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Abstract  

A Nonlinear Predictive Generalized Minimum Variance control algorithm is introduced for the control of 

nonlinear discrete-time state-dependent multivariable systems. The process model includes two different types of 

subsystems to provide a variety of means of modelling the system and inferential control of certain outputs is 

available.  A state-dependent output model is driven from an unstructured nonlinear input subsystem which can 

include explicit transport-delays.  A multi-step predictive control cost-function is to be minimised involving 

weighted error, and either absolute or incremental control signal costing terms.  Different patterns of a reduced 

number of future controls can be used to limit the computational demands.    
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1. Introduction                                                          

The objective is to design an industrial controller for nonlinear and state-dependent, or linear parameter varying 

systems, which has some of the advantages of the popular Generalised Predictive Control (GPC) algorithms.                        

The control strategy builds upon previous results on Nonlinear Generalized Minimum Variance (NGMV) control 

[1].  The assumption was made that the plant model could be decomposed into a set of delay terms, a very general 

nonlinear subsystem that had to be stable and a linear subsystem.  The plant description used here will be assumed 



to be similar, however the output subsystem is assumed to be represented in state-dependent, possibly unstable, 

form.  

 

The multi-step predictive control cost-function to be minimised involves both weighted error and control costing 

terms, which can be used with different error and control horizons. Two alternative types of control signal input 

to the plant model are considered.  The first is the traditional control signal input and it is this signal which is also 

penalized in the predictive control criterion.  However, as is well know it is sometimes desirable to augment the 

plant model with an integrator to provide a simple way of introducing integral action.  In the augmented system 

the new system input is the change of control action or increment, and in this case this is the signal which should 

be penalized in the criterion.  The results will apply to both cases and a parameter change between ȕ = 0 and ȕ = 

1 will provide the necessary switch.  The cost includes dynamic weightings on both error and control signals.  

 

There is a rich history of research on nonlinear predictive control ([2] to [7]), but the development proposed is 

somewhat different, since it is closer in spirit to that of a model based fixed-structure controller for a time-varying 

system.   Part of the plant model can be represented by a very general nonlinear operator and the plant can also 

include a state-dependent (or linear parameter varying) output sub-system model, rather than a LTI model, as in 

previous work.   

 

For equivalent linear systems, stability is ensured when the combination of a control weighting function and an 

error weighted plant model is strictly minimum phase.  For nonlinear systems it is shown that a related operator 

equation is required to have a stable inverse.  The dynamic cost-function weightings are chosen to satisfy 

performance and stability/robustness requirements and a simple method is proposed for obtaining initial values for 

the weightings.   

2. Non-linear Operator and State-Dependent System  

The plant model can be nonlinear, dynamic and may have a very general structure.  The output subsystem and 

disturbance model is represented by a so-called state-dependent sub-system in Fig. 1.    The plant involves two 

nonlinear subsystems and the first is of a very general nonlinear operator form and written as follows:                                         

                                                                         ( )( ) ( )( )11

k

k
u t z u t

−=                                                            

The second subsystem is a state-dependent non-linear form, which is similar to a time-varying linear system.  It 

is assumed to be point-wise stabilizable and detectable, and is represented by the operator 
0

  written as follows:        

                                                                       ( )( ) ( )( )0 0 00
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                                Fig. 1:   Feedback Control with Inferred or Controlled Outputs  

 

2.1 Signal Definitions 

The output of the system to be controlled y(t) may be different to that measured, as shown in Fig. 1, and this output 

includes deterministic d(t) and stochastic ( )dy t components of the disturbances.  The measured output ( )my t  also 

includes deterministic ( )md t  and stochastic ( )dmy t  components of the disturbances.  The stochastic component is 

modelled by a disturbance model, driven by zero mean white noise
0{ ( )}tζ .  The measurement noise { ( )}mv t is 

assumed to be zero-mean white noise with covariance matrix 0T

f fR R= ≥ .   There is no loss of generality in 

assuming that { }0 ( )tζ  has an identity covariance matrix.  The controlled output must follow a reference ( )r t , 

which is assumed to be known.    

2.2  State-Dependent Sub-System Models     

The second or output subsystem is in a state-dependent/LPV form, which includes the plant and the error weighting 

models (see [8]).   This is assumed to include a common k-steps transport delay, and has the state-equation: 

               0 0 0 0 0 0 0 0 0 0 0 00
( 1) ( , , ) ( ) ( , , ) ( ) ( , , ) ( ) ( , , ) ( )dx t x u p x t x u p u t k x u p t x u p d tζ+ = + − + +                    (1) 

where the vector p is a vector of known variables like speed of an engine, or altitude of an aircraft that change with 

operating conditions.  The controlled output and measured outputs (without measurement noise): 

                                     0 0 0 0 0 0 0( ) ( ) ( , , ) ( ) ( , , ) ( )y t d t x u p x t x u p u t k=+ + − 
                                                    (2)

 

                                         0 0 0 0 0 0 0 0 0( ) ( ) ( , , ) ( ) ( , , ) ( )m m m my t d t x u p x t x u p u t k=+ + −                                         (3)
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where 0

0 ( )
n

x t R∈ .
  

This model can be a function of the states, inputs and parameters
0( ( ), ( ), ( ))x t u t k p t− .  The 

deterministic component of the input disturbance is 
0 ( )dd t and the disturbance on the output to be controlled 

0 ( ) ( ) ( )dd t d t y t= +  includes a known deterministic component ( )d t  
and a stochastic component ( )dy t .  The 

disturbance on the measured output 0 ( ) ( ) ( )m m dmd t d t y t= + , where ( )md t  is deterministic and ( )dmy t
 
is stochastic.  

The plant includes a disturbance model on the output, driven by zero mean white noise Ȧ(t): 

                                                 ( 1) ( ) ( ), ( ) dn

d d d d dx t x t t x t Rω+ = + ∈                                               (4) 

       
( ) ( )

d d d
y t x t=        and         ( ) ( )

dm dm d
y t x t=                                                (5) 

The signals of interest include the error on the output to be controlled and the measured output: 

Error signal:                               ( ) ( ) ( )e t r t y t= −                                                               (6) 

Observations signal:                            ( ) ( ) ( )m m mz t y t v t= +                                                           (7) 

The signal to be controlled will involve the weighted tracking error in the system: 

                                                       ( )( 1) ( ) ( ) ( ) ,p p p px t x t r t y t+ = + −          ( ) pn

px t R∈                           (8) 

                   
( )( ) ( ) ( ) ( )p p p pe t x t r t y t= + −                                                             (9) 

The traditional method of introducing integral action in predictive controls is to augment the system input by 

adding an integrator using the input sub-system: 

                                                    
0( 1) ( ) ( )i ix t x t u t kβ+ = + ∆ − ,            ( ) in

ix t R∈                                      (10)     
                                    

                           0 0( ) ( ) ( )iu t k x t u t kβ− = + ∆ − 1 1

0(1 ) ( )z u t kβ − −= − ∆ −                                            (11) 

The 1(1 )z    , for 1β =  and the transfer (11) is an integrator without additional delay, and if 0β = , then

0 0( ) ( )u t k u t k− = ∆ − .  The results can therefore apply to systems using control input or rate of change of control.    

