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Abstract�This paper aims to describe methods to determine 

short term probabilistic forecasts of weather conditions 

experienced at overhead lines (OHLs) in order to predict 

percentiles of dynamic line ratings of OHLs which can be used 

by a system operator within a chosen risk policy with respect to 

probability of a rating being exceeded. Predictive probability 

distributions of air temperature, wind speed and direction are 

assumed to be normal, truncated normal and von Mises 

respectively. Predictive centres are estimated as a sum of 

residuals predicted by a univariate auto-regressive model or a 

vector auto-regressive model and temporal trends fitted by a 

Fourier series. Conditional heteroscedasticity of the predictive 

distribution is modelled as a linear function of recent changes in 

residuals within one hour for air temperature and wind speed or 

concentration of recent wind direction observations within two 

hours. Parameters of the probabilistic models are determined to 

minimize the average value of continuous ranked probability 

score which is a summary indicator to assess performance of 

probabilistic models. The conditionally heteroscedastic models 

are shown to have appropriate sharpness and better calibration 

than the respective homoscedastic models. 

Index Terms�Dynamic line rating, Probabilistic forecasting, 

Auto-regressive models, Conditional heteroscedasticity, 

Continuous ranked probability score 

I. INTRODUCTION 

The real-time thermal rating (RTTR) is the maximum safe 
and reliable level of power flow at which a branch of a 
transmission or distribution network can be operated at the 
time in question [1]. In the case of overhead lines (OHLs), 
RTTR is typically referred to as dynamic line rating (DLR). 
The current-carrying capacity of an OHL is determined by 
weather conditions (air temperature, solar radiation, wind 
speed and direction) experienced at the spans and physical 
parameters of overhead conductors based on the heat 
exchange mechanisms of conductors [2]. The expansion of 
overheated conductors caused by an excessive line current 
may lead to an acceleration of aging and an increase in sag of 
a span which may violate the minimum required clearance [2], 
[3]. An OHL is conventionally operated under a constraint of 
a static line rating (SLR) which is estimated through a thermal 

model of overhead conductors [4], [5], using a conservative 
set of weather conditions for a particular season [6]. 

A DLR system can exploit the additional headroom of an 
OHL�s capacity by offering network operators estimations or 
predictions of the line�s actual ampacity at a given time under 
prevailing conditions through monitoring or inferring the 
dynamic behaviours of overhead conductors. In investment 
planning timescales, DLRs can be considered over a range of 
future operating conditions and can offer a cost-effective 
means to deal with power generation and demand growth or 
generation connections that reduce the need for network 
reinforcement. 

Weather-based DLR forecasting techniques which use 
weather condition predictions are being developed widely for 
different forecast horizons in operational planning and near 
real-time system operation so as to forecast the electricity 
transmission congestion and to plan grid operation and the 
energy market [3], [7]-[9]. Reliable and accurate weather 
forecasting is a prerequisite for the system operator having 
confidence in the provided DLR predictions to dispatch power 
flows. 

An advanced spatio-temporal model making use of both a 
vector auto-regressive (VAR) forecasting model and Fourier 
series-based temporal de-trending to extract the annual trend 
and seasonally varying diurnal trends has been shown to give 
greater improvement over persistence than a simple auto-
regressive (AR) model of a same order for short-term (10 
minutes to 2 hours) wind speed predictions [10]. In this paper, 
the AR and VAR forecasting models are enhanced to provide 
the short term probabilistic forecasts in the form of predictive 
probability distributions for air temperature, wind speed and 
wind direction and the results for 1 step (10 minutes) ahead 
are presented. The predictive probability distributions of 
weather conditions can be employed to generate the prediction 
percentiles of DLRs describing the probability of a particular 
OHL thermal rating being exceeded so that the system 
operator can make an informed judgment about risk. This 
allows the operators to make optimal use of the data in their 
rating decisions. Probabilistic forecasting for solar radiation is 
not discussed in this paper since DLR is only moderately 
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sensitive to the change in solar radiation at elevated 
temperature or slightly high wind speed [1], [11]. 

