simulationwith decoherence

To examine the performance of the protocol, we numerically simulate a simplified driven JCHamiltonianwith

two atomic levels [37–39]

Figure 4. (a)Photon number amplitudes for states SC1.5∣ ñ+ , E SC2
1.5( ˆ ) ∣

† ñ+ and SC2.1∣ ñ+ .We see that the population of the eight-photon-
Fock state is less than 1% for SC1.5∣ ñ+ and that therefore four sets of state-transfers cover enough levels for amplifying these states. (b)

Fidelities +- (blue) and + (red) achieved by applying Ê
†
and E 2( ˆ )

†
respectively to SC1.5∣ ñ+ . The solid lines show the theoretical

bounds, which are max >+- 0.99 at 1.78a¢ » and max >+ 0.945 at 2.1a¢ » . The dotted lines show the simulated performance
with different values of decoherence ( 10g g k= =f- ) using four sets of simultaneous state-transfer operations. An amplification

factor of G 1.33» is achieved for E 2( ˆ )
†

.

5
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H a a a a t a a
1

2 2
e e , 10z

n j
j
n t ttot

r
q

1

2
i ij

n
j
nˆ ˆ ˆ ˆ ( ˆ ˆ ˆ ˆ ) ( )( ˆ ˆ ) ( )† † †⎜ ⎟

⎛

⎝

⎞

⎠
ååw

w
s l s s= + + + + + +w w- +

=

-

where j
nw are the frequencies of themicrowave drives, and j

n their amplitudes.While themicrowave driving

terms couple all of the excitation subspaces of the undriven JCHamiltonian, theHamiltonian is only slightly

perturbed for small j∣ ∣ and the pulse frequencies are far off-resonance fromunwanted transitions. Thus, the

majority of the evolution is confined to the respective n,{∣ } ñ manifold. The bichromatic driving induces the
transition n n, ,∣ ∣+ ñ  - ñ via quasi-adiabatic following even though the system is not at, or close to, an

eigenstate of the instantaneousHamiltonian for part of the pulse sequence. This exploits the topological

properties of the dressed eigenenergy surfaces [40].We briefly note that this procedure in the driven JC system

has a different character to conventional STIRAP on a bareΛ-level atomwith directly driven transitions and

behaves reversibly due to the unitary nature of the evolution (see figure A1 in appendix A).

4.1. E
†̂
and E 2( )

†̂
with SNAP gates on SC1.5∣ ñ+

Wefirst simulate a single Ê
†
operation acting on SC1.5∣ ñ+ . In order to perform Ê

†
efficiently and practically, the

minimumnumber of STIRAP-type sets can bedecided by the plotting the number distribution of SCSs.
Figure 4(a) shows that SC1.5∣ ñ+ has almost all of its population in four Fock states, 0 , 2 , 4 , 6{∣ ∣ ∣ ∣ }ñ ñ ñ ñ , and therefore

four sets of STIRAP-type pulseswill cover enoughpopulation to achieve good amplification. Tominimize the

length of the procedure andhence to reduce decoherence to practical levels, we perform all the transfers

simultaneously, sharing a commonfirst pulse. This produces almost identicalfidelities to four independent state-

transfer sets in the decoherence-free case, with large improvementswhendecoherence is included.

Our simulated systemhas 2 0.1 GHzl p = and 2 6.0 GHzrw p = .We start with the qubit 1 GHz detuned

and perform the adiabatic sweep in 6.2μs, which is sufficiently slow to prevent population transfer to unwanted

levels. For the four sets of state transfers, we use a single 1w which is shared between all transfers, adjusting iD for

eachΛ-level system tofind the appropriate value of i
2w . For the the first Ê

†
weuse 3.58 st m= andT 6.28 sm= ,

with other parameters given in table C1.With these parameters, the total state-transfer time is approximately

35 sm , which could be reduced further by using a larger transmon–cavity coupling strength. For the

second Ê
†
, 3.14 st m= and T 6.28 sm= . In the Fock basis, SNAP gates are given by Ssnap. The values of the

phases are dependent on Fock states m∣ ñandwe choose m 0, 1, , 8m{ ∣ }F = ¼ as given in appendix B.