2.3  Total Augmented System 

The state-space model, for the r m×  multivariable system to be controlled is now defined in augmented system 

form.  Combining the plant, disturbance, integral and weighting equations, the augmented state-vector becomes: 



                                                           0( ) ( ) ( ) ( ) ( )
T

T T T T

d i px t x t x t x t x t =     

To simplify notation write
t ( )0( ), ( ), ( )x t u t k p t=−  and similarly for the time-varying matrices

, , and   t t t t
, with state ( ) n

x t R∈ .    The augmented system equations may be written as follows:  

                                                 0( 1) ( ) ( ) ( ) ( )  t t t dx t x t u t k t d tξ+ = + ∆ − + +                                                  (12) 

                                                0( ) ( ) ( ) ( )t ty t d t x t u t k= + + ∆ −                                                              (13) 

                                                       0( ) ( ) ( ) ( )m m

m m t ty t d t x t u t k= + + ∆ −                                                          (14) 

                                                   0( ) ( ) ( ) ( ) ( )m m

m m m t tz t v t d t x t u t k= + + + ∆ − 
                                                 (15) 

                                                       
0( ) ( )+ ( ) ( ) p p p t p te t d t x t u t k= + ∆ −

                                                       (16)
 

The augmented system has an input 0 ( )u t∆  and the change in actual control is denoted ( )u t∆   

0 1(theseare related as ( ) ( ))(.,.)ku t u t∆ = ∆ . 

 

2.4  Definition of the Augmented System Matrices 

The equations in §2.2 can be combined with a little manipulation to obtain the augmented system matrices. That 

is the total state-equation model may be written in terms of the augmented system matrices, as follows: 

                                                  

0( 1) ( ) ( ) ( ) ( )  t t t dx t x t u t k t d tξ+ = + ∆ − + +                                              (17) 

where the matrices in this equation are defined from the combined model equations:
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( 1) ( )

  


        

d d d

i i

p p p d p p p p

x t x t
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β

β
β
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       + − − − −              
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                                      (18) 



The output to be controlled may be written in terms of augmented system model in (13).  That is: 

                                           
0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( )d d iy t d t x t x t x t u t kβ= + + + + ∆ −       

                                                               0( ) ( ) ( )t td t x t u t k= + + ∆ − 

            

(19)

 
where                                                 [ ]0 0 0t d β=          and      0t =                                                  

Similarly from (3) and (5), the measured output may be written in the augmented system as follows: 

                                                              0( ) ( ) ( ) ( )m m
m m t ty t d t x t u t k= + + ∆ −                                                   (20)                     

where                               [ ]0 0 0m

t m dm mβ=                   and                 0

m

t m=                                            

Also from (2) and (9), the weighted tracking error to be minimised may be written as:

  

                                                       

0( ) ( )+ ( ) ( )p p p t p te t d t x t u t k= + ∆ − 

                                                       

(21)

 
where ( ) ( ( ) ( ))

p pd t r t d t= − , 
0 0p t p p d p pβ =− − −          and 0p t p= −   .  The subscript t on the 

state matrices here is used for the augmented system and in a slight abuse of notation it also indicates that these 

matrices are evaluated at time t, so that the system matrix at t+1 is written as 1t+ .   

3. State-Dependent Future State and Error Models 

A state-dependent model prediction equation is required and later an estimator for the state-dependent models.  

The future values of the states and outputs may be obtained by repeated use of (12) assuming that the future values 

of the disturbance are known.  Introduce the notation: 

                                     
1 2 ...i m

t m t i t i t m

−
+ + − + − +=   

   
for i m> , where  0

t m I+ =  for i m=                                 

                                           
1 2 ...i

t t i t i t+ − + −=   
   

for 0i > , where
 

0

t I=  for 0i =
                                     

(22) 

Future states:   Generalising this result obtain, for i 1≥ , the state, at any future time +t i , may be written as: 

         ( )1 0 1

1

( ) ( ) ( 1 ) ( 1) ( 1)   
i

i i j

t t j t j t j dd

j

x t i x t u t j k t j d t iξ−
+ + − + −

=

+ = + ∆ + − − + + − + + −∑                (23) 

where                                                        
1

( 1) ( 1)
i

i j

dd t j d

j

d t i d t j
−
+

=

+ − = + −∑                                                  (24) 



These equations (23) and (24) are valid for 0i ≥  if the summation terms are defined as null for i = 0. Noting 

(16) the weighted error or output signal ( )pe t  to be regulated at future times (for 0i ≥ ):          

                                               0( ) ( ) ( ) ( ) 
pp p t i p t ie t i d t i x t i u t i k+ ++ = + + + + ∆ + −    

                                       1 0

1

( ) ( ) ( 1 )
pd

i
i i j

p t i t p t i t j t j

j

d t i x t u t j k
−

+ + + + −
=

= + + + ∆ + − −∑       

                                                  
1 0

1

( 1) ( )
i

i j

p t i t j t j p t i

j

t j u t i kξ−
+ + + − +

=

+ + − + ∆ + −∑                                           (25) 

where ( ) ( ( ) ( ))p pd t r t d t= − and the deterministic signals:    

                                                         
( ) ( ) ( 1)

pd p p t i ddd t i d t i d t i++ = + + + −
                                                    

(26) 

 

3.1  State Estimates Using State-Dependent Prediction Models 

The i-steps prediction of the state for 0i ≥  and the output signals may be defined, noting (23), as:
                              

                                 1 0

1

ˆ ˆ( | ) ( | ) ( 1 ) ( 1)  
i

i i j

t t j t j dd

j

x t i t x t t u t j k d t i
−
+ + −

=

+ = + ∆ + − − + + −∑
                     

(27) 

where 
1 2 ...i j

t j t i t i t j

−
+ + − + − +=    and 

1

( 1) ( 1)
i

i j

dd t j d

j

d t i d t j
−
+

=

+ − = + −∑ , and for i = 0 the ( 1) 0ddd t − = .    The 

predicted output: 

                                            
0

ˆ ˆ( | ) ( ) ( | ) ( )t i t i
y t i t d t i x t i t u t k i+ ++ = + + + + ∆ − +                                      (28) 

The weighted prediction error for 0i ≥ : 

                                            0
ˆ ˆ( | ) ( ) ( | ) ( )

pp p t i p t ie t i t d t i x t i t u t i k+ ++ = + + + + ∆ + − 
                                    

(29) 

The expression for the future predicted states and error signals may be obtained by changing the prediction time 

in (27) t t k→ + .  Then, for 0i ≥ : 

                    
1 0

1

ˆ ˆ( | ) ( | ) ( 1) ( 1)  
i

i i j

t k t k j t k j dd

j

x t k i t x t k t u t j d t k i
−

+ + + + + −
=

+ + = + + ∆ + − + + + −∑
                   

(30) 

Predicted weighted output error:   Substituting in (29) and simplifying, for i i k→ + , and 0i ≥ , obtain: 



0
ˆ ˆ( | ) ( ) ( ) ( | )

pd

i

p p t i k p t i k t ke t i k t d t i k u t i x t k t+ + + + ++ + = + + + ∆ + + +  
 

                                                              
1 0

1

( 1)
i

i j

p t i k t k j t k j

j

u t j
−

+ + + + + + −
=

+ ∆ + −∑                                                   (31) 

and   0
ˆ ˆ( | ) ( ) ( ) ( | )

pd

i

p p t i p t i t ke t i t d t i u t i k x t t+ + ++ = + + ∆ + − +  
1 0

1

( 1 )  
i

i j

p t i t j t j

j

u t j k
−

+ + + −
=

+ ∆ + − −∑         (32)      

The deterministic signals in this equation:

                                                      

                                         1

( ) ( ) ( 1)
pd p

i
i j

p t i k t k j d

j

d t i k d t i k d t k j
−

+ + + +
=

+ + = + + + + + −∑ 
                                  

(33) 

and for i = 0 the term ( ) ( )
pd p

d t k d t k+ = + .   

