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Abstract

There is considerable interest at the moment on using shelled microbub-

bles as a transportation mechanism for localised drug delivery, specifically

in the treatment of various cancers. In this report a theoretical model is
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proposed which predicts the collapse time of an unfolding shelled microbub-

ble. A neo-Hookean, compressible strain energy density function is used to

model the potential energy per unit volume of the shell. This is achieved

by considering a reference configuration (stress free) consisting of a shelled

microsphere with a hemispherical cap removed. This is then displaced an-

gularly and radially by applying a stress load to the free edge of the shell.

This forms a deformed open sphere possessing a stress. This is then used as

an initial condition to model the unfolding of the shell back to its original

stress free configuration. Asymptotic expansion along with the conserva-

tion of mass and energy are then used to determine the collapse times for

the unfolding shell and how the material parameters influence this. The

theoretical model is compared to published experimental results.

1 Introduction

Ultrasound contrast agents (UCAs) are shelled microbubbles typically composed

of a layer or numerous layers of a protein shell encapsulating a perfluoro gas which

stabilises the shelled microbubble when it is injected into the bloodstream [1]. The

shelled microbubbles have a typical radius of between 1 µm allowing them to prop-

agate through the capillaries in the human body and a shell thickness that varies

between 4 and 100 nm [2]. A typical shear modulus value for a monolipid UCA

is 20MPa with a Poisson ratio of ν = 0.48 [3, 4]. UCA’s are currently licensed

in the UK as ultrasound imaging contrast agents because they create a contrast

with the surrounding tissue due to the production of seconday and higher harmon-

ics. Microbubbles resonate with typical frequencies of 7 MHz producing nonlinear,

multiple harmonic signals that enhance the quality of the medical imaging process

[5]. The success of these shelled microbubbles as contrast agents has provided
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impetus to their potential use as localised drug delivery agents. This procedure

aims to minimise the pernicious side effects associated with current conventional

chemotherapy treatments. Once the microbubbles are in the vicinity of the tumour

the use of ultrasound chirps leads to acoustic microstreaming of the microbubbles

near the endothelial cells that line the capillary wall. This results in the formation

of cavitation bubbles that collapse rapidly to produce shock waves which create

pores in the capillary walls [2]. The pores provide a doorway to the surface of

the tumour where the chemical receptors guide the shelled microbubbles onto the

surface of the tumour where they are burst by a high power, focussed ultrasound

pulse. This bursting phase of the microbubble is obviously an important factor

in the life cycle of this drug delivery mechanism and hence the use of theoretical

modelling to deepen the understanding is critically important. In particular, the

role that the material parameters of the shell, such as the thickness of the shell,

its stiffness (shear modulus) and its Poisson ratio, have on the collapse time of the

unfolding shell. The literature pertaining to the mathematical modelling of shelled

microbubble collapse is very limited. Rayleigh’s original work from 1917 contains

an analytical solution for the collapse time of a ruptured shelled microbubble but

it is valid only for a gas bubble (not shelled) in an inviscid liquid [6]. Müller

performed a series of experiments on the rupture dynamics of smectic bubbles fo-

cussing on the velocity of the progressing rim around the growing rupture hole,

the stability of the rim and the change in thickness of the film during the rup-

turing process [7]. Müller’s work gives key experimental parameters and collapse

times for a range of smectic shelled millibubble sizes and thicknesses that will

be compared to the mathematical models that will be developed in this report.

Bogoyavlenskiy’s paper on the differential criterion of bubble collapse is an analyt-

ical approach that exploits the Rayleigh-Plesset equation specifically for a viscous,
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Newtonian liquid [8]. This work derives a general collapse condition relating to

the viscosity of the surrounding fluid but again it deals only with a gas bubble and

not a shelled, viscoelastic microbubble. There currently exists very few studies in

the literature pertaining specifically to UCA modelling using nonlinear elasticity

which is, after all, the standard approach for modelling large deformations of elastic

materials and in particular soft materials such as in biological settings [9]. There

are some publications relating to the dynamics of spherical bodies using nonlinear

elasticity [10] and a recent paper uses constitutive laws from nonlinear elasticity

alongside the Kelvin-Voigt viscoelastic model to study the physical behaviour of

various UCA types ranging from monolipids to polymers [9]. They suggest that

the polymer based UCAs were consistent with the neo-Hookean model whereas

monolipid UCAs were consistent with the Mooney-Rivlin constitutive law due to

the presence of strain softening behaviour. Strain softening behaviour occurs due

to the area density of the monolipid decreasing as the material stretches radially

outwards. This behaviour has been observed in monolipids typically used in UCA

shells such as Sonovue [11, 9].

2 Rupture of a shelled microbubble

In this section a theoretical model is proposed to predict the collapse time of

an collapsing shell for a spherical, shelled microbubble. The same compressible,

neo-Hookean [12] hyperelastic strain energy density function is used to model the

potential energy per unit volume of the shell which is subjected to a stress via an

opening angle [12]. The stress of the shell is generated by a sphere with a hole in
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the south polar region; the open sphere represents the reference configuration. A

series of polar hoop stress steps are applied to the ends of this open sphere resulting

in the sphere experiencing both a radial and polar angular displacement. This

stressed sphere then denotes the current configuration and possesses both radial

and hoop stresses which are evaluated using the hyperelastic strain energy density

function in conjunction with the relevant boundary conditions and the momentum

balance law. The application of the polar hoop stresses to deform the sphere is

done via a quasistatic process and so is thus independent of time resulting in a

momentum balance equation that is equal to zero. The radial stresses at both the

inner and outer radii of the compressible shell are set to zero during the quasistatic

deformation procedure. An opening angle π−Θop is chosen that is small compared

to π thus enabling the use of an asymptotic expansion approach (see Figure 1).

Figure 1: Figure illustrating the opening angle, π−Θop, and the matching bound-
ary condition, Θs, for a shelled microsphere.

The spatial profiles of the Cauchy radial and angular hoop stresses that are

created within the shell during the quasistatic process are determined using the

technique of linearisation alongside the momentum balance law and the conserva-
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tion of mass. Since the shell is modelled as compressible this results in a change

in volume and thickness of the shell for the stressed shell. The change in thickness

of the shell is described using the Jacobian of the shell which illustrates both a

radial and an angular dependency. This angular dependency results in coordinate

singularites at the north and south poles of the sphere. To overcome the coor-

dinate singularity, a small region (typically of the order of 1% of π) is reserved

at the North pole, where the Jacobian is approximated as being purely radially

dependent and hence exhibits no angular dependency. A matching boundary con-

dition is then used to model the two regions; one region which is purely radially

dependent and compressible and a much larger region which has both a radial and

angular dependency and is also compressible in nature. The deformation used to

link the reference configuration to the current configuration has both an angular

and a radial dependency and so produces two differential equations; one describing

the polar angle and the other the radial direction. This necessitates the require-

ment for two different sets of boundary conditions, one set for the polar angle and

the other set for the radial behaviour. The process of deforming an open shelled

spherical microbubble will be referred to as the forward picture where the forward

picture’s physical path will be utilised as an initial condition to determine the

subsequent collapse phase of the collapsed shell.

Once the sphere has been stressed a change in the boundary conditions around the

rim of the opening in the sphere is used to collapse the stressed sphere. To collapse

the shell the hoop stress load is set to zero (this can be thought of as sticking a pin

in a balloon). Switching off the stress load causes the stressed shell to collapse back

down to its original, open, deformed location resulting in its original stress free,

reference configuration. This collapse process is evaluated by resolving the radial
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and angular stresses that act on the shell, taking into account their appropriate

directions, and by applyingthe momentum equation alongside the new polar, hoop

stress boundary conditions. It is assumed that in switching off the stress load

at the opening angle that there is no external impulse adding to or subtracting

from the initial potential energy per unit volume of the shell. This means that

the collapse path will match the forward picture and since there is no viscosity or

viscoelastic behaviour in our physical model then there will be no hysteresis. The

physical behaviour of the collapsing shell will be typical of an oscillating helical

spring exhibiting simple harmonic motion where the collapse time is dependent

on the physical properties and characteristics of the material’s shell. Results are

produced from the model to show the influence of the shell’s thickness, its Poisson

ratio and the shear modulus on the collapse times of the collapsing shell.

