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Abstract

Perfect deterministic amplification of arbitrary quantum states is prohibited by quantum mechanics,
but determinism can be achieved by compromising between fidelity and amplification power. We
propose a dynamical scheme for deterministically amplifying photonic Schrodinger cat states, which
show great promise as a tool for quantum information processing. Our protocol is designed for
strongly coupled circuit quantum electrodynamics and utilizes artificial atomic states and external
microwave controls to engineer a set of optimal state transfers and achieve high fidelity amplification.
We compare analytical results with full simulations of the open, driven Jaynes—Cummings model,
using realistic device parameters for state of the art superconducting circuits. Amplification with a
fidelity of 0.9 can be achieved for sizable cat states in the presence of cavity and atomic-level
decoherence. This tool could be applied to practical continuous-variable information processing for
the purification and stabilization of cat states in the presence of photon losses.

1. Introduction

Superpositions of two large coherent states with opposite phases, called Schrodinger cat states (SCSs) [1, 2], have
great potential to open new avenues of research for quantum technology, including continuous-variable (CV)
quantum communication [3], fault-tolerant quantum computation [4—6], CV teleportation [7], and quantum
metrology [8, 9]. There is therefore particular interest in deterministic amplification schemes for these states, in
order to protect them from photon loss in addition to studying fundamental aspects of amplification. If
moderate sized SCSs—Ilarge enough that the coherent states have little overlap, but small enough to prevent
excessive decoherence by photon loss—can be produced and stabilized, then fault-tolerant CV quantum
computing is possible using only linear optics. It is known that two identical SCSs can deterministically produce
alarger SCS[10, 11], while several high-fidelity probabilistic methods of amplifying SCSs have recently been
developed in quantum optics [7, 12].

Quantum physics does not allow perfect deterministic amplification of unknown quantum states because
additional quantum noise is inevitably introduced by the amplification process [13]. The most commonly
studied methods of high fidelity amplification of coherent states (i.e. |o) — |Ga)for G > 1) are based on
probabilistic addition and subtraction of single photons [14]. The fidelity and amplification factor G of these
processes vary differently with input amplitude «, depending on the amplification operator that is implemented
[15—17]. For example, the probabilistic amplification operators da" and (4*)? have recently been investigated
[17]. Such schemes are always restricted by the tradeoff between amplification factor and fidelity, as perfect
amplification is forbidden by the no-cloning theorem [15].

The recent rapid development of superconducting circuit technology has provided a possible new platform
for scalable quantum systems. The Josephson junction nonlinearity allows the realization of superconducting

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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artificial atoms (qubits) which can be strongly coupled to 3D cavities containing nonclassical microwave states.
Sufficiently large SCSs for applications in quantum information (o & 2)[18, 19] and generalized Fock states
[20] have recently been generated in microwave cavities with the assistance of superconducting qubits.
Moreover, enhanced stabilization of SCSs in a cavity has recently been reported using a specially designed lossy
environment [18, 21], with the aim of producing robust quantum memory [22]. This loss engineering could also
provide a complementary (continuous) method of SCS amplification in circuit QED. Further progress in using
these states for information processing, however, requires that we understand the limits of control in a large state
space (in principle infinite-dimensional for a CV cavity state) and the use of pulse control techniques in
experimental setups has so far been limited. Amplification of SCSs would benefit a wide range of hybrid-state
quantum technologies, and enable a new type of quantum computation within the framework of circuit-
quantum electrodynamics (circuit QED) [23].

In this paper, we propose a scheme for amplifying an SCS in superconducting circuits. The key benefit of this
atom-assisted method is that it is deterministic while other amplification schemes in optics are highly
probabilistic. Heralded optics methods add and remove photons through a beamsplitter and successful
amplification of the input state occurs conditionally on detection of the photons. In our scheme, atomic excited
states can repeatedly be prepared by controlled microwave pulses and the core of the amplification operation is
performed as a unitary generalized o, operation on the dressed atomic-photonic states. Consequently, it does
not require any specific loss engineering to achieve stabilisztion of the state. Our scheme is based on the
observation that applying the bare two-photon shift operation [2], (I:QT)2 : [m) — |m + 2)¥m, oneormore
times to an even/odd SCS shifts the number state distribution while preserving their relative amplitudes. We
achieve this by using a set of overlapping microwave pulses to climb the Jaynes—Cummings (JC) ladder. This
technique is also appllcable to other protocols where precise state transfers are required. We analyse and
simulate the operation £ and (E )2 actingonaneven SCS (o = 1.5) ina cavity—qubit system in the presence
of decoherence [24], finding microwave pulse controls which perform all the state-transfers required with high
fidelity and within the decoherence time of realistic circuit QED systems based on transmons and high-Q
cavities.