The ideas are explored here in the context of a more than 
90km section of 132kV double circuit OHL in North Wales 
with a spur of around 10km. The 10-minute average weather 
data over 108 days, from 14/12/2012 to 31/03/2013, observed 
at 9 weather stations along the route are provided by Scottish 
Power Energy Networks (SPEN) from their project of 
�Implementation of real-time thermal ratings� (LNCF 
SPT1001) in North Wales [12]. A map of the research area is 
shown in Fig. 1. 

 

Fig. 1. Map showing the route of studied overhead line and locations of 9 
weather stations in North Wales. 

II. METHODOLOGY 

A.  Temporal De-Trending 

Data applied to statistical models are generally required to 
satisfy a weak or second order stationarity. The inherent trends 
of non-stationary data may be misleading with regard to 
correlations among variables or the auto-correlation of a time 
series. Therefore, any trend implied in the non-stationary data 
should be removed before the application of a univariate auto-
regressive model or a vector auto-regressive model [10]. 

The temporal de-trending method applied here uses a 
Fourier series of order 2 with an angular frequency of に講 にねエ  
to extract the diurnal trends in the sliding training window, in 
which the training period consists of the observations in recent 
days at each weather station. Please refer to previous work [10] 
in which the Fourier series-based de-trending was detailed. 

B. Auto-Regressive and Vector Auto-Regressive Models 

An auto-regressive (AR) model of order 喧 estimates the 
forecast 権┘痛 as a linear combination of 喧 historical values at a 
target location and a Gaussian noise term	結痛 [13]: 権┘痛 噺 憲 髪 デ 紅珍権┘痛貸珍椎珍退怠 髪 結痛                       (1) 

where 権┘痛 represents the deviation from the trend component. 憲 
is a constant and 紅珍 are the auto-regressive parameters. 

As an extension of a univariate AR model, the vector auto-
regressive (VAR) model of order 喧 offers a way of producing 
the forecast as a weighted sum of historical time series not 
only at the target location but also from 岫計 伐 な岻 surrounding 
sampled locations [14]: 燦風痛 噺 四 髪 デ 冊珍燦風痛貸珍椎珍退怠 髪 撮痛                    (2) 

where 燦風痛  is a 岫計 抜 な岻  vector consisting of 権┘痛  at 計  locations 
and 四 is a 岫計 抜 な岻 vector of constants. 撮痛 is a 岫計 抜 な岻 vector 
of noise terms and 冊珍  represents a 岫計 抜 計岻  matrix of 

coefficients at time lag 倹. 
燦風嗣 噺 頒権┘怠痛権┘態痛教権┘懲痛番    四 噺 頒憲怠憲態教憲懲番    撮痛 噺 頒結怠痛結態痛教結懲痛番  冊珍 噺 崛畦怠怠珍 橋 畦怠懲珍教 狂 教畦懲怠珍 橋 畦懲懲珍 崑 

Equations (1) and (2) can be applied to air temperature and 
wind speed forecasting. Some changes in both equations are 
made for wind direction forecasting due to the circular 
properties of wind direction. Wind directions 肯 樺 岷伐講┸ 講岻 at 
each location are first decomposed along the easterly and 
northerly axes in the Cartesian coordinates as cos 肯 and sin 肯 
respectively before the application of the AR or VAR model. 
Thus, the terms in (1) are redefined as: 権┘痛嫗 噺 釆権┘頂痛権┘鎚痛挽         憲嫗 噺 峙憲頂憲鎚峩         結痛嫗 噺 峙結頂痛結鎚痛峩         紅珍嫗 噺 峪紅頂頂珍紅鎚頂珍 		紅頂鎚珍紅鎚鎚珍 崋 

Each location has two time series, 権┘頂痛 and 権┘鎚痛, consisting 
of the easterly components cos 肯  and the northerly 
components sin 肯  respectively which range between 伐な and 髪な . An AR model for wind direction forecasting can be 
regarded as a VAR model with two variables. The terms in (2) 
are redefined as: 