3 Calculating the deformation for the forward

picture

In this section a model will be developed to determine the Cauchy radial and

angular (hoop) stresses in a deformed, open shelled microbubble when it is sub-

jected to both an angular and a radial deformation. Let us consider the reference

configuration of a stress free shell where a configuration of a body is defined as a

one-to-one correspondence that maps the particles of the body onto their locations

in Euclidean space ([13],p77). The reference configuration in cartesian coordinates

is defined as (X1, X2, X3) and is more generally denoted as X i whereas the current

configuration, representing the stressed sphere, is defined using the cartesian coor-

dinates (x1, x2, x3) which can be generalised to xi. The stress free, open shell has

an inner and outer radii described by RI and RO respectively whilst the deformed
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stressed shell has an inner and outer radii denoted by r(RI) and r(RO). A radial

deformation acting on the stress free, open sphere, is represented by

χ = r(R,Θ)er, (1)

such that the polar angle in the current configuration is a function of the polar

angle in the reference configuration and is expressed by θ = θ(Θ) and er represents

the standard basis spherical polar coordinates ([13],p66). We will use a mixed

tensorial basis and define the deformation gradient as F = ∇ ⊗ χ ([13],p83-84);

that is

F =

(

∂χi

∂Xj
+ χn

∂gn

∂Xj
· gi
)

gi ⊗Gj. (2)

In spherical polar coordinates the current configuration is transformed into physical

components ([13],p64) yielding χ1 = χr, χ2 = ruθ and χ3 = r sin θχφ where the

physical coordinates preserve the units. Using equation (2) we can determine the

gradient of the deformation defined by equation (1) where χ1 = r(R,Θ) and χ2 =

χ3 = 0. For the opening angle approach θ = θ(Θ) and φ = Φ resulting in a

deformation, F , that is given by

(∇⊗ χ)
11

=

(

∂χ1

∂X1
+ χ1

∂g1

∂X1
· g1
)

g1 ⊗G1,

=

(

∂r

∂R
+ r

∂er
∂R

· er
)

er ⊗ eR,

=

(

∂r

∂R

)

er ⊗ eR, (3)
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(∇⊗ χ)
12

=

(

∂χ1

∂X2
+ χ1

∂g1

∂X2
· g1
)

g1 ⊗G2,

=

(

∂r

∂Θ
+ r

∂er
∂Θ

· er
)

er ⊗ eΘ
R

,

=
1

R

(

∂r

∂Θ

)

er ⊗ eΘ, (4)

(∇⊗ χ)
13

=

(

∂χ1

∂X3
+ χ1

∂g1

∂X3
· g1
)

g1 ⊗G3,

=

(

r
∂er
∂Φ

· er
)

er ⊗ eΦ
R sinΦ

,

= (r sin θeφφ
′ · er)

er ⊗ eΦ
R sinΘ

= 0, (5)

(∇⊗ χ)
21

=

(

∂χ2

∂X1
+ χ1

∂g1

∂X1
· g2
)

g2 ⊗G1,

=

(

r
∂er
∂R

· reθ
)

eθ ⊗ eR
r

= 0, (6)

(∇⊗ χ)
22

=

(

∂χ2

∂X2
+ χ1

∂g1

∂X2
· g2
)

g2 ⊗G2,

=
r

R

(

eθ
∂θ

∂Θ
· eθ
)

eθ ⊗ eΘ =
r

R

(

∂θ

∂Θ

)

eθ ⊗ eΘ, (7)

(∇⊗ χ)
23

=

(

∂χ2

∂X3
+ χ1

∂g1

∂X3
· g2
)

g2 ⊗G3,

=

(

r
∂er
∂Φ

· reθ
)

eθ ⊗ eΦ
rR sinΘ

= 0, (8)
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(∇⊗ χ)
31

=

(

∂χ3

∂X1
+ χ1

∂g1

∂X1
· g3
)

g3 ⊗G1,

=

(

r
∂er
∂R

· r sin θeφ
)

eφ ⊗ eR
r sin θ

= 0, (9)

(∇⊗ χ)
32

=

(

∂χ3

∂X2
+ χ1

∂g1

∂X2
· g3
)

g3 ⊗G2,

=

(

reθ
∂θ

∂Θ
· r sin θeφ

)

eφ ⊗ eΘ
rR sin θ

= 0, (10)

and

(∇⊗ χ)
33

=

(

∂χ3

∂X3
+ χ1

∂g1

∂X3
· g3
)

g3 ⊗G3,

=

(

r
∂er
∂Φ

· r sin θeφ
)

eφ ⊗ eΦ
rR sin θ sinΘ

,

=

(

r sin θ

R sin Θ

)

eφ ⊗ eΦ. (11)

Combining equations (3) - (11) and writing them as a 3 × 3 matrix since the

gradient of the deformation written as F = ∇⊗ χ is a two point tensor, gives

F =













∂r
∂R

1

R
∂r
∂Θ

0

0 r
R

(

∂θ
∂Θ

)

0

0 0 r sin θ
R sinΘ













. (12)

with an inverse transpose, F−T , given by

F−T =













∂R
∂r

0 0

−1

r

(

∂R
∂r

) (

∂r
∂Θ

)

∂Θ
∂θ

R
r

(

∂Θ
∂θ

)

0

0 0 R sinΘ

r sin θ













. (13)
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4 Hyperelastic strain energy density function

In this section the First Piola Kirchoff stress tensor will be derived for a neo-

Hookean, compressible strain energy density function. Let us assume that the

shell’s material is hyperelastic so that there exists a strain energy density function

(expressing the potential energy per unit volume), that is neo-Hookean [14, 12, 15],

W (F ), and let it include a compressible term that is used to model the change in

volume of the shell as it is stressed. The determinant of F , gives a measure of how

the volume of the spherical shell changes as it maps from the stress free, reference

configuration to the stressed, current configuration. The Jacobian (determinant

of F ) is therefore

J =
r2

R2

(

∂r

∂R

)(

∂θ

∂Θ

)

sin θ

sin Θ
. (14)

The neo-Hookean strain energy density function is ([12], equation(5)) given by

equation (??). The stresses can be described using the first Piola-Kirchhoff stress

tensor which is the transpose of the nominal stress tensor, expressing the force in

the current configuration in terms of the area in the reference configuration [12].

The Cauchy stresses relate the force in the current configuration to the area in the

current configuration. The first Piola-Kirchhoff stress tensor, S(F ), is calculated

using the following trace properties ∂J/∂F = JF−T and ∂(tr(FF T ))/∂F = 2F ,

resulting in ([12], equation(5))

S(F ) =
∂W

∂F
=

µ

2
(2F ) +

µ

2β

(

−2βJ−2β−1
∂J

∂F

)

,

= µ
(

−J−2βF−T + F
)

. (15)
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Substituting equations (12) and (13) into equation (15) leads to

S = SrRer ⊗ eR + SθΘeθ ⊗ eΘ + SφΦeφ ⊗ eΦ + SrΘer ⊗ eΘ + SθReθ ⊗ eR,

= µ

(

−J−2β ∂R

∂r
+

∂r

∂R

)

er ⊗ eR + µ

(

−J−2βR

r

(

∂Θ

∂θ

)

+
r

R

(

∂θ

∂Θ

))

eθ ⊗ eΘ

+ µ

(

−J−2βR sinΘ

r sin θ
+

r sin θ

R sin Θ

)

eφ ⊗ eΦ +
µ

R

(

∂r

∂Θ

)

er ⊗ eΘ

+
µJ−2β

r

(

∂R

∂r

)(

∂r

∂Θ

)

∂Θ

∂θ
eθ ⊗ eR. (16)

Note that equation (16) identifies the physical components for SrR, SθΘ, SφΦ etc.

5 Calculating the divergence of the First Piola

Kirchoff stress tensor for the forward picture

In this section the divergence of the First Piola Kirchoff stress tensor is derived for

the stressing of shelled microbubble. The open, stress free sphere is deformed by

applying a series of stresses directed towards the pole and applied on the rim of the

open surface at the opening angle. Each one of which is modelled as a quasistatic

deformation (1); the momentum is zero. This implies that the divergence of the

first Piola Kirchoff stress tensor must satisfy ∇ · S = 0. We need to be able to

relate the physical coordinates for the mixed tensorial basis to the general basis

vectors represented by the components gi and Gi where i ∈ {1, 2, 3}. The first

Piola-Kirchhoff stress tensor is represented by ([13],p34), S = S j
i g

i ⊗ Gj where

S j
i are the left-covariant components of S. Converting into physical coordinates

using equation (16) yields

S 1

1 g
1 ⊗G1 = S 1

1 er ⊗ eR = SrRer ⊗ eR,

12



where

S 1

1
= SrR = µ

(

−J−2β ∂R

∂r
+

∂r

∂R

)

, (17)

and

S 2

2
g2 ⊗G2 = S 2

2

(

R

r

)

eθ ⊗ eΘ = SθΘeθ ⊗ eΘ,

thus

S 2

2
= µ

(

−J−2β

(

∂Θ

∂θ

)

+
r2

R2

(

∂θ

∂Θ

))

, (18)

and

S 3

3 g
3 ⊗G3 = S 3

3

(

R sinΘ

r sin θ

)

eφ ⊗ eΦ = SφΦeφ ⊗ eΦ,

resulting in

S 3

3
= µ

(

−J−2β +

(

r sin θ

R sin Θ

)2
)

. (19)

Similarly

S 2

1
g1 ⊗G2 = S 2

1
er ⊗ ReΘ = SrΘer ⊗ eΘ,

where

S 2

1
=

µ

R2

(

∂r

∂Θ

)

, (20)

and

S 1

2 g
2 ⊗G1 = S 1

2

eθ
r
⊗ eR = SθReθ ⊗ eR,

resulting in

S 1

2
= µJ−2β

(

∂R

∂r

)(

∂r

∂Θ

)

∂Θ

∂θ
. (21)
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Calculating the divergence of S where

∇ · S =
∂

∂Xk

(

S j
i g

i ⊗Gj

)

·Gk, (22)

leads to

∂

∂X1

(

S 1

1 g
1 ⊗G1

)

·G1 =
∂S 1

1

∂R
(er ⊗ eR) · eR =

∂S 1

1

∂R
er. (23)

Similarly we get

∂

∂X1

(

S 2

2
g2 ⊗G2

)

·G1 =
∂

∂R

(

S 2

2

eθ
r
⊗ ReΘ

)

· eR,

=
∂

∂R

(

S 2

2

R

r

)

(eθ ⊗ eΘ) · eR = 0, (24)

since (eθ ⊗ eΘ) · eR = 0 and both eθ and eΘ have no R dependency. Similarly

∂

∂X1

(

S 3

3 g
3 ⊗G3

)

·G1 =
∂

∂R

(

S 3

3

eφ
r sin θ

⊗ R sin ΘeΦ

)