TomodelMarkovian decoherence associatedwith cavity and qubit decoherence, we use a Lindbladmaster

equation

H ai ,
2

, 11ztot
˙ [ ˆ ] [ ˆ] [ ˆ ] [ ˆ ] ( )  r r k g s

g
s= + + + f

-
-

Figure 5.Densitymatrix amplitude plots cnm (left) andWigner functions (right). The initial state SC1.5∣ ñ+ is plotted in (a), with

numerical E SC SC1.5 1.8
ˆ ∣ ∣

† ñ » ñ+ - without decoherence shown in (b). Simulated two-photon shift with E 2( ˆ )
†

is shown in (c) and,finally,

(d) shows thefinal state E SC SC2
1.5 2.1( ˆ ) ∣ ∣

† ñ » ñ+ + including decoherence of 2k p=0.25 kHz. In the densitymatrix plots, the shifted

blocks clearly indicate the Ê
†
and E 2( ˆ )

†
are performed, with blurred regions caused by imperfect state-transfers and decoherence. In

theWigner function plots, interference fringes can be clearly seen, with the central fringe changing color between even and odd SCSs,
while some distortions are caused by imperfect transfers. Decoherence slightly reduces the color contrast of fringe patterns between
(c) and (d).
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where b b b b b,
1

2
[ ˆ] ˆ ˆ { ˆ ˆ }

† † r r= - .We choose 2 2 10 2 2.5, 5.0g p g p k p= = =f- kHzusing realistic

parameters from [41]. The results are shown infigures 4 and 5. Infigure 4(a), a comparisonof thephotonnumber

amplitudes for SC1.5∣ ñ+ , E SCS2
1.5( ˆ ) ∣

† ñ+ and SC2.1∣ ñ+ indicates the similarity of the amplifiedSCS and the desired target

SCS.As shown infigure 4(b), Ê
†
without decoherence achieves amaximumfidelity above 0.94, with the gap

between the theoretical andno-decoherence cases caused by imperfections in the transfermethod andpartly due

to a small population of higher dressed states over , 8∣+ ñ, which are not transferred. Thedotted points show that
decoherence almost linearly reduces thefidelity,with 0.9 »+- and 0.8 »+ for 2 0.25 kHz.k p =

4.2. Evidence of performing E k( )
†̂

on SC1.5∣ ñ+ (k=1, 2)

It is straightforward to show the performance of the shift operation E k( ˆ )
†

by looking at the densitymatrices of

the initial andfinal states, because the components of the densitymatrix of SCSs are shifted by k Fock-basis

elements. For example, the densitymatrix of an initial even SCS is

c n mSC SC 2 2 . 12
n m

nmint
, 0

∣ ∣ ∣ ∣ ( )år = ñá = ñáa a
+ +

=

¥

After the shift operation has been performed, the outcome state is given by

E E c n k m kSC SC 2 2 . 13k k

n m

nmout
, 0

( ˆ ) ∣ ∣( ˆ) ∣ ∣ ( )
† år = ñá = + ñá +a a

+ +

=

¥

Plots ofmagnitude of densitymatrix elements (left side) andWigner plots of the states (right side) are shown

infigure 5. Panelsmarked (a) show the initial SCS, which one can assume is prepared using themethod of [19].

In (b) the state after applying a single Ê
†
followed by SNAP gates is shown. In (c), the E 2( ˆ )

†
operation is

performedwith a qubitflip after thefirst Ê
†
and the SNAP gates after the second Ê

†
. Finally (d) includes

decoherencewith 2 0.25 kHzk p = .

We see thatwithout decoherence the coefficients cnm are preservedbut shifted.With decoherence, there is

blurring of this effect as oddnumber states becomepopulated. This type of quantumprocess tomography can be

performed experimentally. In theWigner functions, the interference fringes clearly switch betweennegative and

positive values as the SCS switches between odd and evenparity,with a central bluepeak in (a), (c) and (d)while in

(b) the central peak is red. In (d), we see that the decoherence slightly reduces the contrast of the fringepatterns but

the state is clearly very similar to theno-decoherence case shown in (c). UsingRamsey interferometry, one can

measure the qubit state-dependent phase shift of the cavity state, as explained in the supplementarymaterial of

[19], and therefore perform tomography on the state in the high-Q cavity via a low-Q cavity. Alternatively, a parity

measurement can also beused to show the parity difference between the initial andfinal states [42].

Overall, the total operation time for our E 2( ˆ )
†

protocol is approximately 96 sm , including four adiabatic

sweeps to bring in and out the qubit (24.8 sm ), two applications of the STIRAP-type operations (70 sm ), a qubit-

flip to reset the qubit, and SNAP gates (1 sm ). Very recently, the experimental group at YaleUniversity has

developed a superconducting cavity qubit systemwith a single photon decay lifetime of 1.22 ms [43]. Including

all aspects of the total time, this would allow us to perform roughly 12 repetitions of our E 2( ˆ )
†

protocol before a

photon is lost. This is achievedwithout the use of any optimization techniques, whichwe expect would reduce

the operation time further. Additionally, cat state preparation (0.5 sm ) and a paritymeasurement (0.4 sm ) for

Wigner tomography are required to verify the protocol, but do not contribute significantly to the time of the

protocol (see experimental papers in [19]).