 

3.2  Vector Matrix Form of Equations 

The predicted errors or outputs may be computed for controls in a future interval [ , ]t t Nτ ε +  for  1N ≥ .  These 

weighted error signals may be collected in the following N+1 vector form: 
     

 

1

2

ˆ ( ) ( )

ˆ ( 1 ) ( 1)

ˆ ( 2 ) ( 2) ˆ( | )

ˆ ( ) ( )
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N
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    
    + + + +    


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 
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2
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0
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
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0
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− −
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∆   
   ∆ +   
   +
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   ∆ +  




  
  



            (34) 

Future error and predicted error:   With an obvious definition of terms this equation may be written as: 

                      
0

, , , , , , , ,
ˆ ˆ( | ) ( )    Pt k N Pt k N Pt k N t k N Pt k N t k N Pt k N t NE D x t k t U+ + + + + + += + + + + ∆

                      
 (35)

 

Define the time-varying matrix: 
           

, , , ,Pt k N Pt k N t k N Pt k N+ + + +=+     
                                                          

(36) 

so that,                              
0

, , , , , ,
ˆ ˆ( | )  Pt k N Pt k N Pt k N t k N Pt k N t NE D x t k t U+ + + + += + + + ∆                                         (37) 



Similarly the weighted future errors may be written, including ,t k N+Ξ , as:
 

                         

0

, , , , , , , , ,( )    Pt k N Pt k N Pt k N t k N Pt k N t N Pt k N t k N t k NE D x t k U+ + + + + + + += + + + ∆ + Ξ
                        

(38) 

Block matrices:   Noting (34) the vectors and block matrices, for the general case of  1N ≥ , may be defined as:  

                                                   , 1 2{ , , ,..., }
Pt k N pt k pt k pt k pt N k

diag+ + + + + + + +=    
    

                                                      + + + + + +=   
P t k N pt k p t k p t N k

diag
, 1

{ , ,..., }                                                 (39) 
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The signal 0

,t NU∆  denotes a block vector of future input signals.  Note that the block vector ,P t ND  denotes a vector 

of future reference minus known disturbance signal components. The above system matrices , , ,, ,t k N t k N t k N+ + +    

are of course all functions of future states and the assumption is made that the state dependent signal ( )x t  is 

calculable (if { }( )tξ  is null ˆ( | ) ( )x t t x t=  can be calculated from the model).  From (36) the matrix 

, , , ,( )Pt k N Pt k N t k N Pt k N+ + + +=+    can be assumed to be full-rank (determined by the weightings). 



3.3   Predicted Tracking Error 

Noting (38) the k-steps-ahead tracking error: 

                            

0

, , , , , , , , ,( )    Pt k N Pt k N Pt k N t k N Pt k N t N Pt k N t k N t k NE D x t k U+ + + + + + + += + + + ∆ + Ξ                         (40) 

The weighted inferred output is assumed to have the same dimension as the control signal and +
,P t k N

 used in 

(40) and defined below, for  1N ≥ , is square: 
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 
  
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
  
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        


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 

  




                            (41) 

Based on (35) and (38) the prediction error (
, , ,

ˆ
P t k N P t k N P t k NE E E+ + += − ): 

                                   
,Pt k NE +

 0

, , , , , , , ,( )    Pt k N Pt k N t k N Pt k N t N Pt k N t k N t k ND x t k U+ + + + + + += + + + ∆ + Ξ
                                                   

                                        

0

, , , , ,
ˆ( ( | ) )  Pt k N Pt k N t k N Pt k N t ND x t k t U+ + + +− + + + ∆

                                          
(42)

 

 
Thence, the inferred output estimation error:  

          

                                                ,Pt k NE +


+ + + + += + + Ξ   
, , , , ,

( )
P t k N t k N P t k N t k N t k N

x t k t                          
       

(43) 

where the state estimation error �( ) ( ) ( | )x t k t x t k x t k t+ = + − +  is independent of the choice of control 

action.  Also recall �( | )x t k t+  and ( | )x t k t+  are orthogonal and the expectation of the product of the future 

values of the control action (assumed known in deriving the prediction equation), and the zero-mean white noise 

driving signals, is null.  It follows that ,
ˆ

Pt k NE +  in (35) and the prediction error ,Pt k NE +
  are orthogonal. 

3.4  Time-Varying Kalman Estimator in Predictor Corrector Form 

The state estimate ˆ( | )x t k t+  may be obtained, k steps ahead, from a Kalman filter [9].  These are well known, 

but the result below accommodates the delays on input channels and through terms [9]. The estimates can be 

computed using: 



                                                
0

ˆ ˆ( 1| ) ( | ) ( ) ( ) t t dx t t x t t u t k d t+ = + ∆ − +                                                           

                                          
( )1

ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1| )f t m mx t t x t t z t z t t++ + = + + + − +                                               

where                                1 1 0
ˆˆ ( 1| ) ( 1) ( 1| ) ( 1 )m m

m m t tz t t d t x t t u t k+ ++ = + + + + ∆ + −                                                 

The state estimate ˆ( | )x t k t+  may be obtained, k steps-ahead, in a computationally efficient form from [9], where 

the number of states in the filter is not increased by the number of the delay elements k.   From (27) the k-steps 

prediction is given as: 

                                         

1

0
ˆ ˆ( | ) ( | ) ( , ) ( ) ( 1) k

t ddx t k t x t t k z u t d t k
−+ = + ∆ + + −

                                        
 (44)

 

The finite pulse response model term:                                      
      

             

                                                           
1 1

1

1

( , )
k

k j j k

t j t j

j

k z z
− − − −

+ + −
=

=∑  
                                                              

(45) 

where the summation terms in (45) are assumed null for k = 0 so that 
1(0, ) 0 z
− = , ( 1) 0ddd t − = , and

1

( 1) ( 1)
k

k j

dd t j d

j

d t k d t j
−

+
=

+ − = + −∑ .   

4. Generalized Predictive Control for State-Dependent Systems 

A brief derivation of a GPC controller is provided below for a state-dependent system with input 
0u (t).  This is 

the first step in the solution of the NPGMV control solution derived subsequently.   The GPC performance index: 

                           
2

0 0

0 0

( ) ( ) ( ( )) ( ){ }
uNN

T T

p p j

j j

J E e t j k e t j k u t j u t j tλ
==

= + + + + + ∆ + ∆ +∑ ∑                       (46) 

where {.| } E t  denotes the conditional expectation, conditioned on measurements up to time t and 
jλ  

denotes  a 

scalar control signal weighting factor.  In this definition note that the error minimized is k-steps ahead of the 

control signal, since 
0 ( )u t affects the error ( )pe t k+ after k-steps.   By suitable definition of the augmented system 

the cost can include dynamic error, input and state-costing terms.  The future optimal control signal is to be 

calculated for the interval [ , ]ut t Nτ∈ + , which depends on the number of steps ( 1)uN +  in the control signal 



costing term in (46).   If the states are not available for feedback then the Kalman estimator must be introduced.  