· eR,

=
∂

∂R

(

S 3

3

R sinΘ

r sin θ

)

(eφ ⊗ eΦ) · eR = 0. (25)

The off diagonal terms are

∂

∂X1

(

S 2

1 g
1 ⊗G2

)

·G1 = 0, (26)

and

∂

∂X1

(

S 1

2
g2 ⊗G1

)

·G1 =

(

∂S 1
2

∂R

)

eθ
r
− S 1

2

r2

(

∂r

∂R

)

eθ. (27)
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Other terms are

∂

∂X2

(

S 1

1
g1 ⊗G1

)

·G2 =
S 1

1

R
(er ⊗ eΘ) · eΘ,

=
S 1
1

R
(er ⊗ eΘ) · eΘ =

S 1
1

R
er, (28)

also

∂

∂X2

(

S 2

2
g2 ⊗G2

)

·G2 =
∂S 2

2

∂Θ

(eθ
r

)

+ S 2

2

∂

∂Θ

(eΘ
r

)

,

=
∂S 2

2

∂Θ

(eθ
r

)

− S 2

2

r2

(

∂r

∂Θ

)

eθ −
S 2

2

r

(

∂θ

∂Θ

)

er, (29)

similarly

∂

∂X2

(

S 3

3 g
3 ⊗G3

)

·G2 =

(

S 3

3

eφ
r sin θ

⊗ ∂

∂Θ
(R sin ΘeΦ)

)

· eΘ
R

= 0, (30)

and

∂

∂X2

(

S 2

1 g
1 ⊗G2

)

·G2 =
∂S 2

1

∂X2
g1 + S 2

1

∂g1

∂X2
+ S 2

1 g
1 ⊗ ∂

∂Θ
(ReΘ) ·G2,

=
∂S 2

1

∂Θ
er + S 2

1

(

∂θ

∂Θ

)

eθ, (31)

and

∂

∂X2

(

S 1

2
g2 ⊗G1

)

·G2 =

(

S 1

2
g2 ⊗ ∂G1

∂X2

)

·G2,

=

(

S 1

2

eθ
r
⊗ ∂

∂Θ
eR

)

· eΘ
R

=
S 1
2

Rr
eθ. (32)
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Other components are

∂

∂X3

(

S 1

1
g1 ⊗G1

)

·G3 =

(

S 1

1
g1 ⊗ ∂eR

∂Φ

)

·G3,

=
(

S 1

1 er ⊗ sinΘeΦ
)

· eΦ
R sinΘ

=
S 1

1

R
er, (33)

and

∂

∂X3

(

S 2

2 g
2 ⊗G2

)

·G3 = S 2

2

eθ
r
⊗ ∂

∂Φ
(ReΦ) ·

eΦ
R sinΘ

,

= S 2

2

eθ
r
⊗R cosΘeΦ · eΦ

R sinΘ
=

S 2

2
cotΘ

r
eθ, (34)

also

∂

∂X3

(

S 3

3
g3 ⊗G3

)

·G3 = S 3

3

∂

∂Φ

( eφ
r sin θ

)

,

= −S 3

3

r
er −

S 3

3
cot θ

r
eθ, (35)

similarly

∂

∂X3

(

S 2

1
g1 ⊗G2

)

·G3 = S 2

1
er ⊗

∂

∂Φ
(ReΘ) ·

eΦ
R sinΘ

,

= S 2

1
er ⊗ cosΘeΦ · eΦ

sin Θ
= cotΘS 2

1
er, (36)

and

∂

∂X3

(

S 1

2
g2 ⊗G1

)

·G3 = S 1

2
g2 ⊗ ∂G1

∂X3
·G3,

= S 1

2

eθ
r
⊗ ∂eR

∂Φ
· eΦ
R sin Θ

=
S 1
2

rR
eθ. (37)
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6 Radial and angular equations

In this section, the radial and angular equations are derived for a stressed shelled

microbubble. Combining equations (23) to (37) and substituting into equation

(22) results in the following radial and angular equations respectively

∂S 1

1

∂R
+

2S 1

1

R
− S 2

2

r

(

∂θ

∂Θ

)

− S 3

3

r
+

∂S 2

1

∂Θ
+ cotΘS 2

1 = 0, (38)

and,

1

r

(

∂S 1

2

∂R

)

− S 1

2

r2

(

∂r

∂R

)

+
1

r

(

∂S 2

2

∂Θ

)

− S 2

2

r2

(

∂r

∂Θ

)

+ S 2

1

(

∂θ

∂Θ

)

+
2S 1

2

Rr
+

S 2
2 cotΘ

r
− S 3

3 cot θ

r
= 0. (39)

Note that equations (38) and (39) represent the nondimensionalised stresses in a

mixed tensorial basis and are the transpose of the nominal stresses. The first Piola

Kirchoff tensor is related to the Cauchy stress tensor via

τ =
1

J

(

SF T
)

, (40)

where J , the Jacobian, is given by equation (14) and F is described by equation

(12) [12]. Using equation (40) in conjunction with equations (17) to (21), alongside

equations (12) and (40) result in Cauchy stress terms that are given by the following

expressions

τrr =
1

J

(

SrR
∂r

∂R
+

SrΘ

R

(

∂r

∂Θ

))

,

=
µ

J

(

−J−2β +

(

∂r

∂R

)2

+
1

R2

(

∂r

∂Θ

)2
)

, (41)
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alongside

τθθ =
1

J

(

SθΘ

( r

R

) ∂θ

∂Θ

)

,

=
µ

J

(

−J−2β +
( r

R

)2
(

∂θ

∂Θ

)2
)

, (42)

and

τφφ =
SφΦ

J

(

r sin θ

R sinΘ

)

=
µ

J

(

−J−2β +

(

r sin θ

R sinΘ

)2
)

. (43)

The off diagonal term is given by

τrθ =
1

J
(SrΘ)

r

R

(

∂θ

∂Θ

)

=
µr

JR2

(

∂θ

∂Θ

)

∂r

∂Θ
. (44)

The radial equation can be written in terms of r(R,Θ) and θ(Θ) by substituting

equations (17) to (21) into equation (38) where,

∂J

∂R
= J

(

2

r

(

∂r

∂R

)

+

(

∂R

∂r

)

∂2r

∂R2
− 2

R

)

, (45)

and

∂S 1
1

∂R
= µ

(

∂2r

∂R2

(

1 + (2β + 1)J−2β

(

∂R

∂r

)2
)

+ J−2β

(

4β

r
− 4β

R

(

∂R

∂r

))

)

,

(46)

similarly

2S 1

1

R
= µ

(−2J−2β

R

(

∂R

∂r

)

+
2

R

(

∂r

∂R

))

, (47)

also

− S 2

2

r

(

∂θ

∂Θ

)

= µ

(

J−2β

r
− r

R2

(

∂θ

∂Θ

)2
)

, (48)
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and

− S 3

3

r
= µ

(

J−2β

r
− r sin2 θ

R2 sin2Θ

)

. (49)

The off diagonal terms are

∂S 2
1

∂Θ
=

µ

R2

(

∂2r

∂Θ2

)

, (50)

and

cotΘS 2

1
=

µ cotΘ

R2

(

∂r

∂Θ

)

. (51)

Substituting equations (46) to (51) into equation (38) yields

∂2r

∂R2

(

1 + (2β + 1)J−2β

(

∂R

∂r

)2
)

+ J−2β

(

4β

r
− 4β

R

(

∂R

∂r

)

− 2

R

(

∂R

∂r

)

+
2

r

)

+
2

R

(

∂r

∂R

)

− r

R2

(

∂θ

∂Θ

)2

− r sin2 θ

R2 sin2Θ
+

1

R2

(

∂2r

∂Θ2

)

+
cotΘ

R2

(

∂r

∂Θ

)

= 0. (52)

For the angular equation given by equation (39), the following is required

∂J

∂Θ
=

∂

∂Θ

(

r2

R2

(

∂r

∂R

)(

∂θ

∂Θ

)

sin θ

sin Θ

)

,

= J

(

2

r

∂r

∂Θ
+

(

∂R

∂r

)

∂2r

∂Θ∂R
+

∂2θ

∂Θ2

(

∂Θ

∂θ

)

+
∂θ

∂Θ
cot θ − cotΘ

)

, (53)

and

1

r

∂S 2

2

∂Θ
= µ

(

J−2β

(

4β

r2

(

∂Θ

∂θ

)(

∂r

∂Θ

)

+
2β

r

(

∂Θ

∂θ

)(

∂R

∂r

)

∂2r

∂Θ∂R
+

(2β + 1)

r

∂2θ

∂Θ2

(

∂Θ

∂θ

)2
))

+ µ

(

J−2β

(

2β cot θ

r
− 2β cotΘ

r

∂Θ

∂θ

)

+
2

R2

(

∂θ

∂Θ

)

∂r

∂Θ
+

r

R2

∂2θ

∂Θ2

)

, (54)
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also

1

r

∂S 1

2

∂R
= µJ−2β

(

−4β

r2

(

∂Θ

∂θ

)(

∂r

∂Θ

)

− 2β

r

(

∂Θ

∂θ

)(

∂R

∂r

)2(

∂r

∂Θ

)

∂2r

∂R2

)

+µJ−2β

(

4β

rR

(

∂Θ

∂θ

)(

∂R

∂r

)

∂r

∂Θ
+

1

r

(

∂Θ

∂θ

)

∂2r

∂R∂Θ

(

∂R

∂r

)