2. Theoretical (E T)Z amplification of SCSs

We generalize the notion of amplification to the case where an initial even/odd SCS
ISC) = Nalla) £ |-a)), (1)

with some normalization N %, is transformed by an operation A into a state A|SC), which approximates a
larger SCS

SC=) ~ AISC;) chlk+ ) (kISCZ), )

with &’ > a and b > 0. Due to destructive interference between |a) and |— ), even SCSs have only even
photon numbers while odd SCSs have only odd photon numbers. The amplitudes ¢, are determined by the
amplification operator A.

If we choose the amplification operator to be the two-photon shift operator applied / times

A= EY =S |m + 20) (ml, 3)
m=0
the Fock state amplitude distribution is simply shifted and the normalization of the outcome state is preserved. It
can therefore be performed deterministically in principle [25]. Figure 1 shows the results of applying (E ‘ )2 to
both even and odd SCSs and calculating the overlap of an amplified SCS (ET)ZlSCﬁ with a target SCS ISCj},
where the fidelities are calculated as

= [(SCHIEDSCI) . (4)

We quantify the amplification by the value G, defined by o’ = Ga which maximizes F*, giving the closest
SCSto (EM?SCE)

G = arg max | (SCZ, |(E")?SCE) . (5)
G

In general, the maximum fidelity 7, approaches 1 for large avbut G also tends to 1, indicating minimal
amplification of very large SCSs, but stabilization of the input SCS persists. We show fidelities
between (ET)2|SCi> and ideal amplified state |SCZ,,) for o = 1.0, 1.5, 2.0, 2.5. The F ., are0.854,0.947,
0.974,0.988, corresponding to G ~ 1.725, 1.377, 1.229, 1.151, whilethe F,,, are0.681,0.866,0.960,0.987

max
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Figure 1. Fidelities 7 * between (I:ﬁ)ZlSCﬁ) andamplifiedstate [SC*) for o = 1.0, 1.5, 2.0, 2.5. The maximum fidelities
approach 1 for large o while the amplification rate defined in equation (5) also goes to unity, demonstrating the fundamental tradeoff
between the fidelity and amplification rate. For small o, (E T)z works better for even SCSs, but this difference between even and odd
SCSs disappears for « > 1.5 as |a) and |—«) become non-overlapping.
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Figure 2. STIRAP-type pulse sequence to realize E' for nth number state |n). (Top) An adiabatic sweep of the qubit frequency wq into
resonance with the cavity w;, transforms the initial state |e, 7) into the dressed state |+, n). Nexta microwave field is applied to the

|-, n) < | —,n + 1) transition with time dependent Gaussian amplitude ¢ (t) and frequency wy{ (yellow dotted—dashed line),
followed by another field driving the second transition (+, n) <> | — , n + 1)) withenvelope €5 (t) and frequency w5 (purple
dashed line). Foran SCS, the |—, n + 1) state is unpopulated hence does not participate in the dynamics. The microwave frequencies
are detuned by A, fromthe |—, n + 1) state butsatisfy the two-photon transition condition, w] — wj = 2AJ/n + 1. After the
pulse sequence, a further adiabatic sweep of the transmon frequency back out of resonance disentangles the atom from the cavity,
resulting in the state |g, # + 1). The action on the cavity state is |n) — E'ln) = |n 4 1). (Bottom) If the input state is an even SCS
givenby > c,|n), asetof pulses {e] (¢), €5(¢)} actingon each number state produces the outcome state > c,|n + 1).

with G =~ 1.902, 1.422, 1.235, 1.151. Interestingly, for a < 1.5, (EAT)2 works better for even SCSs because
|SC,~0) is approximately a one-photon-Fock state. When shifted, this a mapped to a three-photon Fock state,
which is very different to any odd SCS and we find that F_,, < 0.8 for & = 1.0. This behavior disappears for
a > 1.5 because |) is sufficiently orthogonal to | — ). Thus, we will focus on how to implement the

amplification procedure for an SCS with a = 1.5, in the range of interest for CV quantum information

processing.