燦風嗣嫗 噺 琴欽欽
欽欣権┘怠頂痛権┘怠鎚痛教権┘懲頂痛権┘懲鎚痛筋禽禽

禽禁
        四嫗 噺 琴欽欽欽

欣憲怠頂憲怠鎚教憲懲頂憲懲鎚筋禽禽
禽禁
      撮嗣嫗 噺 琴欽欽欽

欣結怠頂痛結怠鎚痛教結懲頂痛結懲鎚痛筋禽禽
禽禁
 

冊珍嫗 噺
琴欽欽
欽欽欣畦怠頂怠頂

珍 畦怠頂怠鎚珍畦怠鎚怠頂珍 畦怠鎚怠鎚珍 ┼ 畦怠頂懲頂珍┼ 畦怠鎚懲頂珍 畦怠頂懲鎚珍畦怠鎚懲鎚珍教 教畦懲頂怠頂珍 畦懲頂怠鎚珍 狂 教┼ 畦懲頂懲頂珍 教畦懲頂懲鎚珍畦懲鎚怠頂珍 畦懲鎚怠鎚珍 ┼ 畦懲鎚懲頂珍 畦懲鎚懲鎚珍 筋禽禽
禽禽禁 

where four redefined terms have the size of 岫に計 抜 な岻 , 岫に計 抜 な岻 , 岫に計 抜 な岻  and 岫に計 抜 に計岻  respectively. Then the 
wind direction forecast is determined based on predictions of 
the easterly and northerly components. 

C. Predictive Probability Distribution 

The purpose of probabilistic forecasting is to maximize the 
sharpness of predictive probability distributions subject to a 
calibration to minimize the uncertainty [15]. The calibration 
represents the statistical consistency between the predictive 
distributions and the observations [15], that is, the empirical 
percentage of observations located within some percentile 
being consistent with the theoretic percentage. The sharpness 
refers to the spread or concentration of the predictive 
distributions [15] which can be represented by average width 
of central prediction intervals. Sharper or more concentrated 
predictive distributions are preferred under the constraint of 
calibration. The histogram of probability integral transform 
(PIT) is an effective tool to assess the calibration of 
probabilistic forecasts. In this case, the PIT is the value of the 
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predictive cumulative distribution function (CDF) evaluated at 
the observation [16]. An approximately uniform PIT 
histogram reveals probabilistic forecasts being nearly fully 
calibrated. The continuous ranked probability score (CRPS) 
value is a summary indicator to assess performance of 
probabilistic forecasting models with respect to the calibration 
and sharpness which will be detailed in section II.D. 

Predictive probability distributions are usually assumed to 
be Gaussian [15]. Therefore, the predictive distribution of air 
temperature is taken to be normal denoted by 掖岫航銚┸ 購銚態岻. Due 
to the non-negativity of wind speed, a truncated normal 
distribution with a cutoff at 0 denoted by 掖袋岫航塚┸ 購塚態岻 is used 
as the predictive distribution of wind speed [15]. In order to 
address the circular property of wind direction, the predictive 
distribution of wind direction is assumed to be von Mises 
denoted by VM岫航提┸ 倦岻  which is regarded as the circular 
analogue of the Gaussian distribution [17]. Their probability 
density functions (PDFs) are defined as [18], [15], [17]: 血禎尼┸禰甜薙┸蹄尼┸禰甜薙岫捲銚岻 噺 叶磐掴尼貸禎尼┸禰甜薙蹄尼┸禰甜薙 卑┸			捲銚 樺 岫伐タ┸タ岻     (3) 

血禎寧┸禰甜薙┸蹄寧┸禰甜薙袋 岫捲塚岻 噺 迭配寧叶磐猫寧貼杯寧┸禰甜薙配寧┸禰甜薙 卑怠貸貞磐貸杯寧┸禰甜薙配寧┸禰甜薙卑 ┸				捲塚 樺 岷ど┸タ岻	         (4) 