− 1

r

(

∂Θ

∂θ

)(

∂R

∂r

)2
∂r

∂Θ

(

∂2r

∂R2

)

)

,

(55)

similarly

− S 2

2

r2
∂r

∂Θ
= µ

(

J−2β

r2

(

∂Θ

∂θ

)

∂r

∂Θ
− 1

R2

∂θ

∂Θ

(

∂r

∂Θ

))

, (56)

and

− S 1

2

r2

(

∂r

∂R

)

= −µJ−2β

r2

(

∂r

∂Θ

)

∂Θ

∂θ
, (57)

where

2S 1

2

Rr
=

2µJ−2β

Rr

(

∂Θ

∂θ

)

∂R

∂r

(

∂r

∂Θ

)

, (58)

and

S 2
2 cotΘ

r
= µ

(

−J−2β

r
cotΘ

∂Θ

∂θ
+

r

R2
cotΘ

∂θ

∂Θ

)

. (59)

Other angular terms lead to

−S 3

3
cot θ

r
= µ

(

J−2β cot θ

r
− r sin θ cos θ

R2 sin2Θ

)

, (60)

and

S 2

1

(

∂θ

∂Θ

)

=
µ

R2

(

∂r

∂Θ

)

∂θ

∂Θ
. (61)
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Combining equations (53) to (61) and substituting into equation (39) gives

J−2β

(

(2β + 1)

r

∂Θ

∂θ

(

∂R

∂r

)

∂2r

∂Θ∂R
+

(2β + 1)

r

(

∂Θ

∂θ

)2
∂2θ

∂Θ2
+

(2β + 1) cot θ

r

)

+ J−2β

(

−(2β + 1) cotΘ

r

(

∂Θ

∂θ

)

− (2β + 1)

r

(

∂Θ

∂θ

)(

∂R

∂r

)2(

∂r

∂Θ

)

∂2r

∂R2

)

+ J−2β

(

2(2β + 1)

rR

(

∂Θ

∂θ

)

∂R

∂r

(

∂r

∂Θ

))

+
2

R2

(

∂θ

∂Θ

)

∂r

∂Θ
+

r

R2

∂2θ

∂Θ2

+
r

R2

(

∂θ

∂Θ

)

cotΘ− r sin θ cos θ

R2 sin2Θ
= 0. (62)

Both the radial and angular equations given by (52) and (62) can be rearranged

and expressed in terms of their respective second partial derivatives with respect

to Θ resulting in

∂2r

∂Θ2
= −R2

∂2r

∂R2

(

1 + (2β + 1)J−2β

(

∂R

∂r

)2
)

+ J−2β

(

−4βR2

r
+ 4βR

(

∂R

∂r

)

+ 2R

(

∂R

∂r

)

− 2R2

r

)

− 2R

(

∂r

∂R

)

+ r

(

∂θ

∂Θ

)2

+
r sin2 θ

sin2Θ
− cotΘ

∂r

∂Θ
, (63)

and

(

(2β + 1)

r
J−2β

(

∂Θ

∂θ

)2

+
r

R2

)

∂2θ

∂Θ2

= J−2β

(

−(2β + 1)

r

(

∂Θ

∂θ

)(

∂R

∂r

)

∂2r

∂Θ∂R
− (2β + 1) cot θ

r
+

(2β + 1) cotΘ

r

(

∂Θ

∂θ

))

+ J−2β

(

(2β + 1)

r

(

∂Θ

∂θ

)(

∂R

∂r

)2(

∂r

∂Θ

)

∂2r

∂R2
− 2(2β + 1)

rR

(

∂Θ

∂θ

)(

∂R

∂r

)

∂r

∂Θ

)

− 2

R2

(

∂θ

∂Θ

)

∂r

∂Θ
− r cotΘ

R2

(

∂θ

∂Θ

)

+
r sin θ cos θ

R2 sin2Θ
. (64)
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7 Nondimensionalisation

In this section, the radial and angular equations are nondimensionalised. The

radial and angular equations are nondimensionalised using y = r/RI and Y =

R/RI where YI = 1 and YO = RO/RI . The equation for the quasistatic radial

momentum represented by equation (63) gives

∂2y

∂Θ2
= −Y 2

∂2y

∂Y 2

(

1 + (2β + 1)J−2β

(

∂Y

∂y

)2
)

+ J−2β

(

−4βY 2

y
+ 4βY

(

∂Y

∂y

)

+ 2Y

(

∂Y

∂y

)

− 2Y 2

y

)

− 2Y

(

∂y

∂Y

)

+ y

(

∂θ

∂Θ

)2

+
y sin2 θ

sin2Θ
− cotΘ

∂y

∂Θ
, (65)

where the Jacobian given by equation (14) has a nonlinearised form given by

J =
y2

Y 2

(

∂y

∂Y

)(

∂θ

∂Θ

)

sin θ

sin Θ
. (66)

The quasistatic polar momentum equation represented by equation (64) reduces

to

(

(2β + 1)

y
J−2β

(

∂Θ

∂θ

)2

+
y

Y 2

)

∂2θ

∂Θ2

= J−2β

(

−(2β + 1)

y

(

∂Θ

∂θ

)(

∂Y

∂y

)

∂2y

∂Θ∂Y
− (2β + 1) cot θ

y
+

(2β + 1) cotΘ

y

(

∂Θ

∂θ

))

+ J−2β

(

(2β + 1)

y

(

∂Θ

∂θ

)(

∂Y

∂y

)2(

∂y

∂Θ

)

∂2y

∂Y 2
− 2(2β + 1)

yY

(

∂Θ

∂θ

)(

∂Y

∂y

)

∂y

∂Θ

)

− 2

Y 2

(

∂θ

∂Θ

)

∂y

∂Θ
− y cotΘ

Y 2

(

∂θ

∂Θ

)

+
y sin θ cos θ

Y 2 sin2Θ
, (67)
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and the Cauchy stresses given by equations (41), (42), (43) and (44) lead to

τ̂yy =
τyy
µ

=
1

J

(

−J−2β +

(

∂y

∂Y

)2

+
1

Y 2

(

∂y

∂Θ

)2
)

, (68)

alongside

τ̂θθ =
τθθ
µ

=
1

J

(

−J−2β +
( y

Y

)2
(

∂θ

∂Θ

)2
)

, (69)

and

τ̂φφ =
τφφ
µ

=
1

J

(

−J−2β +

(

y sin θ

Y sinΘ

)2
)

, (70)

with the off diagonal stress term given by

τ̂yθ =
τyθ
µ

=
y

JY 2

(

∂θ

∂Θ

)

∂y

∂Θ
. (71)

8 Linearisation of the radial and angular equa-

tions

In this section the radial and angular equations are linearised. Linearisation can be

applied to both the radial and angular equations provided that the applied stress p

is small compared to µ. Now consider the linearisation of the nondimensionalised

radial equation (63) where

y(Y,Θ) = Y + ǫf(Y,Θ), (72)

and

θ(Θ) = Θ + ǫg(Θ), (73)
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where ǫ = p̂ = p/µ and is small in magnitude (0.0002µ), ǫf(Y,Θ) represents a

small radial perturbation and ǫg(Θ) denotes a small angular perturbation. Con-

sider the following expressions for the partial derivatives of the nondimensionalised

equations (72) and (73),

∂y

∂Y
= 1 + ǫ

∂f

∂Y
,

∂θ

∂Θ
= 1 + ǫ

dg

dΘ
.

Linearising the Jacobian, J , given by equation (14) requires the simplification

sin θ = sinΘ + ǫg cosΘ resulting in

sin θ

sin Θ
= 1 + ǫg cotΘ,

and substituting into equation (14) gives

J =
(Y + ǫf)2

Y 2

(

1 + ǫ
∂f

∂Y

)(

1 + ǫ
dg

dΘ

)

(1 + ǫg cotΘ),

≈ 1 +
2ǫf

Y
+ ǫ

∂f

∂Y
+ ǫ

dg

dΘ
+ ǫg cotΘ, (74)

and hence

J−2β ≈ 1− 2βǫ

(

2f

Y
+

∂f

∂Y
+

dg

dΘ
+ g cotΘ

)

. (75)

Terms in equation (63) become

1 + (2β + 1)J−2β

(

∂Y

∂y

)2

≈ 1 + (2β + 1)

(

1− 2βǫ

(

2f

Y
+

∂f

∂Y
+

dg

dΘ
+ g cotΘ

))(

1− 2ǫ
∂f

∂Y

)

,

≈ 2(β + 1)− 2(2β + 1)ǫ

(

2βf

Y
+ (β + 1)

∂f

∂Y
+ β

dg

dΘ
+ βg cotΘ

)

,

(76)
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and

−Y 2
∂2y

∂Y 2

(

1 + (2β + 1)J−2β

(

∂Y

∂y

)2
)

≈ −2Y 2(1 + β)ǫ
∂2f

∂Y 2
. (77)

The following term in equation (63)

J−2β

(

−4βY 2

y
+ 4βY

(

∂Y

∂y

)

+ 2Y

(

∂Y

∂y

)

− 2Y 2

y

)

, (78)

can use the following linearised terms

−4βY 2

y
=

−4βY 2

(Y + ǫf)
≈ −4βY + 4ǫβf, (79)

and

4βY

(

∂Y

∂y

)

=
4βY

(

1 + ǫ ∂f
∂Y

) ≈ 4βY − 4βǫY

(

∂f

∂Y

)

, (80)

also

2Y

(

∂Y

∂y

)

=
2Y

(

1 + ǫ ∂f
∂Y

) ≈ 2Y − 2ǫY
∂f

∂Y
, (81)

similarly

−2Y 2

y
=

−2Y 2

(Y + ǫf)
≈ −2Y + 2ǫf, (82)

to give

J−2β

(

−4βY 2

y
+ 4βY

(

∂Y

∂y

)

+ 2Y

(

∂Y

∂y

)

− 2Y 2

y

)

≈ 2 (2β + 1) ǫ

(

f − Y

(

∂f

∂Y

))

.

