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Abstract. A graph G = (V,E) is word-representable if there exists a word
w over the alphabet V such that letters x and y alternate in w if and only
if (x, y) ∈ E. A triangular grid graph is a subgraph of a tiling of the plane
with equilateral triangles defined by a finite number of triangles, called cells.
A face subdivision of a triangular grid graph is replacing some of its cells by
plane copies of the complete graph K4.

Inspired by a recent elegant result of Akrobotu et al., who classified word-
representable triangulations of grid graphs related to convex polyominoes, we
characterize word-representable face subdivisions of triangular grid graphs.
A key role in the characterization is played by smart orientations introduced
by us in this paper. As a corollary to our main result, we obtain that any
face subdivision of boundary triangles in the Sierpiński gasket graph is word-
representable.

Keywords: word-representability, semi-transitive orientation, face subdivi-
sion, triangular grid graphs, Sierpiński gasket graph

1 Introduction

Let G = (V,E) be a simple (i.e. without loops and multiple edges) undirected
graph with the vertex set V and the edge set E. We say that G is word-
representable if there exists a word w over the alphabet V such that letters
x and y alternate in w if and only if (x, y) ∈ E for any x ̸= y.

The notion of word-representable graphs has its roots in algebra, where a
prototype of these graphs was used by Kitaev and Seif to study the growth
of the free spectrum of the well-known Perkins semigroup [10].
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Recently, a number of (fundamental) results on word-representable graphs
were obtained in the literature; for example, see [1], [3], [5], [7], [9], [11], and
[12]. In particular, Halldórsson et al. [7] have shown that a graph is word-
representable if and only if it admits a semi-transitive orientation (to be de-
fined in Section 2), which, among other important corollaries, implies that all
3-colorable graphs are word-representable. The theory of word-representable
graphs is the main subject of the upcoming book [8].

The triangular tiling graph T∞ (i.e., the two-dimensional triangular grid)
is the Archimedean tiling 36 introduced in [13] and [4]. By a triangular grid
graph G in this paper we mean a graph obtained from T∞ as follows. Specify
a number of triangles, called cells, in T∞. The edges of G are then all the
edges surrounding the specified cells, while the vertices of G are the endpoints
of the edges (defined by intersecting lines in T∞). We say that the specified
cells, along with any other cell whose all edges are from G, belong to G. Any
triangular grid graph is 3-colorable, and thus it is word-representable [7].
We consider non-3-colorable graphs obtained from triangular grid graphs by
applying the operation of face subdivision which is defined in the sequel.

Subdividing a cell of a triangular grid graph means subdividing it into
three parts by placing a vertex in the center of the cell and making it adjacent
to the three cell’s vertices. A face subdivision of a triangular grid graph is
obtained by subdividing a number of specified cells in G.

Recently, Akrobotu at el. [1] proved that a triangulation of the graph
G associated with a convex polyomino is word-representable if and only if
G is 3-colorable. Inspired by this elegant result, in the paper in hands, we
characterized word-representable face subdivisions of triangular grid graphs.

The paper is organized as follows. In Section 2 some necessary defini-
tions, notation and known results are given. In Section 3 we state and prove
our main result (Theorem 3.1) saying that a face subdivision of a triangular
grid graph is word-representable if and only if it has no interior cell subdi-
vided. Theorem 3.1 is proved using the notion of a smart (semi-transitive)
orientation introduced in this paper. Finally, in Section 4 we apply our
main result to face subdivisions of triangular grid graphs having equilateral
triangle shape and face subdivisions of the Sierpiński gasket graph.

2 Definitions, notation, and known results

Suppose that w is a word and x and y are two distinct letters in w. We say
that x and y alternate in w if the deletion of all other letters from the word
w results in either xyxy · · · or yxyx · · · .
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A graph G = (V,E) is word-representable if there exists a word w over the
alphabet V such that letters x and y alternate in w if and only if (x, y) ∈ E
for each x ̸= y. We say that w represents G, and such a word w is called a
word-representant for G. For example, if w = 134231241 then the subword
induced by the letters 1 and 2 is 12121, hence letters 1 and 2 are alternating
in w, and thus the respective nodes are connected in G. On the other hand,
the letters 1 and 3 are not alternating in w, because removing all other letters
we obtain 1331; thus, 1 and 3 are not connected in G. One can see that w
represents a 4-cycle labelled by 1, 2, 3 and 4 in counter-clockwise direction.