血禎廃┸禰甜薙┸賃禰甜薙蝶暢 岫捲提岻 噺 勅入禰甜薙 冬搭棟岾猫廃貼杯廃┸禰甜薙峇態訂彫轍岫賃禰甜薙岻 ┸ 捲提 樺 岷伐講┸ 講岻	   (5) 

where terms 航銚┸痛袋挑 and 航塚┸痛袋挑 are the predictive centres for air 

temperature and wind speed respectively and terms 購銚┸痛袋挑 and 購塚┸痛袋挑 are the predictive spreads of predictive distributions for 

the 詣 -step-ahead air temperature and wind speed forecasts 
where, in this study, steps of 10 minutes are used to reflect the 
input data. The 詣 -step-ahead predictive centre and 
concentration parameter of a von Mises distribution are 
denoted by 航提┸痛袋挑 樺 岷伐講┸ 講岻 and 倦痛袋挑 樺 岷ど┸タ岻. 叶岫ゲ岻 and 溝岫ゲ岻 
represent the PDF and CDF of a standard normal distribution. 荊待岫ゲ岻 refers to the modified Bessel function of the first kind of 
order zero. 

The predictive centres of predictive distributions can be 
generated as a sum of residuals predicted by the AR or VAR 
forecasting model and the corresponding diurnal trends fitted 
by Fourier series. The predictive spread or concentration can 
be assumed to be constant, called homoscedasticity. Otherwise, 
the predictive spread 購痛袋挑 or concentration parameter 倦痛袋挑 is 
modelled as a linear function of the root mean square of recent 
changes in residuals 迎 [15] for air temperature and wind speed, 
assessed over 1 hour as in (6) or the concentration of recent 
observations for wind direction, in this case over a period of 2 
hours as in (7), called conditional heteroscedasticity: 購痛袋挑 噺 潔待 髪 潔怠 峙怠泰デ 盤迎痛貸珍 伐 迎痛貸珍貸怠匪態替珍退待 峩迭鉄           (6) 	倦痛袋挑 噺 潔潔待 髪 潔潔怠倦墜                             (7) 

where 潔待 , 潔怠 , 潔潔待  and 潔潔怠  are non-negative coefficients. The 
concentration of recent wind direction observations, 倦墜 , is 
calculated based on the code provided by Berens [19]. The 
experimental results obtained suggest that the selected length 
of 1 and 2 hours, used to model the conditional 

heteroscedasticity result in an effective probabilistic 
forecasting model. 

D. Continuous Ranked Probability Score 

A technique of minimum continuous ranked probability 
score (CRPS) estimation proposed by Gneiting [20] is used to 
estimate the predictive probability distribution. The CRPS is 
one of the scoring rules. The Brier score (BS) is a traditional 
scoring rule to verify the prediction of the occurrence of a 
specific event by considering two options that the event occurs 
or does not occur [21]. The ranked probability score (RPS) 
generalizes the BS by dividing the range of the parameter of 
interest into more classes. Then the CRPS is generated when 
the number of classes is infinite.  Compared with the RPS, the 
CRPS takes into account the whole permissible range of the 
parameter of interest and does not require the predefined 
classes [21]. 

In the case of the predictive distribution, events are 
characterized in terms of percentiles. Based on the predictive 
PDF 血 and observation 捲墜, the 潔堅喧嫌 is defined as [21]: 潔堅喧嫌岫繋┸ 捲墜岻 噺 完 岷繋岫捲岻 伐 繋墜岫捲岻峅態 穴捲著貸著                (8) 

where 繋  and 繋墜  are CDFs in terms of the percentile 捲  of 
predictive distribution and the observation 捲墜: 繋岫捲岻 噺 完 血岫検岻 穴検掴貸著                             (9) 繋墜岫捲岻 噺 犯ど						血剣堅	捲 隼 捲墜な						血剣堅	捲 半 捲墜                     (10) 繋岫捲岻 is the predictive probability for 捲 半 捲墜. 繋墜岫捲岻 is the 
Heaviside function and equal to な  if the event of 捲 半 捲墜 
happens. The CRPS at one future moment may be regarded as 
the sum of the squares of the differences between 繋岫捲岻 and 繋墜岫捲岻 at each percentile with zero width. The average value of 潔堅喧嫌 , 系迎鶏鯨  can be used to assess probabilistic forecasts. 
Therefore, a lower value of 系迎鶏鯨 is desired for probabilistic 
forecasting. For linear variables, air temperature and wind 
speed, (8) can be written equivalently as [22]: 潔堅喧嫌鎮岫繋鎮 ┸ 捲墜岻 噺 継岶】隙 伐 捲墜】岼 伐 怠態E岶】隙 伐 隙嫗】岼      (11) 