(83)

Linearising the following terms from equation (63) results in

− 2Y

(

∂y

∂Y

)

≈ −2Y − 2ǫY

(

∂f

∂Y

)

, (84)
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also

y

(

∂θ

∂Θ

)2

= (Y + ǫf)

(

1 + ǫ
dg

dΘ

)2

≈ Y + 2ǫY

(

dg

dΘ

)

+ ǫf, (85)

similarly

y sin2 θ

sin2Θ
= (Y + ǫf) (1 + ǫg cotΘ)2 ≈ Y + 2ǫY g cotΘ + ǫf, (86)

and

− cotΘ

(

∂y

∂Θ

)

≈ − cotΘ

(

ǫ
∂f

∂Θ

)

. (87)

Collecting the expressions (77) and (83) to (87) and substituting into equation

(63) reduces equation (63) on rearrangement, to

− (4β + 4)Y
∂f

∂Y
+ (4β + 4) f + 2Y g cotΘ + 2Y

dg

dΘ

− cotΘ
∂f

∂Θ
− ∂2f

∂Θ2
− 2Y 2 (β + 1)

∂2f

∂Y 2
= 0, (88)

which can be further rearranged and results in

(4β + 4) f − (4β + 4)Y
∂f

∂Y
− cotΘ

∂f

∂Θ
− ∂2f

∂Θ2
− 2Y 2 (β + 1)

∂2f

∂Y 2

= −2Y g cotΘ− 2Y
dg

dΘ
. (89)

Linearising the angular equation given by equation (64) requires the following

expressions

J−2β

(−(2β + 1)

y

)(

∂Θ

∂θ

)(

∂Y

∂y

)

∂2y

∂Θ∂Y
≈ −(2β + 1)

Y
ǫ

∂2f

∂Y ∂Θ
, (90)
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simplifying cot θ yields

cot θ =
cos (Θ + ǫg)

sin (Θ + ǫg)
,

≈ cotΘ− ǫg csc2Θ, (91)

leading to

−(2β + 1) cot θ

y
=

−(2β + 1)(cotΘ− ǫg csc2Θ)

(Y + ǫf)
,

≈ −(2β + 1)

Y

(

cotΘ− ǫg csc2Θ− ǫ
f

Y
cotΘ

)

, (92)

which results in

− J−2β (2β + 1) cot θ

y
≈ −(2β + 1) cotΘ

Y
+

(2β + 1)(4β + 1)ǫf cotΘ

Y 2

+
(2β + 1)ǫg

Y
(β + 1 + β cos 2Θ) csc2Θ

+
2β(2β + 1)

R
ǫ

(

cotΘ
dg

dΘ
+ cotΘ

∂f

∂Y

)

. (93)

Consider

(2β + 1) cotΘ

y

(

∂Θ

∂θ

)

≈ (2β + 1) cotΘ

Y

(

1− ǫ
f

Y
− ǫ

dg

dΘ

)

, (94)

and combining expression (94) with J−2β gives

J−2β (2β + 1) cotΘ

y

(

∂Θ

∂θ

)

≈ (2β + 1) cotΘ

Y

− ǫ
(2β + 1) cotΘ

Y 2

(

(1 + 4β)f + Y

(

(2β + 1)
dg

dΘ
+ 2βg cotΘ + 2β

∂f

∂Y

))

. (95)
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The following expression leads to

(2β + 1)

y

(

∂Θ

∂θ

)(

∂Y

∂y

)2(

∂y

∂Θ

)

∂2y

∂Y 2
,

≈ (2β + 1)

(Y + ǫf)

(

1− ǫ
dg

dΘ

)(

1− 2ǫ
∂f

∂Y

)(

ǫ
∂f

∂Θ

)

ǫ
∂2f

∂Y 2
= 0.

(96)

Now considering

−2(2β + 1)

yY

(

∂Θ

∂θ

)(

∂Y

∂y

)

∂y

∂Θ
≈ −2(2β + 1)

Y 2
ǫ

(

∂f

∂Θ

)

, (97)

which on combining with J−2β results in

J−2β

(−2(2β + 1)

yY

(

∂Θ

∂θ

)(

∂Y

∂y

)

∂y

∂Θ

)

≈ −2(2β + 1)

Y 2
ǫ

(

∂f

∂Θ

)

. (98)

Other terms are

−2

Y 2

(

∂θ

∂Θ

)(

∂y

∂Θ

)

≈ −2ǫ

Y 2

(

∂f

∂Θ

)

, (99)

and

−y cotΘ

Y 2

(

∂θ

∂Θ

)

≈ − cotΘ

Y
− ǫ cotΘ

Y

(

dg

dΘ

)

− ǫf cotΘ

Y 2
. (100)

Now since sin θ ≈ sinΘ + ǫg cosΘ similarly, cos θ ≈ cosΘ− ǫg sin Θ, resulting in

sin θ cos θ ≈ sinΘ cosΘ + ǫg
(

1− 2 sin2Θ
)

, (101)

then

y sin θ cos θ

Y 2 sin2Θ
≈ 1

Y

((

1 +
ǫf

Y

)

cotΘ + ǫg(cot2Θ− 1)

)

, (102)
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also

(2β + 1)

y
J−2β

(

∂Θ

∂θ

)2

+
y

Y 2
,

≈ (2β + 1)

Y

(

1− ǫf

Y
− 2ǫ

dg

dΘ
− 2βǫ

(

2f

Y
+

∂f

∂Y
+

dg

dΘ
+ g cotΘ

))

+
1

Y

(

1 +
ǫf

Y

)

,

(103)

which on combining expression (103) with ∂2θ/∂Θ2 leads to

(2β + 1)ǫ

Y

(

d2g

dΘ2

)

+
ǫ

Y

(

d2g

dΘ2

)

≈ 2(β + 1)ǫ

Y

(

d2g

dΘ2

)

. (104)

Combining and substituting equations (90), (92), (93), (95) to (100) and (102) and

(104) into the angular equation (64) results in

− Y
(

1 + 2β + cos2Θ
)

g csc2Θ+ 2Y (1 + β) cotΘ

(

dg

dΘ

)

+ 2Y (1 + β)
d2g

dΘ2
+ 4(1 + β)

(

∂f

∂Θ

)

+ Y (1 + 2β)
∂2f

∂Y ∂Θ
= 0. (105)

9 Linearisation of the Cauchy stresses

In this next section we will linearise the Cauchy stresses. The Cauchy radial,

polar and azimuthal stresses given by equations (68), (69) and (70) respectively

are linearised using equations (72) and (73) which results in

τ̂yy ≈ ǫ

(

4βf

Y
+ (2β + 2)

∂f

∂Y
+ 2β

dg

dΘ
+ 2βg cotΘ

)

, (106)
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alongside

τ̂θθ ≈ ǫ

(

(4β + 2)
f

Y
+ 2β

(

∂f

∂Y

)

+ (2β + 2)

(

dg

dΘ

)

+ 2βg cotΘ

)

, (107)

and

τ̂φφ ≈ ǫ

(

(4β + 2)
f

Y
+ 2β

(

∂f

∂Y

)

+ 2β

(

dg

dΘ

)

+ (2β + 2)g cotΘ

)

, (108)

respectively. Equations (106) and (107) will be used to evaluate the boundary

conditions for both the deformation of the open shell (forward picture) and the

collapse phase of the shell.

10 Boundary conditions for the deformation the

shell - the forward picture

In this section we will discuss the boundary conditions for the forward picture.

From the definition of the Jacobian, J , given by equation (14) we can observe that

there is a coordinate singularity at the the north pole of the shelled microbubble.

To overcome this coordinate singularity at Θ = 0, the domain is partitioned into

two regions. The first region restricts the polar angle Θ to a very small angular

region. In this region the angular dependency is approximated by θ(Θ) = Θ which

imples that the shell’s behaviour is purely radial and compressive. This region is

defined by 0 ≤ Θ ≤ Θs where Θs represents the boundary of the purely radial and

compressive region at the north pole. This imples that the region which is purely

radially dependent has an angular perturbation such that g(Θ) = 0 resulting in

θ(Θ) = Θ. The second region is much larger and effectively covers the remaining

sphere. This second region is compressible and exhibits both an angular and radial
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dependency such that r = r(R,Θ) and θ = θ(Θ) and is restricted to Θs < Θ ≤ Θop

where Θop is the opening angle. A matching boundary condition is applied at Θs

to both the radial and angular equations. Note that the opening polar angle is

defined as the supplement of an angle, Θop, such that the opening angle is given

by π − Θop where Θop is large and its supplement (the opening angle) is small.

The boundary conditions at the nondimensionalised inner and outer radii of the

shell (which are represented by YI and YO respectively) are obtained using the

nondimensionalised Cauchy radial stresses where τ̂yy (YI) = 0 and τ̂yy (YO) = 0.