Also recall from (43) the weighted tracking error , , ,
ˆ

Pt k N Pt k N Pt k NE E E+ + += + . The multi-step cost-function:   

                                             { }0 2 0

, , , ,{ } |
u u u

T T

t Pt k N Pt k N t N N t NJ E J E E E U U t+ += = + ∆ Λ ∆                                          (47) 

Assuming the Kalman filter is introduced, from (47),  

                                  
0 2 0

, , , , , ,
ˆ ˆ( ) ( ) |{ }

u u u

T T

Pt k N Pt k N Pt k N Pt k N t N N t NJ E E E E E U U t+ + + += + + + ∆ Λ ∆                              (48) 

Here the cost-function weightings on inputs 
0 ( )u t∆  at future times are written as

2 2 2 2

0 1{ , ,..., }
u uN Ndiag λ λ λΛ = .   

The terms in the cost-index can then be simplified, noting + ,
�
P t k N
E  is orthogonal to the estimation error +


,P t k N

E :                                         

                                                  
0 2 0

, , , , 0
ˆ ˆ

u u u

T T

Pt k N Pt k N t N N t NJ E E U U J+ += + ∆ Λ ∆ +                                                     (49) 

where
0 , ,{ | }T

Pt k N Pt k N
J E E E t+ +=  

 
is independent of control action.    

4.1  Connection Matrix and Control Profile  

Instead of a single control horizon number 
uN   a control profile can be defined of the form: 

row{Pu }= [lengths of intervals in samples   number of repetitions] 

For example, letting Pu = [1  3;  2  2;  3  1] represents 3 different initial controls for each sample, then 2 samples 

with the same control used but this is repeated again, and finally 3 samples with the same control used.  This 

enables a control trajectory to be defined where initially the control changes every sample instant and then it only 

changes every two sample instants and finally it remains fixed for 3 sample intervals.   Based on a control profile, 

it is easy to specify the transformation matrix Tu, relating the control moves to be optimized (say vector V) to the 

full control vector (U), that is, U = Tu×V.  For the above example, the connection matrix can be defined:  
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In the case of the incremental control formulation, the connection matrix: 
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Clearly, this represents a situation with Nu = 3+2+1 = 6 control moves and involves a total of N = 3×1+2×2+1×3 

sample points.  There are 4 control moves that have not been calculated in this example, representing a substantial 

computational saving.   For simplicity the same symbol will be used to represent the connection matrix for the 

control and incremental control cases (
uT ) but when using it should be recalled that different definitions will be 

needed.  The control horizon may be less than the error horizon and we may define the future control changes 

0

,t NU∆  as 0 0

, ,t N u t Nu
U T U∆ = ∆ . 

4.2   State Dependent GPC Solution 

To compute the vector of future weighted error signals note: 

                                                                 0 0

, , , ,Pt k N t N Pt k N u t Nu
U T U+ +∆ = ∆                                                            (50)   



Then from (37) and (50):        

                 
0 0

, , , , , , , , ,
ˆ ˆ( | )Pt k N Pt k N Pt k N t k N Pt k N t N Pt k N Pt k N u t Nu
E D x t k t U D T U+ + + + + + += + + + ∆ = + ∆                    (51) 

where , , , ,
ˆ+ ( | )Pt k N Pt k N Pt k N t k ND D x t k t+ + + +=+   .   Noting (36) and substituting from (35) for the vector of state-

estimates: 
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Pt k N Pt k N t N u Pt k N Pt k ND D U T D+ + + += + ∆    0

, , ,

T

Pt k N Pt k N u t Nu
D T U+ ++ ∆ 0 0

, , , 0u u u

T
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 where  2

, , ,u u

T T

t k N u Pt k N Pt k N u NT T+ + += + Λ   .   From a perturbation and gradient calculation [9], noting that the 
0J  

term is independent of the control action, the vector of GPC future optimal control signals:  
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. 

The GPC optimal control signal at time t is defined from this vector based on the receding horizon principle [10] 

and is taken as the first element in the vector of future control increments
0

,t Nu
U∆ .                                            

4.3  Equivalent Cost Optimization Problem                                  

The above is equivalent to a special cost-minimisation control problem which is needed to motivate the NPGMV 

problem.  Let 
2

, , , u

T T

t k N u Pt k N Pt k N u Nu
T T+ + += + Λ   , that enters (53), be factorised as:    

                                                  2

, , , , , u

T T T

t k N t k N t k N u Pt k N Pt k N u Nu u u
T T+ + + + += = + Λ                                                (54) 

Then by completing the squares in (52) the cost becomes: 
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Pt k N Pt k N u t k N t N t k N t k N u Pt k N Pt k N t k N t Nu u
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Pt k N Pt k N u t k N t k N u Pt k N Pt k ND I T T D J
− −

+ + + + + ++ − +                                       (55) 

By comparison with (55), the cost-function may be written as:     



                                                                         J 0 0

, 10
ˆ ˆ ( )

u ut k N J tΨ Ψ +=+ T

t+k,N
                                                           (56) 

where the “squared” term in (55): 
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T D UΨ −
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                      (57) 

The cost-terms that are independent of the control action 
10 0 1( ) ( )J t J J t= +  where, 

                                         
1

1 , , , , , ,( ) ( )
u u

T T T T

Pt k N Pt k N u t k N t k N u Pt k N Pt k NJ t D I T T D
− −

+ + + + + += −                                       (58) 

The optimal control is found by setting the first term to zero, that is 
0ˆ

u
0Ψt+k,N = .  This gives the same optimal 

control as (53).  It follows that the GPC optimal controller is the same as the controller to minimise the norm of 

the signal Ψ 0�
ut+k,N

, defined in (57).   The vector of optimal future controls:  

                ( )0 1 1

, , , , , , , , ,
ˆ( | )

u

T T T T

t N t k N u Pt k N Pt k N t k N u Pt k N Pt k N Pt k N t k Nu u
U T D T D x t k t

− −
+ + + + + + + +∆ =− =− + +     

          
(59)   

  

                  

4.4  Modified Cost-Function Generating GPC Controller                               

The above discussion motivates the definition of a new multi-step minimum variance cost problem that is similar 

to the minimisation problem (56) but where the link to NGMV design can be established.  The signal to be 

minimised in the GMV problem involves a weighted sum of error and input signals [11].   The vector of future 

values, for a multi-step criterion: 

                                                            
, ,

0 0

, , ,N CN CN tt k t P t k N t Nu
P E F U+ +Φ = + ∆                                                            (60) 

where the cost-function weightings 
, ,CN

T T

t u Pt k NP T +=   and 
,

0 2

CN t Nu
F = Λ .    These are based on the GPC weightings 

in (47) and are justified later in Theorem 1 below.  Now define a minimum-variance multi-step cost-function, 

using a vector of signals:  

                                                                    
, ,{ } { | }
N N

T

t t k t kJ E J E t+ += = Φ Φ                                                         (61) 

Predicting forward k-steps:                       
, ,

0 0

, , ,N CN CN t ut k t P t k N t NP E F U+ +Φ = + ∆                                                     (62) 



Now consider the signal 
,Nut kΦ +  and substitute for 

,Pt k NE + = , ,
ˆ

Pt k N Pt k NE E+ ++  :                          
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N N Nt k t k t kΦ Φ Φ+ + += +                                                                (64) 

where the predicted signal ( ), ,

0 0

, , ,
ˆˆ

CN CNN t tt k Pt k N t Nu
P E F UΦ + += + ∆  and the prediction error 

,, ,CNNut k t P t k NP EΦ + +=  .  The                        

performance index (61) may therefore be simplified, recalling ,
ˆ

Pt k NE +  
and 

,Pt k NE +
  are orthogonal, as follows: 