where 隙 and 隙嫗 represent independent random samples from 
the linear predictive CDF 繋鎮  and 継岶ゲ岼  is the expectation 
operator. The expressions derived by Gneiting can be directly 
used to calculate the 潔堅喧嫌鎮  value for the normal distribution 掖岫航┸ 購態岻  and the truncated normal distribution 掖袋岫航┸ 購態岻 
which can be found in [20] and [15]. 

For wind direction, the circular 潔堅喧嫌頂  is estimated by 
using the angular distance instead of the Euclidean distance in 
(11) [17]: 潔堅喧嫌頂岫繋頂 ┸ 肯墜岻 噺 継岶糠岫拘┸ 肯墜岻岼 伐 怠態継岶糠岫拘┸ 拘茅岻岼     (12) 

where 拘 and 拘茅 represent the independent randomly sampled 
wind directions from the circular predictive distribution 
function	繋頂. The term 肯墜 is the observed wind direction. The 
angular distance ゎ岫ゲ岻 is defined as: ゎ岫肯怠┸ 肯態岻 噺 犯 】肯怠 伐 肯態】												血剣堅	ど 判 】肯怠 伐 肯態】 隼 講に講 伐 】肯怠 伐 肯態】				血剣堅	講 判 】肯怠 伐 肯態】 隼 に講   (13) 



where 肯怠 and 肯態  are two random directions within the 
interval	岷伐講┸ 講岻. The first term on the right-hand side of (12) 
can be expressed as: 継岶糠岫拘┸ 肯墜岻岼 噺 怠態訂彫轍岫賃岻完 糠岫捲提┸ 肯墜岻結賃 達誰坦岫掴廃貸禎廃岻訂貸訂 穴捲提	   (14) 

It is found that 継岶糠岫拘┸ 肯墜岻岼 is only dependent on 倦 and the 
angular distance between 肯墜  and 	航提 . Therefore, a look-up 
table for 継岶糠岫拘┸ 肯墜岻岼 in terms of both 倦 with accuracy of 0.1 
and 糠岫肯墜┸ 航提岻 with accuracy of 0.0017 (ど┻な墜) is built up in 
order to reduce computation time due to iterative calculation 
for the determination of model parameters. How the value of 継岶糠岫拘┸ 肯墜岻岼  varies with the concentration parameter 倦  for 
typical values of 糠岫肯墜┸ 航提岻 is shown in Fig. 2. 

The second term on the right-hand side of (12) depends on 
the concentration parameter 倦  only. It equals 講 ねエ  for 倦 噺 ど 

and is approximated to な 岫に講倦岻怠 態エエ  when 倦  approaches 
infinity (半 にどど) [17]. Standard Monte Carlo integration [23] 
is used to calculate the second term for	ど 隼 倦 隼 にどど. A look-

up table is also built for the second term 
怠態継岶糠岫拘┸ 拘茅岻岼  in 

terms of 倦 with accuracy of 0.1 and is smoothed by the lowess 

technique [24]. How the value of 
怠態継岶糠岫拘┸ 拘茅岻岼 varies with 

the concentration parameter 	ど 判 倦 判 にどど is plotted in Fig. 3. 

 

Fig. 2. 撮岶詩岫孜┸ 飼伺岻岼 varying with 暫 under typical 詩岫飼伺┸ 侍飼岻 values. 

 

Fig. 3. 
層匝撮岶詩岫孜┸孜茅岻岼 varying with 暫. 