Using equation (106) and setting τ̂yy = 0 at both the nondimensionalised inner

and outer radii YI/O leads to

4βf(YI/O,Θ)

YI/O

+ (2β + 2)
∂f(YI/O,Θ)

∂Y
+ 2β

dg

dΘ
+ 2βg cotΘ = 0. (109)

The polar angular boundary condition at Θs is given by

g(Θs) = 0, (110)

resulting in θ(Θ) = Θ. At the opening angle Θop the polar hoop stress represented

by equation (107) is subjected to a nondimensionalised stress p̂ where p̂ = p/µ and

ǫ = p̂. This small stress applied to the surface of the shell deforms the shell. The

boundary condition is evaluated using

τ̂θθ (Θop) = p̂ = ǫ. (111)

This simplifies using equation (107) to give

(4β + 2)f

Y
+ 2β

∂f

∂Y
+ (2β + 2)

dg

dΘ
+ 2βg cotΘop = 1. (112)
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at Θop.

11 Solving the angular and radial equation for

the forward picture - deformation of the shell

In this next section we will solve the radial and angular equations for the forward

picture. To solve the radial and angular equations represented by equations (89)

and (105) we shall consider the case when ν → 1/2. We will assume that the

angular equation is independent of Y thus for large β equation (105) reduces to

g′′ + cotΘg′ − g(cscΘ)2 = 0, (113)

where

d

dΘ
(g cotΘ + g′) = 0,

thus g′ + g cotΘ = a constant. (114)

To determine the constant in equation (114) we can apply the boundary condition

at the opening angle which is represented by equation (112) by assuming that

τ̂θθ(Θop) is independent of Y (see Figure 3). This assumption allows us to gain

analytical insight into the problem. The boundary condition at Θop for large β

leads to

dg

dΘ
+ g cotΘop =

1

2β
. (115)

Equation (115) places a value on the constant in equation (114) where the constant =

1/(2β). This leads to

g′ + g cotΘ =
1

2β
, (116)
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which results in

d

dΘ
(g sinΘ) =

sinΘ

2β
,

and g(Θ) = −cosΘ

2β
+ k cscΘ. (117)

Applying the angular boundary condition at Θs where g(Θs) = 0 gives k =

cosΘs/(2β) resulting in

g(Θ) = −cotΘ

2β
+

cosΘs cscΘ

2β
. (118)

For large β the radial equation given by equation (89) reduces to

4βf−4βY
∂f

∂Y
−cot Θ

∂f

∂Θ
− ∂2f

∂Θ2
−2Y 2β

∂2f

∂Y 2
= −2Y g cotΘ−2Y

dg

dΘ
= −2Y

2β
≈ 0,

(119)

as β → ∞. Considering

4βf − 4βY
∂f

∂Y
− cotΘ

∂f

∂Θ
− ∂2f

∂Θ2
− 2Y 2β

∂2f

∂Y 2
= 0, (120)

and solving using separation of variables where f(Y,Θ) = a(Y )b(Θ) leads to

4β − 4βY
a′

a
− 2Y 2β

a′′

a
= cotΘ

b′

b
+

b′′

b
= K, (121)

which can be rewritten as

b′′ + b′ cotΘ−Kb = 0, (122)

−2Y 2βa′′ − 4βY a′ + (4β −K) a = 0. (123)
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Equation (123) is solved by setting a(Y ) = Y s which leads to

s2 + s+
K − 4β

2β
= 0, (124)

which has solution(s)

s =
−1±

√

1− 4(K − 4β)/(2β)

2
, (125)

where a(Y ) = ciY
s and ci is determined by applying the boundary conditions for

the radial equation at YI/O. Note that at K = 9β/2 equation (125) reduces to one

solution only which is the condition for equal roots. Applying the radial boundary

condition given by equation (112) due to τ̂yy = 0 and using separation of variables

leads to

4β
ab

Y
+ (2β + 2) a′b+ 2β (g′ + g cotΘ) = 0, (126)

and since g′ + g cotΘ ≈ 0 for β → ∞ equation (126) simplifies to

b
(

4β
a

Y
+ 2βa′

)

= 0,

thus
2a

YI/O
+ a′(YI/O) = 0, (127)

at YI/O. For b(Θ) given by equation (122) we assume that at Θs any change in

the radial positions of the particles in the shell at that position depends only on

Y thus f(Y,Θs) = f(Y ) with a(Y )b(Θs) = a(Y ) therefore b(Θs) = 1. The angular

term b(Θ) represented by equation (122) is a Legendre function with boundary

conditions b(Θs) = 1 and b′(Θs) = 0 at the matching boundary Θs. The general

solution for a(Y ) is represented by a(Y ) = ciY
s where s is given by equation (125).

This is solved by applying the boundary conditions at YI/O given by equation (127)

to a(Y ) = ciY
s which results in a 2×2 matrix, M(K), whose determinant is plotted
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versus K for a given value of β. Using a range of values for K results in a plot

with two unique roots that occur at K = 0 and K = 9β/2. Figure 2 illustrates

how the determinant of a(Y ) = ciY
s subjected to equation (127) varies with K

where s is given by equation (125).

20 40 60 80 100

0.01

0.02

0.03

0.04

0.05

K

detM(K)

Figure 2: This is calculated using a(Y ) = ciY
s alonside equations (125) and (127).

For Figure 2 when K = 0 the solution is a(Y ) = c1Y + c2/Y
2 which has two

linearly independent eigenvectors that lead to a trivial solution where c1 = c2 = 0.

The nontrivial solution occurs when K = 9β/2 and has a solution represented by

a(Y ) = c1Y
−1/2 + c2Y

−1/2 log Y. (128)

Applying the radial boundary conditions given by equation (127) to equation (128)
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leads to c1 = −c2/3 resulting in

a(Y ) = c2

(

−1

3
Y −1/2 + Y −1/2 log Y

)

. (129)

The angular expression b(Θ) which is given by equation (122) is solved for the

boundary conditions b(Θs = 1 and b′(Θs) = 0. This can be solved numerically and

is a Legendre function of the first and second kinds. To determine c2 we apply the

conservation of mass. The conservation of mass demands that

mref = mcurrent, (130)

where ρref = ρcurrentJ and J is the Jacobian is given by equation (74). This leads

to

Vref =

∫

dVcurrent

J
, (131)

which is solved numerically to give a value for c2 which is dependent on the opening

angle Θop, the matching boundary condition Θs and the applied hoop (polar) stress

p̂ where p̂ = p/µ = ǫ.

12 Determining the collapse phase of the shell

for the radial component of the momentum

This section will focus on the collapse phase of the shell. To collapse the shell we

have to consider both the radial and angular components of the linear momentum

where the radial component of the linear momentum is denoted by

ρo
Dv

Dt
= ∇R · S, (132)
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and ρo is the density in the reference configuration, D/Dt is the material derivative

and S is the first Piola Kirchoff stress tensor. Applying equation (132) to the radial

component of the momentum gives

(

ρo
Dvr
Dt

)

er = ∇R · S, (133)

where vr = ∂r/∂t, vθ = r∂θ/∂t, vφ = 0 and the material derivative ([16], p354-

p355) is written as

Dvr
Dt

=
∂vr
∂t

+ vr
∂vr
∂ri

+
vθ
r

∂vr
∂θi

− v2θ
r
. (134)

To nondimensionalise the material derivative represented by equation (158) we set

t = γt̂ which results in

Dvr
Dt

=
RI

γ2

(

∂2y

∂t̂2
+

∂y

∂t̂

∂

∂yi

(

∂y

∂t̂

)

+
∂θ

∂t̂

∂

∂θi

(

∂y

∂t̂

)

− y

(

∂θ

∂t̂

)2
)

, (135)

where the radial momentum component is given by

ρoR
2

I

µoγ2

(

∂2y

∂t̂2
+

∂y

∂t̂

∂

∂yi

(

∂y

∂t̂

)

+
∂θ

∂t̂

∂

∂θi

(

∂y

∂t̂

)

− y

(

∂θ

∂t̂

)2
)

er = µr∇Y · Ŝ, (136)

and Ŝ is the nondimensionalised First Piola Kirchoff stress. Note that we have

used a relative nondimensionalised shear modulus µr = µ/µo where µo = 20MPa

in order to determine how varying the shear modulus influences the collapse time

of the shell whilst keeping γ fixed as µ is varied. This will result in a nondimen-

sionalised time t̂ which varies as µ changes whilst γ remains fixed. Equation (136)

is nondimensionalised by setting ρoR
2

I/ (µoγ
2) = 1 which simplifies equation (136)

37



to

(

∂2y

∂t̂2
+

∂y

∂t̂

∂

∂yi

(

∂y

∂t̂

)

+
∂θ

∂t̂

∂

∂θi

(

∂y

∂t̂

)

− y

(

∂θ

∂t̂

)2
)

er = µr∇Y · Ŝ. (137)

To solve equation (137) we linearise where

y = Y + ǫj(Y,Θ, t̂), (138)

and only the first term ∂2y/∂t̂2 is non-zero since all the remaining terms on the

left handside of equation (137) are second order. The right hand side of equation

(137) represented by µr∇Y · Ŝ, is evaluated using the quasistatic solution for the

First Piola Kirchoff equation represented by equation (120) but with a caveat.

In equation (120) which denotes the deformation of the shell and is quasistatic,

the stresses can exhibit both a compressive and a stretching behaviour whereas in

the collapse phase the stresses are effectively all negative in nature and are thus

compressive only. To collapse the shell the signs of the relative terms in equa-

tion (120) are changed to represent a compression only behaviour. Applying the

linearisation represented by equation (138) to the compression modified equation

initially denoted by equation (120) results in

∂2j

∂t̂2
= µr

(

−4βj + 4βY
∂j

∂Y
− cotΘ

∂j

∂Θ
− ∂2j

∂Θ2
− 2Y 2β

∂2j

∂Y 2

)

. (139)

Using separation of variables where j(Y,Θ, t̂) = A(Y )B(Θ)T (t̂) and substituting

into equation (139) gives

T̈

T
= µr

(

−4β + 4βY

(

A′

A

)

− cotΘ

(

B′

B

)

−
(

B′′

B

)

− 2Y 2β

(

A′′

A

))

= ω2,

(140)
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which can be rewritten as

µr

(

−4β + 4βY

(

A′

A

)

− 2Y 2β

(

A′′

A

))

−ω2 = µr

((

B′′

B

)

+ cotΘ

(

B′

B

))

= Kµr.