 , , , , , ,
ˆ ˆ( ) { } { | } {( ) ( ) | }

N N N N N N

T T

t t k t k t k t k t k t kJ t E J E t E tΦ Φ Φ Φ Φ Φ+ + + + + +== =+ +     

                                               
, , , , , , 1

ˆ ˆ ˆ ˆ{ | } ( )
N N N N N N

T T T

t k t k t k t k t k t kE t J tΦ Φ Φ Φ Φ Φ+ + + + + += + = +                                          (65) 

where 
,1 , , , , ,( ) { | } { | }

CN CNN N

T T T

t k t k Pt k N t t P t k NJ t E t E E P P E tΦ Φ+ + + +==    .  The prediction ,
ˆ

Nt kΦ +  may be simplified as follows:   

                             
, ,

0 0 0 0 0

, , , , , , , , ,
ˆˆ ( )

CN CN CN CNt k N Pt k N N Pt k N Pt k N u t N Nu u ut t t t t tP E F U P D T U F UΦ + + + += + ∆ = + ∆ + ∆   

By substituting from (54) (noting
, ,

0

, ,CN CNt Pt k N u t t k Nu
P T F+ ++ =  ),    

                                                        
,

ˆ
Nt kΦ +

0

, , , ,
CN t P t k N t k N t Nu u

P D U+ += + ∆                                                           (66) 

Recall the weightings are assumed to be chosen so that 
, ut k N+   is non-singular.  From a similar argument to that 

in the previous section the predictive control sets the first squared term in (65) to zero
,

ˆ 0
Nt kΦ + =  and this 

expression is the same as the vector of future GPC controls. 

Theorem 1:    Equivalent Minimum Variance Cost Problem 

Consider the minimisation of the GPC cost index (46) for the system and assumptions introduced in §2, where the 

nonlinear subsystem =1k I and the vector of optimal GPC controls is given by (53).  Assume that the cost 

index is redefined to have a multi-step minimum variance form (61):  

                            , ,( ) { | }T

t k N t k NJ t E tΦ Φ+ += ,   where    
, ,

0 0

, , ,N CN CN tu ut k t P t k N t NP E F UΦ + += + ∆
                             

(67)
 

Let the cost-function weightings be defined relative to the original GPC cost-index as: 

                                             
, ,CN t

T T

u Pt k NP T +=                 and                  
,

0 2

CN t Nu
F = Λ                                              

The vector of future optimal controls that minimize (67) follows as:
                                            



                                        
( )0 1

, , , , , ,
ˆ+ ( | )T T

t N t k N u Pt k N Pt k N Pt k N t k Nu u
U T D x t k t

−
+ + + + +∆ =− +   

                                           
(68) 

where 2

, , , u

T T

t k N u Pt k N Pt k N u Nu
T T+ + += + Λ   .  This optimal control (68) is identical to the vector of GPC controls.                            

                                                                                                                                                                         Ŷ 

Solution:    The proof follows by collecting the results above.                                                                  Ŷ 

5. Nonlinear Predictive GMV Optimal Control                                       

The aim of the nonlinear control design approach is to ensure certain input-output maps are finite-gain 2m  stable 

and the cost-index is minimized. Recall that the input to the system is the control signal ( )u t , shown in Fig. 1, 

rather than the input to the state-dependent sub-system
0 ( )u t .  The cost-function for the nonlinear control problem 

must therefore include an additional control costing term, although the costing on the intermediate signal 0 ( )u t  

can be retained.   If the smallest delay in each output of the plant is of k-steps the control signal t affects the output 

k-steps later.  For NGMV the signal costing ( )( ) ( )( )c c

k

ku t z u t
−∆ = ∆  . 

  
Typically this weighting on the nonlinear 

sub-system input will be a linear dynamic operator [12], assumed to be full rank and invertible.  In analogy with 

the GPC problem a multi-step cost index may be defined that is an extension of (61): 

                                                                    0 0

, ,{ | }
N N

T

p t k t kJ E tΦ Φ+ +=                                                                 (69) 

Thus, consider a signal whose variance is to be minimised, involving a weighted sum of error, input and control 

signals ([11], [13]):  

                                                       
, , , ,

0

,

0 0

, ,cCNN N CN N Nt k t P t k t t k N tu u u
P E F U UΦ + += + ∆ + ∆                                       (70) 

The non-linear function , ,ck N t Nu u
U∆  will normally be defined to have a simple block diagonal form:                                 

               ( )( ) ( )( ) ( )( ), ,c( ) { , 1 ,..., }k N t N ck ck cku u uU diag u t u t u t N∆ = ∆ ∆ + ∆ +                      (71) 

Note the vector of changes at the input of the state-dependent sub-system: 

                                                                     
,

0

, 1k,N( )t N t Nu u u
U U∆ = ∆                                                             (72)          

This is, the output of the nonlinear input-subsystem
u1k,N

, which also has a block diagonal matrix form: 



               
,1k, N , 1 1 1( ) { , ,... , }t N k k k t Nu uu

U diag U∆ = ∆    1 1[( )( ) ,..., ( )( ) ]T T T

k k uu t u t N= ∆ ∆ +              (73) 

5.1  The NPGMV Control Solution                                       

Note the state estimation error is independent of the choice of control action.  Also recall that the optimal

ˆ( | )x t k t+  and ( | )x t k t+  are orthogonal and the expectation of the product of the future values of the control 

action (assumed known in deriving the prediction equation), and the zero-mean white noise driving signals, is 

null.  It follows that ,
ˆ

Pt k NE +  and the prediction error ,Pt k NE +
  are orthogonal.  The solution of the NPGMV control 

problem follows from similar steps to those in §3.3.  Observe from (62) that 
, ,

0 0

, , ,N CN CN t ut k t P t k N t NP E F U+ +Φ = + ∆  and

0 0 0

, , ,
ˆ

N N Nt k t k t k+ + +Φ =Φ +Φ .  It follows from (70) that the predicted signal:       

                             
0

, , , ,c
ˆ ˆ ( )

Nt k t k N k N t Nu u
UΦ Φ+ += + ∆ 0 0

, , , , , ,c
ˆ ( )

CN CNP t k N t N k N t Nu u ut tP E F U U+= + ∆ + ∆                       (74) 

and the estimation error:                 
,

0

, , , , ,= 
CNN N

T T

t k t k t P t k N u Pt k N Pt k NP E T EΦ Φ+ + + + += =                                               (75) 

The future predicted values of the signal 
0

,
ˆ

Nt kΦ +  involve the estimated vector of weighted errors , ,
ˆ

CN Pt k NtP E + , which 

are orthogonal to , ,CN Pt k NtP E +
 .  The estimation error is zero-mean and the expected value of the product with any 

known signal is null.   The multi-step cost index may therefore be written as: 

                                                            
0 0

, , 1
ˆ ˆ( ) ( )

N N

T

t k t kJ t J tΦ Φ+ += +                                                          (76) 

The condition for optimality 0

,
ˆ 0

Nt kΦ + =  now becomes:                                                           

                                                           
0 0

, , , , , ,c
ˆ 0

CN CNt P t k N t t N k N t Nu u u
P E F U U+ + ∆ + ∆ =                                          (77) 

5.2   NPGMV Optimal Control 

The vector of future optimal control signals, to minimise (76), follows from the condition for optimality in (77) 

                                                   
2

, , 1k,N , , ,c
ˆ 0

CN t P t k N N t N k N t Nu u u u u
P E U U+ + Λ ∆ + ∆ =   

                                                       
2 1

, , 1k,N ,c
ˆ( ) ( )