The parameters in the AR and VAR forecasting models 
and the coefficients representing the predictive spread or 
concentration parameter are determined with the objective of 
minimizing the average value of 潔堅喧嫌鎮 or 潔堅喧嫌頂. Initial values 
of the AR and VAR parameters are estimated from the de-
trended data at each location using least squares estimation 

[25]. Initial values of the non-negative coefficients modelling 
the spread or concentration parameter are set to be 0.1 and 1.0 
respectively. In addition, the concentration parameter is 
limited by a maximum value of 200. The mathematical 
calculations included in this paper are all accomplished using 
MATLAB. 

III. RESULTS AND DISCUSSION 

The orders of the AR and VAR models and the lengths of 
sliding training window used to model diurnal trends and 
estimate AR and VAR parameters, are determined through 
comparing the root mean square errors (RMSEs) of 詣-step-
ahead forecasts for different model orders and training 
window lengths. The experimental results suggest that the 
VAR(2), AR(4), and AR(4) models (with their corresponding 
training windows of 40, 45 and 45 days) can be used 
satisfactorily to predict air temperature, wind speed and 
direction respectively at 1 step ahead. Having similar forecast 
accuracies, the AR(4) models are preferred for wind speed and 
direction forecasting rather than the VAR(2) models since 
having fewer parameters reduces computation time in the 
process of minimizing CRPS. 

As was noted in sections II.C and II.D, the sharpness or 
spread of a predictive distribution can be indicated by the 
average width of central predictive intervals (CPIs) and the 
continuous ranked probability score (CRPS) value is a 
summary metric designed to reflect both the sharpness and 
calibration. Small values are sought for each. Probabilistic 
weather forecasts for 1 step (10 minutes) ahead generated by 
four models, the homoscedastic VAR(2)-H and AR(4)-H 
models and the conditionally heteroscedastic VAR(2)-CH and 
AR(4)-CH models are assessed by the PIT histograms, the 
CRPS values and the average widths of the のどガ CPIs. 

A. Assessment of Probabilistic Air Temperature Forecasts 

The PIT histograms for probabilistic 1-step-ahead air 
temperature forecasts estimated by the VAR(2)-H, VAR(2)-
CH, AR(4)-H and AR(4)-CH forecasting models at station 2 
are shown in Fig. 4. 

 

Fig. 4. PIT histograms for probabilistic 1-step-ahead air temperature forecasts 
generated by the four probabilistic forecasting models at station 2. 
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TABLE I.  CRPS 岫襖岻 AND AVERAGE WIDTHS 岫襖岻  OF のどガ CPIS FOR 

PROBABILISTIC 1-STEP-AHEAD AIR TEMPERATURE FORECASTS AT STATIONS 

2, 4, 6 AND 7 

 Station AR(4)-H AR(4)-CH VAR(2)-H VAR(2)-CH 

CRPS 

2 0.0947 0.0922 0.0928 0.0904 

4 0.0839 0.0811 0.0829 0.0803 

6 0.0833 0.0800 0.0820 0.0790 

7 0.1036 0.1014 0.1004 0.0995 

50% 

CPI 

2 0.1895 0.1979 0.1855 0.1940 

4 0.1592 0.1692 0.1557 0.1660 

6 0.1533 0.1655 0.1505 0.1628 

7 0.1722 0.1881 0.1674 0.1820 

 
Fig. 5. PIT histograms for probabilistic 1-step-ahead wind speed forecasts 
generated by four probabilistic forecasting models at station 2 

The PIT histogram for the VAR(2)-CH model is closer to 
uniform distribution than the PIT histograms for other models. 
That is, the VAR(2)-CH model has the best calibration. The 
CRPS values (in 襖) and the average widths (in 襖) of のどガ 
CPIs for the probabilistic 1-step-ahead air temperature 
forecasts estimated by the four probabilistic forecasting 
models at stations 2, 4, 6 and 7 are tabulated in Table I. 

The probabilistic air temperature forecasts generated by 
conditionally heteroscedastic models are generally shown to 
have smaller CRPS values than their respective homoscedastic 
models. Furthermore, the VAR(2) models perform better than 
the respective AR(4) models. The のどガ  CPIs for VAR(2) 
models are around に┻にガ smaller on average than the AR(4) 
CPIs. The homoscedastic models are shown to have the のどガ 
CPIs of ど┻どな襖  smaller than the respective conditionally 
heteroscedastic models. Usually, a variation of ど┻どな襖 in air 
temperature only leads to a nominal change in DLR. Therefore, 
the VAR(2)-CH model is used to estimate the predictive 
distribution of air temperature. 