(141)

Equation (141) leads to two key equations

B′′ +B′ cotΘ−KB = 0, (142)

µr

(

−4β + 4βY

(

A′

A

)

− 2Y 2β

(

A′′

A

)

−K

)

− ω2 = 0, (143)

where K = 9β/2 which is obtained from the forward picture. To solve equations

(142) and (143) we must consider the initial conditions for the collapse phase where

y = Y + ǫa(Y )b(Θ) = Y + ǫA(Y )B(Θ)T (0), (144)

∂j(Y,Θ, 0)

∂t̂
= 0, (145)

which leads to

B(Θ) = b(Θ), (146)

A(Y ) = a(Y )/T (0). (147)

Substituting equation (146) into equation (142) gives equation (122), b′′+b′ cotΘ−

Kb = 0, from the forward (quasistatic) picture. Using equation (146) to solve

equation (143) results in

µr

(

−4β + 4βY

(

a′

a

)

− 2Y 2β

(

a′′

a

)

−K

)

− ω2 = 0. (148)
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From the forward picture expressed by equation (123)

− 2Y 2βa′′ = 4βY a′ − (4β −K)a, (149)

which upon substituting into equation (148) leads to

ω2 = µr

(

8βY

(

a′

a

)

− 8β

)

, (150)

where a(Y ) is given by equation (129). Solving equation (129) results in a general

solution for a(Y ) as a function of p̂ where p̂ = p/µ = ǫ which has the form

a(Y ) = − p̂

2
√
Y

(

−2c2
3

+ c2 log Y

)

, (151)

where c2 is evaluated numerically by applying the conservation of mass. Similarly

a′(Y )

a(Y )
=

8− 3 log Y

2Y (3 log Y − 2)
, (152)

and

Y a′(Y )

a(Y )
=

8− 3 log Y

2 (3 log Y − 2)
, (153)

where log Y can be expanded about YI = 1 via a Taylor expansion series resulting

in

Y a′(Y )

a(Y )
≈ −2− 9

4
(Y − 1) . (154)

Substituting equation (154) into equation (150) for ω2 leads to

ω2 = 8βµr

(

−3 − 9

4
(Y − 1)

)

, (155)
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where YI ≤ Y ≤ YO. Since YI = 1 and YO = 1.02 then the dependency of ω on Y

is negligible.

13 Determining the collapse phase of the shell

for the polar component of the momentum

THis section will discuss the polar component during the collapse phase of the

shell. As well as there being a radial component of momentum there is also an

polar component of linear momentum. This is given by

(

ρo
Dvθ
Dt

)

eθ =
1

R
∇Θ · S, (156)

where

vθ = r
∂θ

∂t
. (157)

The material derivative is given by ([16], p354-355)

Dvθ
Dt

=
∂vθ
∂t

+ vr
∂vθ
∂ri

+
vθ
r

∂vθ
∂θi

+
vrvθ
r

. (158)

and nondimensionalising where y = r/RI , Y = R/RI and t = γt̂ leads to

Dvθ
Dt

=
RI

γ2

(

∂

∂t̂

(

y
∂θ

∂t̂

)

+
∂y

∂t̂

∂

∂yi

(

y
∂θ

∂t̂

)

+

(

∂θ

∂t̂

)

∂

∂θi

(

y
∂θ

∂t̂

)

+
∂y

∂t̂

(

∂θ

∂t̂

))

.

(159)

Linearising equation (159) where ǫ = p̂ using

θ(Θ, t̂) = Θ + ǫh(Θ, t̂), (160)
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results in

Dvθ
Dt

=
RIY

γ2

(

ǫ
∂2h

∂t̂2

)

, (161)

since the second, third and fourth terms in equation (159) are higher order. The

nondimensionalised right hand side of equation (156) is given by

1

R
∇Θ · S =

µrµo

RIY

(

∇Θ · Ŝ
)

, (162)

where Ŝ represents the nondimensionalised First Piola Kirchoff stress and µr =

µ/µo. Equating equations (161) and (162) results in the linearised, nondimen-

sionalised polar component for the collapse phase of the linear momentum which

is

Y 2ǫ

(

∂2h

∂t̂2

)

eθ = µr∇Θ · Ŝ (163)

where γ =
√

ρoR2

I/µo. The nondimensionalised polar component of the First Pi-

ola Kirchoff stress Ŝ for the collapse phase of the shell is related to the quasistatic

equation represented by equations (105) and (113). In the collapse phase each

contributing term in equation (113) will contribute a negative stress value which

represents a compression whilst the perturbation in the collapse phase is denoted

by ǫh(Θ, t̂) rather than ǫg(Θ) for the quasistatic (forward) picture. Adjusting the

signs in equation (113) such that all the terms are negative in magnitude and

applying the appropriate time evolving perturbation ǫh(Θ, t̂) results in a nondi-

mensionalised polar stress term given by

∇Θ · Ŝ = ǫµr

(

−2β|h′′| − 2β|h′ cotΘ| − 2βh csc2Θ
)

eθ, (164)
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which leads to the polar component of the linear momentum

Y 2
∂2h

∂t̂2
= µr

(

−2β|h′′| − 2β|h′ cotΘ| − 2βh csc2Θ
)

. (165)

The polar component of the linear momentum represented by equation (165) is

solved numerically using finite differences. To solve equation (165) we require two

boundary and two initial conditions. The boundary condition at the opening angle

Θop is such that τ̂θθ
(

Θop, t̂
)

= 0 which leads to

h′ + h cotΘop = 0, (166)

and at the matching boundary condition

h(Θs, t̂) = 0. (167)

The initial conditions are

h(Θ, 0) = g(Θ), (168)

and
∂h(Θ, 0)

∂t̂
= 0, (169)

where equation (168) sets h(Θ, t̂) for the angular collapse phase at t̂ = 0 equal to

the forward picture g(Θ). This implies that there is no hysteresis in the collapse

phase of the shell and that the forward and collapse paths are identical. This is a

consequence of there being no viscoelasticity in the physical model.
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14 Results for the deformation of an open shelled

spherical microbubble

1.005 1.010 1.015 1.020

0.02
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Y

(4β + 2) ǫf
Y

+ 2βǫ ∂f
∂Y

Figure 3: Graph of the radial terms in the polar hoop stress boundary condition
for equation (112) for β = 24.5.

Figure 3 highlights how the magnitude of the radial terms in equation (112) vary

with Y and illustrates that the contribution of (4β + 2)ǫf/Y + 2βǫ∂f/∂Y to

the nondimensionalised boundary condition is small. This justifies neglecting the

radial terms in equation (112) which results in an angular boundary condition that

is independent of Y .
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Figure 4: Graph of the angular perturbation for an open shell versus the refer-
ence angle for a nondimensionalised hoop stress load of p̂ = 0.0002 where µ =
20MPa, ν = 0.49, β = 24.5 and an initial thickness of YO − YI = 0.02 for an
opening angle of π − Θop = π/36 and a matching boundary condition given at
Θs = π/45. This is calculated using equation (118).

Figure 4 illustrates how the angular perturbation, ǫg(θ), varies with the polar

angle, Θ, in the reference configuration for a small opening angle π −Θop = π/36

and a nondimensionalised stress of p̂ = 0.0002. ǫg(θ), the perturbation of θ(Θ),

is nonlinear and small in magnitude which is a consequence of the small opening

angle, π −Θop.
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Figure 5: Graph of θ(Θ) for an open shell versus the reference angle, Θ, for a
nondimensionalised stress load of p̂ = 0.0002 where µ = 20MPa, ν = 0.49, β =
24.5 and an initial thickness of YO − YI = 0.02 for an opening angle of π − Θop =
π/36 and a matching boundary condition at Θs = π/45. This is calculated using
equation (118).

Figure 5 highlights how the polar angle, θ(Θ), in the current configuration

varies with the polar angle in the reference configuration, Θ, for a small opening

angle given by π − Θop = π/36 and a matching boundary condition applied to

the vicinity of the north pole at Θs = π/45. The polar angle θ(Θ) is linear

in nature due to the small perturbation in ǫg(θ) which is a result of the small

opening angle π −Θop. At the polar angular region of 0 ≤ Θ ≤ π/45 the angular

perturbation is ǫg(θ) = 0 and θ(Θ) = Θ. This region represents the purely radially

compressive region of the sphere where the matching boundary condition is applied

in the vicinity of the north pole in order to avoid a coordinate singularity in the

Jacobian, J , given by equation (14).

46



1 .005 1 .010 1 .015 1 .020

1 .040

1 .045

1 .050

Y

y(Y,Θop)

Figure 6: Graph of the nondimensionalised radius in the current configuration
y(Y,Θ) versus the nondimensionalised radius in the reference configuration Y for
a nondimensionalised stress load p̂ = 0.0002 where µ = 20MPa, ν = 0.49, β =
24.5 and an initial thickness of YO − YI = 0.02 for an opening angle of π − Θop =
π/36 and a matching boundary condition at Θs = π/45. This is calculated using
equations (122) and (129).