If each letter appears exactly k times in a word-representant of a graph,
the word is k-uniform and the graph is said to be k-word-representable. For
example, the word w′ = 13423124 is also a word-representant for the 4-
cycle mentioned above, so the graph is 2-word-representable. The following
theorem establishes equivalence of the notions of word-representability and
uniform word-representability.

Theorem 2.1 ([9]). A graph G is word-representable if and only if there
exists k such that G is k-word-representable.

The graph A′′ in Figure 2.1 will play a special role in this paper. Non-
word-representability of A′′ follows from the argument showing non-word-
representability of the graph co-(T2) in [6]. Indeed, A′′ differs from co-(T2)
in [6] only by the absence of the edges (5,6), (5,7) and (6,7), which did not
affect the proof of the theorem in [6]. Thus, we omit the proof of the following
theorem.

..7 .

2

.

5

.

3

. 6. 4.
1

Figure 2.1: The graph A′′.

Theorem 2.2. The graph A′′ in Figure 2.1 is non-word-representable.

Next, we define key objects of our interest including semi-transitive ori-
entations, triangular grid graphs and the Sierpiński gasket graph. For graph-
theoretic terminology not defined in this paper, the reader is referred to [2].
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2.1 Semi-transitive orientations

A directed graph (digraph) is semi-transitive if it is acyclic, and for any
directed path v1 → v2 → · · · → vk with vi ∈ V for all i, 1 ≤ i ≤ k, either

• there is no edge v1 → vk, or

• the edge v1 → vk is present and there are edges vi → vj for all 1 ≤
i < j ≤ k. That is, in this case, the (acyclic) subgraph induced by the
vertices v1, . . . , vk is transitive.

We call such an orientation a semi-transitive orientation.

We can alternatively define semi-transitive orientations in terms of in-
duced subgraphs. A semi-cycle is the directed acyclic graph obtained by
reversing the direction of one arc of a directed cycle. An acyclic digraph is
a shortcut if it is induced by the vertices of a semi-cycle and contains a pair
of non-adjacent vertices. Thus, a digraph on the vertex set {v1, . . . , vk} is a
shortcut if it contains a directed path v1 → v2 → · · · → vk, the arc v1 → vk,
and it is missing an arc vi → vj for some 1 ≤ i < j ≤ k; in particular, we
must have k ≥ 4, so that any shortcut is on at least four vertices. Slightly
abusing the terminology, in this paper we refer to the arc v1 → vk in the last
definition as a shortcut (a more appropriate name for this would be shortcut
arc). Figure 2.2 gives examples of shortcuts, where the edges 1 → 4, 2 → 5
and 3 → 6 are missing, and hence 1 → 5, 1 → 6 and 2 → 6 are shortcuts.

Thus, an orientation of a graph is semi-transitive if it is acyclic and con-
tains no shortcuts.

..
1
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Figure 2.2: An example of a shortcut

Halldórsson et al. [7] proved the following theorem that characterizes
word-representable graphs in terms of graph orientations.

Theorem 2.3 ([5]). A graph is word-representable if and only if it admits a
semi-transitive orientation.

An immediate corollary to Theorem 2.3 is the following result.

Theorem 2.4 ([5]). 3-colorable graphs are word-representable.
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2.2 Triangular grid graphs

The infinite graph T∞ associated with the two-dimensional triangular grid
(also known as the triangular tiling graph, see [13] and [4]) is a graph drawn
in the plane with straight-line edges and defined as follows.