B. Assessment of Probabilistic Wind Speed Forecasts 

The PIT histograms for probabilistic 1-step-ahead wind 
speed forecasts generated by the VAR(2)-H, VAR(2)-CH, 
AR(4)-H and AR(4)-CH models at station 2 as shown in Fig. 
5 demonstrate that the conditionally heteroscedastic models 

TABLE II.  CRPS 岫兼 嫌エ 岻 AND AVERAGE WIDTHS 岫兼 嫌エ 岻 OF のどガ CPIS FOR 

PROBABILISTIC 1-STEP-AHEAD WIND SPEED FORECASTS AT STATIONS 2, 4, 6 

AND 7 

 Station AR(4)-H AR(4)-CH VAR(2)-H VAR(2)-CH 

CRPS 

2 0.2025 0.1972 0.2042 0.1988 

4 0.2341 0.2290 0.2373 0.2318 

6 0.2465 0.2392 0.2475 0.2402 

7 0.1657 0.1496 0.1664 0.1510 

50% 

CPI	
2 0.4617 0.4584 0.4594 0.4586 

4 0.5251 0.5290 0.5299 0.5353 

6 0.4999 0.5336 0.4998 0.5436 

7 0.4325 0.3509 0.4283 0.3513 

 
Fig. 6. PIT histograms for probabilistic 1-step-ahead wind direction forecasts 
generated by four probabilistic forecasting models at station 2 

generally show a better calibration. The CRPS values (in 兼 嫌エ ) and the average widths (in 兼 嫌エ ) of のどガ CPI for the 
probabilistic 1-step-ahead wind speed forecasts generated by 
the four probabilistic forecasting models at stations 2, 4, 6 
and 7 are tabulated in Table II. 

The probabilistic wind speed forecasts generated by the 
AR(4) or conditionally heteroscedastic models are generally 
shown to have smaller CRPS values than their respective 
VAR(2) or homoscedastic models. Over half of the time the 
predictive distributions modelled by the conditionally 
heteroscedastic models are more concentrated than the 
distributions modelled by the homoscedastic models. 
However, due to some extremely dispersive distributions for 
the conditionally heteroscedastic models, the average widths 
of のどガ  CPIs modelled by the homoscedastic models are 
sometimes smaller on average, at the cost of losing a certain 
calibration. Therefore, the AR(4)-CH model is selected to 
determine the predictive distribution of wind speed. 

C. Assessment of Probabilistic Wind Direction Forecasts 

The PIT histograms for probabilistic 1-step-ahead wind 
direction forecasts generated by the VAR(2)-H, VAR(2)-CH, 
AR(4)-H and AR(4)-CH forecasting models at station 2 as 
plotted in Fig. 6 show that the AR(4)-CH model has the best 
calibration. 
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TABLE III.  CRPS (RADIANS) AND AVERAGE WIDTHS (RADIANS) OF のどガ 

CPIS FOR PROBABILISTIC 1-STEP-AHEAD WIND DIRECTION FORECASTS AT 

STATIONS 2, 4, 6 AND 7 

 Station AR(4)-H AR(4)-CH VAR(2)-H VAR(2)-CH 

CRPS 

2 0.3563 0.3395 0.3598 0.3450 

4 0.2812 0.2514 0.2829 0.2546 

6 0.1986 0.1882 0.1977 0.1886 

7 0.1076 0.1024 0.1119 0.1055 

のどガ 

CPIs 

2 0.7433 0.7600 0.7553 0.7672 

4 0.4665 0.5448 0.4672 0.5451 

6 0.2965 0.3820 0.2966 0.3779 

7 0.2242 0.2649 0.2261 0.2705 

The CRPS values (in radians) and the average widths (in 
radians) of のどガ CPIs for the probabilistic 1-step-ahead wind 
direction forecasts generated by the four probabilistic models 
at stations 2, 4, 6 and 7 are tabulated in Table III. The AR(4) 
models or the conditionally heteroscedastic models give 
smaller CRPS values than their respective VAR(2) models or 
the homoscedastic models. The predictive distributions of 
wind direction modelled by the homoscedastic models are 
generally more concentrated on average, at the cost of losing a 
certain calibration. As a result, in order to ensure an adequate 
calibration, the AR(4)-CH forecasting model combined with 
the Cartesian decomposition is employed to determine the 
probabilistic forecasts of wind direction. 