Figure 6 illlustrates the linear relationship between the radius y(Y,Θop) in the

current configuration and the radius in the reference configuration, Y , for a small

opening angle π − Θop = π/36 and a nondimensionalised stress p̂ = 0.0002. Note

that the y(Y,Θop) is larger than Y indicating that the shell has been displaced

outwards by a very small amount.
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Figure 7: Graph of the nondimensionalised radius in the current configuration
y(Y,Θ) versus Θ for a nondimensionalised stress load p̂ = 0.0002 where µ =
20MPa, ν = 0.49, β = 24.5 and an initial thickness of YO − YI = 0.02 for an
opening angle of π−Θop = π/36 and a matching boundary condition at Θs = π/45.
This is calculated using equations (122) and (129).

Figure 7 illustrates the nonlinear relationship between the radius y(YO,Θ) in

the current configuration and the reference angle Θ for a small opening angle

π − Θop = π/36 and a nondimensionalised stress p̂ = 0.0002 evaluated at YO. As

Θ approaches Θop there is a nonlinear growth in y(YO,Θ).
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Figure 8: Graph of the Jacobian for a series of nondimensionalised stresses
loads up to p̂ = 0.0002 where µ = 20MPa, ν = 0.49, β =
24.5 and an initial thickness of YO − YI = 0.02 for an opening angle of π − Θop =
π/36 and a matching boundary condition at Θs = π/45. This is calculated using
equations (122) and (129).

Figure 8 shows how the thickness of the shell y(YO,Θop)−y(YI ,Θop) thins down

as a series of applied nondimensionalised stresses p̂ up to p̂ = 0.0002 are applied

to the rim of the shell.
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Figure 9: Graph of the normalised mass m/mo for a series of nondimension-
alised stresses loads up to p̂ = 0.0002 where µ = 20MPa, ν = 0.49, β =
24.5 and an initial thickness of YO − YI = 0.02 for an opening angle of π − Θop =
π/36 and a matching boundary condition at Θs = π/45. This is calculated using
equations (74), (122) and (129).

Figure 9 illustrates how the normalised mass of a stressed shell evolves (for-

ward picture) over a range of nondimensionalised stresses p̂ up to p̂ = 0.0002 and

highlights that the error in mass conservation is ≈ 0.6%.

15 Results for the collapse phase of an open shelled

spherical microbubble

THis section will discuss the results for a collapsing shell.
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Figure 10: Graph of the polar angle perturbation h(Θop, t̂) versus the nondimen-
sionalised time for µ = 20MPa, ν = 0.49, β = 24.5, an initial thickness of YO −
YI = 0.02, an opening angle of π−Θop = π/36 and a matching boundary condition
at Θs = π/45. This is calculated using equations (165), (166), (167), (168) and
(169).

Figure 10 shows how the polar angle perturbation ǫh(Θ, t̂) varies with the

nondimensionalised time as the stressed shell collapses back to its original stress

free configuration when ∇θ · τ = 0. Figure 10 illustrates that the nonlinear trend

is a sinusoidal function described by equation (165) describing simple harmonic

motion. This is a consequence of the negative stress (compressive) terms which

cause the stressed shell to collapse to its original stress free configuration.
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Figure 11: Graph of the nondimensionalised collapse time for the collapse phase
of the shell versus a range of shear modulus values for ν = 0.49, β =
24.5, an initial thickness of YO−YI = 0.02, an opening angle of π−Θop = π/36 and
a matching boundary condition at Θs = π/45. This is calculated using equations
(165), (166), (167), (168) and (169).

Figure 11 illustrates how the collapse time decreases nonlinearly with an in-

creasing shear modulus. A smaller shear modulus experiences a larger displace-

ment due its lower stiffness. Larger displacements (for a given fixed stress p) will

take longer to collapse back to their initial stress free position. Therefore as the

shear modulus increases there is a reduction in the shell’s displacement which

results in faster collapse times.
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Figure 12: Graph of the nondimensionalised collapse time versus a range of Poisson
ratios for µ = 20MPa, an opening angle of π − Θop = π/36 and a matching
boundary condition at Θs = π/45. This is calculated using equations (165), (166),
(167), (168) and (169).

Figure 12 shows that when the Poisson ratio, ν, increases then the collapse

time of the shell decreases, resulting in a faster collapse time. This relationship is

effectively linear in nature and is modelled over the typical range of Poisson values

for soft tissue, namely ν = 0.49 to 0.495. This trend arises because smaller Pois-

son ratios experience larger displacements which results in longer, slower collapse

times.
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Figure 13: Graph of the nondimensionalised collapse time t̂∗ versus a range of
nondimensionalised stress free shell thicknesses ranging from YO−YI = 0.02 to 0.10
for µ = 20MPa, ν = 0.49, β = 24.5, an opening angle of π − Θop = π/36 and
a matching boundary condition at Θs = π/45. This is calculated using equations
(165), (166), (167), (168) and (169).

Figure 13 highlights how the collapse time slightly increases linearly with vary-

ing shell thicknesses (reference configuration thickness). Generally thinner shell

require a lower applied stress to create a particular angular displacement, hence

the resulting tensions are lower, and a higher collapse time results. However, care-

ful analysis of equation (165) reveals a dependency on Y 2. Thus as the thickness

of the shell increases the acceleration downwards during the collapse phase of the

shell is reduced by a factor of 1/Y 2

O resulting in a longer collapse time.
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Figure 14: Graph of the normalised mass m/mo of a stressed, collapsing shell
where µ = 20MPa, ν = 0.49, β = 24.5 and an initial thickness of YO − YI = 0.02
for an opening angle of π − Θop = π/36 and a matching boundary condition at
Θs = π/45. This is calculated using equations (165) to (169).

Figure 14 illustrates that the normalised mass of a collapsing shell versus the

nondimensionalised time is nonlinear in nature. The error in mass conservation is

≈ 0.3%.
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Figure 15: Graph of the radial perturbation j(YI ,Θop, t̂) versus the nondimension-
alised time for µ = 20MPa, ν = 0.49, β = 24.5, an initial thickness of YO − YI =
0.02, an opening angle of π − Θop = π/36 and a matching boundary condition at
Θs = π/45. This is calculated using equations (142), (144), (145), (151) and (155).

Figure 15 shows how the radial perturbation ǫj(YI ,Θop, t̂) varies with the nondi-

mensionalised time as the stressed shell collapses back to its original stress free

configuration when ∇y · τ = 0. Figure 15 illustrates that the nonlinear trend is

a sinusoidal function that is characterised as simple harmonic motion. This is a

consequence of the negative stress (compressive) terms which cause the stressed

shell to collapse to its original stress free configuration. Note that the radial col-

lapse time is t̂∗ ≈ 0.09 and is slower than the polar angular collapse. We would

expect both the radial and polar collapses to be simultaneous with the exact same

collapse times. This difference in collapse times may be due to the various approx-
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imations that have been made when performing the linearisation process. For the

radial displacement the collapse times and their dependency on varying material

parameters display similar characteristic trends as Figures 11, 12 and 13.

16 Experimental v theoretical results

This section compares the theoretical model with published experimental results.

The Müller experiment [7] illustrates how the collapsing shelled millibubble’s dis-

placement varies linearly with time. This linear relationship allows us to extrap-

olate Müller’s experimental results and also supports the use of linearisation for

the analytical model. The theoretical model for the open shelled collapse was

compared to the Müller experiment [7]. The shear modulus of the shell was taken

as µ = 20MPa with a density of ρ = 1100kgm−3 [17]. A 4.5mm stressed shelled

millibubble of thickness 1460nm with a Poisson ratio of ν = 0.49 has a theoretical

collapse time of t∗ = 3.2× 10−7s whereas the experimental result from Müller was

found to be t∗ = 7.4 × 10−7s. There are various reasons as to why the theoretical

model’s collapse time differs from the experimentally observed value. The material

parameters used for the theoretical model may not exactly match the experimen-

tal values in [7]. The strain energy density function used in this study may not

accurately describe the smectic A dynamics.

17 Conclusion

This study has focussed on how the material parameters such as the shear modu-

lus, Poisson’s ratio and the shells equilibrium (stress free) thickness influences the

collapse time of a stressed shell as the shell collapses from its stressed configuration

back to its original stress free configuration. An opening angle was used to model
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the stress free configuration with a polar hoop stress being applied to deform both

radially and angularly the open sphere. The Cauchy polar hoop stress was then set

to zero causing the stressed shell to collapse to its stress free configuration. This

collapse phase was timed by applying the conservation of mass and energy and

by assuming that there was no viscosity or viscoelastic effects in the model that

would lead to hysteresis. A typical shell with an opening angle of π−Θop = π/36,

a nondimensionalised stress free thickness of YO−YI = 0.02, a nondimensionalised

shear modulus of µ = 20MPa and a typical soft tissue Poisson ratio of ν = 0.49 has

a nondimensionalised collapse time of t̂∗ = 0.0096. As the shear modulus increases

the collapse time decreases in a nonlinear manner. Thicker shells have slightly

longer collapse times which is a consequence of the shells possessing a smaller ac-

celeration towards their equilibrium position. Smaller Poisson ratios have longer,

slower collapse times with the relationship between the collapse time and Poisson’s

ratio being effectively linear in nature. The theoretical model compares well with

published experimental results for smectic A millibubbles [7]. A theoretical col-

lapse time of t∗ = 3.2×10−7s was determined whereas the published experimental

result from Müller was found to be t∗ = 7.4× 10−7s.
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