3. Implementation in circuit QED

Circuit QED provides an ideal regime for amplification of SCSs, due to the large nonlinearities and strong
couplings that can be achieved. We first outline our scheme for performing a single £ operation on a cavity
field, with further details of the implementation in the following sections. This operation can be applied twice to
achieve (E T)z, and therefore amplification of SCSs. The protocol, shown in figure 2, is as follows: (1) an SCS
|SCE) = o o Cnln) is initially prepared in the cavity, where the ¢, vanish for odd (even) # for even (odd) SCSs,
with the qubit in |e). (2) An adiabatic sweep is used to bring the qubit frequency w, from far off-resonance to the
resonator frequency w;, where the eigenstates of the system are dressed qubit-cavity states [24]. This slowly
transfers the bare system into a superposition of dressed states >, ¢,|+, #). (3) A state-transfer scheme

3
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Figure 3. Energy level structure of a transmon coupled to a cavity with w, /2w = 6 GHzand A\/27 = 0.1 GHz[30]. Solid lines indicate
two sets of A-type dressed levels {|+, 1), | — , 1), |—, n + 1) } suitable for state-transfers and dashed lines are other eigenstates of
the Hamiltonian in equation (6) [24, 33]. The labels on the right-hand side are the product states that approximate the eigenstates for
large positive detunings (wq — wy > A).

adapted from the original idea of stimulated Raman adiabatic passage (STIRAP) in cavity-QED [26—29] is
performed. Instead of using a bare atomic A-level configuration, we use a set of A-type systems in the dressed JC
model, with dynamical control provided by varyinglocal fluxes [30, 31]. Pairs of overlapping Gaussian
microwave pulses are applied to the effective three-level systems {|+, n), | — , n), |—, n + 1) } to transfer the
populations into the state >, | ¢,| —, 1), viathe |—, n + 1) states. (4) The first step is reversed, sweeping wy
away from w to disentangle the final cavity state from the qubit, leavingitin the state >0 1 ¢,ln + 1) ~ |SC$>
which has &’ > « and opposite parity.

To repeat the operation, the qubit must be reset from |g) to |e) by a further microwave pulse, but it is now
sufficiently far detuned that the cavity state is not significantly affected. Finally, after the second E f operation, we
apply a selective number-dependent arbitrary phase (SNAP) gate to correct relative phases between Fock states

thatare acquired during the operation. This technique has been already demonstrated in a protocol to minimize
phase distortions due to self-Kerr interactions [32].

3.1. Adiabatic sweep of qubit frequency w,
We model a transmon qubit coupled to a cavity by a generalized JC Hamiltonian

A R Waj, o, . iy n .
' = wala + z%’m G+ oAk @ 1)kl + alk) (i), (6)
j jk

for transmon energy levels j, k = {g, e, f, h, ...} and transmon-cavity couplings A; ;. As shown in figure 3,
when the transmon frequencies are far from resonance with the cavity, the bare states are given by | j, n) with
transmon state j and photon number 1, while they become dressed states near resonance. We now approximate
the transmon as a two-level system as, in practice, the additional levels of the transmon do not negatively affect
the protocol. We discuss the impact of including a third transmon level in appendix B. Considering only two
transmon levels, {|g), |e) }, the eigenstates are

|+, n) = cosBle, n) + sinb,|g, n + 1), (7)
|-, n) = —sinf,le, n) + cosb,lg, n + 1), 8)

where wy = wqe — Wy, isthe qubit transition frequency, A = A, , is the qubit—cavity coupling, and

20, = tan"'2A\Jn + 1/6), with § = wy — w;. Notethat |+, n) ~ |e, n) and |—, n) ~ |g, n + 1) forlarge
6,soif westartin |e, n) far from resonance, the state adiabatically becomes |+, 1) as w, approaches resonance

6 = 0. This process requires the use of flux-tunable qubits. In realistic devices with multiple transmon levels,
this sweeping must be performed slowly enough to prevent leakage of population to higher levels.