The vertices of T∞ are represented by a linear combination xp+yq of the
two vectors p = (1, 0) and q = (1/2,

√
3/2) with integers x and y. Thus, we

may identify the vertices of T∞ with pairs (x, y) of integers, and thereby the
vertices of T∞ are points with Cartesian coordinates (x+y/2, y

√
3/2) . Two

vertices of T are adjacent if and only if the Euclidean distance between them
is equal to 1 (see Figure 2.3). A line ℓ containing an edge of T∞ is called a
grid line. Note that the degree of any vertex of T is equal to 6. We refer to
the triangular faces of T∞ as cells.

A triangular grid graph is a finite subgraph of T∞, which is formed by all
edges bounding finitely many cells. Note that in our definition, a triangular
grid graph does not have to be an induced subgraph of T∞. It is easy to
see that T∞ is 3-colorable, and thus any triangular grid graph is 3-colorable.
Therefore, triangular grid graphs are word-representable by Theorem 2.4.

.

Figure 2.3: A fragment of the graph T∞.

The operation of face subdivision of a cell is putting a new vertex inside
the cell and making it to be adjacent to every vertex of the cell. Equivalently,
face subdivision of a cell is replacing the cell (which is the complete graph
K3) by a plane version of the complete graph K4. A face subdivision of a
set S of cells of a triangular grid graph G is a graph obtained from G by
subdividing each cell in S. The set S of subdivided cells is called a subdivided
set. For example, Figure 2.4 shows K4, the face subdivision of a cell, and A′,
a face subdivision of A.

If a face subdivision of G results in a word-representable graph, then
the face subdivision is called a word-representable face subdivision. Also, we
say that a word-representable face subdivision of a triangular grid graph G
is maximal if subdividing any other cell results in a non-word-representable
graph.

An edge of a triangular grid graph G shared with a cell in T∞ that does
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Figure 2.4: Examples of face subdivisions: K4 is the face subdivision of a
cell, and A′ is a face subdivision of A.

not belong to G is called a boundary edge. Recall that a cell belongs to G
if and only if all of its edges belong to G. A non-boundary edge belonging
to G is called an interior edge. A cell in G that is incident to at least one
boundary edge is called a boundary cell. A non-boundary cell in G is called
an interior cell. We denote by v1−v2−v3 the cell whose vertices are labelled
by v1, v2, v3. The boundary edges in the graphs H and K in Figure 2.5 are
in bold.
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Figure 2.5: Graphs H and K, where boundary edges are in bold.

A face subdivision of a triangular grid graph that involves face subdivision
of just boundary cells is called a boundary face subdivision. A boundary
edge parallel to the edge (1, 2) (resp., (2, 3), (3, 4), (4, 5), (5, 6) and (1, 6))
in the graph H in Figure 2.5 and having the same layout of the boundary
cell incident to it, is of type S (resp., SE, NE, N, NW and SW), which
stands for “South” (resp., “South-East”, “North-East”, “North”, “North-
West” and “South-West”). For example, the boundary edges of the graph
K in Figure 2.5 (1, 2) and (1, 9) are of type SW, while the boundary edges
(3, 5), (7, 6) and (8, 9) are of type NW. The property set of a boundary cell
is the set of types of boundary edges incident to the cell. For example, in
the graph K in Figure 2.5, the types of the cells 1-2-3 and 1-7-9 are {N, SW,
SE} and {SW, SE}, respectively.
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2.3 Sierpiński gasket graph

The two-dimensional Sierpiński gasket graph, a lattice version of the Sierpiński
gasket, also known as Sierpiński triangle, is one of the most studied self-
similar fractal-like graphs. The construction of this graph, denoted by SG(n)
for initial stages is shown in Figure 2.6. At stage n = 0, it is an equilateral
triangle, i.e. a cell in T∞, while a stage n + 1 giving SG(n + 1) is obtained
by the juxtaposition of three graphs SG(n) constructed on stage n. It is not
difficult to see that SG(n) is a triangular grid graph and it has 3

2
(3n + 1)

vertices and 3n+1 edges.

.. .. ..

.

. .. ..

.

. ..

.

.

.

.

.

. ..

.

. ..
SG(0)
.