The のどガ  CPIs associated with their 1-step-ahead 
predictive centres of wind speed and direction modelled by the 
AR(4)-CH models on 27/03/2013 at station 2 are plotted in 
Fig. 7. The experimental results indicate that the wind speed 
and direction observations locate within the のどガ  CPIs for 
around のに┻ひガ and ねぱ┻ぱガ of the time respectively. In addition, 
the 1-step-ahead point forecasts or expected values of wind 
speed and direction estimated by the AR(4)-CH models 
having root mean square errors (RMSEs) of ど┻ぬぱ	岫兼 嫌エ 岻 and ど┻はぱ  (radians) respectively give ば┻ぱガ  and なね┻のガ 
improvement in RMSE over a persistence forecasting method 
[26] which supposes that forecasts in the future are equal to 
the present values. 

IV. CONCLUSION AND FUTURE WORK 

This paper has introduced and assessed different 
probabilistic forecasting models for air temperature, wind 
speed and wind direction in preparation for the future work of 
determining prediction percentiles of dynamic line ratings 
(DLRs) of overhead lines (OHLs). 

The predictive distributions of air temperature, wind speed 
and wind direction are assumed to be normal, truncated 
normal and von Mises respectively. The predictive centres of 
predictive distributions of weather conditions are estimated by 
an auto-regressive (AR) model or a vector auto-regressive 
(VAR) model where the diurnal trends are fitted by Fourier 
series. In addition, a method of Cartesian decomposition is 
applied to wind direction forecasting. 

 

Fig. 7. The 50% CPIs associated with the 1-step-ahead predictive centres of 
wind speed and direction modelled by the AR(4)-CH models on 27/03/2013 
at station 2. 

The predictive spread or concentration parameter is 
assessed for both homoscedastic (H) and conditionally 
heteroscedastic (CH) models. A homoscedastic model 
assumes a constant predictive spread or concentration 
parameter. The conditional heteroscedasticity is modelled as 
a linear function of the root mean square of recent changes in 
the de-trended data, in the work here assessed over 1 hour for 
air temperature and wind speed, or the concentration of recent 
observations assessed over 2 hours for wind direction. 
Therefore, four probabilistic forecasting models, VAR(2)-H, 
VAR(2)-CH, AR(4)-H and AR(4)-CH models are established 
and applied to the 1-step-ahead forecasts for air temperature, 
wind speed and wind direction respectively. 

Due to the constantly adjusted predictive spreads or 
concentration parameters based on recent weather 
observations, the probabilistic weather forecasts estimated by 
the conditionally heteroscedastic models are found to be 
generally of better calibration but less concentrated on 
average than the forecasts generated by the homoscedastic 
models. The calculated CRPS value which is a summary 
measure to assess the probabilistic forecasting model 
indicates that the VAR(2)-CH, AR(4)-CH and AR(4)-CH 
models (with their corresponding training windows of 40, 45 
and 45 days) give the best performance in addressing the 
trade-off between calibration and sharpness for air 
temperature, wind speed and wind direction respectively. 
Therefore, they are employed to determine the probabilistic 
forecasts for each weather condition due to the estimated 
probabilistic forecasts having the best calibration and the 
appropriate sharpness, as well as the high accuracy of the 
corresponding deterministic forecasts. 

Building on the present work, the predictive probability 
distributions of air temperature, wind speed and direction, 
combined with deterministic solar radiation forecasts or full 
solar radiation will be used to estimate prediction percentiles 
of DLRs describing the probability of particular OHL thermal 
ratings being exceeded. 
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