3.2. Protocol for state-transfer on even SCSs in circuit-QED

The key element of our £ operation is an efficient state transfer from |+, 1) to |—, n) which is performed on
individual number states using A-type sets of levels. Once the initial, dressed state is prepared a microwave field
is first applied between |—, n) and |—, #n + 1) with time dependent amplitude

el (t) = |eflexp [—(t — 7)*/T?] and frequency wy, followed by another field driving the

|4+, n) <> | —,n + 1) transition (¢5 (t) = |e5lexp [—(t + 7)?/T?], w}). Both drives are detuned by A, from

4



I0P Publishing

NewJ. Phys. 18 (2016) 023028 JJooetal

0.8 : : 1.00—— —
(a) —_— |so;_5) (b) . k=OkHz
0.95¢ . k=0.25kHz]
L 2 . .
0.6 ET |SC1'5) '\ 0.90F . k=0.5kHz ]
S T
.
2 04f |sC51) * 085/ ]
g 5
< i 0.80F 1
0.21 ]
0.75[ ]
0.0 . L . ) 0.70 s K e L
0 2 4 6 8 10 12 1.0 15 2.0 2.5
Photon No. a'

Figure 4. (a) Photon number amplitudes for states |SCys), (E")?|SCy’s) and |SC3.,). We see that the population of the eight-photon-
Fock state is less than 1% for |SC;'5) and that therefore four sets of state-transfers cover enough levels for amplifying these states. (b)
Fidelities 7+~ (blue) and F* (red) achieved by applying E'and (£ respectively to |SCy'5). The solid lines show the theoretical
bounds, whichare F >~ >0.99at o’ &~ 1.78and F,.,, >0.945at o’ ~ 2.1. The dotted lines show the simulated performance

max
with different values of decoherence (1 = 7, = 10x) using four sets of simultaneous state-transfer operations. An amplification

factor of G &~ 1.33 isachieved for (EAT)Z.

their respective transitions, while still satisfying the two photon condition w] — wj = 2A{/n + 1, which
ensures that the intermediary |—, n + 1) state is not populated. The pulses have a region of overlap,
determined by the temporal offset 7. For efficient transfer of |+, n) — | — , n + 1), we require

7> (v2 — )T and|e|T > 10 [34].

A pair of pulses is used to transfer each number state with significant population. For an even SCS, all odd-
number states are unpopulated, so the A systems are effectively independent of each other. This spacing of
occupied and unoccupied states also prevents spectral crowding and the driving of unwanted transitions. The
pulses are performed in the manifolds of dressed states {|+, n), | — , n), |—, n 4+ 1) },in order, from the nth to
0th manifold. After all pulse sets and disentanglement from the qubit, this leaves the final state
Yeln+1) = E *Z ca|n). We see that £ flips the even SCSs to odd. Note that the analytical (theoretical) fidelity

between |SC;,> and EWSC?;) is given by

From = [(SC |E'ISC) P ©9)

Figure 4(b) shows that the maximum theoretical fidelity 7\~ is higher than 0.99 between E fl SC5)
and |SCi 7).

The scheme discussed here is compatible with the existing protocol for creating SCSs in [19], while
conventional STIRAP and two-tone red sideband transitions have also been demonstrated in A-type
superconducting systems [34—36].

3.3. Protocol for (E T)2 and SNAP gates

In contrast to cavity QED STIRAP setups, where atoms are passed through the cavity [27], m-pulses can be used
to reset the qubit state |g) — |e) directly without affecting the cavity state [19], and hence (E "2 can, in
principle, be performed by repeating the protocol. The overall fidelity is reduced by Kerr-type nonlinearities in
the dressed cavity, causing defects which accumulate over time. However, these distortions can be significantly
reduced by using a SNAP gate [32] to compensate for the relative phases acquired by different number states.
These gates have been experimentally demonstrated in a dispersively coupled superconducting cavity-qubit
system. The dispersive energy shifts of the cavity due to the qubit allow individual Fock states to be addressed by
microwaves drives of appropriate frequencies. Thus, n microwaves can perform a sum of phase gates on Fock
states |m) givenby Sy, = an;lo exp (i®,,)|m) (m|. Asthe procedure islimited by the decoherence time and

these distortions, we examine both £’ and (£")? including qubit and cavity decoherence, along with corrections
by SNAP gates.