CNt N k N N Pt k Nu u u u
U P E

−
+∆ = + Λ −                                              (78) 

An alternative solution of (77), gives:                                                       



                                               
1 2

, , , , 1k,N ,c
ˆ( )T T

t N k N u Pt k N Pt k N N t Nu u u u u
U T E U

−
+ +∆ = − − Λ ∆                                      (79)  

Further simplification by noting the condition for optimality 
0

,
ˆ 0

Nt kΦ + =
 
may be written, from (51), (54), (72) and 

(74) as
0 0

, , , , , ,c
ˆ ( ) 0

CN CNPt k N t N k N t Nu u ut tP E F U U+ + ∆ + ∆ = , and becomes: 

                                                  ( ), , , 1k, N , ,c 0
CN t P t k N t k N k N t Nu u u u

P D U+ ++ + ∆ =                                              (80) 

where 
, , , ,

ˆ+ ( | )Pt k N Pt k N Pt k N t k ND D x t k t+ + + +=+   .   The vector of future optimal control becomes: 

                                      ( ) ( ), 0

1

, , 1k, N , ,c ˆ( | )
CNt N t k N k N t Pt k Nu u u u tU P D x t k tφ

−

+ +∆ = + − − +                               (81)       

  where from 
, ,CN t

T T

u Pt k NP T +=  and tφ is defined as:
                          

 

                                                  
, , , , , ,CN

T T

t Pt k N t k N u Pt k N Pt k N t k Nt P Tφ + + + + +==                                                   (82) 

An alternative useful solution follows from (80) as:  

                                                   ( )1

, , , , , 1k, N ,c CNt N k N t Pt k N t k N t Nu u u u u
U P D U

−
+ +∆ = − − ∆  

  

                                             
( )1

, , , , 1k, N ,c ˆ( | )
CNk N t Pt k N t k N t Nu u u utP D x t k t Uφ

−
+ += − − + − ∆   

                     

The control law is to be implemented using a receding horizon philosophy.  Let [ ,0,....,0]I0C I=  and 

[ ]00I NC I= so that the current and future controls are ( )u t∆ = ,[ ,0,....,0] t NI U∆  and , ,

f

t N 0I t NU C U∆ = ∆ .  

 

Theorem 2:    NPGMV State-Dependent Optimal Control  

Consider the linear components of the plant, disturbance and output weighting models put in augmented state 

equation form (12),  with input from the nonlinear finite gain stable plant dynamics 
1k .   Assume that the multi-

step predictive controls cost-function to be minimised, involves a sum of future cost terms, and is defined in vector 

form as:                                      0 0

, ,{ | }
N N

T

p t k t kJ E tΦ Φ+ +=                                                                  (83) 

where the signal
0

0

,Nt kΦ + depends upon future error, input and nonlinear control signal costing terms:  

                                          , ,

0

, ,,

0 0

, ,cN CN CN N Nt k t t k N tP N u u ut t kP E F U UΦ + += + ∆ + ∆                                       (84) 



Assume the error and input cost-function weightings are introduced as in the GPC problem (46) and these are 

used to define the block matrix cost weightings 
, ,CN t

T T

u Pt k NP T +=   and 
,

0 2

CN t Nu
F = Λ .  Also assume that the control 

signal cost weighting is nonlinear and is of the form ( )( ) ( )( )c c ku t u t k∆ = ∆ −  , where  is full rank and 

invertible operator.  Then the NPGMV optimal control law to minimize the variance (83) is given as:
      

                                      
( ),

1

, , , , 1k, N ,c ˆ( | )
N CNt k N t Pt k N t k N t Nu u u utU P D x t k t Uφ

−
+ += − − + − ∆                               (85) 

where 2

, , , u

T T

t k N u Pt k N Pt k N u Nu
T T+ + += + Λ  

 
and 

, , ,

T T

u Pt k N Pt k N t k Nt Tφ + + +=    .  The current control can be computed 

using the receding horizon principle from the first component in the vector of future optimal controls.         Ŷ 

 

Solution:  The proof of the optimal control was given before the Theorem. The assumption to ensure closed-loop 

stability is explained in the stability analysis that follows below.                                                  Ŷ 

 

Remarks:   The expressions for the NPGMV control (81) and (85) lead to alternative structures for implementation 

but the second in Fig. 2, is more suitable for implementation. Inspection of the cost term (84) when the input 

costing 0

CN
F is null gives

, , ,

0

, ,cCN NN Nt k t P t k k N tP E U+ +Φ = +  and the limiting case of the NPGMV controller is related 

to an NGMV controller [12].   
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       Fig. 2:    Implementation Form of NPGMV State-Dependent Controller Structure 

ck



6. Stability of the Closed-Loop  

For linear GMV designs stability is ensured when the combination of a control weighting and an error weighted 

plant model transfer is strictly minimum-phase.  For the nonlinear predictive control a nonlinear operator: 

                                                  ( )( )1

, , 1k, Nc+ k N t k t k I 0 t k Nu u utI ĭ Cφ
−

+ + ++       

must have a stable inverse (shown below).  It will be assumed that the stochastic external inputs are null and the 

only inputs are those due to the deterministic signals.  The state: 

                                  ( )1 1 1

0 0( ) (I z ) ( ( ) ( )) ( ) ( )t t d t t dx t z u t k d t ĭ u t k d t− − −= − − + = − +                              (86) 

                                                      0( ) ( ( ) ( ))t k t k dx t k ĭ u t d t k+ ++ = + +                                                          (87) 

where 
1 1 1( )t tĭ = I z z− − −−  . The predicted state 

0
ˆ( | ) ( ) ( ( ) ( ))t k t k d
x t k t x t k ĭ u t d t k+ ++ = + = + + and from (85):                                      

                                   ( ),

1

, , , , 1k, N ,c ˆ( | )
N CNt k N t Pt k N t k N t Nu u u utU P D x t k t Uφ

−
+ += − − + − ∆     

                      ( )1

, , , 0 , 1k, N ,c ( ) ( )
CNk N t P t k N t k d t k t k t k N t Nu u u ut tP D ĭ d t k ĭ u t Uφ φ

−
+ + + + += − − + − − ∆                       (88) 

Assuming the control costing is a linear model the condition for optimality (88): 

                     ( ) ( ), 1k, N , 1k, N , , ,c + + ( )
CNk N t k t k I 0 t k N t N t P t k N t k du u u u ut tĭ C U P D ĭ d t kφ φ+ + + + ++ ∆ =− +        

The input nonlinear sub-system can be assumed finite-gain 
2m  stable and 

,1k,N Nu utU∆  may be written as

,1k,N 1 1( ) [( )( ) ,...,( )( ) ]T T T

N k ku ut uU u t u t N∆ = ∆ ∆ +   .   The vector of future optimal controls becomes: 

          ( )( ) ( )1
1 1

, , , 1k, N , , ,c c+ ( )
CNt N k N t k t k I 0 t k N k N t P t k N t k du u u u ut tU I ĭ C P D ĭ d t kφ φ

−
− −

+ + + + +∆ = + − − +      
       

(89)       

The NL Subsystem future outputs follows as
 

1k, N ,t Nu u
U∆

 
and the future plant outputs k, N ,t Nu

U .   It follows a 

necessary condition for stability is that the operator that follows is finite gain stable: 

                                           ( )( ) 1
1

, , , 1k, Nc+t k N k N t k t k I 0 t k Nu u u utI ĭ Cφ

−
−

+ + + +=+                                        (90) 

