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Chapter 1

Nematic liquid crystals doped with nanoparticles:

phase behavior and dielectric properties

Mikhail A. Osipov∗1 and Maxim V. Gorkunov2

1Department of Mathematics, University of Strathclyde,

Glasgow G1 1XH, UK
2Shubnikov Institute of Crystallography of the

Russian Academy of Sciences, 119333 Moscow, Russia

Thermodynamics and dielectric properties of nematic liquid crystals
doped with various nanoparticles have been studied in the framework
of a molecular mean-field theory. It is shown that spherically isotropic
nanoparticles effectively dilute the liquid crystal material and cause a de-
crease of the nematic-isotropic transition temperature, while anisotropic
nanoparticles are aligned by the nematic host and, in turn, may sig-
nificantly improve the liquid crystal alignment. In the case of strong
interaction between spherical nanoparticles and mesogenic molecules,
the nanocomposite possesses a number of unexpected properties: The
nematic-isotropic co-existence region appears to be very broad, and the
system either undergoes a direct transition from the isotropic phase into
the phase-separated state, or undergoes first a transition into the ho-
mogeneous nematic phase and then phase-separates at a lower tempera-
ture. The phase separation does not occur for sufficiently low nanopar-
ticle concentrations, and, in certain cases, the separation takes place
only within a finite region of the nanoparticle concentration. For ne-
matics doped with strongly polar nanoparticles, the theory predicts the
nanoparticle aggregation in linear chains that make a substantial contri-
bution to the static dielectric anisotropy and optical birefringence of the
nematic composite. The theory clarifies the microscopic origin of im-
portant phenomena observed in nematic composites including a shift of
the isotropic-nematic phase transition and improvement of the nematic
order; a considerable softening of the first order nematic-isotropic tran-
sition; a complex phase-separation behavior; and a significant increase
of the dielectric anisotropy and the birefringence.
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1. Introduction

Liquid crystal nanocomposites are considered to be extremely promising

materials in which the properties of a liquid crystal (LC), used, for ex-

ample, in display applications, are modified/improved by the presence of

various nanoparticles (NPs). There are many reports showing that doping

of a nematic LC with even a small amount of NPs affects nearly all impor-

tant properties of nematic materials, resulting in a decrease of threshold

and switching voltages and reducing the switching times of LC displays

(see, for example, Refs. 1–5). Suspensions of metal, dielectric and semi-

conductor NPs in various nematic LCs have been investigated by many

authors and, in particular, doping of nematics with ferroelectric NPs is

known to enhance dielectric and optical anisotropy, increase the electro-

optic response6,7 and improve the photorefractive properties.8 Suspensions

of para- and ferromagnetic particles in nematics are promising candidates

for magnetically tunable structures, and doping of ferroelectric LCs with

metal and silica nanoparticles enables one to improve the spontaneous po-

larization and dielectric permittivity and to decrease switching times.9–11

Metal NPs have been also used to widen the temperature range of LC

blue phases,12 which are important for applications, and enhance random

lasing in the dye-doped LC medium.13 Finally, distributing semiconductor

quantum dots in smectic LC-polymers enables one to achieve the positional

ordering of nanosize particles.14,15

At the same time, LC-NP composites are also considered as the building

blocks of novel metamaterials. Metamaterials, i.e., arrays of sub-wavelength

metallic/semiconductor particles, offer a new degree of freedom in control-

ling light: they enable tailoring the optical response, achieving very high,

very low and negative values of refractive index, permittivity and/or per-

meability.16 Combining emerging optical metamaterials with LCs provides

a new important quality – tunability, which is of key importance for emerg-

ing applications including tunable photonic materials, optically addressed

spatial light modulators and dynamic holography. Upon immersing a meta-

material into a nematic LC one can switch the LC alignment by external

voltages and modify the overall optical properties of the composite.17 For

instance, the localized plasmon resonance of gold NPs can be tuned by

changing the refractive index and, in particular, the birefringence of the

surrounding LC medium.18–20

Many applications of LC nanocomposites require an understanding of

how the NPs affect the orientational order in the LC medium and the ther-
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modynamic stability of the LC phase. Recently it has been shown10,11

that the dipolar induction interaction between ferroelectric NPs and the

surrounding nematic LC medium may result in a substantial decrease of

the nematic-isotropic (N-I) transition temperature. It has also been shown

experimentally that the N-I transition temperature can be significantly af-

fected by the presence of other types of NPs. For example, a decrease

of the N-I transition temperature is observed in nematics doped with ap-

proximately isotropic silver,21 gold22 or aerosil particles,23,24 while the N-I

transition temperature increases if the nematic LC is doped with strongly

anisotropic NPs including nanotubes,25 magnetic nanorods26 and ferro-

electric particles.9,10 Recently a detailed mean-field molecular theory of

nematic LCs doped with both isotropic and anisotropic NPs has been de-

veloped.27 The effect of isotropic NPs has also been considered in Ref. 28,

while the effect of the external electric field on the nematic nano-composites

has been studied in Ref. 29.

In the case of spherical or weakly anisotropic NPs, the N-I transition

temperature decreases with the increasing concentration of NPs and as a

result the nematic phase is partially destabilized. In such a system the total

free energy may be minimized if the system separates into the isotropic

phase with an increased concentration of NPs and the nematic phase with

lower concentration of NPs. One notes that such a phase separation is

very much different from an ordinary demixing, which takes place already

in the isotropic phase and does not require the system to undergo a phase

transition. Experimentally such a demixing can be suppressed by attaching

appropriate organic groups to the surface of the NPs which makes them

more compatible with the surrounding fluid. In contrast, the origin of

the nematic-isotropic phase separation is intimately related to the phase

transition thermodynamics, and we find such a phase separation to be very

interesting from both the fundamental and the applications point of view.

It should be noted that a similar phase separation occurs around the

N-I transition point in mixtures of different LCs and, in particular, in ne-

matics doped with nonmesogenic molecules (see e.g. Refs. 30,31). The

corresponding two-phase region around the N-I transition, however, is usu-

ally very narrow. This is related to the fact that properties of the dopant

molecules do not differ much from those of the host ones. In contrast, the

properties of metal or semiconductor NPs may differ very significantly from

those of typical mesogenic molecules, and, as a result, the region of coex-

istence of the isotropic and the nematic phase may be much wider.32 The

first molecular theory of the nematic-isotropic phase separation in nematic
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nano-composites has recently been developed by the authors.33

Strong interaction between NPs may also lead to their aggregation in-

cluding the formation of chains of NPs when the interaction is strongly

anisotropic. Aggregates of NPs in general, and polar chains in particular,

are expected to modify all major properties of nematic nano-composites,

including their dielectric and optical properties. Nematic LCs with polar

chains should also be very sensitive to external electric fields which may be

used for alignment and switching at very low applied voltage.

It has been shown experimentally (see, for example, Refs. 9,34) that the

dielectric anisotropy of nematic LCs doped with strongly polar (ferroelec-

tric) NPs is dramatically increased. Indeed, a very small molar fraction of

ferroelectric NPs (of the order of 10−3) accounts for a contribution of the

order of 5−6 to the anisotropy of the dielectric constant, which is compara-

ble with the anisotropy of the nematic host. Preliminary estimates indicate

that the increase is too strong to be explained without taking into account

possible aggregation of NPs and formation of polar chains. There exists

some experimental evidence that quantum dots may also form long chains

in nematic LCs35 even though such NPs are nonpolar.

Aggregation of NPs in the nematic phase may occur if the inter-particle

interaction potential is not strong enough to induce demixing but is still

much stronger than the interaction between mesogenic molecules. Strongly

anisotropic interaction between NPs, including in particular dipole-dipole

one, will lead to the formation of polar chains. It has been shown36 that

the equilibrium chain length strongly depends on the contact interaction

potential normalized by the temperature. Long chains of NPs may occur

only if the contact interaction is of the order of 10kBT
36 which is satisfied,

for example, for ferroelectric NPs.9,34 Polar chains should make a significant

contribution to the dielectric anisotropy of nematic composites.

In this chapter we summarize the results of a molecular-field theory of

nematic LCs doped with NPs. In Section 2 we consider the effect of both

isotropic and anisotropic NPs on the nematic-isotropic phase transition

temperature and discuss a softening of the N-I phase transition. In Section

3 the isotropic-nematic phase separation caused by isotropic NPs is studied

in detail and the corresponding phase diagrams are presented. Finally, in

Section 4 we describe the effect of chains of polar NPs on the dielectric

anisotropy and the birefringence of nematic composites.
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2. Effect of nano-particles on the nematic-isotropic phase

transition

2.1. Mean-filed theory of nematic composites

Consider a composite material formed by Nm highly anisotropic identical

LC molecules and Np NPs with possible deviations in physical properties

or shape, size and surface structure. To take into account this NP diversity

we assume that there are L different types of NPs in the composite and the

number of the NPs of the type l is Nl such that N1 +N2 + ...NL = Np.

Now let Vmol be the part of the total volume V occupied by the LC

molecules, while the volume Vp = V − Vmol is occupied by NPs. Then

φ = Vp/V is the volume fraction of NPs and the number density of NPs

ρp = φ/vp, where vp is the average particle volume. Assuming that the

number density of LC molecules in the pure LC is ρ0, one may express the

number density of LC molecules in the composite as ρ = ρ0(1− φ).

Following the classical Maier-Saupe theory of nematic ordering, we spec-

ify the orientation of a LC molecule by the unit vector a in the direction

of its long axis and express the microscopic pair intermolecular interaction

potential as umol(a1,a2, r), i.e., as depending on the intermolecular vector

r and the long axes of the two molecules a1 and a2.

Macroscopically, the orientational nematic order of the LC is described

by the tensor order parameterQ = S(n⊗n−1/3), which is the macroscopic

average of the microscopic molecular tensor QM = (a ⊗ a − 1/3). The

conventional scalar nematic order parameter is defined as S = 〈3/2(n ·
a)2 − 1/2〉, where 〈...〉 denotes the statistical average, and n is the nematic

director, i.e., a unit vector parallel to the nematic symmetry axis.