SG(1)
.

SG(2)
.

SG(3)

Figure 2.6: The first four stages corresponding to n = 0, 1, 2, 3 in construc-
tion of the two-dimensional Sierpiński gasket graph SG(n).

3 Face subdivisions of triangular grid graphs

of general shape

Clearly, the graph A′′ in Figure 2.1 is isomorphic to a face subdivision of an
interior cell in a triangular grid graph. Our main result is that subdividing
all boundary (and no interior) cells of a triangular grid graph results in a
word-representable graph.

Theorem 3.1. A face subdivision of a triangular grid graph G is word-
representable if and only if it has no induced subgraph isomorphic to A′′, that
is, G has no subdivided interior cell.

To prove Theorem 3.1, we will describe an orientation of a face sub-
division of a triangular grid graph and then prove that this orientation is
semi-transitive. First, define a correspondence between the types of bound-
ary edges and the types of orientations of subdivided cells shown in Figure 3.7
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Figure 3.7: The semi-transitive orientation of the maximum face subdivision
of the graph H, and six orientations of the subdivided cells.

as following: NW (respectively, NE, S, SE, SW, N) corresponds to A (respec-
tively, B, C, a, b, c).

For a face subdivision G′ of a triangular grid graph G without subdivided
interior cell, we direct the edges of G′ as follows:

1. Direct all horizontal edges from left to right, and the edges forming
60◦, 90◦, or 120◦ with a horizontal line from top to bottom.

2. Direct the edges located inside subdivided cells consistently with an
orientation shown in Figure 3.7 that corresponds to one of the types in
the property set of the cell.

We refer to the arcs forming 0◦, 60◦, or 120◦ with a horizontal line as
grid arcs. All other arcs are called by us inner arcs. If an orientation of a
face subdivision of G′ satisfies the two conditions above, then we say that
the orientation is smart. Note that in general a smart orientation is not
necessarily unique since a subdivided cell may have more than one boundary
edge. An example of a smart orientation is the way we oriented the graph H
in Figure 3.7.
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Figure 3.8: The face subdivision K ′ of the graph K and one of its semi-
transitive orientations.

For another example, for the face subdivision of K ′ shown in Figure 3.8,
the property sets of the subdivided cells 1−2−3 and 5−6−7 are, respectively,
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{SW, SE} and {NW, NE}. Thus, referring to Figure 3.7, the orientations
of edges for the cell 1 − 2 − 3 can be chosen to be of type a or b, while for
the cell 5 − 6 − 7 of type A or B. In particular, the orientation shown in
Figure 3.8 is smart, and this orientation can be checked by inspection to be
semi-transitive.

Yet another example of a smart orientation is presented in Figure 3.9,
where we also indicate types of orientations of cells used. In that figure we
give a smart orientation for the graph obtained from subdividing all boundary
cells in a triangular grid graph.

.

..
A

.

B

.

C

Figure 3.9: Semi-transitive orientation of An.

Note that a smart orientation may involve eight types of edges, that we
call a1, a2, etc, a8; see Figure 3.10.

..

a1

.

a2

.

a3

.

a4

.
a8

.
a7

.
a6

.
a5

Figure 3.10: Eight types of oriented edges.

There are a number of properties that any smart orientation satisfies.
Three of these properties, that are easy to see, are listed below. We will be
using them, sometimes implicitly by considering fewer subcases, in the proof
of Lemma 3.3:

• No directed path can connect a vertex on a horizontal line to another
vertex to the left of it on the same line.

• No directed path can get from a horizontal line to a higher horizontal
line.
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• The only situation in which a directed path can go down from a hori-
zontal line and return back to it is when the upper inner arcs of type c
in Figure 3.7 are involved.

Lemma 3.2. No smart orientation of the boundary face subdivision of a
triangular grid graph can have a directed cycle.

Proof. It is straightforward to see that no directed cycle is possible on just
grid arcs, that is, when no inner arc is involved. Thus, if a directed cycle C
exists, then it must involve an inner arc.