4, Simulation with decoherence

To examine the performance of the protocol, we numerically simulate a simplified driven JC Hamiltonian with
two atomic levels [37-39]
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Figure 5. Density matrix amplitude plots c,,, (left) and Wigner functions (right). The initial state |SC{’;) is plotted in (a), with
numerical E'|SC{5) & |SCyg) without decoherence shown in (b). Simulated two-photon shift with (]:ML)2 is shown in (c) and, finally,
(d) shows the final state (E"')2|5Cﬁ5) ~ |SC3,) including decoherence of x /27 = 0.25 kHz. In the density matrix plots, the shifted
blocks clearly indicate the £ Tand (£7)? are performed, with blurred regions caused by imperfect state-transfers and decoherence. In
the Wigner function plots, interference fringes can be clearly seen, with the central fringe changing color between even and odd SCSs,
while some distortions are caused by imperfect transfers. Decoherence slightly reduces the color contrast of fringe patterns between
(c)and (d).

N 1 wq . s " 2 I .
A* = wr(a*a + 5) + 7(10'2 + X@'e— + ast) + ZZf?’(t)(e’“J’ a + eit ghy, (10)
n j=1

where w' are the frequencies of the microwave drives, and ¢} their amplitudes. While the microwave driving

terms couple all of the excitation subspaces of the undriven JC Hamiltonian, the Hamiltonian is only slightly
perturbed for small | ;| and the pulse frequencies are far off-resonance from unwanted transitions. Thus, the
majority of the evolution is confined to the respective {|+, n) } manifold. The bichromatic driving induces the
transition |4, n) — | — , n) via quasi-adiabatic following even though the system is not at, or close to, an
eigenstate of the instantaneous Hamiltonian for part of the pulse sequence. This exploits the topological
properties of the dressed eigenenergy surfaces [40]. We briefly note that this procedure in the driven JC system
has a different character to conventional STIRAP on a bare A-level atom with directly driven transitions and
behaves reversibly due to the unitary nature of the evolution (see figure A1 in appendix A).

4.1. E" and (E")? with SNAP gates on [SC;)

We first simulate a single £ operation acting on |SC;'5). In order to perform E f efficiently and practically, the
minimum number of STIRAP-type sets can be decided by the plotting the number distribution of SCSs.

Figure 4(a) shows that |SC;'5) has almost all of its population in four Fock states, {|0), |2), |4), |6) }, and therefore
four sets of STIRAP-type pulses will cover enough population to achieve good amplification. To minimize the
length of the procedure and hence to reduce decoherence to practical levels, we perform all the transfers
simultaneously, sharing a common first pulse. This produces almost identical fidelities to four independent state-
transfer sets in the decoherence-free case, with large improvements when decoherence is included.

Our simulated system has A\/27 = 0.1 GHz and w, /27 = 6.0 GHz. We start with the qubit 1 GHz detuned
and perform the adiabatic sweep in 6.2 us, which is sufficiently slow to prevent population transfer to unwanted
levels. For the four sets of state transfers, we use a single w; which is shared between all transfers, adjusting A; for
each A-level system to find the appropriate value of w). For the the first E' weuse 7 = 3.58 psand T = 6.28 us,
with other parameters given in table C1. With these parameters, the total state-transfer time is approximately
35 ps, which could be reduced further by using a larger transmon—cavity coupling strength. For the
second £, 7 = 3.14 ps and T = 6.28 ps. In the Fock basis, SNAP gates are given by Sy, The values of the
phases are dependent on Fock states |m) and we choose {®,,|m = 0, 1,...,8} as given in appendix B.