Generally, the orientation of the anisotropic NP can be characterized

by three orthogonal unit vectors: the “primary” axis Al, and the two

secondary orthogonal axes Bl and Cl. In the statistical theory, the ori-

entational ordering of the NPs can be described in a way similar to that

established for the orientational ordering of biaxial molecules.37

In this Section, we assume that the NP concentration is relatively low

and thus we neglect the direct interaction between NPs. In this case, the

orientational order of NPs is induced by the uniaxial LC medium and the

NPs possess tensor order parameters of the same uniaxial symmetry, i.e.,

Ql = Sl(n⊗n−1/3) and Dl = Dl(n⊗n−1/3). Here Sl = 〈3/2(n ·Al)
2−

1/2〉 is the nematic order parameter of the primary axis of l-th type NP

and Dl is the additional order parameter which describes uniaxial ordering
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of short axes of the NPs of the type l.

The order parameter Dl is usually much smaller than Sl and thus it may

be neglected. This is equivalent to the assumption that short axes of the

particles are distributed randomly in the uniaxial nematic phase and hence

the particle may be considered as effectively uniaxial. As a result, one may

introduce the uniaxial microscopic pair interaction potential ul(a,Al, r)

between an LC molecule, which orientation is specified by the long axis a,

and a uniaxial NP with the axis Al.

Then in the mean-field approximation, the free energy of the composite

LC-NP medium reads:

F =
1

2V

Nm
∑

m=1

Nm
∑

m′=1

∫

f(am)umol(am,am′ , r)f(am′)dr damdam′+

NmkBT

∫

f(a) ln f(a) da+

1

V

Nm
∑

m=1

L
∑

l=1

Nl
∑

n=1

∫

f(am)un(am,An, r)fl(An)dr dam dAn+

kBT

L
∑

l=1

Nl
∑

n=1

∫

fl(An) ln fl(An) dAn, (1)

where m′ 6= m in the first term, f(a) is the orientational distribution func-

tion of the LC molecules and where fl(A) is the orientational distribution

function of the NPs of type l.

Due to the lack of positional order, the free energy of the nematic phase

is determined by the so-called effective orientational pair potentials which

are obtained by the integration of the corresponding microscopic pair po-

tentials over the intermolecular vector or the vector between a molecule

and a NP. In the mean-field theory of uniaxial nematics, the effective in-

teraction potential is expressed, in the first approximation, as a sum of the

isotropic part and the anisotropic potential w(am · am′)2 which is a sim-

plest bilinear coupling between the molecular tensors (aml ⊗ aml − 1/3)

and (am2 ⊗ am2 − 1/3) which are composed from the components of the

molecular long axes am and am′ :

Umol(am,am′) =

∫

dr umol(am,am′ , r) = const+ w(am · am′)2, (2)

The latter term is obviously invariant under the molecular permutation

m ↔ m′ and the head-tail transformations a ↔ −a. The nematic phase is

stable in the pure LC when the constant w is negative.
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Similarly, one can express the effective interaction potential between a

NP and an LC molecule as:

Un(am,An) =

∫

dr un(am,An, r) = const+Wn(am ·An)
2. (3)

Note that this potential is also determined by a coupling between nonpolar

molecular tensors of a LC molecule and a NP. Even if NPs are polar, i.e.

there is no A ↔ −A symmetry, the lowest-order anisotropic term in the

interaction potential has exactly the same form as in Eq. (2).

In the context of various models of the dominant anisotropic LC-NP

interaction, it is possible to obtain particular expressions for the interaction

constants W . For example, according to Ref. 11, dipole-dipole induction

interaction between a spherical ferroelectric NP and the nematic LC matrix

corresponds to the following constant W

W =
∆αp2

90ε0ε2vp
, (4)

where p is the absolute value of ferroelectric NP permanent dipole, ∆α is

the dielectric anisotropy of a LC molecule and ε is the static LC permittiv-

ity. Some expressions for the constants W determined by the NPs shape

anisotropy have been obtained in Ref. 27.

Since all LC molecules are identical, the sums over m and m′ in the free

energy (1) reduce to a multiplication by Nm. Similarly, summations over

the NPs of the same type reduces to the multiplication by the numbers Nl.

Minimizing the free energy one obtains from the Euler-Lagrange equations

the following expression for the LC orientational distribution function

f(a) =
1

Z
exp

[

−UMF
mol (a)

kBT

]

, (5)

where the molecular partition function Z is also the normalization constant

Z =

∫

exp

[

−UMF
mol (a)

kBT

]

da. (6)

The orientational distribution function of the NPs of the l-th type NPs is

similarly given by

fl(A) =
1

Zl
exp

[

−UMF
l (A)

kBT

]

, (7)

where Zl is expressed as

Zl =

∫

exp

[

−UMF
l (A)

kBT

]

dA. (8)
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The mean-field potential for the LC molecules is given by:

UMF
mol (a) = ρ

∫

f(a′) Umol(a,a
′) da′+ρp

L
∑

l=1

Nl

Np

∫

fl(A) Ul(a,A) dA, (9)

and the mean field potential for the NPs of the l-th type is expressed as

UMF
l (A) = ρ

∫

f(a) Ul(a,A) da. (10)

Using the effective interaction potentials given by (2) and (3) one can

express the mean-field potential (9) as

UMF
mol (a) = ρw(QM : Q) + ρp

L
∑

l=1

Nl

Np
Wl(Q

M : Ql), (11)

while the potential (10) reads

UMF
l (A) = ρWl(Q

M
l : Q), (12)

where the irrelevant isotropic constant terms has been omitted.

Substituting the distribution functions (5) and (7) together with the

above expressions for the mean-field potentials into Eq. (1) one can express

the free energy of the nematic phase as a function of the scalar nematic

order parameters of the LC and NPs:

1

V
F (S, S1, ..., SL) = −1

3
ρ2wS2 − 2

3
ρρpS

L
∑

l=1

Nl

Np
WlSl−

ρkBT lnZ − ρpkBT
L
∑

l=1

Nl

Np
lnZl, (13)

The partition functions can be expressed in terms of the integrals over

the polar angles between the long axes of the particles and the director:

Z =

∫ π

0

sin γ dγ exp

[

− 2

3kBT

(

ρwS + ρp

L
∑

l=1

Nl

Np
WlSl

)

P2(cos γ)

]

, (14)

Zl =

∫ π

0

sin γ dγ exp

[

− 2

3kBT
ρWlSP2(cos γ)

]

, (15)

where P2 is the second Legendre polynomial.

The free energy (13) formally depends on a macroscopic number of

variables. Direct numerical minimization of the free energy is possible in
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the case of identical particles or in a more general case of a reasonable finite

number of types of particles.

Alternatively, one may find the extremum of Eq. (13) by differentiating

it with respect to S and S1,..,L. This yields the system of self-consistent

equations:

S =
1

Z

∫ π

0

dγ P2(cos γ) sin γ ×

exp

[

− 2

3kBT

(

ρwS + ρp

L
∑

l=1

Nl

Np
WlSl

)

P2(cos γ)

]

, (16)

Sl =
1

Zl

∫ π

0

dγ P2(cos γ) sin γ exp

[

− 2

3kBT
ρWlSP2(cos γ)

]

, (17)

which can also be solved numerically for a finite number of particle types.

2.2. Shift of the nematic-isotropic transition temperature

caused by nano-particles

In this subsection we first present a general analytical consideration of the

mixture of LC with nonidentical particles which is possible in the limit of

weak particle anisotropy.

According to the Maier-Saupe mean-field theory of one-component LCs

the nematic order parameter satisfies the following equation:

S =
1

Z

∫ π

0

dγ P2(cos γ) sin γ exp

[

− 2ρ0w

3kBT
SP2(cos γ)

]

, (18)

which is known to describe the first order isotropic-nematic phase transi-

tion, which occurs at the following transition temperature

T0 ≃ 0.149
ρ0|w|
kB

. (19)

If the nematic is doped by isotropic spherical NPs, the interaction con-

stants Wn vanish identically. In this case, Eq. (16) is reduced to the form

(18) with ρ instead of ρ0, i.e., in the case of spherical NPs the effective

interaction constant w is renormalized by the factor (1 − φ). Thus the

composite LC material with spherical inclusions undergoes the isotropic-

nematic phase transition at the lower temperature

TNI = (1− φ)T0. (20)

The decrease of the transition temperature by the factor (1 − φ) clearly

describes the so-called effect of dilution of LC by isotropic particles.
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For weakly anisotropic particles, the constants Wl are small compared

to w. Then in the nematic temperature range one also obtainsWlρ0 ≪ kBT

and therefore the exponent in Eq. (17) can be expanded. As a result, the

induced order parameter of NPs appears to be linearly related to the LC

order parameter:

Sl ≃ − 2

15

ρ0(1− φ)Wl

kBT
S. (21)

Substituting these small induced parameters Sl into Eq. (16) one again

obtains the self-consistent equation of the form (18), where the interaction

constant w is renormalized by the following factor

[

1− φ+ φ(1− φ)
2〈W 2〉

15|w|kBTvp

]

, (22)

and where 〈W 2〉 =
∑L

l=1 W
2
l Nl/Np is an average square of LC-NP

anisotropic interaction constant.

One can readily see that due to the particle anisotropy, the effective

nematic interaction constant increases and becomes slightly temperature

dependent. This promotes the nematic ordering of the LC matrix and,

in the first approximation, this describes the positive feedback from the

orientation ordering of anisotropic NPs.