Further, note that if e1 is an inner arc in C, then there must exist an
inner arc e2 that is located in the same cell as e1, and e1 and e2 are next
to each other in C. Without loss the generality, assume that e1 = (x → y)
and e2 = (y → z). But then, looking at the six types of orientations of
subdivided cells presented in Figure 3.7, we see that e = (x → y) is an arc
in the oriented graph. Thus, we see that C ′ obtained from C by removing e1
and e2 and including e is still a directed cycle. Continuing in this manner,
we can eliminate all inner arcs and show that there exists a directed cycle
containing only grid arcs, which is impossible.

Thus, C cannot exist, that is, any smart orientation is acyclic.

Lemma 3.3. No smart orientation of the boundary face subdivision of a
triangular grid graph can contain a shortcut.

Proof. In a smart orientation, there are eight types of arcs shown in Fig-
ure 3.10, and we will prove that no arc e = (t → h) can be a shortcut. While
dealing with smart orientations, sometimes it is convenient to pay attention
to coordinates (xv, yv) of a vertex v coming from the definition of T∞. The
coordinates allow for any two vertices to determine which one of them is to
the left of the other one and/or higher than the other one.
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Figure 3.11: The case when the arc e = (2 → 1) is of type a1.

Case 1. Suppose that the arc e = (2 → 1) is of type a1, as shown in Figure 3.11.
If a1 is a shortcut, then there exists a directed path P of length at least
3 from 2 to 1 (this path does not involve e). Consider the last vertex
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of P that is on the horizontal line containing the vertex 2. That vertex
must actually be 2, otherwise we would obtain a contradiction with
the semi-transitive orientation of the maximum subdivision of graph H
in Figure 3.7. So P must start with 2 → 7 (in Figure 3.11), which is
impossible by the following reason. The arc 2 → 7 is in orientation of
type a forcing P be of length 2, contradiction. Thus, e is not a shortcut
in this case.
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Figure 3.12: The case when the arc e = (2 → 1) is of type a2.

Case 2. Suppose that the arc e = (2 → 1) is of type a2, shown in Figure 3.12.
If a2 is a shortcut, then there exists a directed path P of length at least
3 from 2 to 1 (this path does not involve e). Suppose that P begins
with e′. Then e′ = (2 → s) can possibly be 2 → 4, 2 → 5, 2 → 6,
2 → 7, 2 → 10, 2 → 11, or 2 → 12.

Subcase 2.1 If P begins with 2 → 4, according to the orientations, P may be
2 → 4 → 5 → 1, 2 → 4 → 5 → 3 → 1 or 2 → 4 → 3 → 1.
Since the path 2 → 4 → 5 → 1 is semi-transitive, P must be
2 → 4 → 5 → 3 → 1 or 2 → 4 → 3 → 1. It forces the cell 1-4-14
to have the orientation of type c, while 4 → 1 is not a boundary
edge, contradicting the definition of a smart orientation.

Subcase 2.2 If P begins with 2 → 5, then P must be different from 2 → 5 → 1.
Moreover, since the path 2 → 5 → 4 → 1 is transitive, then P
must go through 3 to 1 (going to 14 is not an option since P would
never be able to return to the horizontal line the vertex 1 is on).
But then the face subdivision of the cell 1-4-14 has the orientation
of type c, while 4 → 1 is not a boundary edge, contradicting the
definition of a smart orientation.

Subcase 2.3 If P begins with 2 → 6, then the face subdivision of the cell 1-2-7
has the orientation of type a or c. For the orientation of type a, P
is of length 2, contradiction. For the orientation of type c, since
the path 2 → 7 → 6 → 1 is transitive, P must go through 8 to 1.
Thus the face subdivision of the cell 1-7-13 has the orientation of
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type A, while 7 → 1 is not a boundary edge, contradicting with
the definition of a smart orientation.

Subcase 2.4 If P begins with 2 → 7, then P must go through 8 to 1. Similarly
to the discussion in Subcase 2.2, it contradicts with the definition
of a smart orientation.