 



6.1 Sufficient Condition for Stability and Robustness 

If the output sub-system were linear time-invariant and not subject to uncertainty, a similar stability argument to 

that in [14] could be used to argue from (89) that no cancellation of unstable modes could occur if the controller 

is implemented in its minimal form.  The robustness of the solution may be considered and a sufficient condition 

for stability in the presence of uncertainty can be obtained by first noting the solution can be related to the well-

known Smith Predictor structure.   To establish this equivalence consider the more usual problem, where system 

outputs controlled are the same as those measured and where absolute control is costed.  The algebra is similar to 

the non-state-dependent problems considered in [13].  The controller, which should not be implemented in this 

form, is shown in Fig. 3.  The 
1

1 ( )f z
−  term in this solution is obtained by writing the Kalman filter loop in terms 

of the operator equations that follow: 

Estimator:                                   
1 1

1 2 0
ˆ( | ) ( )( ( ) ( )) ( ) ( )f fx t t z z t d t z u t k

− −= − + −   

The transfer operators here:             
1 1 1

1 1 1( ) ( ( ) )f f t t t f tz I z I
− − −

+ −= − −       

                                   ( )1 1 1 1
2 1 1 1 1( ) ( ( ) )) ( )f f t t t f t t t f t tz I z I I z

− − − −
+ − − −= − − − −                          

Unbiased estimates property:   Observe that for the Kalman filter to be unbiased:  

                                                
1 1 1 1

1 2( )( ( ) ) ( ) ( )f t t t t f t tz ĭ z z ĭ z− − − −+ + =                         

The parallel paths in Fig. 3, from control input are useful if the plant has an additive uncertainty of the form

= + ∆   .  The diagram in Fig. 3 may then be redrawn as shown in Fig. 4.   

 

For the sufficient condition for optimality note that the operator ,t k Nu+ actually represents the internal feedback 

loop in Fig. 5.  Thus the operator S1 representing the path between ĳ and u includes this stable sub-system and the 

Kalman filter sub-system.  The operator S1 and uncertainty model 2S = ∆  can both therefore be assumed stable.  

The small gain theorem [15], can now be invoked to provide a sufficient condition for stability.  Recall this can be 

used to establish input-output stability conditions for a feedback system.  It provides a sufficient condition for 

finite gain p  stability of the closed-loop system.  If two input-output stable systems S1 and S2 are connected as 

shown in a feedback loop, then the closed-loop is input-output stable if the loop gain
1 2. 1S S < , where the norm 

used is any induced norm.  To deal with unstable signals the space ,p e  (see [16]) is used, where the upper limit 

of the norm summation is finite.  The sufficient condition for stability requires 
1 1/S < ∆  so the gain of the 

inner feedback loop term should be sufficiently small when the uncertainty is large. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

       

Fig. 3:    Nonlinear Smith Predictor Implied by NPGMV Compensator Structure 

( )( ) ( )1
1 1

, , , 1k, N , , ,c c+ ( )
CNt N k N t k t k I 0 t k N k N t P t k N t k du u u u ut tU I ĭ C P D ĭ d t kφ φ

−
− −

+ + + + +∆ = + − − +        
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Fig. 4:    Feedback Loop when Additive Uncertainty Included 

 

6.2 Cost Weightings and Relationship to Stability 
          

Say there exists a PID controller that will stabilize the nonlinear system, without transport delay, then a set of cost 

weightings can be defined to guarantee the existence of this inverse and hence ensure the stability of the closed-

loop.  A stabilising control law can be found from cost-function weightings derived below.   Assume
2 0Nu

Λ → , 

then from (54) 
, , ,

T T

t k N u Pt k N Pt k N uu
T T+ + +→   , and from (89): 

 

+ 

 

NL Plant 

- 

 

 

u 
- 

Disturbance 

- 
 

 

 
 

  

 

+ 

+ + 

+ 

v 

Output 

Observations z 

Kalman predictor  

Noise 

+ 

- 
 

 

 

Compensator 



        ( )( ) ( )1
1 1

, , , , 1k, N , , ,c c+ ( )
CN

T T

t N k N t k t k I 0 u Pt k N Pt k N u k N t Pt k N t k du u u ut tU I ĭ C T T P D ĭ d t kφ φ

−
− −

+ + + + + +∆ → + − − +         

In the case of a single-step cost with a through term the matrix , , Pt k N t k N+ +=  can be assumed square and non-

singular.  In the case N = 0 ,Pt N pt= 
 
and

 , ,CN t

T T

u Pt k NP T +=  ,

T T

Pt k N pt k+ += =  ,   T

pt k p t ktφ + += .   Hence,  

                   ( )( ) ( )1
1 1

1k, ,c c( ) + ( )T T

k pt k p t k t k t k I 0 p t k k p t k Pt k N pt k t k du t I ĭ C D ĭ d t k
−

− −
+ + + + + + + + +→ + − − +          

Also assume the dynamic weighting is on the plant outputs 1( ) ( ) ( )p cy t P z y t
−= then 0p t k p t k t k t k kcĭ P+ + + ++ =    ,  

                              
( ) ( )1

1 1

0 1k ,c c( ) + ( )T T

k pt k k k p t k Pt k N pt k t k dcu t I P D ĭ d t k
−− −

+ + + + +→ − − +      
                        

(91)
 

The term 
1

0 1kc( )T

k pt k kcI P
−

++     may be interpreted as the return-difference operator for a nonlinear system 

with delay-free plant
k 0 1kk=   .  Thus, if the plant has a controller 

PID
K  that stabilises this model, the ratio of 

weightings can be chosen as
1

c PID

T

k pt k cP K
−

+ =  .     

An extension of this idea is when a set of controllers say Ki (z-1) for i=1,…,n
k stabilise the system then a set of 

weightings can be defined to satisfy 
1

c( )
i

T

k pt k icP K
−

+ =  .  The best robust cost-weightings can then be chosen 

using a technique like Monte-Carlo simulation covering a range of uncertainty [17].   

7. NPGMV Special Simple Form 

In some cases the nonlinear system can be represented by the state-dependent model only and the black-box model 

1k  can be set equal to the identity 
1k I=  (so that 1 ,k N NI= ).  In this case u

0
(t) =  u(t) and the control 

weighting involves a combination of the constant 
2

NΛ  and dynamic ,ck N weighting terms.  From (80): 

                                   
( ), , , , , , ,cˆ( | ) 0( )

CN t P t k N Pt k N t k N t k N k N t Nu u u
P D x t k t U+ + + ++ + + + ∆ =   

                   
(92)

 

The vector of future controls: 

                                       ( ),

1

, , , ,c ˆ( | )( )
N CNt t k N k N t Pt k Nu u tU P D x t k tφ

−

+ +∆ = + − − +  
                                     

(93)
                            

where 2

, , , u

T T

t k N u Pt k N Pt k N u Nu
T T+ + += + Λ   ,  

, ,CN

T T

t u Pt k NP T += 
 
and  

, , ,

T T

u Pt k N Pt k N t k Nt Tφ + + +=    .    