Accordingly, in the case of weakly anisotropic NPs, the transition tem-

perature undergoes the following shift:

TNI ≃ T0

[

1− φ+ φ(1− φ)
2〈W 2〉

15|w|kBT0vp

]

, (23)

where the terms linear in concentration φ contain also a positive contri-

bution from the NP anisotropy and can therefore compensate the dilu-

tion effect of the LC matrix by NPs. An exact compensation occurs at

〈W 2〉 = 1.12w2vpρ0. The terms quadratic in φ give rise to a weakly

parabolic concentration dependence of the transition temperature TNI(φ).

The sign of the quadratic term is negative in line with the experimental

results for nematic LC polymers doped with silver NPs.21

2.3. Numerical results in the case of strong NP anisotropy

In order to clarify the effects of anisotropic NPs on the nematic-isotropic

transition in the general case one has to solve numerically the system of

equations (16) and (17). For simplicity, we assume that there is only one
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type of NPs in the composite. Then the system of simultaneous equa-

tions for the nematic order parameters can be conveniently reduced to the

nondimensional form:

S =
1

Z

∫ 1

−1

dx P2(x) exp

[

2

3τ
[(1− φ)S + φξωSp]P2(x)

]

, (24)

Sp =
1

Zp

∫ 1

−1

dx P2(x) exp

[

2

3τ
(1− φ)ωSP2(x)

]

, (25)

where the partition functions reads:

Z =

∫ 1

−1

dx exp

[

2

3τ
[(1− φ)S + φξωSp]P2(x)

]

, (26)

Zp =

∫ 1

−1

dx exp

[

2

3τ
(1− φ)ωSP2(x)

]

, (27)

and where the following dimensionless parameters have been introduced:

τ = kBT/(ρ0|w|) is the dimensionless temperature; ω = W/w describes the

relative strength of LC-NP anisotropic interaction; and ξ = vm/vp ,which

is the ratio of the LC molecular volume to the NP volume, characterizes

the relative NP size.

Eqs. (24) and (25) have been solved iteratively and the numerical results

for the orientational order parameters as functions of temperature and the

N-I transition temperature have been obtained.27

We first analyze the effect of NPs on the isotropic-nematic transition

temperature. Typical profiles of the calculated transition temperatures as

functions of the NP volume fraction are presented in Fig. 1 for ξ = 0.5, i.e.,

the NP volume is twice larger than the LC molecular volume. Note that the

transition temperatures for particles with negative and positive anisotropy

are presented on the left and on the right hand side of the chart, respectively.

One can readily see that the TNI(φ) variations are almost linear, which

is very similar to the experimental results in Ref. 21 and the analytical

Eq. (23). For smaller ω, the addition of NP results in a decrease of the

transition temperature, i.e., the effect of LC dilution prevails. For the values

ω ≃ −2 and ω ≃ 1.5 the transition temperature remains almost constant

due to the compensation of the dilution by the effect of NP anisotropy. For

stronger anisotropy, the transition occurs at temperatures higher than in

the pure LC, and the otherwise hardly noticeable parabolic shape of the

curves becomes clearer.
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Fig. 1. Isotropic-nematic transition temperature as a function of the NP volume fraction
for several negative (on the left) and positive (on the right) values of the NP anisotropy
ω. Note the reversed direction of the φ-axis on the left

Typical variations of the transition temperature as functions of the NP

anisotropy are presented in Fig. 2. It can be seen that even far beyond

the limit of the weak NP anisotropy, the curves still correspond to the

approximately parabolic dependence on W of Eq. (23). For larger NP

concentrations the effect of NPs is more pronounced. According to Fig. 1,

in the region of small ω the NPs again effectively dilute the LC. At stronger

anisotropy, the NPs make a positive effect on the nematic and increase its

temperature range. The intersections of different curves take place at the

points, which correspond to the lines ω = −2 and ω = 1.5 in Fig. 1. The

points on these lines correspond to the values of parameters for which the

effect of dilution is compensated by that of the anisotropy and as a result

the transition temperature is practically independent of φ.

In summary, both analytic and numerical results demonstrate the two

main mechanisms of the effect of randomly distributed NPs on the ne-

matic LC. Firstly, in the presence of NPs the average separation between

mesogenic molecules of the LC matrix is increased, i.e., the LC matrix is

effectively diluted. This decreases the average strength of intermolecular

interactions, reduces the nematic ordering and decreases the temperature

of the transition into the nematic phase. In contrast, partial orientation of

NPs along the LC director appears to be an aligning factor for the surround-

ing LC molecules and provides a positive feedback for the nematic ordering.
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Fig. 2. Isotropic-nematic transition temperature as function of nanoparticle anisotropy
for several values of nanoparticle concentration φ.

Therefore the nematic ordering improves and the transition temperature in-

creases. At certain values of the NP anisotropy this effect can compensate

the negative ”dilution” effect, and then the main LC thermodynamic prop-

erties remain almost constant independently of the NP concentration. In

general, the behavior of a particular composite material is determined by

the competition of ”dilution” and ”orientation” effects.

2.4. Softening of the first order N-I transition

Let us now consider the temperature profiles of the LC order parameter S

and NP order parameter Sp. As shown in the previous subsection, for small

anisotropy, the presence of NPs mainly results in a renormalization of the

transition temperature, while the nematic order parameter S does not ex-

perience any qualitative changes. In contrast, for stronger NP anisotropy,

NPs may significantly affect the transition scenario. Several examples of

such behavior are shown in Figs. 3 and 4, where the profiles are presented for

ω = 3 and ω = −3, respectively, and for several values of the concentration

φ between 0 to 0.1. For an easier comparison, we plot the order parameters

as functions of the relative temperature measured from the phase transi-

tion point. Clearly, the presence of strongly anisotropic NPs considerably

softens the first order phase transition, and at larger NP concentration and

anisotropy the profile S(T ) becomes very similar to that characteristic for
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Fig. 3. Temperature dependencies of the nematic order parameters of LC (a) and NP
(b) for ξ = 0.5, ω = 3 and φ = 0, 0.02, 0.04, 0.06, 0.08, 0.1 (from the upper to lower curves
respectively).

a second order phase transition.

Comparing the behavior of S and Sp one concludes that they tend to

follow qualitatively the proportionality given by Eq. (21). The latter can-

not be applied here directly, but the main features remain valid: larger S

corresponds to larger |Sp|, and sign reversal of ω reverses the sign of Sp.

A considerable softening of the first-order nematic-isotropic transition,

in the presence of anisotropic NPs, predicted by the theory can be con-

sidered as fingerprint of the orientation order effect of such NPs on the

LC matrix. One notes that this softening remarkably resembles the soft-

ening due to alignment of short molecular axes which has been predicted



September 3, 2015 16:35 World Scientific Review Volume - 9in x 6in Osipov˙Gorkunov page 15

Nematic liquid crystals doped with nanoparticles 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.04 -0.03 -0.02 -0.01 0.00
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

L
C

 n
e
m

a
ti

c
 o

rd
e
r 

p
a
ra

m
e
te

r 
S

 

 

b)

a)

 Relative dimensionless temperature (� - �
NI

)

N
P

 n
e
m

a
ti

c
 o

rd
e
r 

p
a
ra

m
e
te

r 
S

p

 

 

Fig. 4. The same as in Fig. 3 for the negative NP anisotropy ω = −3.

recently in the theory of biaxial nematics.38 Therefore one expects that this

may be a general feature of the nematic-isotropic phase transition in sys-

tems with additional degrees of freedom, which can be modified/ordered

by the conventional uniaxial nematic ordering. Such a softening of the

nematic-isotropic transition has not been described in Ref. 11 because the

phenomenological theory developed there accounts for the orientational or-

der of the NPs only to the lowest order.

2.5. Comparison with existing experimental data

Although there exist relatively few experimental studies of the effect of NPs

on the phase behavior of LCs, we believe that our results are in line with
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the main established facts. For example, the “dilution”-type decrease of

the transition temperature has been found in nematic LC polymers doped

with isotropic (at least on average) silver NPs (see Fig. 3 of Ref. 21), in

a typical nematic LC doped with gold NPs with the diameter of 3–5 nm

and volume fraction of 10−4 − 10−3 (see Table of Ref. 22), in LCs doped

with spherical aerosil particles23,24 and in dye doped nematics and polymer

dispersed nematic LCs (see Table 1 of Ref. 39).

An example of substantially anisotropic NPs are carbon nanotubes

which are known to promote the nematic order and increase the transi-

tion temperature.25 The increase of the N-I transition temperature by

3-4 degrees has also been observed in nematics doped with large magnetic

nanorods of the average diameter of 40 nm and the average aspect ratio of

10 (see Table 1 of Ref. 26). Also it has been shown experimentally that fer-

roelectric Sn2P2S6 or BaTiO3 nanoparticles at low concentration (< 1%)

enhance the orientational order parameter of the host liquid crystal and

increase the transition temperature by about 5 K.9,10

Very recently a detailed experimental study of the effect of the shape

anisotropy of magnetic NPs on the N-I phase transition has been under-

taken40 inspired by the theoretical results presented in Ref. 27. The LC

was doped with spherical and rod-like magnetic particles of different size

and the measurements have been made for different volume concentrations

of NPs. It has been shown that the variation of the phase transition tem-

perature with the increasing the NP concentration depends significantly on

the NP shape anisotropy. In full agreement with the theoretical conclusions

presented above, ferronematics doped with rod-like magnetic NPs are char-

acterized by a higher NI transition temperature TNI in comparison with

the host nematic or the same nematic LC doped with spherical NPs.