Subcase 2.5 If P begins with 2 → 10, P must go through the arcs 4 → 1 or
4 → 3, while either of them indicates that 2 → 4 is not a boundary
edge, contradicting the face subdivision of the cell 2-4-15.

Subcase 2.6 If P begins with 2 → 11, it indicates that the orientation of the
face subdivision of the cell 2-15-16 is of type B. Thus the vertex
11 is a sink, contradiction.

Subcase 2.7 If P begins with 2 → 12, the face subdivision of the cell 2-7-17 can
possibly has the orientation of type B or C. In the orientation of
type B, the vertex 12 is a sink, contradiction. Thus the orientation
is of type C, and P must go through the arc 7 → 1 or 7 → 8,
while either of them indicates that 7 → 1 is not a boundary edge,
contradicting the face subdivision of the cell 2-7-17.

Thus, e is not a shortcut in this case.
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Figure 3.13: The case when the arc e = (2 → 1) is of type a3.

Case 3. Suppose that the arc e = (2 → 1) is of type a3, as shown in Figure 3.13.
If e is a shortcut, then there exists a directed path P of length at least
3 from 2 to 1 (this path does not involve e). Suppose that P begins
with e′. Then e′ = (2 → m) can potentially be 2 → 4, 2 → 5,
2 → 6, 2 → 7, 2 → 8, 2 → 9 or 2 → 10. However, e′ cannot be
2 → 8, 2 → 9 or 2 → 10, because in each of these cases P is forced
to go through the vertex lying on the horizontal grid line below the
vertex 1, which is impossible by the properties of smart orientations
listed above. Moreover, e′ cannot be 2 → 6, since in this case P cannot
possibly return back to the vertex 1 since all the optional arcs are going
down by the orientations of triangular grid graphs. Also, e′ cannot be
2 → 7, since 2 → 7 must be an arc in subdiveded cell with orientation
of type B and therefore 7 must be a sink, contradiction. If e′ is 2 → 4
or 2 → 5, then P must be a path of length 2, contradiction. Thus, e is
not a shortcut in this case.
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Figure 3.14: The case when the arc e = (2 → 1) is of type a4.

Case 4. Suppose that the arc e = 2 → 1 is of type a4, as shown in Figure 3.14.
If e is a shortcut, then there exists a directed path P of length at least
3 from 2 to 1 (this path does not involve e). Then P can possibly end
with 3 → 1 or 4 → 1. There are two subcases:

Subcase 4.1 For ending with 3 → 1, the cell 2 − 3 − 4 has the orientation B,
so 2 → 3 is a boundary edge. If 4 → 3 lies on P , then 5 → 4 and
2 → 5 must lie on P (since the path 2 → 4 → 1 → 3 is transitive
and no directed path can connect a vertex on a horizontal line
to another vertex to the left of it on the same line). Hence the
subdivided cell 2−4−9 has the orientation of type a while 2 → 4
is not a boundary edge, contradicting the definition of a smart
orientation. The arc 6 → 3 cannot lie on P , since existence of
6 → 3 implies that the vertex 6 is a source by the definition of a
smart orientation. If 8 → 3 lies on P then so does 4 → 8, hence
the cell containing 8 has the orientation c, while 3 → 4 is not a
boundary edge, contradicting the definition of a smart orientation.

Subcase 4.2 For ending with 4 → 1, since no directed path can connect a
vertex on a horizontal line to another vertex to the left of it on
the same line in a smart orientation, both 5 → 4 and 2 → 5 must
lie on P , and hence the subdivided cell containing the vertex 5
has the orientation of type a, while 2 → 4 is not a boundary edge,
contradicting the definition of a smart orientation.

Thus, e is not a shortcut in this case.

..1 .
2

.

5

. 3.

4

.

6

Figure 3.15: The case when the arc e = (2 → 1) is of type a5.

Case 5. Suppose that the arc e = (2 → 1) is of type a5, as shown in Figure 3.15.
If e is a shortcut, then there exists a directed path P of length at least
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3 from 2 to 1 (this path does not involve e). Then P must begin with
the arc 2 → 3. However, no directed path can connect a vertex on a
horizontal line to another vertex to the left of it on the same line, thus
e is not a shortcut.