5. Summary and remarks

Wehave demonstrated a scheme for deterministic amplification ofmicrowave SCSs using Ê
†
and E 2( ˆ )

†

operations in circuit QED. A STIRAP-type state transfermethod provides the core of the Ê
†
operation, which

simply shifts the Fock state amplitude distribution of the initial SCS. The theoretical scheme is comparedwith

the simulation of the JCmodel with three values of decoherence. The application of Ê
†
amplifies an even SCS

SC1.5∣ ñ+ to an odd SCS SC 1.8∣ ñ»
- with thefidelity 0.9 under realistic decoherence, while E 2( ˆ )

†
produces SC 2.0∣ ñ»

+

withfidelity 0.8. Due to the benefits of the superconducting system, this deterministicmethod overcomes the

problems associatedwith probabilistic optics-only amplificationmethods, useful for other applications in the

future. Dissipation engineering solutions provide a complementary scheme for continuously amplifying SCSs

[18], while our discretized scheme could be extended to amplification of bipartite (ormultipartite) entangled

SCSswithout specially designed lossy environments [8, 9, 44].We note that a related experiment has been

recently performedwith coherent states in an ion-trap system and this could use shortcuts to adiabaticity to

reduce the time required (e.g., using counter-diabatic controls) [45].
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InCVquantum information processing using SCSs, Ê
†
can be used as a bit-flip operation, by switching the

state parity withminimal amplification for 2a > , while E 2( ˆ )
†

can act as a stabilizer operation on SCSs. If one

can perform either Ê
†
or E 2( ˆ )

†
depending on the outcome of a paritymeasurement of the cavity state, it can be

used for a discretized purification of SCSs. Taking advantage of well-separated lower energy levels,fluxoniumor

flux qubits could also be used in this scheme [46].
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AppendixA. Evidence of STIRAP-type operations

Although this STIRAP-type operation behaveswell enough for our desired state-transfer ( n n, ,∣ ∣+ ñ  - ñ), it
cannot be fully explained by conventional STIRAP in a bareΛ atomic system. In STIRAP, the state tranfer

efficiency is strongly dependent on the overlap of the two pulse envelopes [47]. In particular, efficient state-

transfer only occurs for the counter-intuitive sequence of the two pulses ( 1 first and 2 second).

We have examined the transfer efficiency of our scheme for the simplest transfer from , 0∣+ ñ to , 0∣- ñwith
detuning 0D infigure A1. For positive τ, the behavior is similar to the normal STIRAP counter-intuitive pulse

sequence, with transfer efficiency rapidly approaching 1 as τ increases. The efficiency then dropswith decreasing

overlap area. However, our operation also shows excellent state-transfer for the reverse pulse sequence. It

therefore behaves like a generalization of the xs operation on the cavity state.

In our parameter region, andwithout decoherence, the transfer efficiency is symmetric about 0t = (fully

overlapped pulses). However, the transfer efficiency for reversed pulses ismore sensitive to changes in 0D and

the length of pulse envelopes. Oscillations are seen in the transfer efficiency, indicating that the processmay not

be ‘as adiabatic’ as conventional STIRAP. These phenomenamight be better understood in adiabatic Floquet

theory [48] andwe believe they are caused by the existence of energy levels outside theΛ-system [49].

Appendix B. Additional transmon levels

As the transmon is in fact amultilevel system, there is the potential for additional levels to affect the state transfer.

We therefore simulated a single STIRAP-type state transfer from the 0,∣ +ñ state to the 0,∣ -ñ state bothwith
andwithout a third transmon level. The results are shown infigure B1.While the frequencies of themicrowave

must be adjusted tofit the new energy levels of the system, the pulse envelopes, their amplitudes and overlaps are

identical. Crucially thismeans that the transfer does not have to be performedmore slowlywhen a realistic

transmon is introduced.

Figure A1.Transfer efficiency of the STIRAP-type pulses between , 0∣+ ñ and , 0∣- ñ as a function of the overlap between the
two pulses. This provides evidence that our state-transfer scheme is a generalized xs operation between n,∣+ ñ and n,∣- ñ for
different n.
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AppendixC. Simulation parameters for SNAP gates and state-transfers
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