In Ref. 41, the effects of the cis and trans forms of 4-

OMephenylazobenzene at 1% and 7% mole fraction on the order and sta-

bility of the nematic phase of the 5CB LC were studied using the ESR spin

probe technique. One notes that in the trans form the dye has approxi-

mately the same dimension as the 5CB molecule, and does not influence

significantly the nematic ordering of the host. In contrast, the cis isomer is

plate-like, i.e. it is characterized by negative anisotropy, using the terminol-

ogy adopted here. As shown in Fig. 4 of Ref. 41, the jump of the nematic

order parameter at the N-I transition point is decreasing with the increasing

concentration of cis isomers, and the order parameter becomes more tem-

perature dependent. This behavior corresponds to the results presented in

this section which demonstrate a similar softening of the transition.
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3. Nematic-isotropic separation in liquid crystals doped

with spherical nanoparticles

3.1. Simple Molecular theory

Let us consider a nematic LC doped with small amount of spherical NPs. In

the appropriate molecular theory one has to take into account both isotropic

and anisotropic interactions between LC molecules, isotropic interactions

between LC molecules and spherical NPs, and also isotropic interactions

between NPs themselves.33 Then the system can be characterized by the

following total interaction potential averaged over all molecule/particle po-

sitions:

H =
1

2

∑

ij

[Vmm(ai · aj) + Unn + Unm + Umm], (28)

where Unn, Umm and Unm are the average isotropic interaction potential

between NPs , LC molecules and between a NP and a LC molecule, re-

spectively. Vmm(ai ·aj) is the anisotropic interaction potential between LC

molecules which depends on the unit vectors ai and aj in the direction of

the primary axis of the molecules i and j, respectively.

In the mean field approximation, the free energy of the nematic phase

can be written in the form (see, for example, Ref. 42).

1

V
FN = kBTρn(ln ρn − 1) + kBTρm(ln ρm − 1)

− 1

2
ρ2nUnn − 1

2
ρ2mUmm + ρmρnUmn

+
1

2
ρ2m

∫

Vmm(ai · aj)fm(ai)fm(aj)daidaj

+ kBT

∫

fm(a) ln fm(a)da, (29)

where fm(a) is the orientational distribution function of the mesogenic

molecules, and ρm and ρn are the number densities of the mesogenic

molecules and NPs correspondingly.

The function Vmm(ai · aj) can be expanded in Legendre polynomials

Pn(ai · aj) taking into account the first nonpolar term which is responsible

for the nematic ordering:

Vmm(ai · aj) ≈ U0 + JP2(ai · aj). (30)

Here P2(x) = 3x2/2− 1/3 is the second Legendre polynomial.
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Substituting this expansion into Eq. (29) one obtains the following

Maier-Saupe type free energy of the nematic composite:

1

V
FN = kBTρn(ln ρn − 1) + kBTρm(ln ρm − 1)

− 1

2
ρ2nUnn − 1

2
ρ2mUmm + ρmρnUmn

+
1

2
ρ2mJS2kBT

∫

fm(a) ln fm(a)da, (31)

where S is the nematic order parameter of the mesogenic molecules which

is expressed as:

S =

∫

P2(a · n)fm(a)da, (32)

where n is the nematic director. Minimizing the free energy (31) with

respect to the orientational distribution function fm(a) and substituting

the equilibrium expression for fm(a) back into Eq. (31) one obtains:

1

V
FN = kBTρn(ln ρn − 1) + kBTρm(ln ρm − 1)

− 1

2
ρ2nUnn − 1

2
ρ2mUmm + ρmρnUmn − 1

2
ρ2mJS2 − kBT lnZ, (33)

where

ZN =

∫ π

0

exp[−βρmJSP2(cos γ)] sin γdγ, (34)

and where the nematic order parameter S satisfies the following self-

consistent equation:

S =
1

ZN

∫ π

0

P2(cos γ) exp[−βρmJSP2(cos γ)] sin γdγ, (35)

The free energy of the isotropic phase is obtained by setting S = 0:

1

V
FI = kBTρn(ln ρn − 1) + kBTρm(ln ρm − 1)

− 1

2
ρ2nUnn − 1

2
ρ2mUmm + ρmρnUmn. (36)

3.2. Nematic-isotropic phase separation

One notes that the concentration of NPs in the nematic phase is generally

different from that in the coexisting isotropic phase, and may be strongly

temperature dependent. The coexistence between the nematic and the
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isotropic phases in the system under consideration is possible only if the

chemical potentials of both NPs and mesogenic molecules are the same in

the two phases. The pressure must also be the same in the two phases. How-

ever, for incompressible LCs only the equations for the chemical potentials

are relevant that is µnI = µnN and µmI = µmN where µnI and µnN are the

chemical potentials of the NPs in the isotropic and in the nematic phase,

respectively, and µmI and µmN are the corresponding chemical potentials

of the mesogenic molecules.

Using the well known general equation for the chemical potential one

obtains the following system of two simultaneous equations

1

VI

∂FI

∂ρn
=

1

VN

∂FN

∂ρn
,

1

VI

∂FI

∂ρm
=

1

VN

∂FN

∂ρm
. (37)

Substituting Eqs.(36) and (33) for the free energies of the isotropic and the

nematic phase into (72) one obtains the following equations:

ln
ρmN

ρmI
= U1(ρmN − ρmI) + U12(ρnN − ρnB) + lnZN , (38)

and

ln
ρnN
ρnI

= U2(ρnN − ρnI) + U12(ρmN − ρmI), (39)

where we have introduced the non dimensional interaction constants U1 =

Umm/(kTB), U2 = U eff
nn/(kTB), U12 = U eff

nm/(kTB) and the number densities

of the mesogenic molecules, ρmI and ρmN , and NPs, ρnI and ρnN , in the

isotropic and nematic phases correspondingly.

Neglecting a small density change at the transition, the number densities

of both NPs and mesogenic groups in the nematic and in the isotropic

phase can be expressed in terms of the volume fraction φi of NPs in the

corresponding phase i:

ρni = ρn0φi, ρmi = ρm0(1− φi), (40)

where i = N, I, ρm0 is approximately equal to the number density of the

mesogenic groups in the pure LC and ρn0 can be estimated as ρn0 ∼ 1/vp
where vp is the NP volume.

Now Eqs. (38) and Eqs. (39) can be expressed in terms of the two

variables φN and φI :

ln
1− φN

1− φI
= w1(φI − φN ) + lnZN , (41)

ln
φI

φN
= w2(φI − φN ), (42)
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where

w1 = (ρm0U1 − ρn0U12) , w2 = (ρn0U2 − ρm0U12) . (43)

One notes that Eqs. (41) contain only two constants w1, w2, and it can

readily be shown that the phase coexistence is possible only if w2 > 1. If the

isotropic attraction between NPs and mesogenic molecules is much stronger

than that between the mesogenic molecules, the inequality ρn0U12 > ρm0U1

is satisfied and hence w1 < 0.

Numerical solution of Eqs. (41,42) together with Eq. (34) and the self-

consistent Eq. (35) for the nematic order parameter is significantly simpli-

fied if the volume fraction of NPs is sufficiently small in both phases, that

is φI ≪ 1 and φN ≪ 1. In this case Eq. (41) is simplified as:

(1− w1)(φI − φN ) = lnZN , (44)

One notes also that the partition function ZN is independent of φI , and

therefore φI can be excluded from the system of simultaneous equations for

φI ≪ 1 and φN ≪ 1 which results in a single equation for φN :

Z
w2/(1−w1)
N = 1 +

lnZN

φN (1− w1)
(45)

Now φN can be found by solving Eq. (45) numerically, and φI can then be

evaluated in terms of φN as:

φI = φN +
lnZN

1− w1
(46)

Naturally, the volume fractions of NPs in the nematic and the isotropic

phases are not completely independent. Indeed, in the experiment one

normally controls the total number of NPs Nn in the volume V which yields

the average volume fraction of NPs φ. It follows from the conservation of

the total number of NPs that φV = φIVI + φNVN where V = VI + VN is

the total volume of the system. On the other hand, solutions of the Eqs.

(41) and (42) are independent of φ. From these equations one obtains the

following expressions for the volumes VN and VI :

VI = V
φ− φI

φI − φN
, VN = V

φN − φ

φI − φN
. (47)

One can readily see from Eqs. (47) that the phase coexistence is possible

only if φN < φ < φI as φN < φI . Taking into account that φN and φI are

independent of φ, one concludes that if φ is outside the interval (φN , φI), the

phase coexistence is impossible and only one phase may be stable at a given
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temperature. This condition should be used as an additional constraint

imposed on the solutions of the Eqs. (41) and (42).

Finally, coexisting nematic and isotropic phases are globally stable only

if the total free energy of the phase-separated system is lower than the

free energy of both isotropic and nematic homogeneous phases. This is the

second independent condition which should be taken into account in the

consideration of the physical meaning of the formal solutions of the Eqs.

(41) and (42) This condition can be expressed as:

F sep
NI − Fhom

V kBT
=

1

V kBT

[

VI

V
FI(φI) +

VN

V
FN (φN )− FI,N (φ)

]

< 0, (48)

where VI and VN are given by Eq. (47) and the free energy densities FI(φ)

and FN (φ) can be expressed using Eqs. (33, 36, 40):

FI(φ)/V kBT = ρn0φ lnφ+ ρm0(1− φ) ln(1− φ)

− 1

2
ρ2n0φ

2U2 −
1

2
ρ2m0(1− φ)2U1 + ρm0ρn0φ(1− φ)U12, (49)

FN (φ)/V kBT = FI(φ)/V kBT

− 1

2
ρ2m0(1− φ)2J∗S2

m − ρm0(1− φ) lnZN , (50)

where J∗ = J/kBT . Note that for the separated state in Eq. (48) the

nematic order parameter is S(φN ) in the nematic phase, which coexists

with the isotropic one, and is given by Eq. (35) with ρm = ρm0(1−φN ) and

ZN = ZN (φN ). At the same time, the order parameter of the homogeneous

nematic phase S(φ) is given by the same equation with ρm = ρm0(1 − φ)

and ZN = ZN (φ).