7.1   Special Weighting Case                                               

Assume the dynamic control weighting 1( )ck z
−  is linear, or alternatively, has a nonlinear decomposition into a 

non-dynamic or constant term 
a

ck  and an operator term
1

c ( )b

k z
− , including at least a unit-delay

1 1

c( ) ( )a b

ck ck kz z
− −= +    .   In this case further simplifications arise and there is no algebraic loop.  Note the 

block version of these functions, involves the decomposition of ,ck Nu
 into terms ,c

a

k Nu
  and

1

,c ( )b

k Nu
z
− .  Hence 

the algorithms may be simplified by substituting
1 1

, , ,c c c( ) ( )a b

k N k N k Nu u u
z z
− −= +   .  From (92) 

                               ( ) 1

, , , , , , ,c cˆ( | ) ( ) 0( )
CN

a b

t Pt k N t k N k N t N k N t Nu u u u utP D x t k t U z Uφ
−

+ ++ + + + ∆ + ∆ =     

Thence for a linear control costing:
 

                        ( ) ( )1
1

, , , , , , ,c cˆ( | ) ( )
CN

a b

t N t k N k N t Pt k N k N t Nu u u u utU P D x t k t z Uφ

− −
+ +∆ = + + ∆− − −   

               
(94)

      
 

where 
, , ,

T T

u P t k N P t k N t k Nt Tφ + + +=     and 
, ,CN

T T

t u P t k NP T +=  .   Similar results can be obtained when 
1 ( )k τ  can be 

decomposed as ( )( ) ( )0 11
( ) ( )

k
u t u t u t= +  .  This algorithm is the simplest NPGMV solution shown in Fig. 5.   
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Fig. 5:    Simplified NPGMV Controller Structure for Predicted State Feedback 
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8. Multivariable Control of a Two-Link Robotic Manipulator 

One of the application areas for nonlinear predictive control is in industrial robotics, where the reference trajectory 

for the robot manipulator is defined in advance (welding or paint spraying robots). Consider for example a planar 

manipulator with two rigid links. The objective is to control the vector of joint angular positions q with the vector 

of torques Ĳ applied at the manipulator joints, so that they follow a desired reference trajectory q
d
.  This problem 

was analysed in [18], and it was shown that a multi-loop PD controller could be used to control the links to desired 

fixed positions.  

 

System model: The dynamics of the system are highly nonlinear and may be described by the following 

continuous-time coupled differential equations:  

                          

111 1 112 1 2 11 2

221 22 2 22 1 2

( )h d hH H gq q qq q

h dH H gq q q

τ
τ

      
      
      
      

      

− + − +   
+ + =   

   

   
  

 

This equation may be written in the following more concise differential equation matrix form:  

                    ( ) ( ) ( )H q q C q q q g q τ+ , + =                                               (95) 

The ( )H q is termed the inertia matrix, ( )C q q q,    is a vector of Centripetal and Coriolis torques, and ( )g q  is a 

vector of torque components due to gravity.  The parameters 
1d  and 

2d  represent the system damping due to 

friction (in the “ideal” nominal case
1 2 0)d d= = . Assume the manipulator is operating in the horizontal plane, so 

that ( ) 0g q = .  The components of the matrix H  are defined as:  

    11 1 3 2 4 22 cos 2 sinH a a q a q=+ + ,    
12 21 2 3 2 4 2cos sinH H a a q a q==+ + ,      22 2H a=        

The parameters 
3 2 4 2sin cosh a q a q= −  and 2 2 2

1 1 1 1 2 2 2 2 1c ca I m l I m l m l= + + + + , 2

2 2 2 2ca I m l= + ,  
3 2 1 2 cosc ea m l l δ=  

and 
4 2 1 2 sinc ea m l l δ= .  The following numerical values of parameters were used for the simulation trials 1m  = 1, 

1I  = 0.12, 1l  = 1, 1cl  = 0.5, 2m  = 2, 2I  = 0.25 , 2cl  = 0.6, eδ  = 30
o

(see [18])).  The above system has the state-

dependent equation form. This is clear by rewriting the previous equations, where the invertability of the matrix 

H  is a physical property of the system, as:  

                                             
1 1

0 0

0 ( ) ( ) ( )
q

q I q
x

q H q C q q H q
τ− −

       
= = +       −       


   

 

                               
1 10 ( ) ( ) ( )

q
y q H q C q H q

q
τ− − 

 = =− +   
 

 


                           (96)            



8.1 Two Link Robot Arm State-Dependent Solution 

 

It was noted above that the two-link robot arm equations are in fact in a natural state-dependent form. In this case 

the input sub-system can be replaced by the identity and all the non-linear model can be absorbed in the state-

dependent output sub-system.  The control costing term is linear in this case and hence the solution is given by 

equation (94) and the controller can be implemented as in Fig. 5.   The performance of the unconstrained NPGMV 

controller is shown in Fig. 6 for a changing reference and stochastic disturbance inputs.   The interaction is clearly 

evident leading to large torque changes.  The results for a well-tuned PID controller (actually PD terms) are also 

shown in Fig. 6.   Note that the PID controller did not include any rate limits on plant inputs, as in the original 

publication, but the predictive control solutions both included such limits (in the constrained case taken account 

of directly).   The PID becomes unstable with such limits and the predictive control results are therefore impressive. 

 

To reduce the amplitude of control signals the constrained solution can be applied, which means applying a 

quadratic-programming solution to minimise (83), using the same matrices involved in (94).  The area where the 

largest changes arise is illustrated in the expanded time-scale shown in Fig. 7.  Implementing the constrained 

solution using quadratic programming is relatively simple in this NPGMV case.  It is not of course very meaningful 

to compare the actual values of the dynamically weighted NPGMV cost-function. This only serves as a 

mathematical means to obtain desired system properties and by definition the optimal NPGMV controller will 

always provide the lowest cost for the NPGMV cost-function.  The Table 1 of variances below has therefore been 

computed for the individual plant inputs and outputs, to enable a comparison of the different controls.  Clearly a 

dynamically weighted predictive controller does not minimise the variances of these signals (this would require a 

minimum variance controller).  The cost-function is simply a mechanism for controller design, like frequency 

response shaping of the sensitivities.  This is also a multivariable problem, and it is not therefore simply variances 

that are important.  Clearly cost weighting gains can easily be modified to change the importance of limiting 

particular inputs and outputs.  Since the plant rate limits were only applied to the predictive controls the results are 

good as mentioned. 

 

Table 1:  Variances for PD and NPGMV Unconstrained and Constrained Controllers 

 RMS error (q1) RMS error (q2) St Dev (τ1) St Dev (τ2) 

PD 12.20 4.21 240.45 146.90 

NPGMV Unconstrained 8.10 6.90 517.48 313.59 

NPGMV Constrained 12.75 1.27 206.23 243.84 

 

 



 

            Fig. 6:   NPGMV and PID Control with Incremental Control Costing for Unconstrained Case,  

                                                 State-Dependent Model and Free Weighting Choice  

 

 

Fig. 7:   NPGMV Design for Incremental Control Action Cases and Free Error Weighting Choice  

For Constrained and Unconstrained Cases 



9.   Concluding Remarks 

The NPGMV control design problem for a state-dependent system involves a multi-step predictive control cost-

function and future set-point information.  The tracking results are more general than for NGMV designs because 

of the ability to distinguish between signals that are to be penalized and those which are measured.  The use of 

either incremental control or control costing terms over a control horizon and control profile determined by the 

connection matrix, adds to the generality of the results.   The simplified control structure has been shown to be 

particularly valuable for real applications, and avoids any algebraic-loop problem.  The NPGMV control has the 

property that if the system is linear then the controller reduces to the Generalised Predictive Controller for state-

dependent systems.   The NPGMV controller offers greater flexibility compared with the NGMV and NGPC 

controllers, at the expense of some additional complexity in the implementation ([19], [20]). 
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