..3 .
2

.

5

. 1.

4

.

6

Figure 3.16: The case when the arc e = (2 → 1) is of type a6.

Case 6. Suppose that the arc e = (2 → 1) is of type a6, as shown in Figure 3.16.
If e is a shortcut, then there exists a directed path P of length at least 3
from 2 to 1 (this path does not involve e). Then P must begin with the
arc 2 → 3. There are only two possibilities here: P is either 2 → 3 → 1,
or 2 → 3 → 4 → 1. In the former case, we do not have a shortcut,
while in the later case there is a contradiction with orientation of the
cell 1-3-6, since the arc 3 → 1 is not boundary. Thus, e is not a shortcut
in this case.

.. 1.

3

.2 . 4

Figure 3.17: The case when the arc e = (2 → 1) is of type a7.

Case 7. Suppose that the arc e = (2 → 1) is of type a7, shown in Figure 3.17.
If e is a shortcut, then there exists a directed path P of length at least
3 from 2 to 1 (this path does not involve e). Now P can possibly end
with 3 → 1 or 4 → 1. Since the vertex 3 lies on a horizontal line that
is higher than the horizontal line the vertex 2 lies on, the case of 3 → 1
is impossible. On the other hand, showing that the case of 4 → 1 is
impossible is similar to our considerations in Case 6.

Case 8. Suppose that the arc e = (2 → 1) is of type a8, as shown in Figure 3.18.
If e is a shortcut, then there exists a directed path P of length at least
3 from 2 to 1 (this path does not involve e). Now, P can possibly end
with 3 → 1 or 4 → 1. Both of these situations are impossible, first
there exists no directed path from the vertex 2 to 3 by the property:

14



.. 1.

4

.3 . 2

Figure 3.18: The case when the arc e = (2 → 1) is of type a8.

no directed path can connect a vertex on a horizontal line to another
vertex to the left of it on the same line; second, there exist no optional
arcs whose arrow goes up for a directed path from the vertex 2 to 4,
i.e., the vertex 4 is not reachable from the vertex 2 by the property: no
directed path can get from a horizontal line to a higher horizontal line
in a smart orientations of a triangular grid graph.

By Lemmas 3.2 and 3.3, any smart orientation of the boundary face sub-
division of a triangular grid graph is semi-transitive. Therefore, Theorem 3.1
is true by Theorem 2.3.

4 Concluding remarks

In this paper we characterized word-representable face subdivisions of tri-
angular grid graphs. We see our work as a step towards characterizing all
word-representable planar graphs1. We conclude our paper with a discus-
sion about an application of our main result to word-representability of face
subdivisions of the celebrated Sierpiński gasket graph.

For the two-dimensional Sierpiński gasket graph SG(n), by Theorem 3.1,
we can obtain its maximum word-representable by subdividing all of its
boundary cells. Figure 4.19 shows the maximum word-representable face
subdivision of SG(3) and one of its smart orientations.

SG(n) can only have faces of degree 3 · 2k, where k = 0, 1, . . ., and the
operation of face subdivision of a (triangular) cell can be generalized to face
subdivision of other faces. One such generalization is inserting a new node
inside a face and connecting it to all of the face’s nodes. Another possible
generalization is subdividing a face into three parts by connecting a newly
added node to the three conner nodes of a face (note that each face being
a 3 · 2k-cycle, looks like a triangle, and the conner nodes are the vertices of
such a triangle).

1Not all planar graphs are word-representable. The minimum non-word-representable
(planar) graph is the wheel graph W5 obtained by the face subdivision (in our sense) of
the cycle graph C5.
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Figure 4.19: The maximum word-representable face subdivision of SG(3)
and one of its smart orientations.

We leave it as an open problem to study word-representability of the
Sierpiński gasket graph when subdivision of faces of larger degrees is allowed.
Studying this problem, again, will be a step towards characterizing word-
representable planar graphs.
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