3.3. Phase diagrams

Let us first consider Eqs. (41) and (42) which enable one to determine the

molar fractions of NPs in coexisting phases as functions of temperature. A

typical numerical solution of these equations for moderately strong inter-

actions between NPs and mesogenic molecules is presented in Fig. 5 One

notes that there exists a bifurcation point which corresponds to a critical

temperature Tc. At higher temperatures there is no solution, that is the

phase separation is impossible, and directly below the critical temperature

the difference between molar fractions of NPs in the two phases is fairly

small.
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Fig. 5. Nanoparticle volume fractions in coexisting isotropic (upper curve) and nematic
(lower curve) phases of the composites with w1 = −5, w2 = 10

It should be noted, however, that in the general case only part of this

solution corresponds to an actual physical state of the system. As discussed

in the previous subsection, Eqs. (41) and (42) do not depend on the average

molar fraction of NPs φ which can be actually controlled in experiments. At

the same time, the value of φ must lie between the two branches in Fig. 5, as

φN < φ < φI . If φ is different from the critical value of φc at the bifurcation

point, the system separates into the nematic and the isotropic phases with

finite difference of NP molar fractions and finite volumes of both phases.

In this general case the separation occurs at some temperature Tsep which

is below the bifurcation temperature Tc, and which is an intersection of

the horizontal line φ and one of the curves representing φN (T ) or φI(T )

(see the intersection of φN (T ) and the horizontal dashed line φ = 0.04 in

Fig. 5).

In principle, even if T < Tsep one cannot finally conclude that the

system phase separates, because the separated state is globally stable only

if the total free energy of the separated system is lower than that of any

homogeneous phase at the same temperature and NP concentration (see

Eq. (48)). One notes also that if the value of φ is too small or too large

(see the dotted line φ = 0.01 in Fig. 5), there may be no intersection at all,

that is the condition φN < φ < φI is not satisfied at any temperature and,
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Fig. 6. Phase diagram of the composite calculated from the mean-field theory with
interaction constants w1 = −5 and w2 = 10.

therefore, the system never phase separates.

The solutions for φN and φI together with Eq. (48) have been used to

compose the temperature-concentration phase diagram presented in Fig.6

for the same values of the interaction constants w1 and w2 as in Fig. 5. One

notes that there is no phase separation at sufficiently low concentration of

NPs. In this domain, the N-I transition temperature decreases with the

increasing φ due to the “dilution” effect considered in Section 2. Above

a certain critical concentration, the N-T phase transition is accompanied

by the separation between the isotropic and the nematic phase, and the

two phases coexist over a significant temperature interval. In this region

the transition temperature into the phase-separated state decreases more

slowly than the N-I transition temperature at low concentrations. It is

interesting to note also, that in this case there exists another critical value

φ∗ of the NP molar fraction shown in Fig. 6. When φ > φ∗, the system

undergoes a direct transition from the isotropic into the the phase separated

state in which the isotropic and the nematic phases coexist. In contrast,

when φ < φ∗, the system first undergoes a transition into the homogeneous

nematic phase and then phase separates at some lower temperature.

The solution of Eqs. (41) and (42) and the corresponding phase diagram

for a nematic composite with very strong interaction between NPs and the

mesogenic molecules are presented in Fig. 7 and Fig. 8 correspondingly.
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Fig. 7. The same as in Fig. 5 with w1 = −10 and w2 = 30

In this case the temperature range of the coexistence between the nematic

and the isotropic phase is more narrow, and there is only a relatively small

window of NP concentration when the separation takes place at all. One

notes also, that in this case a reentrant homogeneous nematic phase may

occur within a narrow interval of NP molar fraction.

On the other hand, for weaker interactions between NPs and meso-

genic molecules (smaller absolute values of w1), the region of phase sep-

arated state expands considerably (compare Figs. 6 and 9). Decreasing

|w1| results in a proportionate decrease of the critical total concentration

φ∗. Additionally, in this case the phase separated state dominates over

the low-temperature part of the phase diagram and even at small total

NP concentrations φ the homogeneous nematic phase exists only in a finite

temperature range as illustrated by Fig. 9.

These results appear to be rather unusual and are different from what

one may expect from the behavior of nematics doped with small nonmeso-

genic dopants. In particular, the temperature range of the coexisting ne-

matic and isotropic phases may be very large. It is well known, that in

mixtures of LCs the N-I coexistence region is typically of the order of 1-2

degrees and can often be neglected. In contrast, the theory indicates that

in nematic nano-composites the coexistence region may be as broad as the

nematic phase itself. Secondly, the phase separation does not occur at suf-
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Fig. 8. The same as in Fig. 6 with w1 = −10 and w2 = 30

ficiently low concentration of NPs because the entropy of mixing dominates

the behavior of the system. Moreover, within a certain range of concen-

trations of NPs the composite may undergo a direct transition from the

isotropic phase into the phase separated state, while at other concentra-

tions of NPs the system first undergoes a transition into the homogeneous

nematic phase and then into the phase separated state at lower tempera-

ture.

This unexpected behavior of nematic nano-composites is related to the

fact that the properties of NPs differ very much from those of typical meso-

genic molecules. In particular, the isotropic interaction between NPs and

mesogenic groups (and between NPs themselves) is expected to be signifi-

cantly stronger than that between mesogenic molecules. This is mainly due

to the large effective volume of a typical spherical NP which includes also

organic chains attached to the surface of metal or semiconductor core.

Isotropic-nematic phase separation has been observed in a few

anisotropic soft matter systems43,44 but it has not been studied in detail ex-

perimentally so far. Very recently, however, a two-step decrease of both the

N-I transition temperature and the transition heat in few polymer and low

molecular weight LCs doped with quantum dots32 has been interpreted as-

suming that the system separated into the isotropic and the nematic phase

with different concentrations of quantum dots. A different type of phase

separation has recently been observed in Refs. 45,46. It has been shown
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experimentally that gold NPs with mesogenic coatings form reversible net-

works composed of nematic droplets accompanied by disclination lines and

loops as a result of a specific phase separation which results in an enrich-

ment of the NPs at the nematic-isotropic liquid interfaces.

Finally it should be noted that the theory of phase separation in LC

nano-composites is at its rudimentary stage and there is much to be done

here. Recently phase separation effects in nematics doped with large col-

loidal particles have been studied theoretically in Refs. 47–49. In particular,

very broad N-I coexistence region has been found in Refs. 47,48 using sim-

ple mean-field theory of mixtures. This theory, however, is based on a

different (and rather oversimplified) model interaction potential which is

more suitable for large colloidal particles.

4. Chain formation and dielectric anisotropy of nematic

nanocomposites

4.1. Simple theory of chain formation

Nano-particles may form dimers and even long chains in a solution if the

interparticle interaction potential is sufficiently anisotropic and strong. In

this section we assume that spherical NPs possess relatively large perma-

nent electric dipoles. In this case the minimum of the dipole-dipole inter-

action energy is achieved when the dipoles of the two adjacent NPs and
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parallel to each other and to the interparticle vector r12. If this potential

minimum is sufficiently deep, the NPs form polar chains which may signif-

icantly contribute to the dielectric anisotropy of the nematic composite.

The nematic composite with chains of NPs is characterized by the dis-

tribution of chain lengths which can be evaluated using the existing theory

of chain formation in the system of polar spheres presented, for example,

in Ref. 36. According to this theory, the number density of chains of length

l (i.e. composed of l NPs) is expressed as:

φl = vpρl = el(U0+Λ)e−U0 , (51)

where φl is the volume fraction of chains of length l, vp is the NP volume

and U0 is the contact energy determined by the dipole-dipole interaction

between NPs:

U0 = ln

(

πσ3e2λ

18vλ3

)

. (52)

Here λ = µ2/kBTσ
3 and σ is the NP diameter and the NP volume v has

been introduced for dimensional correctness.

In Eq. (51), Λ is the Lagrange multiplier (chemical potential) which is

determined from the conservation rule for NPs:

ρp =

∞
∑

l=1

lρl, (53)

where, as above, ρp is the total NP number density which is controlled

experimentally.

Substituting Eq. (51) into Eq. (53) and performing the summation one

obtains:

ρp = v−1
p

eΛ

(1− eU0+Λ)2
. (54)

Accordingly,

1− eU0+Λ =
−1 +

√
1 + 4η

2η
, (55)

where η = vpρpe
U0 . Thus the value of the chemical potential Λ is mainly

determined by the order of η.

Finally, one can readily obtain the following expression for the number

density of chains of length l:

ρl = v−1
p e−U0

(

1− −1 +
√
1 + 4η

2η

)l

. (56)
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4.2. High frequency permittivity of a nematic composite

At sufficiently high (optical) frequencies the polarization is mainly deter-

mined by induced dipoles created by the electric field. Orientational fluctu-

ations of permanent dipoles make a minor contribution because the charac-

teristic times of such fluctuations are much larger than the inverse optical

frequency.50 Relatively simple explicit expressions for the dielectric con-

stant can be obtained in the molecular field approximation in the form

of generalized Clausius-Mossotti relation51 assuming that the composite

nematic phase contains mesogenic molecules, NPs and chains of NPs of

various lengths l:

(ǫ̂− 1)(ǫ̂+ 2)−1 =
4π

3

(

〈β̂m〉ρm + 〈β̂np〉ρnp +
∞
∑

l=2

〈β̂l〉ρl
)

, (57)

where 〈β̂m〉, 〈β̂np〉 and 〈β̂l〉 are the average polarizabilities of mesogenic

molecules, single NPs and chains of NPs of length l, respectively, and

ρm, ρnp and ρl are the corresponding number densities.

Introducing the long axes of the molecules am and the unit vectors of

the chain directions al, and using the corresponding scalar nematic order

parameters Sα one obtains the following expressions for the averaged po-

larizability tensors:

〈β̂α〉 = β̄αÎ + Sα∆βαn⊗ n, (58)

where the isotropic polarizabilities are expressed as β̄α = βα⊥ + ∆βα(1 −
Sα)/3.