To model Markovian decoherence associated with cavity and qubit decoherence, we use a Lindblad master
equation

p=ilA", p] + wDIa] + v D6 + %D[&Z], (1
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where D[b] = I;pl;-r - % { l;-rl;, p}. We choose V/2m = 7, /2w = 10k /2w = 2.5, 5.0 kHz using realistic
parameters from [41]. The results are shown in figures 4 and 5. In figure 4(a), a comparison of the photon number
amplitudes for |SC;5), (E")2[SCS;'5) and |SC] ) indicates the similarity of the amplified SCS and the desired target
SCS. As shown in figure 4(b), E " without decoherence achieves a maximum fidelity above 0.94, with the gap
between the theoretical and no-decoherence cases caused by imperfections in the transfer method and partly due

to a small population of higher dressed states over |+, 8), which are not transferred. The dotted points show that
decoherence almost linearly reduces the fidelity, with 7+~~~ 0.9and F* =~ 0.8 for /27 = 0.25 kHz.

4.2. Evidence of performing ()¢ on |SC.) (k = 1,2)

Itis straightforward to show the performance of the shift operation (bﬁ)k by looking at the density matrices of
the initial and final states, because the components of the density matrix of SCSs are shifted by k Fock-basis
elements. For example, the density matrix of an initial even SCS is

oo

Pine = ISCIY(SCIl = D canl2n) (2m]. (12)

n,m=0
After the shift operation has been performed, the outcome state is given by

Pou = ENHSCHY (SCEIE = 37 coml2n + k) (2m + K. (13)

n,m=0

Plots of magnitude of density matrix elements (left side) and Wigner plots of the states (right side) are shown
in figure 5. Panels marked (a) show the initial SCS, which one can assume is prepared using the method of [19].
In (b) the state after applying a single £ " followed by SNAP gates is shown. In (c), the (E "y operation is
performed with a qubit flip after the first £ " and the SNAP gates after the second £ Finally (d) includes
decoherence with /27 = 0.25 kHz.

We see that without decoherence the coefficients c,,,,, are preserved but shifted. With decoherence, there is
blurring of this effect as odd number states become populated. This type of quantum process tomography can be
performed experimentally. In the Wigner functions, the interference fringes clearly switch between negative and
positive values as the SCS switches between odd and even parity, with a central blue peak in (a), (c) and (d) while in
(b) the central peak is red. In (d), we see that the decoherence slightly reduces the contrast of the fringe patterns but
the state is clearly very similar to the no-decoherence case shown in (c). Using Ramsey interferometry, one can
measure the qubit state-dependent phase shift of the cavity state, as explained in the supplementary material of
[19], and therefore perform tomography on the state in the high-Q cavity via alow-Q cavity. Alternatively, a parity
measurement can also be used to show the parity difference between the initial and final states [42].

Overall, the total operation time for our (E 1-)2 protocol is approximately 96 ps, including four adiabatic
sweeps to bring in and out the qubit (24.8 us), two applications of the STIRAP-type operations (70 ps), a qubit-
flip to reset the qubit, and SNAP gates (1 us). Very recently, the experimental group at Yale University has
developed a superconducting cavity qubit system with a single photon decay lifetime of 1.22 ms [43]. Including
all aspects of the total time, this would allow us to perform roughly 12 repetitions of our (]zﬁ)2 protocol before a
photon is lost. This is achieved without the use of any optimization techniques, which we expect would reduce
the operation time further. Additionally, cat state preparation (0.5 1s) and a parity measurement (0.4 us) for
Wigner tomography are required to verify the protocol, but do not contribute significantly to the time of the
protocol (see experimental papers in [19]).