Assuming that moderate dielectric anisotropies ∆βα give rise to a rela-

tively small anisotropy of the composite permittivity ∆ε, Eq. (57) can be

expanded and simplified as follows:

∆ε =
4π

9
(ε⊥ + 2)2

(

∆βmρmSm +

∞
∑

l=2

〈∆βl〉ρl
)

, (59)

while the isotropic part of the composite permittivity satisfies the scalar

Clausius-Mossotti relation

ε⊥ − 1

ε⊥ + 2
=

4π

3

(

βm⊥ρm + βnpρnp +

∞
∑

l=2

βl⊥ρl

)

, (60)

which includes also the contribution from the isotropic non-aggregated NPs.

One notes that Eqs. (59) and (60) are not expected to be quantitatively

precise but they can be used to estimate the dependence of the refractive
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indices of the nematic composite on the concentration of NPs, their aggre-

gation and ordering provided that the effective polarizability of a NP in the

nematic solvent is known.

4.3. Polarizability of a single chain

Generally, the NP contribution to the composite permittivity (59) and (60)

is twofold: both aggregated and non-aggregated NPs affect ε⊥ while only

those NPs which are aggregated into chains contribute to ∆ε.

To sum over chains of different lengths in Eq. (59) one needs to know the

quantity 〈∆βl〉 which can be evaluated as the average dielectric anisotropy

of a chain of l spheres (with the permittivity εnp) immersed into a medium

with the permittivity ε⊥. Although the exact solution of such a problems

can be obtained only numerically, one can obtain useful analytical esti-

mates52 using a few realistic approximations. Thus taking into account the

strongest dipole interactions between NPs and restricting the calculations

to the nearest-neighbor contributions (already the next-nearest neighbor

ones are at least eight times smaller) and introducing the single NP dielec-

tric polarizability β1 = 1/8 σ3(εnp − ε⊥)/(εnp + 2ε⊥) one can express the

dipole moment of the k-th NP in the chain of the total length l as

pk = β1E+ β1T̂k,k−1pk−1 + β1T̂k,k+1pk+1, (61)

where

T̂k,k±1 = (3uk,k±1 ⊗ uk,k±1 − 1) σ−3, (62)

is the non-singular part of the dipole-dipole propagator, uk,k±1 are the unit

vectors between the centers of the adjacent NPs and the following natural

condition is satisfied T̂1,0 = T̂l,l+1 = 0 at the chain ends.

As shown below, the effect of chain formation on high-frequency permit-

tivity is rather moderate, and one can solve the system (61) by iterations.

While in the zeroth order (neglecting the NP interactions) one obtains

merely pk = β1E and the chain remains dielectrically isotropic, the next

iteration yields:

pk = β1

(

1 + β1T̂k,k−1 + β1T̂k,k+1

)

E. (63)

Since the average chain direction is controlled by the overall composite

nematic director n, the averaged nearest-neighbor propagator reads

〈T̂k,k±1〉 = S(3n⊗ n− 1) σ−3, (64)
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where we have again assumed that all the scalar nematic order parameters

in the composite are equal.

Evaluating the average chain dipole moment as 〈Pl〉 =
∑l

k=1〈pk〉 one

obtains the following expression for the overall average chain polarizability

tensor

〈β̂l〉 = lβ11+
2

σ3
(l − 1)β2

1S(3n⊗ n− 1). (65)

The anisotropy of this polarizability is given by:

〈∆βl〉 =
6

σ3
(l − 1)β2

1S. (66)

4.4. Contribution of polar chains to the dielectric anisotropy

of the nematic composite

Accordingly, the chain contribution to the composite permittivity

anisotropy (59) is given by

∆εch =
π

24

[

(ε⊥ + 2)(εnp − ε⊥)

εnp + 2ε⊥

]2

Sσ3
∞
∑

l=2

(l − 1)ρl. (67)

Substituting the number densities (56) an using the summation rule

∞
∑

l=2

(l − 1)xl =
x2

(1− x)2
(68)

one can express the dielectric anisotropy in terms of the dimensionless NP

density ρ∗ = ρσ3 and the parameter λ:

∆εch =
π

24

[

(ε⊥ + 2)(εnp − ε⊥)

εnp + 2ε⊥

]2

Sρ∗δη. (69)

where the function

δη = 2 +
1

η
− 4η

(
√
1 + 4η − 1)2

(70)

effectively describes the dependence on the NP chain formation as η

is also expressed in terms of the non-dimensional parameters as η =

πρ∗e2λ/(18λ3).

Representative profiles of the factor δη as functions of the NP coupling

strength, which controls the chain formation, are presented in Fig. 10. One

notes that for weaker coupling this factor is very small, as most of the NPs

remain single here and do not contribute to the anisotropy. For stronger

coupling, the average chain length increases which leads to a pronounced
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Fig. 10. The effect of chain formation on the high-frequency dielectric anisotropy of the
composite: dependences of the factor δα given by Eq. (70) on the NP coupling strength
for NP densities ρ∗ = 0.1, 0.01 and 0.001 as indicated on the lines.

increase of the anisotropy. The saturation at δη ≈ 1 for strongly interacting

NPs means that in this limit practically all NPs belong to long chains

and contribute equally to the anisotropy. Evidently, for higher total NP

concentrations this saturation occurs at smaller λ.

The variation of the high frequency dielectric anisotropy as a function

of the NP concentration is illustrated by Fig. 11 for different values of

the dipole-dipole interaction strength. One notes that this variation is

approximately linear when the NP coupling is strong enough, i.e., when all

the NPs are aggregated in long chains.

Generally, the high-frequency anisotropy is weak as the factor δη < 1

is multiplied in Eq. (69) by a number of other small factors. Thus for the

dielectric NPs with εnp of the same sign and order of magnitude as ε⊥ the

factors in the square brackets are of the order of unity, while S < 1 and

ρ∗ ≪ 1. On the other hand, the variation of δη by three orders of magnitude

for low ρ∗ = 0.001 in Fig. 10 suggests that this anisotropy can be employed

as a sensitive tool for quantitative assessment of the NP chain formation in

nematic composites.

4.5. Low frequency dielectric constant of a strongly polar

nematic composite

Low frequency dielectric constant of the nematic phase composed of

strongly polar molecules is mainly determined by the orientational fluc-



September 3, 2015 16:35 World Scientific Review Volume - 9in x 6in Osipov˙Gorkunov page 32

32 M.A. Osipov and M.V. Gorkunov

0.00 0.02 0.04 0.06 0.08 0.10

0.02

0.04

0.06

0.08

0.10

4

6

2

8

� = 10

 �
∗
�
�

 NP dimensionles concentration, �
∗

 

 

Fig. 11. The effect of chain formation on the high-frequency dielectric anisotropy of the
composite: dependences of the factor ρ∗δη in Eq. (69) on the NP concentration for the
coupling strength λ varying from 2 to 10 as indicated on the lines.

tuations of permanent molecular dipoles while the molecular polarizability

gives a much smaller contribution. Indeed, the static dielectric constant of

a strongly polar nematic can be of the order of 100 while a typical con-

tribution from the molecular polarizability is of the order of 3.50 In this

case, the macroscopic polarization can be expressed as a sum of averaged

molecular dipoles of all components α of the mixture in the unit volume:

P =
∑

α

ρα〈µα〉, (71)

where µα is the permanent molecule/particle dipole of the component α.

In the static case, the average dipole can be expressed as:

〈µα〉 =
∫

µαfα(θ)dθ, (72)

where fα(θ) is the one-particle distribution function which can be written

in the following form in the mean-field approximation

fα(θ) = Z−1 exp [−(UMF,α(θ) + (µα ·E))/(kBT )] . (73)

Here UMF,α(θ) is the mean-field potential for the component α, θ specifies

the orientation of the particle/molecule and E is the external electric field.

The mean-field potential can be written in the form:

UMF,α(θ1) =
∑

β

∫

Vα,β(θ1, θ2)fβ(θ2)dθ2, (74)
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where Vα,β(θ1, θ2) is the pair interaction potential between the components

α and β.

Let us now assume that both mesogenic molecules and NPs are uniaxial

and their permanent dipoles are parallel to the corresponding long axes.

This is also valid for rigid chains of spherical dipolar NPs. In this case, the

pair interaction potential V depends on the unit vectors a1 and a2 in the

direction of the long axes of the molecules “1” and “2”, respectively, and

on the intermolecular vector r12, i.e. V (1, 2) = V (a1, r12,a2). The pair

potential can now be written as a sum of the nonpolar and the polar parts,

V (1, 2) = Vnp(1, 2)+Vdd(1, 2), where the nonpolar potential Vnp(1, 2) is an

even function of a1 and a2 and where the polar potential Vdd(1, 2) is the

electrostatic dipole-dipole interaction potential which can be expressed as:

Vdd(1, 2) = µ1 · F̂ (r12) · µ2, (75)

where the dipole-dipole propagator can be written in the form:

F̂ (r12) =
4π

3
δ(r12) + Θ(r12 −D)(Î − 3u⊗ u)r−3

12 , (76)

where u = r12/r12 and where Θ(r12 −D) is a step function which is equal

to unity if r12 > D and vanishes otherwise. One notes that the first term

in Eq. (76) takes into account a singularity of the dipole-dipole potential

at the origin (see a detailed discussion of the averaging of the dipole-dipole

potential in Refs. 36,53).