5. Summary and remarks

We have demonstrated a scheme for deterministic amplification of microwave SCSs using E'and (E T)2
operations in circuit QED. A STIRAP-type state transfer method provides the core of the £ f operation, which
simply shifts the Fock state amplitude distribution of the initial SCS. The theoretical scheme is compared with
the simulation of the JC model with three values of decoherence. The application of E f amplifies an even SCS
ISC{’5) toanodd SCS |SCZ, ) with the fidelity 0.9 under realistic decoherence, while (£ produces |SCZ, ;)
with fidelity 0.8. Due to the benefits of the superconducting system, this deterministic method overcomes the
problems associated with probabilistic optics-only amplification methods, useful for other applications in the
future. Dissipation engineering solutions provide a complementary scheme for continuously amplifying SCSs
[18], while our discretized scheme could be extended to amplification of bipartite (or multipartite) entangled
SCSs without specially designed lossy environments [8, 9, 44]. We note that a related experiment has been
recently performed with coherent states in an ion-trap system and this could use shortcuts to adiabaticity to
reduce the time required (e.g., using counter-diabatic controls) [45].
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Figure Al. Transfer efficiency of the STIRAP-type pulses between |+, 0) and |—, 0) asa function of the overlap between the
two pulses. This provides evidence that our state-transfer scheme is a generalized o, operation between |+, n) and |—, n) for
different n.

In CV quantum information processing using SCSs, E " canbeusedasa bit-flip operation, by switching the
state parity with minimal amplification for o > 2, while (EAT)2 can act as a stabilizer operation on SCSs. If one
can perform either E "or (EM? depending on the outcome of a parity measurement of the cavity state, it can be
used for a discretized purification of SCSs. Taking advantage of well-separated lower energy levels, fluxonium or

flux qubits could also be used in this scheme [46].
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Appendix A. Evidence of STIRAP-type operations

Although this STIRAP-type operation behaves well enough for our desired state-transfer (+, n) — | — , n)), it
cannot be fully explained by conventional STIRAP in a bare A atomic system. In STIRAP, the state tranfer
efficiency is strongly dependent on the overlap of the two pulse envelopes [47]. In particular, efficient state-
transfer only occurs for the counter-intuitive sequence of the two pulses (¢ first and ¢, second).

We have examined the transfer efficiency of our scheme for the simplest transfer from |+, 0) to | —, 0) with
detuning A in figure A1. For positive 7, the behavior is similar to the normal STIRAP counter-intuitive pulse
sequence, with transfer efficiency rapidly approaching 1 as 7 increases. The efficiency then drops with decreasing
overlap area. However, our operation also shows excellent state-transfer for the reverse pulse sequence. It
therefore behaves like a generalization of the o, operation on the cavity state.

In our parameter region, and without decoherence, the transfer efficiency is symmetric about 7 = 0 (fully
overlapped pulses). However, the transfer efficiency for reversed pulses is more sensitive to changes in A and
the length of pulse envelopes. Oscillations are seen in the transfer efficiency, indicating that the process may not
be ‘as adiabatic’ as conventional STIRAP. These phenomena might be better understood in adiabatic Floquet
theory [48] and we believe they are caused by the existence of energy levels outside the A-system [49].

Appendix B. Additional transmon levels

As the transmon is in fact a multilevel system, there is the potential for additional levels to affect the state transfer.
We therefore simulated a single STIRAP-type state transfer from the |0, +) state to the |0, —) state both with
and without a third transmon level. The results are shown in figure B1. While the frequencies of the microwave
must be adjusted to fit the new energy levels of the system, the pulse envelopes, their amplitudes and overlaps are
identical. Crucially this means that the transfer does not have to be performed more slowly when a realistic

transmon is introduced.
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Appendix C. Simulation parameters for SNAP gates and state-transfers

Table C1. Simulation parameters used for the first £ i (top half) and second E i

(bottom half).
€1/2m wy/27 €/2m w,/2m A/2w

Transfer (MHz) (GHz) (MHz) (GHz) (MHz)

[0) — [1) 10 5.949 35 5.749 10

12) — [3) 10 5.949 38 5.603 24

[4) — |5) 10 5.949 49 5.501 30

16) — 17) 10 5.949 70 5.419 33

1) — [2) 24 5.953 55 5.679 15

[3) — [4) 24 5.953 36 5.551 22

I5) — 16) 24 5.953 32 5.462 26

17) — 18) 24 5.953 31 5.385 29
Table C2. Values of phases used for different Fock states |1m) for SNAP gates.
m 0 1 2 3 4 5 6 7 8
D, 0 —1.589 —0.716 —0.907 3.037 —-1.621 2.009 2.859 —0.573
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