Substituting Eq. (76) into Eqs. (75) and (74) and taking into account

that the second term in Eq. (76) vanishes after integration over all u, one

obtains the final expression for the mean-field potential:

UMF,α(θ) = U (0)
α (θ) +

4π

3
(µα ·P), (77)

Finally this mean-field potential can be substituted into the orientational

distribution function (73) and expanding it in powers of the small electric

field E and filed-induced polarization P one obtains:

fα(θ) ≈ f (0)
α

(

1 +
4π

3

µα ·P
kBT

− µα ·E
kBT

)

, (78)

where the nonpolar distribution function f
(0)
α is determined by the

nonpolar part U
(0)
α (θ) of the mean field potential, that is f0,α =

Z−1
0 exp

[

−U
(0)
α (θ)/(kBT )

]

.
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Substituting Eq. (78) into Eqs. (72) and (71) one obtains the following

linear equation for the macroscopic polarization P:

Pi =
∑

α

ρα
kBT

〈µα,iµα,j〉0
(

4π

3
Pj + Ej

)

, (79)

where the averaging 〈µα,iµα,j〉0 is performed with the nonpolar orienta-

tional distribution function f
(0)
α . As a result, one obtains the following

expression for the dielectric polarizability tensor χ̂:

χ̂ =
χ̂0

1− 4π
3 χ̂0

(80)

where

χ̂0 =
∑

α

ρα
kBT

〈µα ⊗ µα〉0. (81)

Taking into account that the dipole µα is parallel to the long axis a of the

corresponding molecule one obtains:

χ̂0 =
∑

α

ραµ
2
α

kBT
〈a⊗ a〉0 =

∑

α

ραµ
2
α

kBT
[Sα(n⊗ n− 1/3) + 1/3] . (82)

Here Sα is the nematic order parameter of the compound α in the mixture.

Let us consider the nematic composite in which the permanent dipoles of

NPs are sufficiently large and larger than those of the mesogenic molecules.

Then the main contribution to the low frequency dielectric constant of the

nano-composite stems from the NPs and their chains and can be written

using Eq. (81) as:

ε̂ ≈ 1 + 4πχ̂0 = 1 + 4π

∞
∑

l=1

ρlµ
2
l

kBT
[Sl(n⊗ n− 1/3) + 1/3] , (83)

where µl is the total dipole of the chain of length l, ρl is the number density

of chains of length l and Sl is the corresponding nematic order parameter.

One may assume that for short rigid chains of polar NPs the total dipole

µl = lµ where µ is the permanent dipole of a single NP. This assumption is

obviously not valid for long flexible chains. However, the concentration of

such chains is exponentially small and we will see below that for realistic

values of the NP dipole only short chains (l = 1−4) make a significant con-

tribution to the dielectric constant of the composite. In this approximation

Eq. (83) yields the dielectric susceptibility anisotropy:

∆χ =
µ2

kBT

∑

l=1

l2ρlSl. (84)
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Fig. 12. Anisotropy of the low-frequency composite dielectric susceptibility as a function
of NP coupling strength for NP densities ρ∗ = 0.001 (a) and ρ∗ = 0.01 (b). Solid lines
1−6 depict results of partial summation in Eq. (84) neglecting chains with l higher than
1− 6 correspondingly. Solid line 7 represents the dependence (86), and the dashed line
shows the anisotropy in the absence of chain formation.

By setting Sl = S and substituting the number densities (56) one can

perform the summation over chains of all lengths in Eq. (84). Indeed, using

the summation rule
∞
∑

l=1

l2xl =
x(1 + x)

(1− x)3
(85)

the low-frequency dielectric anisotropy can be expressed explicitly in terms

ρ∗ and λ:

∆χ = 4ρ∗λS
4η2 + 5η + 1− (3η + 1)

√
1 + 4η

(

−1 +
√
1 + 4η

)3 . (86)

In Fig. 12 the dielectric anisotropy given by Eq. (86) is presented for dif-

ferent NP molar fractions as a function of the parameter λ which describes

the strength of the dipole-dipole interaction between NPs. For comparison
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Fig. 13. Anisotropy of the low-frequency composite dielectric susceptibility as a function
of the NP concentration for the NP interaction strength λ varying from 2 to 10 as
indicated on the lines.

we also present the corresponding variation ∆χ̃ = λSρ∗ of the dielectric

anisotropy of the composite without any chains, as well as the results of

the partial summation in Eq. (84) which show the relative scale of contribu-

tions from chains of different lengths. One can see that the chain formation

can modify the dielectric properties by orders of magnitude when the NP

interaction (determined by the permanent dipole) is sufficiently strong. At

the same time, for weak interaction, the effect of chains is practically negli-

gible and the NPs respond to the electric field independently. For moderate

interactions, there exists a noticeable area of λ, where the formation of short

chains (dimers and trimers) contributes to ∆χ considerably, while the effect

of longer chains is practically absent.

One can readily see in Fig. 12 that the contributions from monomers

and dimers (similar to that from monomers and l-mers for l = 3, 4, 5) first

increases with the increasing dipolar strength λ, then reaches a maximum

and finally begins to decrease. The decreasing stage corresponds to the

range of λ which correspond to the formation of longer chains which make

a predominant contribution to the dielectric anisotropy. In this range the

contribution from dimers, trimers etc. decreases due to a decrease of the

corresponding number densities. The increasing stage corresponds to the

range of smaller λ where the corresponding short chains make a predomi-

nant contribution.

Finally, the variation of the dielectric anisotropy as a function of the NP
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concentration for different values of the dipole-dipole interaction strength

is presented in Fig. 13. Evidently, the increase of the NP concentration by

an order of magnitude results in the increase of the dielectric anisotropy

by several orders of magnitude depending on the value of the parameter λ.

Thus one can readily see (compare also with Figs. 12a and 12b) that the

experimentally observed increase of the dielectric constant9,34 at very low

NP number density ρ = 10−2−10−3 can be explained by the effect of chain

formation only if the dipole-dipole interaction strength is sufficiently high

which is the case for ferroelectric NPs with large spontaneous polarization.

One notes that at present there is no direct experimental evidence of the

existence of chains of NPs in nematic composites although a number of ex-

perimental data cannot be explained without assuming that such chains are

actually formed. Recently, however, it has been shown experimentally that

in an isotropic fluid doped with an extremely low concentration of magnetic

dipolar spherical NPs some birefringence can be induced by the external

magnetic field.54 In such a fluid, the macroscopic magnetic anisotropy can

only be determined by the orientational ordering of dimers of magnetic NPs

induced by the external field, and theoretical estimates of dimer concentra-

tion can be used to explain the experimentally observed dependence of the

birefringence on the external magnetic field.54

5. Conclusions

Molecular theory of nematic nano-composites is at its early stage but, on

the other hand, there is a number of interesting theoretical results obtained

recently in this area and presented in this review. This includes, in par-

ticular, stabilization of the nematic order in the presence of anisotropic

NPs, softening of the nematic-isotropic phase transition and peculiar phase

diagrams which contain isotropic and nematic phases with different concen-

tration of NPs coexisting over a very broad temperature range. It seems

that there is sufficient experimental and theoretical evidence that strongly

polar NPs should form at least dimers (but possibly also longer chains) in

a nematic host. On the other hand, it is difficult to evaluate the anisotropy

of the particle interaction potential and thus the results remain mainly

qualitative. In general, there is a significant shortage of systematic exper-

imental studies of the physical properties of LC nano-composites despite

the growing interest attracted by these systems. Further development of

the molecular theory would strongly benefit from the detailed experimen-

tal studies of the shift of the N-I transition temperature as a function of
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NP concentration, on the measurements of orientational order parameter

of anisotropic NPs and, in particular, on the experimental studies of phase

separation effects for different molar fractions of NPs. Finally, some exper-

imental methods should be found to study directly the chain formation in

strongly polar nematic nano-composites.

Acknowledgments

The authors are grateful to J. Goodby, R. Richardson, N. Vaupotich, Yu.

Reznikov, T.J. Sluckin, N. Tomasovicova, R.V. Talroze, A.A. Ezhov, A.S.

Merekalov and Ya.V. Kudryavtsev for interesting discussions.

References

1. H. Qi, B. Kinkead, and T. Hegmann, Effects of functionalized metal and
semiconductor nanoparticles in nematic liquid crystal phases, Proc. SPIE.
6911, 691106 (2008).

2. H. Qi and T. Hegmann, Formation of periodic stripe patterns in nematic liquid
crystals doped with functionalized gold nanoparticles, J. Mater. Chem. 16,
4197–4205 (2006).

3. Y. Shiraishi, N. Toshima, H. Maeds, K.and Yoshikawa, J. Xu, and
S. Kobayashi, Frequency modulation response of a liquid-crystal electro-optic
device doped with nanoparticles, Appl. Phys. Lett. 81(15), 2845–2847 (2002).

4. S. Kobayashi and N. Toshima, Nanoparticles and lcds: It’s a surprising world,
Information Display. 23, 26 (2007).

5. H. Yoshida, K. Kawamoto, H. Kubo, A. Tsuda, T.and Fujii, S. Kuwabata, and
M. Ozaki, Nanoparticle-dispersed liquid crystals fabricated by sputter doping,
Adv. Mater. 22, 622–626 (2010).

6. S. Kaur, S. P. Singh, A. M. Biradar, A. Choudhary, and K. Sreeniva, Enhanced
electro-optical properties in gold nanoparticles doped ferroelectric liquid crys-
tals, Appl. Phys. Lett. 91, 023120 (2007).

7. A. Kumar, J. Prakash, A. M. Mehta, D. S.and Biradar, and W. Haase,
Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid
crystals, Appl. Phys. Lett. 95, 023117 (2009).

8. O. Buchnev, A. Dyadyusha, M. Kaczmarek, V. Reshetnyak, and Y. Reznikov,
Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid
crystals, J. Opt. Soc. Am. B. 24(7), 1512–1516 (2007).

9. Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko,
and J. West, Ferroelectric nematic suspension, Appl. Phys. Lett. 82(12), 1917–
1919 (2003).

10. F. Li, C. Buchnev, O.and Cheon, A. Glushchenko, V. Reshetnyak,
Y. Reznikov, T. Sluckin, and J. West, Orientational coupling amplification
in ferroelectric nematic colloids, Physical Review Letters. 97, 147801 (2006).



September 3, 2015 16:35 World Scientific Review Volume - 9in x 6in Osipov˙Gorkunov page 39

Nematic liquid crystals doped with nanoparticles 39

11. L. Lopatina and J. Selinger, Theory of ferroelectric nanoparticles in nematic
liquid crystals, Physical Review Letters. 102, 197802 (2009).

12. H. Yoshida, Y. Tanaka, H. T. T. Kawamoto, K.and Kubo, A. Fujii, S. Kuwa-
bata, H. Kikuchi, and M. Ozaki, Nanoparticle-stabilized cholesteric blue
phases, Applied Physics Express. 2, 121501 (2009).

13. S. Wiersma, The physics and applications of random lasers, Nature Physics.
4, 359–367 (2008).

14. G. A. Shandryuk, E. V. Matukhina, A. Vasil’ev, R. B.and Rebrov, A. Bon-
darenko, G.N.and Merekalov, A. Gas’kov, and R. Talroze, Effect of h-bonded
liquid crystal polymers on cdse quantum dot alignment within nanocomposite,
Macromolecules. 41, 2178–2185 (2008).

15. G. A. Tal’roze, R.V.and Shandryuk, A. S. Merekalov, A. M. Shatalova, and
O. A. Otmakhova, Alignment of nanoparticles in polymer matrices, Polymer

Science Ser. A. 51(12), 1194–1203 (2009).
16. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applica-

tions. Springer (2009).
17. M. Gorkunov and M. Osipov, Tunability of wire-grid metamaterial immersed

into nematic liquid crystal, Journa of Applied Physics. 103, 036101 (2008).
18. R. Pratibha, K. Park, I. Smalykh, and W. Park, Tunable optical metama-

terial based on liquid crystal-gold nanosphere composite, Optics Express. 17
(22), 19459–19469 (2009).

19. A. Kossyrev, P. A.and Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M.
Alsing, and J. M. Xu, Electric field tuning of plasmonic response of nanodot
array in liquid crystal matrix, Nano Letters. 5(10), 1978–1981 (2005).

20. C. Y. Chu, K. C.and Chao, Y. F. Chen, Y. C. Wu, and C. C. Chen, Electri-
cally controlled surface plasmon resonance frequency of gold nanorods, Appl.

Phys. Lett. 89, 103107 (2006).
21. E. B. Barmatov, D. A. Pebalk, and M. V. Barmatova, Influence of silver

nanoparticles on the order parameter of liquid crystalline polymers, Liq. Cryst.
33(9), 1059–1063 (2006).

22. P. Kopcansky, N. Tomasovicova, M. Koneracka, M. Timko, Z. Mitroova,
V. Zavisova, N. Eber, K. Fodor-Csorba, T. Toth-Katona, A. Vajda, E. Jadzyn,
J.and Beaugnon, and X. Chaudd, Structural phase transition in liquid crys-
tal doped with gold nanoparticles, Acta Phys. Polonica A. 118(5), 988–989
(2010).

23. G. Sinha, C. Glorieux, and J. Thoen, Broadband dielectric spectroscopy
study of molecular dynamics in the glass-forming liquid crystal isopentyl-
cyanobiphenyl dispersed with aerosils, Phys. Rev. E. 69, 031707 (2004).

24. T. Bellini, M. Buscaglia, C. Chiccoli, F. Mantegazza, P. Pasini, and C. Zan-
noni, Nematics with quenched disorder: What is left when long range order is
disrupted?, Phys. Rev. Lett. 85, 1008–1011 (2000).

25. H. Duran, B. Gazdecki, A. Yamashita, and T. Kyu, Effect of carbon nan-
otubes on phase transitions of nematic liquid crystals, Liq. Cryst. 32(7),
815–821 (2005).

26. P. Kopcansky, N. Tomasovicova, M. Koneracka, M. Timko, V. Zavisova,
A. Dzarova, J. Jadzyn, E. Beaugnon, and X. Chaud, Phase Transitions in



September 3, 2015 16:35 World Scientific Review Volume - 9in x 6in Osipov˙Gorkunov page 40

40 M.A. Osipov and M.V. Gorkunov

Liquid Crystal Doped with Magnetic Particles of Different Shapes, Int. J.

Thermophys. 32(4), 807–817 (2011).
27. M. V. Gorkunov and M. A. Osipov, Mean-field theory of a nematic liq-

uid crystal doped with anisotropic nanoparticles, Soft Matt. 7(9), 4348–4356
(2011).

28. L. M. Lopatina and J. V. Selinger, Maier-saupe-type theory of ferroelectric
nanoparticles in nematic liquid crystals, Phys. Rev. E. 84, 041703 (2011).

29. Y. L. Raikher, V. I. Stepanov, and A. N. Zakhlevnykh, Mean-field description
of the order-disorder phase transition in ferronematics, Soft Matter. 9, 177–184
(2013).

30. G. Gray, Molecular structure and the properties of liquid crystals. New York:
Academic (1962).

31. H. Peterson and D. Martire, Thermodynamics of solutions with liquid crystal
solvents. viii. solute induced nematicisotropic transitions, Mol. Cryst. Liq.

Cryst. 25, 89–103 (1974).
32. M. V. Gorkunov, G. A. Shandryuk, A. M. Shatalova, I. Y. Kutergina, A. S.

Merekalov, Y. V. Kudryavtsev, R. V. Talroze, and M. A. Osipov, Phase separa-
tion effects and the nematic-isotropic transition in polymer and low molecular
weight liquid crystals doped with nanoparticles, Soft Matt. 9(13), 3578–3588
(2013).

33. M. A. Osipov and M. V. Gorkunov, Molecular Theory of Phase Separa-
tion in Nematic Liquid Crystals Doped with Spherical Nanoparticles, Chen-
PhysChem. 15(7, SI), 1496–1501 (2014).

34. E. Ouskova, O. Buchnev, V. Reshetnyak, Y. Reznikov, and H. Kresse, Dielec-
tric relaxation spectroscopy of a nematic liquid crystal doped with ferroelectric
Sn2P2S6 nanoparticles, Liq. Cryst. 30(10), 1235–1239 (2003).

35. R. Basu and G. S. Iannacchione, Evidence for directed self-assembly of quan-
tum dots in a nematic liquid crystal, Phys. Rev. E. 80, 010701 (2009).

36. M. A. Osipov, P. I. C. Teixeira, and M. M. Telo da Gama, Structure of
strongly dipolar fluids at low densities, Phys. Rev. E. 54, 2597–2609 (1996).

37. J. P. Straley, Ordered phases of a liquid of biaxial particles, Phys. Rev. A.
10, 1881–1887 (1974).

38. M. V. Gorkunov, M. A. Osipov, A. Kocot, and J. K. Vij, Molecular model
of biaxial ordering in nematic liquid crystals composed of flat molecules with
four mesogenic groups, Phys. Rev. E. 81, 061702 (2010).

39. K. K. Raina, P. Kumar, and P. Malik, Morphological control and polarization
switching in polymer dispersed liquid crystal materials and devices, Bull. Mat.

Sc. 29(6), 599–603 (2006).
40. V. Gdovinova, N. Tomasovicova, N. Eber, T. Toth-Katona, V. Zavisova,

M. Timko, and P. Kopcansky, Influence of the anisometry of magnetic parti-
cles on the isotropic-nematic phase transition, Liq. Cryst. 41(12), 1773–1777
(2014).

41. I. Vecchi, A. Arcioni, C. Bacchiocchi, G. Tiberio, C. Zannoni, and P. Zani-
rato, A non-standard temperature dependence of the order parameter of the
5cb liquid crystal doped with an azo-derivative, Mol. Cryst. Liq. Cryst. 465

(1), 271–281 (2007).



September 3, 2015 16:35 World Scientific Review Volume - 9in x 6in Osipov˙Gorkunov page 41

Nematic liquid crystals doped with nanoparticles 41

42. M. A. Osipov, Molecular Theories of Liquid Crystals, In eds. D. Demus,
J. Goodby, G. W. Gray, H.-W. Spies, and V. Vill, Handbook of Liquid Crystals,
vol. 1. Wiley-VCH, Weinheim (1998).

43. H. Qi and T. Hegmann, Formation of periodic stripe patterns in nematic
liquid crystals doped with functionalized gold nanoparticles, J. Mater. Chem.

16, 4197–4205 (2006).
44. J. Yamamoto and H. Tanaka, Transparent nematic phase in a liquid-crystal-

based microemulsion, Nature. 409(6818), 321–325 (2001).
45. J. Milette, S. J. Cowling, V. Toader, C. Lavigne, I. M. Saez, R. B. Lennox,

J. W. Goodby, and L. Reven, Reversible long range network formation in gold
nanoparticle-nematic liquid crystal composites, Soft Matter. 8(1), 173–179
(2012).

46. J. Milette, S. Relaix, C. Lavigne, V. Toader, S. J. Cowling, I. M. Saez, R. B.
Lennox, J. W. Goodby, and L. Reven, Reversible long-range patterning of
gold nanoparticles by smectic liquid crystals, Soft Matter. 8(24), 6593–6598
(2012).

47. A. Matsuyama and R. Hirashima, Phase separations in liquid crystal-colloid
mixtures, The Journal of chemical physics. 128(4), 044907 (2008).

48. A. Matsuyama, Phase separations in mixtures of a liquid crystal and a
nanocolloidal particle., The Journal of chemical physics. 131(20), 204904
(2009).

49. V. Popa-Nita, P. van der Schoot, and S. Kralj, Influence of a random field on
particle fractionation and solidification in liquid-crystal colloid mixtures, The
European Physical Journal E. 21(3), 189–197 (2006).

50. W. De Jeu and P. Bordewijk, Physical studies of nematic azoxybenzenes. ii.
refractive indices and the internal field, J. Chem. Phys. 68(1), 109–115 (1978).

51. M. A. Osipov and M. V. Gorkunov, Effect of nanoparticle chain formation on
dielectric anisotropy of nematic composites, Phys. Rev. E. p. in press (2015).

52. M. Quinten, Optical Properties of Nanoparticle Systems, Mie and Beyond.
Wiley-VCH (2011).

53. M. A. Osipov and G. Pajak, Molecular theory of proper ferroelectricity in
bent-core liquid crystals, Eur. Phys. J. E. 37(9), 1–7 (2014).
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